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Preface

AS A TEENAGER IN 1961, I imagined that I’d like to become a philosopher. I

recall agreeing with my best friend, Niles Schoening, that what we’d most like

to do would be to get college degrees in philosophy and spend the rest of our

lives as bums, talking about the meaning of life.

As it turned out, I ended up getting a Ph.D. in mathematical logic. And

instead of becoming a bum, I found work as a professor and as a writer of

popular science and science fiction. I did keep talking about the meaning

of life, though, to the point of publishing three somewhat philosophical

books about mathematics: The Fourth Dimension, Infinity and the Mind, and

Mind Tools.

In the mid-1980s I sensed something new in the air. Computers were ush-

ering in an era of experimental mathematics. Fractals, chaos, cellular

automata, artificial life! And when I interviewed Stephen Wolfram for a mag-

azine article, my fate was sealed. I moved to Silicon Valley, retooled, and

became a computer science professor at San Jose State University, also doing

some work as a programmer for the computer graphics company Autodesk.

Back when I was contemplating my big switch to computer science, my old

friend Gregory Gibson said something encouraging. “Imagine if William Blake

had worked in a textile mill. What might he have written then?”

Initially, I thought this might be a quick foray. Get in, figure out what’s

happening, get out, and write my book on computers and reality. But some-

where along the way I went native on the story. I all but forgot my mission.



I spent twenty years in the dark satanic mills of Silicon Valley. I’m covered

in a thick lint of bytes and computer code. And now I’m stepping into the light

to tell you what I learned among the machines.

I’m grateful to the Royal Flemish Academy of Belgium for Science and the

Arts for having funded a stay in Brussels in the fall of 2002. I taught a course

on the philosophy of computer science at the University of Leuven, writing

some material for this book in the process. I gave my classroom handouts the

not-quite-serious title, “Early Geek Philosophy,” telling the students that my

precursors might come to be known as the pre-Rucratic geek philosophers!

Many thanks also to the people with whom I’ve had conversations and/or

e-mail exchanges about the book’s topics. These include: Scott Aaronson,

Ralph Abraham, Mark van Atten, Michael Beeson, Charles Bennett, Kovas

Boguta, Jason Cawley, Leon Horsten, Loren Means, Jon Pearce, Chris Pollett,

Richard Shore, Brian Silverman, John Walker, Ken Wharton, and Stephen

Wolfram. Some of these friends even did me the favor of reading an early draft

and suggesting corrections. Errors that remain are my own responsibility.

Thanks also to my computer science students at San Jose State Univer-

sity; my programs that illustrate this book were developed with them in mind,

and sometimes they even helped me write them.

And special thanks to my wife, Sylvia, for all the wonderful things outside

the ambit of the buzzing machines.

Rudy Rucker

Los Gatos, California

March 22, 2005
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THOUGHT EXPERIMENT ONE: LUCKY NUMBER

The first Sunday in October, Doug

Cardano drove in for an extra day’s

work at Giga Games. Crunch time.

The nimrods in marketing had com-

mitted to shipping a virtual reality

golf game in time for the holiday

season. NuGolf. It was supposed to

have five eighteen-hole courses, all

of them new, all of them landscaped

by Doug.

He exited Route 101 and crossed

the low overpass over the train

tracks, heading toward the gleaming

Giga Games complex beside the San

Francisco Bay. A long freight train

was passing. Growing up, Doug had

always liked trains; in fact, he’d

dreamed of being a hobo. Or an

artist for a game company. He hadn’t

known about crunch time.

Just to postpone the start of his

long, beige workday, he pulled over

and got out to watch the cars clank

past: boxcars, tankers, reefers, flat-

cars. Many of them bore graffiti.

Doug lit a cigarette, his first of the

day, always the best one, and

spotted a row of twelve spray-

painted numbers on a dusty red

boxcar, the digits arranged in pairs.

11 35 17 03 25 14

SuperLotto, thought Doug, and

wrote them on his cardboard box of

cigarettes. Five numbers between

one and forty-seven, and one number

between one and twenty-seven.

Next stop was the minimarket

down the road. Even though Doug

knew the odds were bogus, he’d

been buying a lot of SuperLotto

tickets lately. The grand prize was

hella big. If he won, he’d never have

to crunch again.

The rest of the team trickled into

the office about the same time as

Doug. A new bug had broken one of

the overnight builds, and Van the

lead coder had to fix that. Meanwhile

Doug got down to the trees and

bushes for course number four.

Since the player could mouse all

around the NuGolf world and even

Just for fun, I’ve written a short-short story to introduce each chapter of The

Lifebox, the Seashell, and the Soul. You might think of these as thought exper-

iments, or as exploratory expeditions into the further reaches of my book’s

themes.



wander into the rough, Doug couldn’t

use background bitmaps. He had to

create three-dimensional models of

the plants. NuGolf was meant to be

wacky and fantastic, so he had a lot

of leeway: on the first course he’d

used cartoony saguaro cactuses, he’d

set the second links underwater with

sea fans and kelp, the third had been

on “Venus” with man-eating plants,

and for the fourth, which he was

starting today—well, he wasn’t sure

what to do.

He had a vague plan of trying to get

some inspirations from BlobScape, a

three-dimensional cellular automata

package he’d found on the Web. Cel-

lular automata grew organic-looking

objects on the fly. Depending what

number you seeded BlobScape with,

it could grow almost anything. The

guy who’d written BlobScape claimed

that theoretically the computation

could simulate the whole universe, if

only you gave it the right seed.

When Doug started up BlobScape

today, it was in a lava lamp mode,

with big wobbly droplets drifting

around. A click of the Randomize

button turned the blobs into mush-

room caps, pulsing through the sim-

ulation space like jellyfish. Another

click produced interlocking pyra-

mids a bit like trees, but not pretty

enough to use.

Doug pressed the Rule button so

he could enter some code numbers

of his own. He’d done this a few

times before; every now and then his

numbers would make something

really cool. It reminded him of the

Magic Rocks kit he’d had as boy,

where the right kind of gray pebble

in a glass of liquid could grow green

and purple stalagmites. Maybe today

was his lucky day. Come to think of

it, his SuperLotto ticket happened to

be lying on his desk, so, what the

hey, he entered 113517032514.

Bingo. The block of simulated

space misted over, churned, and

congealed into—a primeval jungle

inhabited by dinosaurs. And it kept

going from there. Apemen moved

from the trees into caves. Egyptians

built the Sphinx and the pyramids.

A mob crucified Christ. Galileo

dropped two balls off the Leaning

Tower of Pisa. Soldiers massacred

the Indians of the Great Plains. Flap-

pers and bootleggers danced the jit-

terbug. Hippies handed out daisies.

Computers multiplied like bacilli.

Doug had keyed in the Holy Grail,

the one true rule, the code number for

the universe. Sitting there grinning, it

occurred to him that if you wrote

those twelve lucky digits in reverse

order they’d work as a phone number

plus extension. (415) 230-7135 x11.



The number seemed exceedingly

familiar, but without stopping to

think he went ahead and dialed it.

His own voice answered.

“Game over.”

The phone in Doug’s hand turned

into pixels. He and the phone and

the universe dissolved.





C H A P T E R O N E

Computation Everywhere

1.1: Universal Automatism

The Lifebox, the Seashell, and the Soul is about computation—taken in the

broadest possible sense. You can usefully regard all sorts of things as com-

putations: plants and animals, political movements, the weather, your per-

sonal shifts of mood. Computations are everywhere, once you begin to look

at things in a certain way. At the very least, computation is a metaphor with

an exceedingly wide range of applicability.

You may feel a twinge of déjà vu. After all, it hasn’t been so long since guys

like me were telling you everything is information, and aren’t information and

computation pretty much the same? No—information is static, but compu-

tation is dynamic. Computations transform information.

An example. Even if we could find a complete and correct explanation of

our world’s physics, this would only be a static piece of information—perhaps

an initial condition and a set of rules. The interesting things happen as the

consequences of the laws unfold. The unfolding process is a computation

carried out by the world itself.

My iconoclastic and headstrong friend Stephen Wolfram goes so far as to

say that the world is nothing more than a computation. In Wolfram’s words,

“It is possible to view every process that occurs in nature or elsewhere as a

computation.” I call this view universal automatism.1

I’m not sure if I subscribe to universal automatism or not. One reason I’m

writing this book is to see where universal automatism leads.

Does my willingness to entertain universal automatism mean that I’m a

humorless nerd who wants everything to fit into the beige box of a personal



computer (PC)? No way. I know a lot about PCs, yes, but familiarity breeds

contempt. Although I’ve gotten very skilled at crafting C++ and Java code for

the classes I’ve taught, I don’t think I’d much mind if I never had to write a

computer program again. Writing books is a lot more fun—programming is

simply too brittle a medium. If I leave out, say, a semicolon, a program might

not run at all. Literature isn’t like that.

And, just like most people, I have a deep-seated conviction that I myself am

something richer than any mere calculation. I love to get away from my flick-

ering monitor screen and be out in nature—roaming the woods, bicycling

down the flowery California streets, walking on a beach, or just sitting in my

backyard watching the wind move the leaves on the trees. Crows, ants, dogs,

protozoa, other people—life is what matters, not some crappy buzzing boxes

that are broken half the time.

No, no, I’m not on the side of machines.

But then why am I writing this long book about computation? I guess I’ve

put in so much time with personal computers that I’d like to take this one

last shot at figuring out what I’ve learned from them. To trace out their mean-

ings once and for all.

My original training was in mathematics—thirty years ago I got a Ph.D. in

set theory and mathematical logic. In the 1970s I even got to meet Kurt Gödel

a few times. The king of the logicians. Gödel once told me, “The a priori is very

powerful.” By this he meant that pure logic can take you farther than you

might believe possible.

As well as logic, I’ve got a lot of experimental input to work with. Wolfram,

whom I first met in the 1980s, has done a king-hell job of combing through vast

seas of possible computations, getting a handle on the kinds of phenomena

that can occur. With Wolfram’s discoveries, and with my own experiences as

a logician, a programmer, and a computer science professor—well, I’m hoping

I can make a little progress here.

But let me repeat: I’m not a big fan of machines.

Being a good Californian, I practice yoga nearly every day. It counteracts

the strain on my aging frame from the huge amount of keyboarding and

mouse-clicking that I do. It’s interesting how good it feels to stop worrying

about my daily plans and focus on nothing more than my breath and my

muscles. Can computation theory tell me anything about yoga?

Years ago—this would have been the glorious summer of 1969—I had a

The Lifebox, the Seashell, and the Soul
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vision of God. The White Light, the Supreme Being, all around me, talking to

me. “I’m always here, Rudy,” said God. “I love you.” These days I don’t see

God. But when I remember to try, I can still feel something like a divine pres-

ence. I don’t think God’s a computation. But exactly why not?

I’m a novelist, too, mostly science fiction, and I presume to think of my

work as literature. Compared to a work of literature, a computer program is

puny excrescence, a petty game played by the rules of blind machines, a

dreary slog through the mud. Literature glides on beautiful wings. But

maybe, looked in a certain light, literature is a human form of computation.

When I open my heart to universal automatism, I can see that it’s not as far-

fetched as it sounds. The key fact is that, far from being dry and dull, computa-

tions can generate physical, biological, and psychological phenomena of great

beauty. Maybe a weird explanation is better than no explanation at all. Might it

be that, by analyzing the notion of computation, I can finally understand what

it means to be conscious? I’m prepared to follow the argument wherever it goes.

If it turns out that universal automatism is right, and I really am a computa-

tion, then at least I’ll know a little more about what kind of computation.

In planning this intellectual journey, I’ve settled on a particular tactic and

an overall strategy. My tactic is Hegelian dialectic, and my strategy is what

we might call the stairway to heaven.

The dialectic tactic relates to the book’s title: The Lifebox, the Seashell, and

the Soul. The title represents a triad: the lifebox is the thesis, the soul is the

antithesis, and the seashell is the synthesis. In the style of my great-great-

great-grandfather Georg Wilhelm Hegel, my tactic will be to use my selected

triad over and over.

computation everywhere
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Lifebox is a word I invented some years ago to describe a hypothetical tech-

nological gizmo for preserving a human personality. In my science-fiction

tales, a lifebox is a small interactive device to which you tell your life story. It

prompts you with questions and organizes the information you give it. As well

as words, you can feed in digital images, videos, sound recordings, and the

like. It’s a bit like an intelligent blog.

Once you get enough information into your lifebox, it becomes something

like a simulation of you. Your audience can interact with the stories in the

lifebox, interrupting and asking questions. The lifebox begins by automating

the retiree’s common dream of creating a memoir and ends by creating a sim-

ulation of its owner.

Why would you want to make a lifebox? Immortality, ubiquity, omnipo-

tence. You might leave a lifebox behind so your grandchildren and great-

grandchildren can know what you were like. You might use your lifebox as a

way to introduce yourself to large numbers of people. You might let your

lifebox take over some of your less interesting duties, such as answering rou-

tine phone calls and e-mail.

A lifebox is a person reduced to a digital database with simple access

software. So in my book title, I’m using Lifebox as shorthand for the uni-

versal automatist thesis that everything, even human consciousness, is a

computation.

The antithesis is the fact that nobody is really going to think that a wised-

up cell phone is alive. We all feel we have something that’s not captured by

any mechanical model—it’s what we commonly call the soul.

My synthesis is a Wolfram-inspired scheme for breathing life into a lifebox.

