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Abstract.  We explore a variety of two-dimensional continuous-valued cellular 

automata (CAs).  We discuss how to derive CA schemes from differential equations and 
look at CAs based on several kinds of non-linear wave equations.  In addition we cast 
some of Hans Meinhardt’s activator-inhibitor reaction-diffusion rules into two 
dimensions.  Some illustrative runs of CAPOW, a CA simulator, are presented. 

1. Introduction 
A cellular automaton, or CA, is a computation made up of (1) finite elements 

called cells.  Each cell contains the same type of state.  The cells are updated in (2) 
parallel, using a rule which is (3) homogeneous and (4) local. 

In slightly different words, a CA is a computation based upon a (1) grid of cells, 
with each cell containing an object called a state.  The states are updated in discrete 
steps, with all the cells being effectively updated at the same time.  (3) Each cell uses the 
same algorithm for its update rule.  (4) The update algorithm computes a cell’s new state 
by using information about the states of the cell’s nearby spacetime neighbors, that is, 
using the state of the cell itself, using the states of the cell’s nearby neighbors, and using 
the recent prior states of the cell and its neighbors. 

The states do not necessarily need to be single numbers, they can also be data 
structures built up from numbers.  A CA is said to be discrete-valued if its states are built 
from integers, and a CA is continuous-valued if its states are built from real numbers. 

As Norman Margolus and Tommaso Toffoli have pointed out, CAs are well-
suited for modeling nature [1].  The parallelism of the CA update process mirrors the 
uniform flow of time.  The homogeneity of the CA update rule across all the cells 
corresponds to the universality of natural law.  And the locality of CAs reflect the fact 
that nature seems to forbid action at a distance. 

The use of finite spacetime elements for CAs are a necessary evil so that we can 
compute at all.  But one might argue that the use of discrete states is an unnecessary evil.  
In the old days, speed and storage considerations made it impractical to carry out large 
CA computations using real numbers as the cell states, but today’s desktop machines no 
longer have these limitations.  The author and his students have developed a shareware 
software package for Windows called CAPOW, which we have used for exploring 
continuous-valued CAs [2].  The paper [3] contains information about our investigations 
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of one-dimensional continuous-valued CAs, and the present paper presents some of the 
phenomena found in two-dimensional continuous-valued CAs. 

In the CAs we’ve been investigating, we take “real number” to mean IEEE single-
precision floating-point number, what the C language terms a float rather than a double. 
We have experimented with double precision floating point numbers, but their use does 
not seem to change the qualitative features of our simulations.  Double precision floating 
point numbers have the drawback of requiring larger memory buffers and of cutting 
simulation speed.  Because of considerations of speed and memory, we have been 
looking at relatively small 2D CAs, with a dimension 120 cells wide by 90 cells high. 

In Section 2 of this paper we discuss how we derive CA schemes from sets of 
differential equations and Section 3 presents some material relating to our specific 
methods of simulation.  In Section 4 we discuss some two-dimensional continuous-
valued CAs that are based on reaction-diffusion systems that use an activator-inhibitor 
reaction.  In Section 5 we look at CAs based on linear and non-linear wave equations and 
in Section 6 we briefly consider the possibility of developing some “reaction-wave” CAs.  
And Section 7 suggests some paths for further investigations. 

Before proceeding, let’s confront three possible objections to the study of 
continuous-valued cellular automata. 

Objection 1.  Since you are running your computation on a digital machine, your 
so-called continuous values are really discrete numbers, so you are doing nothing new. 

Over typical lab scales of minutes and hours, there is a qualitative difference 
between a CA whose state is only a few bits, and a CA whose state is a floating point 
number.  You can indeed simulate crude things like heat flow with only a few hundred 
discrete states, but numerical viscosity kills off subtler continuum behaviors like wave 
motion.  With states that are single precision floating point numbers, simulation of a one 
or two dimensional wave will persist through millions of updates, but if we coarsen the 
grain down to something like ten bits of state, a wave simulation quickly dies out.  Here’s 
a table of results gotten by simulating a one-dimensional wave with the CAPOW 
software, which contains a “State Grain” control for altering the coarseness of the real 
numbers used. 

 
Coarseness of “Reals” Number of Updates Until a 

Wave Dies Out. 
0.1 50 updates 
0.01 200 updates 
0.001 800 updates 

Table 1. The longevity of a linear wave scheme using varying minimum sizes of real number. 

Objection 2.  When you use floating point numbers, computational round-off 
destroys the possibility of having time-reversible rules. 

