Hints for the Snowstorm homework.

To Polygon.h, add a new cMatrix _tumble member with an accessor, like this.

cMatrix _tumble; /* We tumble this much per step in animation. */

cMatrix3 getTumble()const{return _tumble;}

Initialize _tumble to a random spin rotation in the polygon.cpp like this, choosing

MINSPINSPEED and MAXSPINSPEED to make for lively but not jerky rotation.

void cPolygon::_initializer() //used by the constructors

{

	cSpin spin = cSpin(cRandomizer::pinst()->randomReal(MINSPINSPEED,

		 MAXSPINSPEED), cVector::randomUnitVector());

			//cSpin constuctor args are spinangle, spinaxis

	_tumble = cMatrix::rotation(spin);

}

In snowstorm.cpp drawFlurry method, keep a static deque<cPolygon> polys variable (I forgot

to mention STATIC before), and have the drawFlurry method fill it up with push_back calls

if it has less than, say, FLAKECOUNT members, also have drawFlurry pop_front to remove

the first member and then do this (it turns out that it IS easy to iterate on a deque.)

Adjust FALLSPEED for good lively progress. Note that you could also

dothe attitude manipulation be done by calls to cPolygon::rotate

and to a new cPolygon::translate methods.

	for (int i=0; i<polys.size(); i++)

	{

		cMatrix attitude = polys[i].attitude();

		attitude *= polys[i].getTumble();

		attitude.translate(-FALLSPEED * polys[i].radius() *

			cVector::ZAXIS);

		polys[i].setAttitude(attitude);

		polys[i].draw();

	}

Start the program with threedflag set to true, and adjust eye so that you're down

on the negative Z axis looking up.

Now go back and tweak the cPolygon and cColorstyle randomize methods to make the polygons

look prettier. Maybe change the randomColor method, too, as I think the colors we're

getting are kind of dull. OK to try and use the stars and asteroids, too.

Make things smoother by putting these lines into myInit. It turns out you need blending for

line antialiasing to work.

	glEnable(GL_BLEND);

	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

	glEnable(GL_LINE_SMOOTH);

As long as you've got blending, make your flakes translucent, by editing the fillcolor line

to look like this in the to the filled() case of cPolygon::draw()

		setVertexColor(fillColor(), 0.9); //For use with no lighting

If your lines aren't showing up thick it may be that your particular OpenGL hardware

doesn't support thick lines. You can find out by putting a block of code like this

into your program after a #define QUERYLINEWIDTHRANGE and setting a break point after

it to look at the values of min and max. This is odd-looking code, but is a standard

 way to query OpenGL about what it can do.

#ifdef QUERYLINEWIDTHRANGE

		float params[2];

		glGetFloatv(GL_LINE_WIDTH_RANGE, params);

		int min = params[0];

		int max = params[1];

#endif //QUERYLINEWIDTHRANGE