The living mind has a churning quality, like the eddies in the wake of a rock

in a stream—or like the turbulent patterns found in a certain kind of compu-

tation called a cellular automaton (CA). These unpredictable yet deterministic

computations are found in nature, perhaps most famously on a kind of seashell

called the cone shell (see figure 2). It’s at least possible that the mind’s end-

less variety is in fact generated by a gnarly computation of this type. If so, the

image of the seashell serves to bridge the chasm between lifebox and soul.

So that’s my basic triad, and my dialectic tactic will involve repeatedly going

through the following three steps: (a) Thetic step: model some real-world

phenomenon as a computation. (b) Antithetic step: remark that the actual

The Lifebox, the Seashell, and the Soul
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world seems juicier and more interesting than a computation. (c) Synthetic

step: observe that, given enough time and memory, our proposed computation

is in fact capable of generating exceedingly rich and lifelike structures.

When I speak of using a stairway-to-heaven pattern as my overarching

strategy for organizing The Lifebox, the Seashell, and the Soul, I mean that

each chapter treats a yet higher-level way of viewing the world, as suggested

in figure 3.

Figure 2: Six Cone Shells

Reading left to right, top to bottom, we have a Conus omaria, Conus auratinus, Conus
ammiralis, Conus auricomus, Conus retifer, and a Conus textile. Note that these
marine snails have protruding tentacles that are, variously, siphons, mouths, eyes, and
proboscises. These so-called tented cones feed upon other mollusks, injecting para-
lyzing conotoxins into their prey by means of tiny harpoons shot from a tentacle. Shell-
collectors have been killed by cone shell stings. Note that the textile cone is in the
process of attacking a less-gnarly fellow mollusk. These photos were taken at night by
Scott and Jeanette Johnson off the Kwajalein atoll in the Micronesian archipelago.



The stairway to heaven is a traditional style of organizing knowledge. In the

Middle Ages it was called ordo sciendi, or “the order of knowing.” A medieval

thinker would of course write “Logic” in place of “Computer Science,” and

even now someone might say that logic or mathematics would be a more nat-

ural starting point than computer science. But in The Lifebox, the Seashell,

and the Soul I’m arguing that we do best to think of computation itself as fun-

damental. Under this view, logic and mathematics are invented after the fact

to explain the observed patterns of the world. Logic and mathematics become

high-level intellectual endeavors that I treat in the context of the sixth

chapter, which concerns philosophy.

Looking ahead, my six chapters will be as follows.

• CHAPTER ONE: Computation Everywhere. An introduction to the

universal automatist view that everything is a computation,

exploring the familiar computations done by our machines,

and presenting some examples of computational gnarliness.

• CHAPTER TWO: Our Rich World. Descriptions of how to view clas-

sical, chaotic, and quantum physics in terms of computations.

The Lifebox, the Seashell, and the Soul
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• CHAPTER THREE: Life’s Lovely Gnarl. An analysis of life in terms

of five kinds of computation: reproduction, morphogenesis,

homeostasis, ecology, and evolution, including a discussion of

human efforts to create artificial forms of life.

• CHAPTER FOUR: Enjoying Your Mind. A detailed presentation of

the universal automatist view that we can view the mind as a

gnarly computation, showing how this need not contradict

one’s feeling of being a conscious entity with a soul.

• CHAPTER FIVE: The Human Hive. An exploration of the patterns

and dynamics of human society from the low to high levels,

including discussions of language and culture.

• CHAPTER SIX: Reality Upgrade. A philosophical analysis of the

possible positions regarding computation and reality,

including a description of the classes of computation that are

known to exist, and delving further into the philosophical con-

sequences of universal automatism. Concludes with remarks

about ultimate reality, the meaning of life, and how to be

happy.

And now let’s get going on the stairway to heaven’s first step.

What do I mean by a computation? Here’s a definition that’s very minimal—

and thus quite generally applicable.

• Definition. A computation is a process that obeys finitely describ-

able rules.

That’s it? Well, if I want to say that all sorts of processes are like computations,

it’s to be expected that my definition of computation must be fairly simple.

The notion of obeying finitely describable rules really includes two ideas: a

computation is utterly deterministic, that is, nonrandom, and the rules act as

a kind of recipe for generating future states of the computation.

Regarding determinism, although computer scientists do sometimes theo-

rize about “probabilistic computations” that are allowed to make utterly

random decisions, these aren’t really computations in any normal sense of

computation everywhere
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the word. Our understanding here will be that we’re speaking only of com-

putations whose future states are fully determined by their inputs and by

their finitely describable rules.

Now I’ll talk about the kind of recipe that underlies a finitely describable rule.

You might say that any process at all obeys the recipe of “act like yourself.”

Does that make for a finitely describable rule? No. The “yourself” in this so-

called rule implicitly drags in a full and possibly endless set of information

about how “you” will behave in every kind of situation.

Although it may indeed be that every possible process is a kind of compu-

tation, I don’t want to make it too easy to attain this sought-after conclusion.

I want “obeying finitely describable rules” to be a real constraint.

A finitely describable collection of rules should be something like a set of

behavioral laws, or a program for an electronic digital computer, or a specific

scientific theory with its accompanying rules of deduction. What’s really

intended is that the rules specify what, in any given state, the computational

system will do next.

As an aside, I have to warn you that describable is a slippery notion. Logi-

cians have established that describable can’t in fact have a formally precise

meaning—otherwise a phrase like the following would be a valid description of

a number: “Let the Berry number be the smallest integer that can’t be described

in less than eighteen words.” Now, if that seventeen-word phrase were indeed

a legitimate description of a specific Berry number, we’d have the paradox of

a seventeen-word phrase describing a number that can’t be described in

less than eighteen words. So it must be that the phrase really isn’t a legiti-

mate description, and the reason must be that describable isn’t a formally

precise word. Therefore, my definition of a computation is imprecise as well.

(I wrote at length about this issue in Infinity and the Mind.)

So if the notion of a computation is fundamentally imprecise, must we

abandon our investigations and sit grumbling in the darkness? No. In this

book, I want to think more like a physicist than like a mathematician—more

like an experimental scientist and less like a logician. Loosely speaking, we

do know what it means to have a finite description of a rule for a process. Yes,

certain borderline cases will throw us into a philosophical quandaries, but we

can cover a lot of ground with our (inherently unformalizable) definition of a

computation as a process that obeys finitely describable rules.
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We can regard a computation as transforming inputs into outputs. Where

do the inputs and ouputs live? The inputs and outputs are states of the

underlying system that supports the computational process.

Which states are inputs and which are outputs? This is really just a matter

of temporal order. If one or more states occurs before a second state, then we

speak of the earlier states as inputs that produce the later state. I don’t lay

much stress on the notion of computations ever coming to a halt, which

means that we usually think of an input as producing an endless stream of

successive outputs. I’ll also allow for additional interactive inputs that occur

while a computing process is under way.2

I want to say a bit about the underlying system that supports a computa-

tion. Although it’s natural to refer to any such computational system as a

computer, I need to caution that by “computer” I don’t necessarily mean one

of our chip-in-a-box machines. Obviously these balky devices are a point of

inspiration. But for a universal automatist, essentially any system or object

is a computer, and any process or action is a computation. To avoid confu-

sion, I’ll try to always refer to our day-to-day computing machines as per-

sonal computers, electronic computers, desktop computers, or simply PCs.

By thinking about PCs we become aware of a number of distinctions. For

instance, when speaking of electronic computers, people distinguish between

computation everywhere
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hardware and software. The hardware is the physical contents of the buzzing

box that you buy, while the software is the stuff that you get on disks or

download from the Web. A finer distinction is possible. The buzzing box

comes equipped with its own low-level software—which usually includes, for

instance, an operating system like Linux, Windows, or the Mac OS. We can

distinguish between this low-level software and the specialized high-level soft-

ware that we might want to run—think of, for instance, a word-processing or

image-manipulation application. And even higher-level than that are the

inputs we feed to our high-level software—think of documents or photo files.

Of course, all of these boundaries are somewhat fuzzy, and the levels are

prone to splitting into sublevels. And when we take into account a system’s

surroundings, new levels appear as shown in figure 5. Suffice it to say that

most systems have quite a few levels of rules.

I’ll be comparing real-world things to computations for the rest of the

book. As a quick example, in a human being, the hardware is like your

body and brain, the low-level software is the built-in wiring of your brain

and perhaps the effects of your various early experiences, the high-level

software is like the skills that you learn, the inputs are your daily experi-

ences, and the outputs are the things that you say and do. Changing the

high-level software takes a cer-

tain amount of effort, and

changing the low-level software

is very hard, requiring some-

thing on the order of a conver-

sion experience or long-term

therapy. There are layers upon

layers, and some quirks can be

so deeply ingrained that you

have to dig down quite far to

tweak them.

Table 1 presents some similar

analogies, with a column for

seven different kinds of compu-

tation, with each column sug-

gesting the hardware, low-level

The Lifebox, the Seashell, and the Soul
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software, high-level software, inputs, outputs, and possible target detectors

for that particular style of computation. (I’ll be explaining what I mean by

target detectors after the next paragraph. But first a word about tables.)

For me, tables are a tool for thinking. I figure out some column headers

and row topics, and then, wham, I’ve got all these nice cells to fill. Let me

warn you that you need to take my tables with a grain of salt. They’re Pro-

crustean beds. In Greek myth, Procrustes was a bandit masquerading as an

inn-keeper. He said he had a wonderful bed that would fit you perfectly, no

matter what your size. The catch was, if you were too short for the bed, Pro-

crustes would stretch you on the rack, and if you were too tall, he’d lop off

your head or your feet. Filling the cells of a table requires Procrustean fine-

tuning—although if it gets out of hand, I usually rethink the row and column

categories.

Now I’ll tell you about target detectors. This has to do with the issue of

when, if ever, I’m going to think of a given computation as being done.

People often suppose that a computation has to “find an answer” and then

stop. But our general notion of computation allows for computations that run

indefinitely. If you think of your life as a kind of computation, it’s quite abun-

dantly clear that there’s not going to be a final answer and there won’t be

anything particularly wonderful about having the computation halt! In other

words, we often prefer a computation to yield an ongoing sequence of outputs

rather than to attain one final output and turn itself off.

In order to further clarify this point, I’m going to begin speaking a bit sym-

bolically about computations. Throughout the book, I’ll normally use the

letter P to stand for a computation—think of P standing for program. If P is a

computation and In is a state, I write P(In) to stand for the indefinitely pro-

longed computational process that results from starting P on In. If Out is

another state and t is some specific interval of time, I can write P(In, t) = Out

to mean that the computation P(In) produces state Out after a time interval t.3

Even though I’ll usually be talking about never-ending computations, in

practical uses of computation, there are often situations where we are inter-

ested in cases where a computation of the form P(In) reaches some targeted

state Out and we can then readily perceive that P(In) is done. One definition

of a computation being done (or, as is often said, halted) is simply to require

that the computation doesn’t change any further after some point in time.
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That is, the computational process P(In) might reach the state Out and then

stay fixed in that state. In this situation we would say that P(In) returns Out.

The “freezing up” definition of halting is appropriate for certain simple

models of computation, such as the abstract devices known as Turing

machines. But for more general kinds of computations, freezing up is too

narrow a notion of a computation’s being done.

For instance, if you want to find out how to get to some street address, you

can go on the Web, locate a map site, type in your target address, press Enter,

and wait for a few fractions of a second until a little map appears on your

screen. The system consisting of your PC plus your Web browser plus the

Web itself has carried out a computation and now it’s done.

But it wouldn’t be at all correct to say that the PC+browser+Web com-

puting system is now frozen in the same state because, for one thing, your

Web browser is continually polling your mouse and keyboard to look for new

input. And your PC is running all kinds of background processes that never

stop. And the other machines that make up the Web certainly haven’t

stopped just because you found what you were looking for.

When we want to talk about a generalized computational system P

reaching a target state, we need to have an associated target detector com-

putation IsPDone, which has two special states that we might as well call

True and False. We require that for any output state Out of the system,

IsPDone(Out) returns either True or False according to whether Out is to be

viewed as a target state. IsPDone is supposed to be a very simple computa-

tion that very quickly enters the final state True or False and remains there.

If we don’t explicitly specify the IsPDone test, we’ll assume that the com-

putation is in a target state if any further updates would leave it in the same

state—this is what I meant above by a computation that freezes up. But in

the case where P is a personal computer or even some naturally occurring

system like a pond or a human society, we’ll want to use a subtler kind of

target detector. How we choose to define a computation’s target detector can

in fact vary with the kind of inputs we plan to feed to the computation—one

can imagine situations where we might say that a pond is in target state

when its ripples settle down below some specified level, and a society is in a

target state once all the votes in an election have been counted and a new

leader has been installed.
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So now I’ve said a bit about computations and the universal automatist

notion that they’re everywhere, which finishes off my section 1.1: Universal

Automatism. This chapter’s remaining sections are as follows.

• 1.2: A New Kind of Science. In his recent book of this title,

Stephen Wolfram divides computations into four classes:

those that die out, those that repeat, the messy random-

looking ones, and the gnarly ones. For a universal automatist,

this suggests new ways to view the whole world.

• 1.3: Reckoning a Sum. Thinking about how we add numbers

with pencil and paper gives a bit of insight into what it means

for computations to run at different speeds—an important

notion for formulating what it means for a computation to be

unpredictable.