This issue was raised by Norman Margolus during the “Constructive CAs” 
conference.  Margolus reasons that since physics is reversible, the CAs we use should be 
reversible as well.  Margolus’s concern about the CAPOW program was that its use of 
floating-point numbers for its “real numbers” would make the rules irreversible due to 
computational round-off. 
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Figure 1. A one-dimensional wave schema being run with a Wave constant of 0.694.  The rule 
was seeded with a single triangular spike and was time-reversed twice.  The figure shows an 
instantaneous snapshot of the cells’ intensity values at the bottom, while the upper part shows a 
spacetime diagram of the intensity patterns, with the earlier times at the top and the later times at 
the bottom.  This simulation was “time-reversed” by exchanging the “past” and “future” cell 
buffers.[Reversible Wave B&W.tif] 

Tests conducted since the conference reveal that the computational round-off is 
not noticeable enough to destroy the possibility of rule reversibility over the simulation 
runs that we use, typically on the order of a thousand to a hundred thousand updates.  
Figure 1 shows an example of a one-dimensional wave equation rule being reversed. 

Of course our rules can only be reversible when they are based on a reversible 
scheme such as the Wave Scheme introduced in Section 3.  The Diffusion Scheme which 
we use is inherently irreversible.  Although it is possible to model diffusion in terms of 
the reversible motions of a deterministic gas of “heat particles,” such a strategy would 
seem to limit us to simulating systems much smaller and simpler than those investigated 
here. 

Objection 3.  To study continuous-valued CAs is to repeat existing work in 
numerical analysis and finite element simulations. 

Finite element methods are indeed an inspiration for continuous-valued CAs.  But 
the CA approach has a different mind-set and leads to different kinds of investigations.  
The CA approach involves: an emphasis on experiment and observation rather than on 
theory and proof; an artificial life orientation in which one is actively on the lookout for 
unexpected and emergent properties of the simulation; and the use of genetic algorithm 
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methods for effectively searching the large phase spaces of the rules.  A historical 
distinction between CA work and finite elements simulations is that the latter tend to be 
run on supercomputers, while CA programs are usually rapidly running, attractive, 
interactive shareware graphics programs for desktop machines.  It is our hope that 
thinking in terms of continuous-valued CAs can lead to a productive unification of work 
from diverse fields. 

2.  Continuous-Valued CAs and Differential Equations 
 
Most of the continuous-valued rules we’ve investigated so far have been inspired 

by systems of differential equations.  These include one-dimensional and two-
dimensional forms of equations based on diffusion, wave motion, oscillators, activator-
inhibitor reactions, and various combinations of these equations. 

Our cell states typically include a real-number value u, and our CA update 
scheme typically has the form uNew = Update(u,…).  Various neighbor-state values can 
appear as arguments to the Update rule.  We write uNew rather than u on the left because 
in order to preserve parallelism we think in terms of first computing the uNew values for 
every cell before then starting to view these as the current u values. 

In working with CA schemes of this nature, one needs to worry both about the 
numerical accuracy of a scheme and about its stability.  (See [3].)  The accuracy relates to 
how well the CA is simulating an actual differential equation.  The stability relates to 
whether or not the CA simulation goes completely out of control.  When a rule enters an 
unstable regime it will generally produce arbitrarily large and small values.  A good 
heuristic in seeing if a scheme is likely to be stable is that it should set uNew to 
something the size of u plus something the size of a constant times the difference 
between two cell values. 

In order to discuss our practices in converting systems of equations into schemes 
for CA rules, let’s suppose we are looking for a scheme to be used at a given cell C.  In 
one dimensional rules, we call the cells left and right neighbors L and R.  In two-
dimensional rules, we call the cell’s neighbors E, NE, N, NW, W, SW, S, and SE.  In 
two dimensions we distinguish between  the von Neumann neighborhood of all eight 
neighbors, and the von Neumann neighborhood of only the four neighbors E, N, W, and 
S. 

Table 2 lists some symbols we’ll use for various cell neighborhood values.  We’ll 
use uPast and uNew to stand for the value in the cell at, respectively, the prior and the 
following update.  It’s going to be useful to use the term uTimeAvg to stand for the 
average of these two “time neighbors.”  And we’ll use uNabeAvg to stand for the 
average state values in C’s immediate neighbors, excluding C itself.  In addition, we 
write uR and uL to stand for the u values in the cell’s right and left neighbors R and L, 
write use uE, uN, uW, and uS to stand for the intensity values of the update cell’s four 
von Neumann neighbors, and so on. 

In a one-dimensional case where we only look at nearest neighbors, uNabeAvg is 
(uL + uR)/2.  In a two-dimensional case where we use the von Neumann neighborhood, 
uNabeAvg is (uE+uN+uW+uS)/4.  And in the two-dimensional Moore neighborhood 
case, we choose to weight the corner cells a bit less, and use a uNabeAvg of 
(uE+uN+uW+uS+ 0.75*(uNE + uNW + uSW + uSE) / 7. 
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Symbol Meaning Compute As: 
u Current value of cell 

state 
 

uPast Prior value of cell state  
uNew Next value of cell state  
uNabeAvg Average of Space 

Neighbors 
(uL + uR)/2 or  
(uE+uN+uW+uS)/4 or 
(uE+uN+uW+uS + 0.75*(uNE + uNW + uSW + uSE)) / 7 

uTimeAvg Average of Time 
Neighbors 

(uPast + uNew)/2 

Table 2. Notation for cell neighborhood values. 

To convert a differential equation into a CA scheme, we write the equation in a 
form that uses expressions of the form ut or utt as opposed to expressions of the form 
∂u/∂t or ∂2u/∂t2.  And we use the dimension-independent ∇2u to stand, in one dimension, 
for uxx or ∂2u/∂x2, and to stand, in two dimensions, for uxx + uyy or (∂2u/∂x2 +  ∂2u/∂x2).  
And then we use the substitutions in Table 3.  Note that we do not worry about putting in 
any ∆x,  ∆y or  ∆t terms because any meaningful values for these terms can end up being 
incorporated into one of the CA scheme’s parameters. 

 
ut uNew - u 
utt uTimeAvg - u 
∇2u uNabeAvg - u 

Table 3. Some CA approximations. 

Consider a diffusion equation with a parameter called Diffusion. 
 
ut = Diffusion * ∇2u 
becomes 
(Diffusion Scheme) uNew = u + Diffusion * (uNabeAvg - u) 
 
Note that this scheme satisfies the stability heuristic mentioned at the start of this 

section; that is, uNew is u plus something the order of a difference between the u values 
of two neighbors. 

The Diffusion Scheme can be thought of taking a weighted average of the cell and 
its neighbors.  That is, we can write the Diffusion Scheme as uNew = (1 - Diffusion) * u 
+ Diffusion * uNabeAvg.  As the Diffusion parameter ranges from zero and unity, the 
weight shifts from the cell to its neighbors..  If the number of neighbor cells is k, then 
using a Diffusion value of  k/(k+1) makes a straight average of the cell and its neighbors. 

One should not use a Diffusion value greater than one, as this leads to instability.  
The reason for this becomes clear if we consider a situation where the uNabeAvg is zero.  
In this case, if Diffusion were greater than one, then a single update would change a 
positive u to a negative uNew. 
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Now consider a wave equation with a parameter called Wave. 
utt = Wave * ∇2u 
becomes 
(Wave Scheme) uNew = (2*u - uPast) + 2*Wave*(uNabeAvg - u). 
 
Our stability heuristic is satisfied because the first term on the right side is of the 

order of u, while the second term is the order of a difference in the u values of two 
neighbors. 

In terms of the differential equations, the Wave parameter is actually (c * ∆t / 
∆x)2, or the square of the speed of the wave in the medium times the square of the time-
step divided by the square of the space step.  (See [3].)  For a cellular automatist it’s more 
practical to just think of the single parameter Wave. 

One significant thing to notice about the Wave Schema is that it’s time-reversible.  
As already mentioned in Section 1, we can swap the positions of uNew and uPast to get 
a scheme that retrodicts the past instead of predicting the future.  In practice, we reverse a 
running Wave Schema CA by exchanging the roles of the buffers that hold the cells’ past 
values and the cells’ future values. 

We can also think of the right-hand side of the Wave Scheme as being two times a 
weighted average of the cell and its neighbors with the old value of the cell being 
subtracted off.  That is, we can write the Wave Scheme as uNew = 2*((1 - Wave)*u + 
Wave*uNabeAvg) - uPast.  As the Wave parameter ranges from zero to one, the weight 
shifts from the cell to its neighbors, and values greater than one give instability. 

Instead of deriving our schemes for continuous-valued CA rules from differential 
equations, it’s also possible to develop new CA rules simply by playing with the 
schemes.  In [4], Fermi, Pasta and Ulam described an early computer experiment in 
which they changed the one-dimensional wave equation rule by adding a Nonlinearity 
parameter and a factor that involves the squares of the differences between the 
neighboring cell values to produce this scheme.  (See [5] for a history of the Fermi-Pasta-
Ulam work through the mid 1970s.)  As mentioned above, we write uR and uL to stand 
for the u values in the cell’s right and left neighbors R and L. 

 
(One-dimensional Quadratic Wave Scheme) 
uNew = (2*u - uPast) + 2* Wave*(uNabeAvg - u + 
 Nonlinearity*((uR-u)2 - (u-uL)2))) 
 
An analysis by Dan Ostrov in [3] establishes that in one dimension, this scheme 

corresponds to a nonlinear wave equation of the following form. 
 
utt = Wave * uxx + 2 * Nonlinearity * ux* uxx 
 
We’ll say more about nonlinear waves in Section 6. 