• 1.4: Analytical Engines. I’ll give a  brief history of how we arrived

at the design whereby our electronic computers use programs

that are loaded into memory like data. Thanks to this so-called

stored program architecture, our PCs are universal in the sense

of being able to emulate any other computation.

• 1.5: The Tiniest Brains. Among the simplest possible com-

puters are the idealized devices known as Turing machines.

They’re the favorite lab rat of computer philosophers, and they

teach us more about universality.

• 1.6: Inside the Beige Box. A short-as-possible explanation of

how our desktop machines work.

• 1.7: Plugged In. The Internet is a distributed networked com-

putation quite unlike the computations inside a PC.

• 1.8: Flickercladding. The parallel computations known as cel-

lular automata make beautiful patterns, are good models for

physics, and have served as a main source of inspiration for

universal automatists.

1.2: A New Kind of Science

By way of giving the notion of computation a little more texture, I’ll mention

The Lifebox, the Seashell, and the Soul

18



two slightly counterintuitive facts. And then I’ll describe Stephen Wolfram’s

four classes of computation.

The first counterintuitive fact is that just because an output is computable

doesn’t mean it’s easy to arrive at. Computer scientists use the word feasible

in this connection.

• Informal Definition. A particular computational process is feasible if it

produces the desired result in a humanly reasonable amount of time.

A computation that you can do by hand in a few minutes is feasible, some-

thing that would take you ten years isn’t feasible. In other words, a compu-

tation is unfeasible if carrying it out would take an unreasonable amount of

resources and/or an unreasonable amount of time.

• Counterintuitive fact. Although a computation may be theoretically

possible to carry out, it can be practically unfeasible to do so.

This is rather obvious, but it’s worth remembering. Sometimes we get carried

away by a proof that one system can in principle simulate some other system,

and we lose sight of the fact that the simulation is in fact so slow and cumber-

some that it’s quite unfeasible. Most artificial intelligence (AI) programs fall into

this category vis-à-vis the human mind—yes, they can simulate some small

parts of human reasoning, but the simulations are so slow that applying them

to realistically large inputs is unfeasible. (Actually, the situation is worse than

that; not only are our existing AI programs unfeasible for large problems, we

probably haven’t found the right kinds of AI programs at all.)

The feasibility of a computation depends both on the computational

system you plan to use and on the computational method you plan to

employ. This relates to the distinction between hardware and software. If you

have very slow and clunky hardware, almost no computations are feasible.

But no matter what your hardware is, improved software (such as clever cal-

culating tricks) may expand your arena of feasibility.

Suppose we agree with the universal automatists that most physical

processes are computations. By and large these physical computations are

unfeasible for our personal computers. Not only is it unfeasible to digitally
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emulate the global weather; even simulating the turbulent flow of tap water

is beyond our existing electronic machines. But—and this is my point—the

processes may well be computations anyway.

For people, the most admired and intimately familiar computations of all

are the creative and meaningful processes of human thought. For reasons I’ll

explain in CHAPTER FOUR: Enjoying Your Mind, I would not expect to see human

creativity becoming a feasible electronic computation anytime in the next

hundred years. But, again, this doesn’t rule out the option of viewing the

human brain as a type of computer just as it is. The brain is a system obeying

a finite set of rules. Human thought is certainly a feasible computation for the

human brain, it’s just not currently feasible for electronic computers.

The second counterintuitive fact I want to mention is that computations

can yield genuine surprise. One might suppose that a deterministic rule-

based process must flow along in quite a routine fashion. Yes, but this

doesn’t mean that the long-term behavior of the computation is predictable.

• Informal Definition. P is predictable if there is a shortcut computa-

tion Q that computes the same results as P, but very much faster.

Otherwise P is said to be unpredictable.

A more precise definition of what I mean by unpredictable can be found in

the Technical Appendix at the end of the book. But the basic idea is that if P

is unpredictable, there is no dramatically faster way to get P’s output other

than to carry out the computation of P.

As a really simple example of a predictable computation, suppose you want

to decide if an input number is even or odd. A slow way to compute this

would be to painfully carry out a long division of two into the number,

working out the whole quotient on the way to finding out if the remainder

happens to be zero or one. A fast, shortcut way to compute the same infor-

mation is just to look at the last digit of your input number, and say that the

number is even if the last digit is zero, two, four, six, or eight. The slow long-

division computation of evenness is predictable in our sense because the

much faster last-digit computation produces the same results.

In practice, anyone who writes computer programs for a living is going to try

to make the code as efficient as possible. This means that, in practice, most of
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the PC programs we work with will in fact be unpredictable, in that there’s no

way to drastically speed them up. As it happens, unpredictability is relatively

common across the whole spectrum of possible kinds of computation.

• Counterintuitive fact. Many simply defined computations are

unpredictable.

If I call this counterintuitive, it’s because, before you analyze the notion,

you’d expect that computations would be predictable, at least in the collo-

quial sense of being dull and unsurprising. Indeed, “Don’t act like a robot,”

means something like, “Don’t be so predictable.” Given the deterministic

nature of a rule-based computation, it’s true that, step-by-step, the com-

putation is predictable. Given A we always get B, given B we always get C,

and so on.

But—and this is the point that takes some getting used to—there’s often

no shortcut method for looking ahead to predict the end result of a compu-

tation. That is, if I want to know the end result of a billion-step computation,

it’s very often the case that there’s no faster method than carrying out the bil-

lion-step computation itself.

Consider an analogy. When Columbus sailed across the Atlantic, it was

predetermined that he’d find the West Indies (which, to his dying day, he

thought were part of Asia). But Columbus never could have predicted the

shapes of those islands (whatever he called them) without making the trip.

The unpredictability of computations becomes noticeable when we throw

substantial problems at our machines. A famous example involves pi, the

numerical value of the ratio that a mathematical circle has to its diameter.

This number, which begins 3.14159 . . . , is known to have a decimal expan-

sion that goes on and on without ever settling into a pattern. Nevertheless,

there are simply defined computational methods for finding the successive

digits of pi by means of multiplications, additions, and the like. One (not very

efficient) approach would be to sum together more and more terms of the

endless alternating series:

4 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 + 4/13 – . . .
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In the mid-1980s, my old-

time computer fanatic friend

William Gosper once held a

world record for computing

pi. He calculated it out past

the seventeen millionth

digit. I’ve copied here from

one of Gosper’s e-mails the

first hundred digits after the

seventeen millionth place:

6978965266 4312708718

8987022892 7339840950

1815706767 7105940124

6541910101 0611655655

1475202499 7781719847.

Conversations and e-mail

from Gosper have been

touchstone experiences for

me ever since moving to Silicon Valley. He’s like the last exemplar of some

extinct species of bird, a chatty apteryx in his aboriginal nest, surrounded by

antique plastic artifacts, such as an ellipsoidal electric pencil sharpener, a

stack of Symbolics computer monitors, and a mound of numbered Aerobie

disks. I should mention that he feels the best way to truly compute pi is to

express it as an enormous tower of nested fractions, which is what he actu-

ally did to net his particular catch of pi. It was only so as to be able to com-

pare his work with the work of others that he reduced his tower of pi to base

ten digits in a process that he calls, somewhat disdainfully, “decimalizing pi.”

In any case, before Gosper’s calculation was done, there was no way to

know that, say, the seventeen millionth digit would be six. The only way to

get Gosper’s digits was to let a heavy-duty electronic computer munge on the

problem for a long period of time. Yes, the value is predetermined by the laws

of mathematics, but it’s not really predictable.4

The notion of computer programs being unpredictable is surprising because

we tend to suppose that being deterministic means being boring. Note also

that since we don’t feel ourselves to be boring, we imagine that we must be
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nondeterministic and thus not at all like rule-based computational systems.

But maybe we’re wrong. Maybe we’re deterministic but unpredictable.

I mentioned that unfeasibility is a relative notion, depending on the system

you intend to use for running a given computation. Something’s unfeasible

on a given system if takes longer than you can reasonably wait. Unpre-

dictability, on the other hand, is a more absolute notion. A computation is

unpredictable if there is no other computation that does the same things a

lot faster.

It’s often enlightening to examine the possible interactions of newly defined

properties. How do feasibility and predictability relate to each other if we tem-

porarily limit our attention to computations on personal computers? As it

turns out, all four possible combinations are possible.

• Feasible and predictable. These are the very simplest kinds of

computation. I’m thinking here of a trivial computation like,

say, multiplying seven by one thousand. Without getting out

your pencil and paper, you know that 7 × 1,000 is 7,000. The

computation is predictable. You know how it will turn out

without having to carry out the details. But if you had to work

out the details, you could, as the computation is feasible as

well as being predictable.

• Feasible and unpredictable. These are the computations that

interest computer scientists the most. Here there’s a compu-

tation you can actually carry out, but there’s no quick way to

guess the result in advance. In a case like this, your com-

puting system is doing something worthwhile for you. The

computation is discovering a fact that you wouldn’t have been

able to guess.

• Unfeasible and predictable. Suppose that the computation

was some very trivial task like replacing every symbol of an

input string by zero. For any given input string, the output

string is predictable: it will be a row of zeros the same length

as the input string. But if the input string is going to be of

some insane length—imagine a galaxy-spanning message a

gazillion characters long—then there’s no feasible way to feed
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this thing into my desktop PC and expect an answer in any

reasonable length of time. So in that sense the computation is

unfeasible, even though the eventual output is predictable.

• Unfeasible and unpredictable. Rest assured that whatever is

going on inside your head is both unpredictable and, relative to

existing electronic computers, unfeasible. But you’re doing it

anyway. As Frank Zappa used to say, “Ain’t this boogie a mess?”

One of the main themes in The Lifebox, the Seashell, and the Soul will be

that computations come in certain basic flavors. This is the whole reason why

it might be worthwhile to think of things like flowers, thunderstorms, and

orgasms as computations. Yes, the details of these computations must elude

us, and any simulation of them would be unfeasible. Even so, there are cer-

tain properties such as unpredictability that can be usefully applied to real-

world phenomena.

We’re going to be saying a lot about a very useful classification of compu-

tations that was invented by Stephen Wolfram in the 1980s. Wolfram noticed

that there are four main behaviors for arbitrary computations that are left

running for a period of time.

• Class one. Enter a constant state.

• Class two. Generate a repetitive or nested pattern.

• Class three. Produce messy, random-looking crud.

• Class four. Produce gnarly, interacting, nonrepeating patterns.

It’s pretty easy to understand what class one and class two computations

look like, although it’s worth mentioning that a regularly branching pattern

would also fall under class two. The essence of being a class two computa-

tion is that the outputs don’t generate surprise.

My hacker friend Gosper refers to class three style patterns as “seething

dog barf.” These are messy, random-looking computations with no obvious

order or structure in their outputs.

Class four computations, on the other hand, generate images more like

never-repeating lace. Class four computations might be characterized as

having behavior that appears purposeful. I like to use the word gnarly for
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class four processes—gnarly in the sense of twisting tree roots, large ocean

waves, or weathered human faces.

When a rough distinction will do, we speak of class one and class two

computations as being simple and class three and class four computations

as complex. Figure 7 summarizes the terminology.

The borders between the computation classes aren’t very crisp. There are

times when the distinction between class three and class four isn’t obvious.

And it’s not always clear if a system is class two or class four—consider the

fact that some systems can appear interesting for a very long time and only

then settle down to being periodic. We don’t always know whether we can in

fact find a “good” input that will keep a certain computation running and pro-

ducing novelty forever, thus showing that it really is a class four rule.

Wolfram’s critics complain that his computation classes aren’t formally

defined and that, when we do attempt formal definitions, determining the

class of a computation can be an unsolvable problem (“unsolvable” in a

certain formal sense that I’ll describe in chapter 6). Wolfram might reply

that using rough-and-ready concepts is typical for a newly developing

branch of science. I agree with him. I think his critics miss the forest for

the trees. With an open mind you can indeed distinguish the four compu-

tation classes; you’ll begin to see this as our examples accumulate. Yes,

there will be some borderline cases, but that doesn’t mean the classes don’t

exist.
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Figure 7: The Spectrum of Complexity

A simple computation is in class one or class two. A complex computation is in class
three or class four. Despite the number order of the names, the gnarly class four in some
sense lies in between the periodic class two and the random-looking class three.



Wolfram’s initial investigations all had to do with feasible computations—

in that he was looking at actual programs he could run. But his classification

system applies equally well to the enormous computations carried out by

physics and biology. The limitations of our digital silicon machines are such

that we can’t feasibly emulate any really large parts of the real world. Even

so, it’s very useful to categorize the unfeasible-for-the-PC computations that

we see all around us.

Some natural phenomena die out or become static—these are the compu-

tations of class one. Other aspects of the world are periodic or class two—one

thinks immediately of the rising and setting of the sun or the ebb and flow of

the seasons. The class three aspects of the world are the seemingly random

ones—you might think of radio hiss or TV-screen snow. But the most inter-

esting computations in nature are all class four. As we’ll see, examples

include the forms of clouds and of trees, the flow of your thoughts, and the

spacing of cities upon a map.

Wolfram has made two conjectures about his computation classes. The

first is the Principle of Computational Equivalence (PCE for short).5

• Principle of Computational Equivalence (PCE). Almost all processes

that are not obviously simple can be viewed as computations of

equivalent sophistication.