3.  Investigating Continuous-valued CAs 
As with other CAs, we simulate parallelism by maintaining separate buffers to 

hold the current cell values and the new cell values being computed.  Since the Wave 
Schema CAs compute the future on the basis of values both from the present and the past 
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cell values, we actually need to maintain three buffers for these rules. 
In running CAs with continuous-valued state variables, one needs to prevent the 

state values from taking on unreasonably large values that can produce floating-point 
overflow.  A simple way to do this is to pick a range of values that you will allow the 
variables to lie in, and to then clamp them to stay in this range, where to “clamp” a 
variable u to a range (Min, Max) means that if u is less than Min we set it to Min, and if 
u is greater than Max we set it to Max.  The brute-force clamping approach protects the 
integrity of the simulation in times when the rules have no physical analog.   

As an alternate approach to keeping variable values in range, one can "wrap" 
them instead of clamping them.  That is, if u is slightly larger than Max, one changes it to 
u - Max, and so on.  Although this approach has the virtue of preserving more 
information about the value of u, it seems in some cases to have the disadvantage of 
excessively churning things up, and we have not used it very much.  As a matter both of 
elegance and of physical verisimilitude, one usually tries to design the rules and their 
parameters so that no special measures are needed to keep the variables in range. 

In order to display our CAs, we pick one of the state variables to be the display 
variable u.  We then use a map called Band to map u’s range onto the integers up to 
some largish number MaxColorIndex (typically 1000).  We have been using simple 
linear maps for Band, although other kinds of maps could be useful, for instance to 
exaggerate the color changes near some critical value.  We use a Palette array of 
MaxColorIndex of RGB color values and we display u as Palette[Band(u)]. 

Our standard design for Palette is to randomly choose some “anchor colors” for 
some of the Palette entries, and then to use linear interpolation in RGB space to ramp the 
entries whose indices lie between the indices of the anchor colors.  This produces a 
smoothly shaded effect.  When generating monochrome images, we simply alternate 
white and black for the anchor colors, producing a Palette which is a shaded series of 
gray-tone stripes. 

We’ve experimented with a variety of possible boundary conditions for our CAs.  
The most commonly used is the periodic boundary condition, in which a one-dimensional 
CA space is treated as a circle and a two-dimensional CA space is treated as a torus.  This 
is the only boundary condition used in the examples discussed in this paper. 

There are various possible ways to seed the continuous-valued CAs.  Among 
them are: a constant starting value at all cells, a two-dimensional sine wave pattern, a 
single tent-like spike, multiple spikes that the user can place with the mouse, and a fully 
randomized initial state. 

Finding the best set of parameter values for a given rule is difficult.  The search 
spaces are, after all, very large and perhaps very chaotically organized.  We’ve used an 
evolutionary search strategy that seems to have first been introduced by Richard Dawkins 
in his classic Blind Watchmaker program [6].  Like Blind Watchmaker, CAPOW allows 
the user to view nine rules at once, to select a visually appealing rule by clicking on it, 
and to thereby have the other eight rules become mutations of the chosen rule.  The 
mutation rate is user-selectable, and there other kinds of randomization options as well.  
In other words, many of the rules discussed here have been found by directed search 
methods.  Figure 2 shows an image of the CAPOW window with nine different CA rules 
active. 
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Figure 2. (Color Plate 1) A picture of the CAPOW program showing nine CAs at once.  The 
images shown correspond to the examples used in this paper.  The rule in the upper-left corner is 
one-dimensional and all the others are two-dimensional.  Row by row from left to right the rules 
are a one-dimensional wave, the Zhabo Worm rule, the Turing Leopard rule, the Turing Stripe 
rule, a linear wave, a quadratic wave, a cubic wave, a homeostatic cubic wave, and the Cloud rule. 
[CAPOW.tif] 

In searching for interesting rules, we use a refinement of Stephen Wolfram’s 
familiar classification of 1-D CAs into four kinds: (I) Those that die, (II) those that 
repeat, (III) those with non-repeating persistent structures, (IV) pseudorandom.  If we 
view this classification as a spectrum of increasing complexity, it seems logical to have 
the pseudorandom rules come last, even though Wolfram chose to list the last two classes 
in the opposite of the expected order.  It’s useful to distinguish between spatial and 
temporal periodicity in type II.  In two dimensions we have a special kind of complex 
rule that, rather than exhibiting discrete gliders, shows the self-organizing scroll patterns 
identified with the Belousov-Zhabotinsky reactions in chemistry.  With this in mind, we 
distinguish between two cases of type III as well. 

 
Complexity 
Type 

Wolfram Type Attractor Behavior 

I 1 Point Dies out 
IIa 2 Cycle Fixed space pattern 
IIb 2 Cycle Periodic cycle 
IIIa 4 Strange Self-organizing scrolls 
IIIb 4 Strange Moving gliders or globs 
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IV 3 Pseudorandom Chaotic seething 

Table 4.  The complexity types of two-dimensional CAs. 

4.  Reaction-Diffusion Systems 
Some of the most interesting patterns in nature come from reaction-diffusion 

systems in which a chemical reaction is taking place while the components of the 
reaction are being diffused.  Much of the research in this area has focused on reactions 
which involve two substances: an autocatalyzing activator which also produces an 
inhibitor substance.  (See the classic Alan Turing paper [7] and the recent non-technical 
survey [8].) 

In [9], Hans Meinhardt formulates several differential equation schemes for 
reaction-diffusion systems based on activator-inhibitor reactions.  This book also 
includes a disk with the executable and the BASIC source code for Meinhardt’s SP 
program, which displays continuous-valued one-dimensional CAs based on a wide range 
of activator-inhibitor-diffusion systems.  Meinhardt’s work was the major inspiration for 
our development of the CAPOW software. 

The work in this section is based on Meinhardt’s differential equation scheme for 
an activator-inhibitor diffusion rule with activator saturation.  Depending on how the 
parameters are set, we can get every possible CA complexity type with the exception of 
IIIb. 

We can easily find rules of type I, which rush to take on the maximum or 
minimum value for all cells, and remain frozen there. 

The rules of type IIa are of particular interest.  These rules converge to static-
appearing patterns resembling the coats of animals such as leopards and zebras.  These 
kinds of reaction-diffusion patterns are often called Turing patterns, as Turing’s 
motivation for considering these rules was indeed to find ways to generate stable patterns 
which emerge in morphogenesis.  The rules of type IIb show a uniform oscillation up and 
down.  If these rules oscillate wildly enough to hit the maximum values and experience 
“clamping” then recurrent dot patterns are introduced by the clamping process. 

The rules of type IIIa are those in which certain wave-like structures form and 
move about.  Among these travelling wave patterns, of particular significance are those 
in which scrolls self-organize.  The scroll-forming patterns are instances of the 
ubiquitous two-dimensional CA rules sometimes called Zhabotinsky rules.  None of the 
rules of this kind investigated so far seem to show stable moving patterns that 
characterize complexity type IIIb. 

And finally it is always easy to find setting that produce type IV patterns which 
seethe wildly. 

Meinhardt formulates these rules in terms of two real number variables a and b 
which represent the intensity of, respectively, the activator and the inhibitor.  In our 
simulations we’ve typically let a and b range from 0 to 4, focusing on rules in which the 
a and b values never actually approach the maximum value of 4 closely enough to 
require clamping.  We use a helper variable bSafe to prevent division by zero, along with 
a number of parameters that are named in Table 5. 

 

 - 9 - 



Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999 

Symbol Meaning Comment 
Variables:   
a Concentration of the activator. Typical range 0 to 4. 
b Concentration of the inhibitor. Typical range 0 to 4. 
Safety Variable:   
bSafe Concentration of the inhibitor, 

corrected to be above bMin. 
Typical range 0.001 to 4.  
Use to avoid division by 
0. 

Equation 
Parameters: 

  

sDensity Source density, akin to a reaction 
rate. 

Range 0 to 1.  Small 0.01 
for Turing, medium 0.5 
for Zhabo. 

aDiffuse Diffusion rate of the activator. Range 0 to 1.  Needs to 
be close to bDiffuse for 
Zhabo. 

bDiffuse Diffusion rate of the inhibitor. Range 0 to 1.  Needs to 
be much larger than 
aDiffuse for Turing. 

aBase Basic activator production rate. Small 0.01 for Turing, 
medium 0.3 for Zhabo. 

bBase Basic inhibitor production rate. Small, about  0.004. 
aDecay Activator removal rate. Large 0.5 for Zhabo, 

small 0.01 for Turing. 
bDecay Inhibitor removal rate. Large 0.3 for Zhabo, 

small 0.01 for Turing. 
aSaturation Slows down the rate of activator 

production as a increases. 
Need this to get good 
Turing patterns.  Low 
values like 0.04 give 
dots, high values like 0.2 
give stripes. 

Simulation 
Parameters: 

  

Neighborhood Dimensionality and neighborhood. In 2D we get the best-
looking, smoothest 
results with a Moore 
neighborhood with edges 
weighted slightly more 
than corners. 

bMin Minimum inhibitor in rule. Small 0.001 for Turing, 
medium 0.5 for Zhabo. 

abMax Maximum value of activator or 
inhibitor in rule. 

4 works well. 
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Table 5: The variables and parameters for the activator-inhibitor-diffusion rule. 

Meinhardt’s activator-inhibitor equations have this form. 
 

(Activator) at = aDiffuse * ∇2a + 
 + sDensity * a2/(b * (1 + aSaturation*a*a))  
 + sDensity * aBase  
 - aDecay * a. 
(Inhibitor) bt = bDiffuse * ∇2b 

 + sDensity * a2  
 + bBase  
 - bDecay * b. 

 
To model these as CA schemes, we treat the time-step as 1 and use updates of the 

form aNew = a + at.  The full activator-inhibitor CA rule takes the following form. 
 