What he means by this is that, in a sense that we’ll make precise later on,

all of the class three and class four computations are equally complex. Rather

than believing that some complex computations are simpler than others, Wol-

fram feels that nearly all of them are of an equal and maximal complexity.

The PCE is in some sense discouraging, as it seems to tell us that when

you can’t see a simple explanation for a natural phenomenon, this means

that the phenomenon is not only complex, but of a maximal complexity. Any-

thing that’s not obviously simple is in fact very gnarly.

A quick example. Consider the motion of the leaves on a tree. A physicist

might describe the system as a wind-driven multiple-pendulum system. But

the resulting computation is class four and certainly complex. If the PCE

holds, then the gnarly motions of the leaves are to be as sophisticated as

what’s going on inside my brain. I seem to be a fluttering leaf? Maybe so.
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Besides his PCE, or Principle of Computational Equivalence, Wolfram

advocates a second conjecture, which I call the PCU or Principle of Compu-

tational Unpredictability.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

Here again, complex means class three or class four. And, as I mentioned

before, when I say that a computation is unpredictable, this means there’s no

drastically faster shortcut computation that will reliably predict the given

computation’s outputs.

When we find some kind of natural process going on, we can often model

the process as a computation. And in certain rare cases, we can also model

the process by some simple and rather easily solvable equations. The PCU

says that the latter situation is exceedingly rare. Generally speaking, there is

no quick way to predict the results of a naturally arising computation.

Wolfram doesn’t feel a need to explicitly state the PCU, but it’s implicit in

A New Kind of Science. He prefers to use the words reducible and irreducible

for what I’m calling predictable and unpredictable—I insert some bracketed

phrases in the following quote to keep this clear.6

So what this [The Principle of Computational Equivalence] means

is that systems one uses to make predictions cannot be expected

to do computations that are more sophisticated than the compu-

tations that occur in all sorts of systems whose behavior we might

try to predict. And from this it follows that for many systems no

systematic prediction can be done, so that there is no general way

to shortcut their process of evolution, and as a result their

behavior must be considered computationally irreducible [or

unpredictable].

If the behavior of a system is obviously simple—and is say either

repetitive or nested—then it will always be computationally

reducible [or predictable]. But it follows from the Principle of Com-

putational Equivalence that in practically all other cases it will be

computationally irreducible [or unpredictable].
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And this, I believe, is the fundamental reason that traditional

theoretical science has never managed to get far in studying most

types of systems whose behavior is not ultimately quite simple.

As I’ll discuss in CHAPTER SIX: Reality Upgrade: the PCE and the PCU are in

fact independent of each other. While the latter is used to deduce the unpre-

dictability of naturally occurring processes, the former is used to deduce the

unsolvability of certain questions about these processes—where unsolvability

means that certain kinds of questions can’t be solved by any conceivable

kinds of computation at all.

I agree with Wolfram that both the PCE and the PCU are likely to be true

for all of the interesting examples of naturally occurring computations—

including physical systems, biological growth, the human mind, and the

workings of human society.

Before closing this section, I want to introduce one more concept. When a

computation generates an interesting and unexpected pattern or behavior,

this is called emergence. I’ll give three quick examples drawn from, respectively,
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the fields known as artificial life, fractals, and cellular automata. (Most of the

computer graphics figures in this book were made with programs I had a

hand in authoring; see the Image Credits section at the end of the book for

details.)

In artificial life, computers try to simulate the behaviors of living organisms.

A classic discovery in this field is the boids algorithm by Craig Reynolds.

Reynolds found that if a group of simulated birds, or boids, obeys a few simple

rules, the boids will seem to move about as a coherent flock. This is an

example of emergence in that the somewhat unexpected flocking behavior

emerges from the collective computations carried out by the individual boids

as suggested in figure 8. I’ll say more about the boids algorithm in CHAPTER FIVE:

The Human Hive.

A fractal is a structure that has interesting details at many different levels.

The most famous fractal is the Mandelbrot set (figure 9). Suppose that we

think of a computer screen as a region of the plane, with each pixel repre-

senting a pair of real numbers. Suppose further that for each pixel we use the

corresponding number pair as an input for an iterated computation that ter-

minates by specifying a color for the pixel. In the 1970s, Benoit Mandelbrot

investigated a wide class of such computations that produce wonderfully

intricate fractal patterns. Being a fractal, the Mandelbrot set has the prop-

erty that one can zoom in on it, discovering level after level of detail. This is

an example of emergence in that we have a cornucopia of forms arising from

iterated applications of a very simple rule.

I’m going to say a lot about cellular automata in this book; they’re a

fascinating type of computation popularized by Stephen Wolfram. For

now, think of a two-dimensional cellular automaton as a computation in

which each pixel on a computer screen simultaneously updates its color

according to the same rule. What gives the process its punch is that each

pixel is allowed to look at its neighbor pixels. As a simple example of a

such a cellular automaton rule, suppose that each pixel is black or white,

and that a pixel updates itself by polling its nearest neighbors as to

whether the majority of them are white (figure 10). It turns out that if you

use an algorithm of awarding close elections to the losing side, a random

sea of black-and-white pixels congeals into smoothly undulating globs,

not unlike the droplets in a lava lamp. The high-level globs emerge from
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the low-level interactions of the cells. We call this the Vichniac Vote rule

or just the Vote rule.7

The essence of the flocking, the Mandelbrot and the Vote computations is

that something interesting emerges from a simple rule and a generic starting

condition.

Emergence is different from unpredictability. One the one hand, we can

have unpredictable computations that don’t have any high-level emergent

patterns: the dull digits of pi would be an example of this. On the other hand,

we can have computations that generate emergent patterns that are, in the

long run, predictable.

If you let the Vote rule run long enough, one color or the other melts away,
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Figure 9: Mandelbrot Sets

Left to right and top to bottom, we have the traditional Mandelbrot set based on a formula
of the form z = z2 + c; a zoomed-in view of the upper topknot of this set with an additional
algorithm used to fill in the black region; a detail of a cubic Mandelbrot set based on a for-
mula of the form z = z3 + bz + c; and a detail of the so-called Rudy set, which is based on
the family of cubic Mandelbrot sets. To me the last three images resemble, respectively,
Ronald Wilson Reagan dressed as Bozo the Clown, a roaring dragon, and a friendly little
rocking-horse.



leaving a blank wasteland with perhaps a few tiny, rhythmic blinkers. The

Vote rule is ultimately a predictable class two computation.

How about flocking and the Mandelbrot set? In most situations, the

flocking behavior of a group of simulated birds will be class four and unpre-

dictable, with new flocking configurations emerging from time to time—one

such pattern I’ve observed is that sometimes a pair of birds will circle each

other in a pattern like a tightly coiled double helix. And if you were allowed

to endlessly zoom in on the emergent fractals of the Mandelbrot set, I think

you’d also find unpredictable class four behavior, at least in the regions near

the boundary of the set (although whether the Mandelbrot set is truly unpre-

dictable is, I believe, an open problem).

1.3: Reckoning a Sum

Human calculation is the original model for the notion of computation, so it’s

well worth analyzing how we use a pencil and paper to calculate something

like 275 + 484. Before reading ahead, you might carry out the sum yourself,

paying attention to what goes through your mind.

275

+ 484
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Figure 10: The Vichniac Vote Rule

Each pixel is treated as the center of a 3 × 3 grid of nine cells. The new color of a pixel
is white if the total number of white pixels in its neighborhood grid is four, six, seven,
eight, or nine, and the new color of the pixel is black if the total number of white pixels
is zero, one, two, three, or five. The three images show a random initial start with 320
× 200 pixels, the appearance of the system after thirty updates, and the appearance
after three hundred updates.



My own thoughts go something like this:

“This is an addition problem, so I’ll use the adding routine I learned in

grade school.

“I’ll start at the top of the right-most column and work down, reading num-

bers and keeping a running sum in my head.

“That first mark is a five and the next one down is a four. The five looks

like a fat man wearing a billed cap. Maybe he’s a train engineer.

“Five plus four is nine. How do I know that? Because I memorized the simple

sums fifty years ago in Kentucky. My God, where has the time gone? Our

teacher was Mrs. Graves, the choirmaster’s wife. There was that one boy, Lee

Tingley. He couldn’t learn the sums and he’d always sneak and count on his fin-

gers. I did that, too, sometimes, pretending just to be drumming my fingers on

the table—but Mrs. Graves had a sharp eye for finger-counting. She was strict.

Kind of a pioneer type. She and her husband lived in a log cabin with their four

kids. How does adding on your fingers work? Well, it depends on knowing the

order of the counting numbers—if you don’t know that you’re lost. Anyway,

let’s see, I’m in the middle of an addition, and five plus four is nine.

“There’s no more numbers in the column, so I write nine at the bottom and

shift my gaze to the top of the next column to the left.

“Seven plus eight is fifteen. Write five and remember to carry one. I’ve

always been a little uneasy about carrying, and borrowing is worse, especially

borrowing from zero. I never fully understood borrowing until graduate

school. Better not to think about it too much, just use the rules Mrs. Graves

drummed into me. I’m carrying a one.

“I’m looking at the top of the next column to the left. I see a two. The car-

ried one plus the two makes three. Remember that. The next number down

is four. My three plus the four makes seven. Write seven.

“There’s no more columns, so I’m done. 759 means seven hundred and

fifty-nine. That’s the answer.”

If you do a lot of arithmetic by hand—not that many of us do anymore—

then all of this is quite automatic. Indeed, arithmetic seems hard exactly

when you’re so rusty at it that you have to consciously think about what

you’re doing.

Rather than speaking of a person doing pencil and paper arithmetic as a

“computer” or “calculator,” let’s use the old-fashioned “reckoner.”

The Lifebox, the Seashell, and the Soul

32



The reckoner’s computation involves several levels of rules. Working our

way down from the highest level, we start with the implicit behavioral rule

that a reckoner looks at a piece of paper, decides on an algorithm, and then

carries out the calculation. Not just any person would know to do this.

Becoming a reckoner involves learning certain rules of behavior. These rules

make up the “operating system” for pencil-and-paper arithmetic.

A level below that is the specific algorithm the reckoner uses, for instance,

the standard procedure for adding numbers.

Deeper down are the memorized sum tables that the reckoner draws upon.

And even more basic is the reckoner’s ability to read and write numbers.

We might also wonder about the underlying biology that keeps the reck-

oner alive, about the physics that allows a pencil to make a mark on a piece

of paper, and about the background laws of logic that make all of this hang

together in an orderly fashion.

Usually we like to think somewhat abstractly and take most of these ele-

ments for granted. But there does seem to be a sense in which a sizable little

corner of the world gets dragged into something as simple as a child adding

two numbers on a blackboard.

What we’re seeing here is something I mentioned before: Real-world com-

putations have many levels of rules.

It’s instructive to view familiar things with a fresh sense of wonder. Con-

sider a boy adding 275 to 484 to get 759. Look at him through alien eyes. The

brown-eyed juvenile grasps a stick of diatomaceous matter with one of his

clusters of articulated tentacles—ah yes, he’s “holding chalk in his hand.” He

studies two groups of squiggles and scratches fresh squiggles below them.

What does this mean? He’s making a prediction about a certain possible

counting behavior. He and his race have a rote routine for producing a dis-

tinct name for each ordinal number. “One, two, three, . . . two hundred and

seventy-five, . . . four hundred and eighty-four, . . . seven hundred and fifty-

nine.” The boy’s calculation demonstrates that if he were to count to 275, and

then count 484 steps further, he would attain the number 759. His squiggle

manipulations have compressed the work of counting through 759 numbers

to less than a dozen elementary operations. Clever lad.

This brings out two key points about computations.

First of all, some computations are equivalent to each other in terms of what
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they compute. For instance, I can add two numbers either by using arithmetic

or by using an expanded version of “counting on my fingers.” I get the same

answer in either case, so the two computational methods are equivalent.

The second point is that equivalent computations can differ in how much

time they take to carry out. If two different algorithms are used on one and

the same system, it may be that one is always faster. Pencil-and-paper arith-

metic is faster than counting.

The speed improvement you get by using faster software is independent of

the gain you get by switching to a faster computer. Certainly a stage-performing

calculating prodigy will be able to add numbers faster than our boy at the

blackboard. But the prodigy, too, will add faster when using arithmetic than

when working with brute-force counting.

How much time does arithmetic save? Allow me a brief geek-out on this

topic. Using arithmetic instead of simple counting is an example of one com-

putation being what computer scientists call “exponentially faster” than

another. If a fast computation takes L steps and a slow computation takes on

the order of 10L steps, we say the fast one is exponentially faster than the

slow one.

The relevance of this for our two styles of doing arithmetic has to do with

the fact that, if an integer takes L digits to write, then the integer it repre-

sents has a size on the order of 10L. Using digits can be exponentially faster

than counting by ones.

As an example of a exponential speedup, suppose I wanted to reckon, let

us say, the sum 123,456,789 + 987,654,321. This would be a matter of

adding two nine-digit numbers.

123,456,789

+ 987,654,321

The pencil-and-paper reckoning of this involves summing nine columns.

Adding each column will have some fixed cost of maybe ten primitive steps:

three shifts of focus (from top digit, to bottom digit, to write slot, to top of the

next column), two reads, two sum lookups (including adding the carry), a

write operation, possibly carrying a digit to the next column, and a check to

see if you’re done.
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So using pencil-and-paper arithmetic to add a pair of nine-digit numbers

requires no more than nine times ten steps, in other words ninety steps.