(Avoid division by 0) IF (b > bMin) THEN bSafe = b ELSE bSafe = bMin. 
(Activator) aNew = a + aDiffuse * (aNabeAvg - a) 
 + sDensity*a*a/(bSafe * (1 + aSaturation*a*a)) 
 + sDensity * aBase 
 - aDecay * a. 
(Inhibitor) bNew = b + bDiffuse * (bNabeAvg - b) 
 + sDensity*a*a 
 - bDecay * b. 
(Clamp) Clamp both a and b to be in the range [0, abMax]. 

 
Figure 3 shows an example of one of the self-organizing scroll CAs of type IIIa 

called Zhabo Worms, while Figures 4 and 5 show examples of stable Turing pattern CAs 
of type IIa called Turing Leopard and Turing Stripes.  The parameter values used for 
these three rules appear in Table 6. 
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Figure 3: Zhabo Worms.  This is an activator-inhibitor diffusion rule.  It slowly self-organizes 
scrolls from a random start.[Zhabo Worms B&W.tif] 

 

 
 

Figure 4. (Color Plate 2.) A three-dimensional view of the  two-dimensional Turing Leopard rule.  
The heights and colors both represent the activator value.  Starting from a random start, this rule’s 
values drift down towards zero and then some stable peaks of activation develop and grow to a 
medium height.  Convergence is rapid.  [Turing Leopard 3D.tif] 
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Figure 5. (Color Plate 3.)  A three-dimensional view of the two-dimensional Turing Stripes rule.  
The heights and colors both represent the activator value, and the inhibitor values are closely 
similar.  This pattern self-organized from a random start.  It is fully stable, and has been run for 
over 100,000 updates. [Turing Stripes 3D.tif] 

 
 Zhabo 

Worms 
Turing 
Leopard 

Turing 
Stripes

Neighbors 2D Moore 2D Moore 2D Moore 
Complexity IIIa IIa IIa 
sDensity 0.52 0.011 0.015 
aDiffuse 0.0975 0.0399 0.049 
bDiffuse 0.04375 0.99995 0.99995 
aBase 0.256 0.01 0.01 
bBase 0.004 0.0055 0.0055 
aDecay 0.52 0.015 0.01 
bDecay 0.3 0.01 0.015 
aSaturation 0.0 0.04 0.2 
bMin 0.52 0.001 0.001 
abMax 4.0 4.0 4.0 

Table 6.  The parameters for the three activator-inhibitor-diffusion rules of Figures 2, 3, and 4. 

5.  Wave Equations 
The two-dimensional wave equation rules give patterns very similar to the surface 
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of pan of water, although our use of periodic boundary conditions means that the waves 
don’t reflect off the edges.  Figure 6 shows an image of a randomly perturbed two-
dimensional wave schema rule. 

 

 

Figure 6.  A two-dimensional wave schema being run with a  Wave constant of 0.694 and a uMax 
of 3.0.  The pattern started as a two-dimensional sine wave and was repeatedly perturbed with 
random conical “dings”.  It will continue sloshing around like this indefinitely. [Wave B&W.tif] 

One might be tempted to say that the wave-based rules have complexity type IIIb, 
in that the individual wave patterns behave somewhat like gliders that move around.  On 
the other hand, since the wave equation is linear, the wave crests cross each other without 
interacting.  And the interaction of gliders is really the essence of what we think of as 
complexity type IIIb, for one expects a complexity type IIIb rule to appear as if it may be 
capable of simulating a universal computer. 

In order to have wave-like rules in which the individual wave-patterns interact, 
we need a non-linear wave equation along the lines mentioned in Section 2.  We have 
worked with three nonlinear two-dimensional wave schemes.  Two are fairly 
straightforward: a quadratic and a cubic nonlinear wave.  The third is more complicated, 
it’s a cubic nonlinear wave that’s has a “homeostatic” tweak designed to prevent it from 
becoming unstable. 

The first quadratic and cubic wave rules are based on a von Neumann 
neighborhood.  The homeostatic cubic wave rule uses the von Neumann neighborhood 
for the “wave mode” of its updates and uses the Moore neighborhood when it enter an 
“averaging mode” to smooth out instabilities.  Recalling that we use uE, uN, uW, and uS 
to stand for the intensity values of the update cell’s four von Neumann neighbors, we can 
write the quadratic and cubic wave schemes as follows 
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(Two-Dimensional Quadratic Wave Scheme) uNew = 
 (2*u - uPast) + 2 * Wave * (uNabeAvg - u + 
 Nonlinearity*( (uE-u)2 - (u-uW)2 + (uN-u)2 - (u-uS)2 ) ) 
(Two-Dimensional Cubic Wave Scheme) uNew = 
 (2*u - uPast) + 2 * Wave * (uNabeAvg - u + 
 Nonlinearity*((uE-u)3 - (u-uW)3 + (uN-u)3 - (u-uS)3 ) ) 
(Clamp) Clamp u to be in the range [-uMax, uMax]. 

 
The third nonlinear wave is a “homeostatic cubic wave” scheme which we’ll 

discuss below.  In Figure 7 we show our four kinds of waves side by side. 
 

 

Figure 7.  A view of four kinds of two-dimensional waves.  From the left, the top row has a linear 
wave and a quadratic wave, and the bottom row has a cubic wave and a homeostatic cubic wave.  
Each rule was seeded with a four full cycles of a sine-wave pattern and was run for about 500 
updates.  In the linear wave this pattern simple oscillates forever, making “sushi” patterns that are 
displayed by showing the intensities by different shades of black and white.  In the quadratic 
wave, the peaks become asymmetric, and in the cubic wave the peaks become more angular.  The 
flaws on the cubic homeostasis wave are locations where the wave has become unstable and has 
intensity values that are being clamped to the maximum or minimum allowable value. All the 
rules are being run with a Wave constant of 0.694 and a uMax of 3.0. The Nonlinearity values of 
the quadratic and cubic, waves are, respectively 0.5, 3.  The Nonlinearity in the homeostatic 
cubic wave varies from cell to cell, ranging from 0.001 to 1000. [Four Waves B&W.tif] 

The nonlinear wave schemes easily go unstable, especially the cubic one. In these 
waves, instability will mean that the intensity values grow without bound.  Thanks to the 
clamping step, the values then get stuck at maximum or a minimum value.  In the case of 
the two-dimensional quadratic wave, instability can lead to a certain kind of interesting 
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structures.  But in the cubic case, an instability is typically a checkerboard of alternating 
maximum and minimum-valued cells which grows to fill the simulation space. 

 

 

Figure 8.  A quadratic wave scheme with Wave of 0.25, Nonlinearity of 0.15, and uMax of 3.0.  
The pattern was seeded with all u values of 1.5 with a conical bump in one location.  The cone tip 
produced an instability which propagated along a closed “fault line”.  (Recall that this is a toroidal 
space.)  The pattern is now stable and will remain like this indefinitely.  Note that small structures 
are able to move along within the “wave-guide” pieces of the fault.[Quadratic Walls B&W.tif] 

Our “homeostatic cubic” rule has an ad hoc technique for taming the cubic 
instabilities.  The idea is to run an unstable cubic wave, and to let the nonlinearity of the 
wave be determined locally.  This gives an interesting effect showing Zhabotinsky 
patterns moving about in a wave medium. 
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Figure 9. (Color Plate 4.) Homeostatic Cubic Zhabo, based on the homeostatic cubic wave 
scheme.  Notice the circular wave patterns as well as the diamond-shaped Zhabotinsky spiral.  See 
Figure 8 for the parameters used in this rule. [Homeostatic Cubic Zhabo.tif] 

For the homeostatic cubic wave, each cell holds an intensity u and a nonlinearity 
multiplier called LocalNonlinearity.  In addition the rules use a helper variable TooBig 
and some additional parameters as shown in the table. 

 
Symbol Comments Homeostatic Cubic 

Zhabo 
Variables:   
u Intensity.  Ranges from 0 to uMax  
LocalNonlinearity Each cell has its own value for 

this; it starts at MinNonlinearity 
and drifts up towards 
MaxNonlinearity.

 

TooBig Boolean helper variable to signal 
when the rule has become unstable 
at a given cell. 

 

Parameters:   
Wave Normally ranges from 0 to 1, 

although could be larger as we 
expect this rule to become unstable 
anyway. 

0.5 

MaxNonlinearity The LocalNonlinearity values in 100.0 
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the individual cells move towards 
this.  Can be any positive value. 

GrowFactor The multiplier which moves the 
cells’ LocalNonlinearity value 
towards MaxNonlinearity.  
Should be slightly larger than 1. 

1.05 

MinNonlinearity This needs to be larger than 0 
because we increase the 
LocalNonlinearity by repeated 
multiplications by GrowFactor. 

0.01 

WaveThreshold This should be bigger than 
MinNonlinearity.  When the 
LocalNonlinearity lies between 
MinNonlinearity and 
WaveThreshold we update u with 
an averaging rule, otherwise we 
use a cubic wave rule. 

0.015 

uMax We clamp u to be in the symmetric 
range (-uMax, uMax). 

1.0 

Table 7.  The variables and parameters for the homeostatic cubic wave scheme, along with the 
values used for the Homeostatic Cubic Zhabo in Figure 8. 

The update process for this rule has two parts: the computation of the uNew value 
and the computation of the LocalNonlinearityNew value. 