That’s a lot faster than counting by 123,456,789 by ones from 987,654,321

to arrive at 1,111,111,110—which would take over a hundred million steps,

and isn’t really feasible.8

By the way, this example also illustrates the point that something that is

unfeasible for one style of computation may be feasible for a different kind of

computation, even on one and the same system. Another point is that this

particular addition problem has a very simple-looking answer, and that, with

a little insight, a reckoner could have anticipated that and sped up the com-

putation a bit more. But insight is an exceedingly difficult thing to automate.

By chaining together arithmetic problems a reckoner can carry out a very

broad range of computations. What do I mean by chaining problems

together? Consider a relatively complicated activity for which adults regularly

use arithmetic: filling out tax forms. A tax form often embodies a linked chain

of arithmetic problems.

Thus, you might be asked to write your income in row 35, write your

deductions in row 38, write row 36 minus row 38 in row 39, write row 6d

times 3,000 in row 40, write row 39 minus row 40 in row 41, and so on.

A list of instructions like this is a primitive example of what computer sci-

entists call a program. Flexible beings that we are, we’re able to handle a cal-

culation task that contains not only numerical data to manipulate, but also

instructions about the flow of the task.

It turns out that, given sufficiently elaborate instructions, we could carry out

chains of arithmetic problems to compute the same results as a supercomputer. 
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Given enough time and patience, a human reckoner could carry out, say, all

the ray-tracing and shading calculations needed to generate the frames of a

feature-length computer-animated cartoon.

But of course the reality is that no reckoner is given that much time and

patience. In order to make the best use of the computational worldview, we

need to keep an eye on the distinction between abstract theoretical possibility

and practical feasibility.

Now let’s see how our electronic number-crunching machines expand our

limits of feasibility. If nothing else, they allow us to be stupid faster.

1.4: Analytical Engines

If you use a standard file-exploring tool to poke around in the directories on

your home computer, you find that certain areas of your hard drive contain

data, such as images and documents, while other areas contain code for the

software programs your machine runs. The high-level software is stored in one

area (such as a Programs directory), the don’t-touch-me-or-else low-level soft-

ware in another (such as a Windows directory), and your documents are found

somewhere like in a My Documents directory. The key fact is that both the soft-

ware and the data are patterns of bits that are laid down in the memory. This

is the stored program architecture. I mentioned that a tax form is a kind of pro-

gram for a human reckoner. To say we are using a stored program architecture

just means that we place a copy of the program into our machine’s memory.

Why “architecture”? It’s not like we’re building the Parthenon here. Per-

haps computer scientists use such a solid-sounding word to make up for the

here-today-gone-tomorrow nature of their work. One of the less pleasant

aspects of teaching computer science is how rapidly things change. Imagine

if you were, say, a history professor, and, on showing up to begin your fall

classes, you learn that this year your classes will be taught in Urdu, that

instead of using markers on whiteboards you’ll be using spray paint on rolls

of butcher paper, and that your students will now be standing in the court-

yard looking in through windows instead of sitting in your classroom. That’s

life as a computer science professor. No wonder we like to dignify our fly-by-

night raree show with a moniker like “architecture.”

Credit for the stored program architecture often goes to the Hungarian
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émigré John von Neumann, who did much to promote the creation of the first

digital computers in the late 1940s. In fact, this way of laying out computers

is sometimes even called the von Neumann architecture. But von Neumann

had a number of important collaborators, the idea of a stored program was

already familiar to Alan Turing in the 1930s, and there are in fact foreshad-

owings of the stored program architecture as early as 1800, when people

began to have the idea of changing a machine’s behavior without having to

mechanically rebuild it.

The Jacquard loom, invented by the Frenchman Joseph-Marie Jacquard in

1801, is programmable by punch cards. By coding up a tapestry pattern as

a series of cards, a Jacquard loom is able to weave the same design over and

over, without the trouble of a person having to read the pattern and set the

threads on the loom.

In the mid-1800s a colorful Briton named Charles Babbage hit upon the idea

of using punch cards to control computations. Babbage actually owned a woven

silk portrait of Jacquard that was generated by a loom using 24,000 punch cards.

(see figure 12.)

Babbage began by designing—

but never quite completing (to

read Babbage’s memoirs is to want

to choke him very hard)—a gear-

based device known as a Differ-

ence Engine, which was to be used

for calculating and printing out

mathematical tables of logarithms

and trigonometric functions,

astronomical tables giving the

computed positions of celestial

bodies at various times, and life-

insurance tables giving the

expected earnings or annuities of

people of various ages. In each

case it was a matter of applying a

particular algebraic formula over

and over.
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There was a small but

real market for a Difference

Engine and eventually the

Swedish inventor Georg

Scheutz did actually com-

plete and market two

working Difference Engines

(figure13). Rather than

being envious, the big-

hearted Babbage encour-

aged Scheutz and helped

him sell his first machine

to an astronomical obser-

vatory in Albany, New York.

One reason that Bab-

bage never finished his own

Difference Engine was that he was distracted by dreams of an even more fab-

ulous piece of vaporware, a machine he called the Analytical Engine.

Babbage’s description of the Analytical Engine may well be the very first

outline for a calculating device where the program is separate from the action

of the machinery. The Analytical Engine was to have a “mill” (think “chip”) that

executed arithmetic operations, and was also to have a “store” that would pro-

vide a kind of scratch paper: short-term memory for temporary variables used

by the calculation. Babbage’s then-novel idea was that the actions of the mill

were to be controlled by a user-supplied program that was coded into punch

cards like the ones used by the Jacquard loom. If we think of the deck of

punch cards as being a kind of machine memory, Babbage’s design fore-

shadows the stored program architecture—but it’s not quite there yet.

One of the most lucid advocates of Babbage’s Analytical Engine was the

young Ada Byron, daughter of the famed poet. As Lady Ada memorably put it,

The distinctive characteristic of the Analytical Engine, and that

which has rendered it possible to endow mechanism with such

extensive faculties as bid fair to make this engine the executive right-

hand of abstract algebra, is the introduction into it of the principle
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which Jacquard devised for regulating, by means of punched

cards, the most complicated patterns in the fabrication of bro-

caded stuffs. . . . We may say most aptly, that the Analytical Engine

weaves algebraical patterns just as the Jacquard loom weaves

flowers and leaves.9

In reality, Babbage’s Analytical Engines were never built. But it’s inter-

esting to think about such engines—it brings home the idea that computers

don’t have to be boxes of wires and chips. Remember, a computation is any

system with a process that is governed by a finitely describable set of rules.

In 1991, my fellow cyberpunk science-fiction writers William Gibson and

Bruce Sterling published a fascinating alternate history novel, The Difference

Engine, which imagines what Victorian England might have been like if

Babbage had been successful. (Despite the title, the book is really about

Analytical Engines rather than Difference Engines.) Just as our present-day

computers are run by hackers (“hacker” in the sense of “fanatical and

resourceful programmer,” as opposed to “computer criminal”), the Analytical

Engines of Gibson and Sterling are tended by “clackers.” Here’s their descrip-

tion of a visit to the Central Statistics Bureau in their what-if London:

Behind the glass loomed a vast hall of towering Engines—so many

that at first Mallory thought the walls must surely be lined with mir-

rors, like a fancy ballroom. It was like some carnival deception, meant

to trick the eye—the giant identical Engines, clock-like constructions

of intricately interlocking brass, big as rail-cars set on end, each on

its foot-thick padded blocks. The whitewashed ceiling, thirty feet

overhead, was alive with spinning pulley-belts, the lesser gears

drawing power from tremendous spoked flywheels on socketed iron

columns. White-coated clackers, dwarfed by their machines, paced

the spotless aisles. Their hair was swaddled in wrinkled white berets,

their mouths and noses hidden behind squares of white gauze.10

In the world of The Difference Engine, one can feed in a punch card coded

with someone’s description, and the Central Statistics Bureau Engines will

spit out a “collection of stippleprinted Engine-portraits” of likely suspects.
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Babbage’s ideas bore fruit after a century. It was 1945 when von Neumann

began promoting the stored program architecture, after working with the

designers of a machine called ENIAC at the Moore School of Engineering of

the University of Pennsylvania. Although it wasn’t made of gears, the ENIAC

was really a Babbage-style Analytical Engine. The ENIAC is sometimes

regarded as the first general-purpose electronic computer, but it wasn’t quite

all the way there, in that its program wasn’t stored in electronic memory. The

ENIAC program was on a deck of punch cards; the machine needed to con-

sult them every time it needed a program instruction.

A parenthetical note. Although ENIAC was originally meant to compute

artillery trajectories, World War II was over before it started working. One of

the first big computations ENIAC carried out was in fact a Cold War calcula-

tion to test the feasibility of building a hydrogen bomb: a numerical solution

of a complicated differential equation having to do with nuclear fusion. It is

said that the calculation used an initial condition of one million punch cards,

with each punch card representing a single “mass point.” The cards were run

through ENIAC, a million new cards were generated, and the million new

cards served as input for a new cycle of computation. (My guess is that the

cards represented points arranged in a cubic grid a hundred units on a side,

and that their values were updated on the basis of their neighbors’ values.)

You might say that the very first electronic computer program was a simula-

tion of an H-bomb explosion. What a shame. Better they should have been

looking at fractals, or simulating a human heart!

Programming the ENIAC involved making a deck of punch cards, manually

arranging the wires on a plugboard, and setting a bunch of ten-position dials.

There had to be a better way. As Arthur Burks, Herman Goldstine, and John

von Neumann wrote in, “Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument,”

Conceptually we have discussed . . . two different forms of memory:

storage of numbers and storage of orders. If, however, the orders to

the machine are reduced to a numerical code and if the machine can

in some fashion distinguish a number from an order, the memory

organ can be used to store both numbers and orders.11
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The stored program architecture means that, in a certain sense, the high-

level software is a kind of data that’s processed by the low-level software that

controls the host machine’s basic functioning.

It’s thanks in part to the stored program architecture that each of today’s

computers is in some sense equivalent to any other. If you have a Macintosh,

you can get a Windows emulator that will allow your machine to read and exe-

cute Windows programs. If you’re nostalgic for the PDP-1 computer used by

the earliest computer hackers at MIT, you can search the Web and find a Java

program that, when loaded on your machine, will allow it to emulate a PDP-1.

I’ve always loved that word, emulate. As humans we often try to emulate our

heroes, that is, to learn a set of behaviors that make us be “just like” the hero. In

effect, we’re loading software into our brains. After watching a movie with a char-

acter I find particularly interesting, I’ll often spend a few minutes emulating this

character—seeing through the character’s eyes, moving as the character moves,

thinking as the character seemed to think. Books and other works of art have this

effect, too, but there’s something especially hypnotic about films.

Emulation generalizes the stored program concept. To be precise, we say

that a computation Big emulates another computation Small if you have a

special auxiliary input emulatesmall so that the states produced by Small(In)

are the same as the states produced by Big(emulatesmall, In). In this situa-

tion we speak of emulatesmall as an emulation code.

Before making this more precise, let’s recall how we’re thinking of

computations.

We view a computation P as a process that we set into motion by giving it

an input In. Thus P (In) is a process that changes as time t increases. To be

quite general, we’re allowing both for the possibility that t increases in abrupt

steps, as in a digital computer, and for the possibility that t is continuous, as

in a physical system like a fluttering leaf. We write P(In, t) = Out to mean that

after time t, the computation P(In) is in state Out. And we assume that we

have some method IsPDone(Out), called a target detector, that allows us to

decide if the computation is to be viewed as having halted when it reaches

the state Out. Let’s adopt the following additional terminology.

• P(In) produces Out means that for some t, P(In, t) = Out.

• P(In) returns Out means that for some t, P(In, t) = Out and 

IsPDone(Out) is True.
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And now we can define emulation.

• Definition of Emulation. Big emulates Small if there is an emulation

code emulatesmall such that for any states In and Out,

Small(In) returns Out if and only if

Big(emulatesmall, In) returns Out.

So Big emulates Small means that having access to Big and the emulation

code emulatesmall is as good as having access to Small.

The definition of emulation is rather technical, but the concept is a natural

one. Let me suggest some analogies.

• Think of Big as a PC and Small as a pocket calculator. Big

comes equipped with a calculator accessory that acts as an

emulatesmall to make it behave just like a calculator.

• Think of yourself as Big and me as Small. The book you hold

is meant to serve as an emulatesmall that allows you to emu-

late my thoughts.

• Think of Mr. Big as a man, Ms. Small as a woman, and emu-

latesmall as a dress. If Mr. Big wears a dress, can he repro-

duce all the behaviors of Ms. Small? No. Mr. Big will never

give birth to a baby. So he can’t presently be said to emulate

Ms. Small. But hold on. Maybe at some future time, men

may gain the ability to grow cloned offspring of their own.

And in this event, perhaps Mr. Big can be said to fully emu-

late Ms. Small.

• Think of Big as a tree branch rocking in the wind and Small

as a PC. I’m of the opinion that the Big branch’s behavior is

rich enough to emulate anything that the Small PC can do. In

order to make the definition of emulation apply, however, I’d

need to incorporate some method of translating from the

binary language of machines into the positional “language” of

leaf and branch positions. I take up the issue of translations

in emulations in the Technical Appendix.
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I mentioned above that any one of our personal computers can emulate

any other. This is perhaps a bit surprising. After all, if you were to believe

some of the ads you see, you might imagine that the latest PCs have access

to new, improved methods that lie wholly beyond the abilities of older

machines. Could there be a new machine with such tricky goodies on its

chips that an older machine would not in fact be able to load up and execute

emulation software for it?