At the first stage of the update, we compute the uNew value in one of two 
possible ways, depending on the size of the LocalNonlinearity variable.  If 
LocalNonlinearity is small, that’s an indication that we’re in a zone that was recently 
unstable, and we update uNew by a simple averaging scheme.  If LocalNonlinearity is 
larger, we update uNew by a cubic wave scheme, and we use the LocalNonlinearity as 
the cubic wave’s Nonlinearity parameter.  Finally, after updating uNew, we clamp uNew 
to lie in the range (-uMax, uMax).  If uNew was indeed out of range, we set my TooBig 
helper variable to true, otherwise we set TooBig to false. 

At the second stage of the update, we compute the LocalNonlinearityNew value 
in one of two possible ways, depending on whether TooBig is true or false.  In the 
TooBig case, we let LocalNonlinearityNew collapse to MinNonlinearity.  This has the 
dual effect of damping the unstable cubic rule and of signaling the cell to use an 
averaging rule for its next update.  When TooBig is false, we multiply 
LocalNonlinearityNew by GrowFactor and clamp LocalNonlinearityNew to lie in the 
range (MinNonlinearity, MaxNonlinearity). 

 
The uNew update. 

(Cubic Wave Option) IF (LocalNonlinearity >= WaveThreshold) THEN 
 uNew = 2*u - uPast + Wave*( uNabeAvg - u 
 + LocalNonlinearity* ( (uE-u)3 - (u-uW)3 + (uN-u)3 + (u-uS)3 ) ); 
(Averaging Option) IF (LocalNonlinearity < WaveThreshold) THEN 
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 uNew = uNabeAvg; 
(Clamp and set TooBig) Clamp uNew to lie in the range  (-uMax, uMax).  If uNew 
 was outside the range set TooBig to true, otherwise  set TooBig to false. 

 
The LocalNonlinearityNew update. 

(Collapse option) IF (TooBig) THEN LocalNonlinearityNew = MinNonlinearity 
(Growth option)IF (NOT TooBig) THEN 
 LocalNonlinearityNew = GrowFactor* LocalNonlinearity 
(Clamp ) Clamp LocalNonlinearityNew to be in the range 
 (MinNonlinearity, MaxNonlinearity); 

 
This rule readily falls into a Zhabotinsky-style pattern of complexity type IIIa.  

The Zhabotinsky spirals are driven by the behavior of the LocalNonlinearity parameter, 
which grows to a maximum value and then drops abruptly. 

6.  Reaction Wave Systems. 
We’ve also done some preliminary work in trying to put a wave term in place of 

the diffusion term in one or both of the two equations in our activator-inhibitor systems.  
We’ve tried various ways of doing this, but none has been an outstanding success in 
terms of producing really interesting behaviors.  A typical scheme we’ve tried has the 
following form.  In this scheme we don’t use an aSaturation term. 

 
(Avoid division by 0) IF (-bMin < b < bMin) THEN b = Sign(b)*bMin 
 ELSE bSafe = b. 
(Activator) aNew =  2*a - aPast + Wave * (aNabeAvg - a) 
 + sDensity*a*a/bSafe 
 + sDensity * aBase 
 - aDecay * a. 
(Inhibitor) bNew = 2*b - bPast + Wave * (bNabeAvg - b) 
 + sDensity*a*a 
 - bDecay * b. 
(Clamp) Clamp both a and b to be in the range [-abMax, abMax]. 

 
This rule produces patterns resembling clouds. 
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Figure 10: A cloud-like pattern formed by an activator inhibitor rule with wave terms in place of 
the customary diffusion terms.  This rule converges quickly to this behavior from a random start.  
The rule is shown using only one band of color, that is, black in the minimum intensity and white 
is the maximum. [Reaction Wave Cloud B&W.tif] 

Name Clouds 
Neighbors 2D Von Neumann 
Complexity IV 
Wave 0.25 
sDensity 0.01 
aBase 0.01 
bBase 0.0055 
aDecay 0.01 
bDecay 0.015 
bMin 0.001 
abMax 32.0 

Table 8.  The parameter values used for the Cloud rule. 

7.  Suggestions for Further Work 
In [9] Meinhardt investigates other, more complicated, kinds of one-dimensional 

activator-inhibitor systems, and it would interesting to cast more of these into two-
dimensional form.  It would be of particular interest to see Turing patterns which move 
about; that is, it would be nice to see crawling dots and writhing stripes.  One result of 
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this might be that our CAs could begin to model the motions of extended objects. 
Another, related, goal is to find some continuous-valued CAs with more purely 

type IIIb behaviors.  That is, one would like to see glider-like patterns moving about and 
interacting. 

It might also be useful to base some rules on third-order differential equations; 
presumably using something like a uSecondNabeAvg - 2* uNabeAvg + u term, where 
the uSecondNabeAvg would be computed from neighbors two cells away.  Perhaps 
some of these rules could exhibit solitons that might play the role of information-bearing 
gliders. 

Finally, there is still the open frontier of three-dimensional CAs.  Certainly it 
would be nice generalize the simple activator inhibitor schemes to three-dimensions so as 
to produce three-dimensional Turing patterns. 
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