Well, if the emulation program for the new machine is so large that it

wouldn’t be able to fit into my old machine’s memory, then, no, the old

machine can’t emulate the new one. But this is a hardware limitation that

seems peripheral to the core issue of functional capability. If I’m allowed to

equip my old machine with as much additional memory I need, then yes, I

can always get it to behave like any other computer at all.

This somewhat surprising fact has to with a phenomenon that computer

scientists call universality. It turns out that many computations can in fact

emulate any other computation. We call these maximally powerful computa-

tions universal.

• Definition. A computation is universal if it can emulate any other

computation.

Now, you might expect it to be fairly hard to get a computation to be uni-

versal. But nothing could be further from the truth. Universality is easy.

Once any computational system advances past a certain very low threshold,

it becomes universal. How low is the threshold? Being able to add and mul-

tiply is more than enough. And, as we’ll see, even more rudimentary capabil-

ities will do.

In point of fact, when we examine the naturally occurring computational

systems around us—like air currents, or growing plants, or even drying

paint—there seems to be reason to believe that the vast majority of these sys-

tems support universal computation. This belief is part of the content of Wol-

fram’s PCE: If some complex computations are universal, and most complex

computations are of equivalent sophistication, then most complex computa-

tions are universal.

Universality is a big deal. The existence of universal computation means

computation everywhere

43



that there is a maximal level of computational complexity. And the ubiquity

of universality means that this maximum is rather readily attainable. Com-

putation is in some sense already as good as its going to get. We’re in a posi-

tion a bit like someone who’s inherited a fortune of a vastness they’re still

learning to understand.

1.5: The Tiniest Brains

Starting with thoughts about arithmetic, Alan Turing formulated a minimally

simple definition of computation in the 1930s—well before any real electronic

computers had been built. Turing’s approach was to describe an idealized

kind of computer called a Turing machine.12

In practice, nobody builds Turing machines. They’re so primitive that even

adding numbers can be unfeasibly time-consuming with one of these devices,

and programming such a device to do anything complex is mind-numbingly dull.

Nevertheless, there are several good reasons for learning about Turing

machines.

First of all, many Turing machines are universal, that is, they can, however

slowly, carry out any possible computation. Looking at Turing machines

helps us understand how little is really needed for universal computation.

Second, the design of a Turing machine resembles the design of an elec-

tronic computer, albeit in embryonic form. Understanding Turing machines

is a good preparation for understanding PCs.

Third, the rudimentary quality of Turing machines makes them easy to

think about. By searching through all possible Turing machines we can in

some sense search through all possible computations. In his original paper

on the topic, Turing proved that no Turing machine can distinguish between

the true and false theorems of mathematics, which in turn showed that

mathematical truth is in some sense undecidable for any computer at all.

More recently, Stephen Wolfram has carried out a series of computer

searches over the class of Turing machines to help confirm his hypothesis

that computations come in only four flavors: they die out, they repeat, they

seethe messily, or they create gnarly patterns.

So, all right, what’s a Turing machine?

I once looked through a specification of the librarians’ Dewey decimal
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system and found there is actually a classification for “Turing machines,

manufacture and distribution of.” But in point of fact, Turing machines are

not real physical devices that people build. They’re idealized models of an

extremely simple kind of digital computer. Turing’s original inspiration for the

Turing machine was to try to capture the behavior of a human reckoner—but

without all the squishy stuff on the inside.

To begin with, a Turing machine has only some finite number of internal

states. These are analogous to a reckoner’s mental states, such as the state

of remembering to carry a 1.

As a further simplification, a Turing machine uses a linear tape of cells

instead of a two-dimensional grid of paper. A Turing machine focuses on one

cell at a time on its tape; more concretely, we think of the machine as having

a read-write head that moves from cell to cell.

During each update, the machine reads the symbol in the cell, possibly

changes the symbol in the cell, moves its head one cell to the left or one cell

to the right, and enters a new internal state. Having completed one update

step, it begins the next: reading the new cell, changing it, moving its head,

and altering its internal state once again.

What determines the Turing machine’s behavior? We can look at it this

way: each stimulus pair of (internal state, read symbol ) leads to a unique

response triple of (write symbol, move direction, new state). The high-level

software for a Turing machine is a lookup table that supplies a response

triple for each possible stimulus pair.

A Turing machine’s input is a string of symbols on the tape. Suppose we

simply write d to stand for a tape with a particular symbol pattern that we

can also call d. We set a computation in motion by putting the machine into

its starting state and setting its head on the leftmost nonblank symbol of d.

An output is any resulting pattern of symbols that appears on the tape at a

later times.

Figure 14 represents a Turing machine in action. It uses only two symbols,

the white cell and the black cell, which we might also think of as zero and

one, and it has three states. Each row of the figure shows a picture of the

Turing machine’s tape, with time running down the page from top to

bottom—that is, the starting configuration is the top line and the later con-

figurations are below. The picture also includes small representations of the
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Turing machine’s head as a little pointer

whose direction indicates the internal

state that the Turing machine is in

during that particular snapshot. (This

useful method of representing Turing

machines was introduced by Stephen

Wolfram in A New Kind of Science.)

The particular machine depicted

starts on a blank tape and endlessly

shuttles back and forth, filling the tape

with an ever-growing pattern of alter-

nating marked and unmarked cells. It

never stops. Pointless, you may say, but,

hey, it’s a computation!

In some applications of Turing

machines we are concerned with finding

cases where the machine halts, that is,

reaches a state after which the output pat-

tern doesn’t change any further. Although

its possible to do this by having the

machine go into an endless loop without

writing or erasing anything more, most

discussions allow computations to have a

special “halted” state, and specify that

once a Turing machine enters its halted

state, it stops looking up further moves.

Some discussions of Turing machines

focus almost exclusively on machines whose computations halt. But in The

Lifebox, the Seashell, and the Soul, we’re equally interested in open-ended com-

putations that are willing to run for as long as you let them. In Wolfram’s terms,

a computation that halts for every input is class one. Naturally occurring class

four “computers,” like the weather, the plants, or our minds, all have the quality

of being willing to continue indefinitely. It’s only a destructive external input

that brings most natural computations to a halt—as when, for instance, a toxic

spill eliminates a patch of plants, a cerebral hemorrhage cuts off a person’s

thoughts, or a sun explodes and puts an end to its planets’ weather.
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As I mentioned earlier, we also have a notion of halting for arbitrary com-

putations P . Here we can have a target detector, IsPDone, that has two spe-

cial output states, True and False. IsPDone is a helper computation that

allows us to distinguish certain target states as being states in which P has

produced an answer. So as to block off an endless regress, we require that

there be no problems in trying to decide when IsPDone itself has produced a

final answer, that is, we require that for any state Out, IsPDone(Out) returns

either True or False in a finite amount of time to indicate, respectively, that

Out be regarded as a target or a nontarget state.13

Now let’s talk some more about the rules, or software, that govern a Turing

machine. As I said above, the high-level software for a Turing machine is a

lookup table that supplies a response triple for each possible stimulus pair.

And the low-level software for a Turing machine forces it to cycle through the

following three steps:

• (Turing A) The machine reads the symbol that is in the active

cell. It combines the read symbol with its current state to

make a stimulus pair (internal state, read symbol).

• (Turing B) Given the stimulus pair (internal state, read symbol),

the machine looks in its high-level software to locate a correspon-

ding response triple (write symbol, move direction, new state).

• (Turing C) On the basis of the response triple, the machine

writes a symbol in the active cell, moves the head one step to

the left or to the right, and enters a new state. If the machine

is not in the halted state, it returns to step (Turing A).

One of Turing’s great insights was that we can put the lookup tables for

Turing machines down onto the tape along with the input data. That is,

instead of running machine M on the data d, you can code M as a string of

symbols m, and write the m pattern on the tape next to the data d to get a

tape that we’ll call md. And then a fairly routine bit of mathematical legerde-

main can conjure up a specific universal Turing machine U such that the

action of U on the tape md emulates the action of M on the tape d.

Note the exact analogy to the fact that, if U is a personal computer and M

is some other personal computer, we can find an emulation program m so

that the action of U on md is the same as the action of M on d.
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Although every PC is universal, only some Turing machines are universal.

All PCs are, after all, of a fairly high degree of complexity. But Turing machines

can be made arbitrarily simple. Over the years there’s been something of a

competition among computer scientists to discover the simplest possible uni-

versal Turing machine. The simplicity of a Turing machine is gauged in terms

of how many internal states the machine has and how many tape symbols it

uses. The most recent record-holder, discovered by Stephen Wolfram and

Matthew Szudzik on the basis of work by Matthew Cook, uses two states and

five symbols. This means that the machine itself has an exceedingly simple

lookup table. With two states and five symbols, there are only ten possible com-

binations of (internal state, read symbol ), so the Turing machine’s entire

lookup table has only ten lines. Yet, by preparing the input tape in a suitable

way, we can get this machine to emulate any possible computation.

Encouraged by this and some similar kinds of research, Wolfram conjec-

tures in A New Kind of Science that universal computations are ubiquitous.

This follows from his Principle of Computational Equivalence, or PCE, which

I introduced a bit earlier in this chapter.

• Principle of Computational Equivalence (PCE). Almost all processes

that are not obviously simple can be viewed as computations of

equivalent sophistication.

Let’s delve into this more deeply than before.

The “almost all” at the start is so Wolfram can cover himself from a certain

pointed criticism. The criticism stems from the fact, known since the 1960s,

that there are in fact some gnarly class four Turing machines that aren’t uni-

versal. But Wolfram’s feeling is that, at least in nature if not in mathematics,

such computations will be exceedingly rare. We might reasonably replace the

phrasing “almost all” by “most naturally occurring.”

When he speaks of an “obviously simple” process, Wolfram has class one

and class two computations in mind. Recall that the class one computations

run for a while and then enter a fixed state. There are actually two ways that

a computation can be class two. On the one hand, it might go into a loop and

begin precisely repeating itself. Or, on the other hand, the computation might

generate a growing, orderly, unsurprising pattern. The three-state Turing

machine depicted earlier in this section is an example of this style class two
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computation. It doesn’t exactly repeat itself, but what it’s doing is “obviously

simple.”

The non-obviously-simple computations would be the disorderly class

three computations and the gnarly class four computations. The disorderly

computations seethe in a seemingly random fashion, and the gnarly ones

generate intricate patterns.

What does Wolfram mean by two computations being “of equivalent sophis-

tication”? We might take this to mean that they can emulate each other.

Note that if U is universal and if M can emulate U, then M must be uni-

versal as well. Consider an analogy: If you can imitate the actor Jim Carrey,

who can imitate anyone, then you yourself can imitate anyone. To imitate

Elvis, for instance, you imitate Jim Carrey imitating Elvis.

Given that we know that universal computations exist, if we take “of equiv-

alent sophistication” to mean “able to emulate each other,” we might phrase

the PCE as follows.

• Principle of Computational Equivalence, Second Form (PCE2). Most

naturally occurring complex computations are universal.

As I mentioned earlier, Wolfram advocates a related but distinct principle

as well, the Principle of Computational Unpredictability.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

The PCE and PCU were to some extent inspired by Wolfram’s searches over

vast classes of Turing machines and other simple kinds of idealized compu-

tation. Wolfram’s daring is to insist that his insights apply to all kinds of com-

putations. In the chapters to come, we’ll consider what the PCE and PCU

might tell us about our world.

1.6: Inside the Beige Box

In this section we’ll talk about real computers, that is, personal computers.

There’s no real need to talk about “supercomputers.” Last year’s supercom-

puter is next year’s desktop machine.
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Personal computers all have the same basic design: a processor and memory.

The processor is something like the head of a Turing machine, and the

memory is like a Turing machine tape. Or, again, the processor is like a

human reckoner, and the memory is like a sheet of paper.

The memory, often called RAM for random access memory, can be imag-

ined as a long ribbon of cells. The PC’s memory cells hold so-called words of

memory. Here word does not mean “meaningful language unit.” It simply

means a particular fixed number of bits, let’s say thirty-two zeroes or ones.

Each word of memory has an address, and the memory addresses run from

zero on through the thousands, millions, and billions, depending on how

much RAM the particular machine has. The “random access” aspect of the

memory has to do with the fact that the processor is easily able to read or

write the contents of a cell at any desired address.

Let’s look at what happens when a stored program architecture computer

runs. The basic operation is for the processor to alternate between the fol-

lowing two steps:

• (Computer A) Fetch an instruction from memory.

• (Computer B) Interpret and execute the latest instruction.

The processor uses an address called the instruction pointer to keep track of

which word of memory the processor is currently supposed to fetch. And it also

keeps a data read pointer and a data write pointer to keep track of which

memory slot to use for, respectively, reading or writing bits (see figure 15).

All of these pointers are stored in so-called registers that live right in the sil-

icon of the processor. The processor has a few dozen such registers and they can

be thought of as constituting part of its internal state.

According to which word the processor finds at the address of its instruc-

tion pointer, it will do one of the following:

• Read data from memory.

• Carry out logical or arithmetical operations such as AND or

PLUS, and store the results in a “scratch-paper” register.

• Write data to memory.
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After fetching and executing each successive instruction, the processor will

normally increment the instruction pointer to the next memory position, but

certain instructions will tell it to override this default behavior and execute

the following, fourth kind of primitive operation:

• Jump the instruction pointer to a new position.

Unlike a Turing machine’s head, a personal computer’s instruction pointer

can hop to anywhere in memory in a single step. If you have some familiarity

with programming, you may know that jumps in the instruction pointer’s

position can be caused by if-then-else statements, by loops, and by calls to

procedures. The instruction pointer does a dance of computation.

A higher-level way to think of the difference between PCs and Turing

machines would be to say that at any given time, a PC processor can access

any memory location, whereas a Turing machine processor (or head) can only

access one memory location. We represent this in the two diagrams in figure

16. In each diagram, the circle represents the processor and the row of cells
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represents the memory. Computer scientists would say that the Turing

machine has local memory access, while the PC has global memory access.

When the PC processor carries out logical and arithmetic operations, it

manipulates the bits in the registers, often by combining one register’s bits

with the bits in another. More precisely, logic and arithmetic instructions may

copy register values among each other, add register values, compare register

values, and more. The actual execution of additions, multiplications, logical

combinations, and so on, is handled by specialized circuitry on the chip, or

what’s sometimes called the chip architecture (there’s that word again).

What about interactive inputs? Input devices can place a few bits or even

a long patch of bits directly into the RAM. A keyboard feeds in perhaps thirty-

two bits of data with each key press, while a disk drive can load in millions

of bits at a time. Each time you move your mouse, the mouse, too, puts bits

describing its clicks and moves into the computer memory. A program can go

and check this area every so often, and in this way respond to the inputs.
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We draw the Turing machine processor as having access not only to the current memory
cell but to the two neighboring cells; this is because the processor is able to execute a
“move left” or a “move right” instruction. We can draw the personal computer’s archi-
tecture as a long row of memory cells, indicating the processor’s global access by
drawing connecting lines from the processor to each cell; or we can simplify by drawing
the memory as a somewhat larger block meant to include lots of data, and drawing the
processor-to-memory access line as thick, fuzzy, and gray, with the understanding that
this kind of line means that the processor has rapid access to every nook of the asso-
ciated memory box.



Output devices convert bits into audible or visible display. A crude text

screen might show a few hundred characters, using sixteen bits per char-

acter, whereas a graphics screen might display millions of colored pixels, with

perhaps thirty-two bits of color code per pixel. You can print out your

screens, or you can write the information onto a disk. A sound card converts

swatches of bits into voices, music, and noise.

How is it that PCs often seem to be doing several things at once? Behind

the scenes the machine allocates successive time-slices to a series of tasks

and rapidly cycles around and around this task loop, giving the illusion

that all the tasks are being worked on at once. In this fashion a PC can

emulate a so-called parallel computer, which independently runs many

computational threads at the same time.

Being a universal computer is empowering. It turns out that no matter

what its particular architecture is, a universal computer can emulate any

other computer, of any possible architecture. This isn’t an obvious fact, nor

is it something that’s been formally proved—it’s more in the nature of an

empirical principle that’s been deduced from the body of theoretical and

practical knowledge of computation that we’ve accumulated. The principle is

sometimes called Church’s Thesis. We might phrase it like this:

• Church’s Thesis. Any possible computation can be emulated by a

personal computer with sufficiently large memory resources.

Alonzo Church proposed his thesis back in the 1930s, after observing

that several different ways of defining computations were all equivalent to

one another. The thesis becomes controversial when universal automa-

tists argue that PCs can emulate naturally occurring physical processes—

even with the understanding that the emulations will normally be

unfeasible. The issue is that if physics were to involve infinitely precise

continuous quantities changing according to exact laws, then the finitely

complex digital electronic computers might not be able to adequately emu-

late physics. The resolution, which I’ll discuss in CHAPTER TWO: Our Rich

World, is to say that the quantities used in physics really have only a finite

level of precision.
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1.7: Plugged In

In the early 1980s, the science-fiction writer William Gibson coined the great

word cyberspace, which now has come to mean, approximately, the Web.

Originally the word also connoted virtual reality, in the sense of an immer-

sive and shared graphical world.

In 1988, John Walker, then the chairman at Autodesk, Inc., of Sausalito,

had the idea of building a software toolkit for creating shared virtual realities.

Autodesk trademarked the word Cyberspace for an (unsuccessful) product

called the Cyberspace Developer’s Kit. William Gibson was somewhat annoyed

by this and jokingly claimed he was going to trademark Eric Gullichsen, this

being the name of the first lead programmer on the Autodesk Cyberspace

project. I myself was employed by Autodesk at the time, recruited by Walker

himself. I was helping to design and code a series of popular science software

packages, including Rudy Rucker’s Cellular Automata Laboratory, James

Gleick’s Chaos: The Software, and Artificial Life Lab (all of which are available

for free download from this book’s Web site, www.rudyrucker.com/lifebox/). I

also helped write some demos for the Autodesk Cyberspace project, most

memorably a lively flock of polyhedra that would circle the user’s head.

Before we managed to get electronically linked multiple users into our

cyberspace at the same time, Autodesk’s stock price went down and I was out

of the industry and back in the groves of academe, teaching computer sci-

ence at San Jose State and writing a novel called The Hacker and the Ants

about my experiences at Autodesk.

What was cyberspace? Where did it come from? Cyberspace had

oozed out of the world’s computers like stage-magic fog. Cyberspace

was an alternate reality, it was the huge interconnected computa-

tion that was being collectively run by planet Earth’s computers

around the clock. Cyberspace was the information network, but

more than the Web, cyberspace was a shared vision of the Web as a

physical space.14

Living through the dot-com boom in Silicon Valley was a trip; for a while

there, money was growing on trees. I remember when a student in my Java
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course came by the office to show me a job offer he’d gotten. They were

offering him a fat salary, perhaps 30 percent more than what a humble

professor makes. And he was wondering if he should ask for more! He was

clever and likable, although disorganized and perhaps a little lazy. He got so

excited about his impending career that he didn’t hand in one of the class

projects, which brought his average down to the C level, but it didn’t matter;

the bubble wanted everyone it could get, at least for a short time. I had

thought he might be unemployed by now, or running an offshore coding

group in Bangalore, but the other day he turned up again, having authored

some software for anonymous Web-surfing, and still very much in the game.

The Web is here to stay.

When you push aside the hype and the biz buzz, the Web consists prima-

rily of our personal computers, with the added feature that they can

exchange data. When one computer gets information from another, we speak

of them as a client and a server, respectively. The client is said to download

files from the server, and, in the reverse direction, the client uploads files to

the server so that other clients can see them.

A given PC may act as both client and server; indeed, in some local net-

works, all machines play both roles. It’s more common, however, to have cer-

tain dedicated machines that function primarily as servers. These server

machines are the same kinds of PCs that you might have at home, with the

difference that dedicated servers usually use a Unix-type operating system.

The clients and servers connect to one another via a hierarchy of machines

called switches and routers, as indicated in figure 17.

My son Rudy Jr. runs what may be the only independent Internet service

provider in San Francisco, www.monkeybrains.net. He keeps his machines in

a cage that he rents for them in a so-called server hotel in a rough neighbor-

hood. A robot flophouse. The server hotel was once a Macy’s warehouse and

is located next to a train track. Nearly all server hotels are next to train tracks

so that their routers’ fiber optic cables can follow the railway’s right of way to

the next server hotel down the line. The server hotel, or data center, holds

three highly air-conditioned floors of wire cages, each cage stuffed with the

machines of some stalwart Web entrepreneur.

Rudy’s cage holds seventeen server machines and a router. The last time I

visited, he pulled a plug out of the back of his router box and told me to look
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into the end of the wire. I saw a faint red light, grainy with information. It was

his router’s optical fiber line. “That’s the color of the Internet,” said my son.

“You just saw a gigabit per second.” Any information going through Rudy’s

router at that moment suffered a glitch, but the protocols of the Internet are

smart enough to correct things like that.

To get a picture of how the Web works, let’s step through an example. Sup-

pose you enter my book’s Web site address into your browser’s address bar:

www.rudyrucker.com/lifebox/.

The following sequence of actions results (leaving out numerous fiddling

details):

• Your machine sends a message to Rudy Jr.’s server machine

in San Francisco, stating your machine’s name and

requesting the page www.rudyrucker.com/lifebox/index.html.

• Rudy’s machine sends bits describing this Web page to your

machine.

• Your machine’s browser software converts the bits into an

image on your screen.
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Figure 17: Networked Personal Computers

The physical details of the Web are more complicated than the figure shows. But a basic
way of thinking of it is that individual server and client PCs connect to machines called
switches that in turn connect to routers. Routers across the world are strung together
via optical fiber connections; the network of linked routers is what you might think of
as the Internet’s backbone.



The transaction doesn’t have to be one-way. My book’s Web site has a

guest book page.

Once the guest book page is showing on your machine, you can type some-

thing, press Enter, and your words will now be stored on Rudy’s server

machine. The next person to access the guest book page can see what you

wrote there. The extra steps are these:

• Your machine sends bits to Rudy’s machine.

• Rudy’s machine incorporates your changes into one of its Web

page files.

With a little more Web experience, you can do more than write things into

someone’s guest book: You can post images, maintain an online blog—or

even establish your own Web site.

As I mentioned above, when your machine reads in some information across

the Web, this is a download, and when your machine writes some information

into some other location on the Web this is an upload. Be warned that some

people use these words the opposite way around. But as John Walker con-

vincingly puts it, “When you offer your data to the great Net God like the smoke

of burnt offerings rising into the heavens—this is an upload. And when the

riches of the Web rain upon you like manna—this is a download.”

The Web greatly leverages your access to information by means of hyper-

links. When you click on a hyperlink on a Web page, the server machine

sends your machine the name of a new machine, your machine contacts the

new machine and asks for the page, and the new machine sends your

machine the new page. For you, it’s as if the Web is a seamless whole, and it

doesn’t make all that much difference which server you initially connect

yourself to.

Can we think of Web itself as a kind of computation? Sure. As long as some-

thing is rule-based it’s a computation. And the Web has rule-based behavior—

messages dart back and forth, requesting and delivering data. The initial input

is the machines and their connections, and the interactive input is the requests

emanating from the machines. The behavior of the Web in and of itself is thor-

oughly deterministic. Even when a message needs to make a seemingly random

choice among several equally good paths, a deterministic pseudorandom
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algorithm is in fact used to make the decision. And the data requests made by

human users are additional interactive inputs to the system.

We could also imagine a completely deterministic Web in which the client

requests are being generated by programs running on the individual client

and server machines. Web crawlers are examples of this kind of automated

Web surfing. A client running a Web crawler will successively visit one page

after another, accumulating information on what it finds. A search engine

like the currently popular Google uses Web crawlers to produce information

for its own large database. When a user goes to the Google site and asks for

pages relating to a given topic, the Google software uses its Web-crawler-built

database to suggest links. As an additional wrinkle, Google ranks each page,

using criteria such as how many other pages have links to the given page.

Let’s think a bit more about the Web as a computer. Generalized rule-

based systems—computers in the broad sense of the word—can be based on

a wide range of underlying architectures. That is, the mutual interactions of

a computer’s hardware, software, and data can be organized in many dif-

ferent ways. A computer’s strengths and weaknesses have much to do with

its architecture. Three commonly seen architectures are the serial, the net-

worked, and the parallel. A PC has a serial architecture, in which a single

processor has global access to a single memory set. Classical physics, on the

other hand, can be thought of as a parallel architecture, in which many

processors have local access to a single shared memory set (the world).

A network architecture has five distinctive characteristics. The first three

are these:

• Many distinct processes.

• Each process is associated with its own private block of memory.

• The processes can access one another’s memories by

exchanging read and write requests.

The Web has many processors, each of which has its own private memory. A

Web-linked machine has instant access to any location of its own memory, but

it has only an indirect access to the memories of the other machines.

The tree structure in our first drawing of the Web (figure 17) was an imple-

mentation detail. The essence of the network architecture appears in figure 18.
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We speak of each processor-memory combination as a node. In terms of

the figure, a node is a circle plus its associated rectangle of memory.

We can describe the memory access as follows. In order to read memory

from another node, a given node needs to send a request to the remote node’s

processor and wait for this node to retrieve and send the desired information.

Writing to the memory of another node requires a similar procedure,

involving a similar kind of request. An important characteristic of the net-

worked architectures is that a given node can deny these requests.

• A network node may deny incoming read or write requests.

Another characteristic feature of the network architecture is the lack of

any kind of systemwide synchronization. Indeed, networks are often called

asynchronous.

• Each network node sends and processes requests according

to its own schedule and speed.

The network architecture is found in several naturally occurring forms. A

living organism can be thought of as a network whose individual processors
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Figure 18: Network Architecture

The circles are the computer processors and the boxes are the memory sets of the indi-
vidual machines. The arced lines at the top are connections by which the processors
make read-write requests, while the thick gray lines below represent the fact that each
processor has full rapid access to its own private memory block.



are the organism’s cells. And our society is a network in which the proces-

sors are human beings. In both cases each individual processor has its own

private memory, the processors share data by exchanging signals with one

another, and the processors can refuse requests.

A rude question. If the Web is a computation, then what the heck is it com-

puting? The easy answer is that computations don’t have to be “about” any-

thing. They can just occur. Rain running down a windowpane isn’t about

anything, but certainly there’s an intricate computation taking place.

Certainly it would be interesting if the Web really were somehow computing

something deep. The hooked-together computers of the Web are at least

superficially reminiscent of the coupled neurons that make up a human

brain. Could the Web ever act as a planetary mind? This question is a variant

of the old question of whether human society as a whole has a group mind.

I think that in both cases the answer is a qualified yes—I’ll say more about

this in CHAPTER FIVE: The Human Hive.

1.8: Flickercladding

A cellular automaton (CA for short) is a parallel computation that operates on

a memory space that is a one-, two-, three-, or higher-dimensional grid of

cells. The memory can be, for instance, a one-dimensional tape like a Turing

machine’s tape, a two-dimensional grid of cells like a reckoner’s paper, or a

lattice of three-dimensional cubes.

Each cell has its own associated processor, and each cell contains a small

amount of data called its value. As we’ll see in CHAPTER TWO: Our Rich World,

when modeling physics, we turn to CAs in which each cell value consists of

one or several real numbers. But often we focus on discrete-valued CAs, that

is, CAs whose cell values are a single integer or even a single bit.

We depict the architecture of one-dimensional and two-dimensional CA as in

figure 19, where the processors are circles attached to square memory cells.

The CA computation proceeds in discrete steps. At each step, every cell is

simultaneously updated. How is an individual cell updated? Each cell

processor has a rule that computes the cell’s new value based upon the cell’s

current value and the values of a few neighboring cells. In implementing the

flow of heat as a CA, for instance, the rule might simply be to average a cell’s

temperature value with the temperature values of the cells adjacent to it.
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Although we could in principle use different update rules for the different

individual cells, it’s more common to study CAs in which all the cells use the

same rule and look at the same pattern of nearest neighbors.

In short, CAs are defined so as to satisfy these five conditions:

• Many processors. A CA has one processor per memory cell.

• One shared memory. The cells are arranged into a single

memory grid.

• Locality. The CA update rules are local, that is, a given cell’s

new value depends only on the present values of the cells in

some fixed neighborhood of the cell.

• Homogeneity. Each CA has the same update rule.

• Synchronization. All of the CA cells are updated at once.
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Figure 19: Architecture of One- and Two-Dimensional CAs

The top row shows two images of a one-dimensional CA architecture, and the bottom
row shows two images of a two-dimensional CA architecture. In the left column we
draw the processors as floating above the cells, and in the right column we draw them
down inside the cells. The lower left image would be more accurate if each processor
had lines coming down to the neighbor cells.



Cellular automata seem to have been invented in the late 1940s at the Los

Alamos, New Mexico, laboratories by Stanislaw Ulam and John von Neumann.

Both these men were primarily mathematicians, but their interests had

exceedingly wide range. Recall that von Neumann was instrumental in the

creation of the first electronic computers. He also did work on theories of

infinity, the foundations of quantum mechanics, economics, and game theory.

Ulam, too, did work on theories of infinity, inventing what stood for many

years as the largest kinds of numbers anyone could dream up: the so-called

measurable cardinals. He was involved in computers as well, using a

machine called MANIAC to come up with some novel methods of simulating

nonlinear physics (see figure 20). And, with Edward Teller, Ulam was the co-

inventor of the hydrogen bomb.

Ulam’s first published reference to cellular automata appeared around 1950,

at the time he was helping von Neumann design a self-reproducing machine.15

Ulam carried out some investigations of discrete-valued CAs and then, in the

1950s, he switched his attention to continuous-valued CAs, that is, cellular

automata in which the values

are real numbers—this work

we’ll discuss in chapter 2.

CAs didn’t really catch on

until 1970 when, in his pop-

ular “Mathematical Games”

column for Scientific American,

Martin Gardner wrote about

how John Horton Conway, a

mathematician at the Univer-

sity of Cambridge, had discov-

ered a two-dimensional CA so

rich in patterns and behavior

that it was known as the Game

of Life, or simply Life.

In Life each cell value con-

sists of a single 0 or 1 bit, indi-

cating if the cell is “dead” or

“alive.” Each cell’s processor
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Figure 20: Stanislaw Ulam Demonstrating
the MANIAC Computer

The little girl is Ulam’s daughter Claire. I dis-
covered this picture in S. M. Ulam, Adventures
of a Mathematician (Berkeley: University of
California Press, 1991).



looks at nine of the memory cells, the 3 × 3 neighborhood around the cell

(figure 21).

If we speak of the cells as being alive or dead, we can describe the Game

of Life rule in the following colorful fashion:

• If a dead cell has exactly three live neighbors, they spawn into the

cell and it, too, becomes alive. Otherwise a dead cell stays dead.

• If a live cell has exactly two or three live neighbors other than

itself, then it stays alive; otherwise it dies of loneliness or over-

crowding.

Conway’s vague initial goal had been to find a cellular automaton rule in

which simple patterns could grow to a large size, but he doubted if any pat-

terns could grow forever. Gardner proposed this as a challenge problem:

Conway conjectures that no pattern can grow without limit. Put

another way, any configuration with a finite number of live cells cannot
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Figure 21: 
A Cell Neighborhood in Conway’s Life

Note that this notion of neighborhood differs from the style of two-dimensional cell
neighborhood we drew in figure 19—where the two-dimensional cell processors were
only looking at five cells each.



grow beyond a finite upper limit to the number of live cells on the field.

This is probably the deepest and most difficult question posed by the

game. Conway has offered a prize of $50 to the first person who can

prove or disprove the conjecture before the end of the year. One way to

disprove it would be to discover patterns that keep adding live cells to

the field: a “gun” (a configuration that repeatedly shoots out moving

objects such as the “glider”), or a “puffer train” (a configuration that

moves about and leaves behind a trail of “smoke”).16

The prize was won a month later by William Gosper and five fellow hackers

at MIT; legend has it that they did an automated search. They sent Martin

Gardner a telegram with the coordinates of the cells to turn on to make a

glider gun, depicted in figure 22.

Steven Levy’s Hackers has a good section about Gosper and the early

excitement over Life among the users of the PDP-6 computer at the MIT
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Figure 22: A Life CA Soup and the Glider Gun

The left-hand image shows Life running on a randomly seeded pattern. This kind of
start almost always ends with a few static blocks and small oscillators. The right-hand
image shows Gosper’s glider gun sending out a stream of gliders. The gliders continu-
ally move toward the upper right. What happens at the edges? In simpler CA simula-
tions the edges are wrapped around like in an old videogame—if a glider moves off the
top edge, then it comes back from the bottom edge, and so on. But more sophisticated
setups may model additional off-screen cells as well..



Artificial Intelligence Project. Levy quotes Gosper, telling how he saw Life as

a way to

basically do new science in a universe where all the smart guys

haven’t already nixed you out two or three hundred years ago. It’s

your life story if you’re a mathematician: every time you discover

something neat, you discover that Gauss or Newton knew it in his

crib. With Life you’re the first guy there, and there’s always fun stuff

going on. You can do everything from recursive function theory to

animal husbandry. There’s a community of people who are sharing

their experiences with you. And there’s the sense of connection

between you and the environment. The idea of where’s the boundary

of a computer. Where does the computer leave off and the environ-

ment begin?17

One must remember that 1970 was still the Dark Ages of computing;

Conway himself ran his Life simulations by marking the cells with checkers

or flat Othello counters. For Gosper and his team to get Life to run on a mon-

itor at all was a nontrivial feat of hacking—it was a new thing to do with a

computer. After Gardner’s second column on Life, the game became some-

thing of a mania among computer users. By 1974, an article about Life in

Time could complain that “millions of dollars in valuable computer time may

have already been wasted by the game’s growing horde of fanatics.”18

More and more intricate Life patterns were found all through the 1970s,

and by 1980, Conway and his colleagues had enough Life machinery at hand

to sketch a proof that Life can be used to simulate any digital computation

whatsoever, that is, a CA running the Life rule is a universal computer.19

A number of people at MIT began studying CAs other than Life during the

1970s. One the most influential figures there was Edward Fredkin. Although

he himself held no higher degrees, Fredkin was a professor associated with

the MIT Laboratory for Computer Science, and he directed a number of dis-

sertations on CAs.

Fredkin envisioned a new science where we represent all physical quan-

tities as packets of information. The substrate on which these packets

move was to be a CA. Not to put too fine a point on it, Fredkin argued that,
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at some deep level, the world we live in is a huge cellular automaton.

Although Conway had already expressed opinions to the effect that in a

cosmically large Life simulation one might see the evolution of persistent

patterns that are as intelligent as us, Fredkin was the first to suggest that

the world we live in really is a CA.20 He was thus one of the first to espouse

universal automatism—although Fredkin prefers to name his view digital

philosophy.

Fredkin formed the Information Mechanics Group at MIT along with Tom-

maso Toffoli, Norman Margolus, and Gerard Vichniac. Working together,

Margolus and Toffoli built the so-called CAM-6 cellular automaton machine

in 1984, a board that you could plug into the early-model IBM personal com-

puters so as to see CAs running at a rapid clip.

Also in the 1980s, Stephen Wolfram became interested in getting an

exhaustive overview of what kinds of CA computations are possible. In order

to limit the number of possible rules, he started with very simplest CAs, in

which the cell space is a one-dimensional row of cells, the possible cell states

are zero and one, and each cell “sees” only itself and its nearest neighbors on

the left and on the right, making a three-cell neighborhood. A CA of this

simple kind can be specified by describing how a cell’s new value depends on

which of the eight possible three-cell neighborhood configurations it lies in.

This makes for 28, or 256, possible rules, which are conventionally labeled by

the integers from zero to 255.

Wolfram began by starting each of the basic 256 rules on a row full of ran-

domly chosen zeros and ones and observing what classes of behavior occur.

He found five general kinds of behavior. The distinctions extend to experi-

ments where we start the rules on a simple row with but a single dark “one”

cell. As suggested by the images in figure 23, Rule 254 “dies out” or becomes

uniform, Rule 250 generates a checkered or periodic pattern, Rule 90 gener-

ates a recursively nested triangle pattern, the right-hand part of Rule 30’s

swath is random-looking, and Rule 110 has persistent local structures that

move across the cell space and interact with one another.

Wolfram decided that a nested pattern was not really so different from a

repeating pattern, and chose to group the CA behaviors into the four classes

we mentioned earlier in this chapter.
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Figure 23: Five Kinds of CA Behavior

Left to right and top to bottom, these are Rules 254, 250, 90, 30, and two views of Rule 110. Wol-
fram views these rules as being of, respectively, computational class one, two, two, three, and four.
Each image (except the sixth) contains a row of symbols describing the CA rule and a triangular pat-
tern showing how the CA evolves over time. The rows of symbols show which new value of a cell is
selected by that rule for each of the eight possible cell neighborhoods. (If you were to interpret the
eight new-cell values as the digits of a binary number, by the way, you get the code number used to
describe the given rule.) The triangular patterns show the successive states of the one-dimensional
CA tape, with time running down the page. Note that each CA starts out with a single black cell. In
order to give a better idea of Rule 110, we’ve added a zoomed-out view of its appearance later on. 



• Class one. Dies out or becomes uniform.

• Class two. Becomes periodic or produces nested structures.

• Class three. Produces seething, seemingly random, patterns.

• Class four. Shows persistent local structures that move about.

The robustness of this classification is quite well supported by what one

might call taxonomic studies of the kinds of computations that occur across

a wide range of contexts. For instance, the same four classes of behavior

appear if we look at more complicated CAs, such as those that allow more

than two symbols, those that look at more than the very nearest neighbors,

or those that use higher dimensional cell-spaces. And the same four classes

can be found among the Turing machines.

Note that any universal computer can exhibit all four classes of computa-

tion. Depending on its input, it can produce simple (class one or class two)

computations that die out or repeat, disorderly random-looking (class three)

computations, or a purposeful-seeming gnarly (class four) computations.

I need to remark again that distinguishing between class three and class-

four computations can be difficult. Wolfram’s definitions of these notions are

not formalized; they’re more like empirical notions that have been formed from

extensive observation. Note also that a periodic class two computation can

look like a class three or class four computation if it takes a long time to get

around to repeating itself, and even a class one computation can seem like a

class three or a class four computation if it takes it a long time to die out.

The classes of computations generated by Conway’s Life CA depend on the

initial condition. The simplest Life patterns simply die off to a blank screen,

which is class one behavior. A typical random seeding of a Life CA dies down

to static blocks and oscillating patterns, which are class two. If only a cen-

tral region of the world is seeded, a random Life start will in fact spew out a

few gliders that head off into empty territory. Even if the gliders could indef-

initely travel through empty cell space, if they’re not interacting, then nothing

interesting is happening and we still have only class two.

But, as mentioned above, Conway and some of his colleagues were even-

tually able to prove that Life is computation universal. This means that for

any possible computation M, we can find a cell pattern so that Life seeded

with this pattern will emulate M. So, since Life is universal, we know that it
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can exhibit both class three and class four behavior. If Life emulates, say, the

output of a some little algorithm usable as a random number generator, it will

appear to be class three, while if it pulses out flocks of gliders grouped like

the digits of pi, it will be class four.

What’s the simplest possible universal CA rule? Stephen Wolfram and

Matthew Cook were able to prove that the gnarly little CA Rule 110 is com-

putation universal. The possible universality of the messy-looking Rule 30

remains, however, undecided. If Rule 30 proves to be nonuniversal, this

would serve as a counterexample to the Principle of Computational Equiva-

lence or PCE—for then Rule 30 would be an example of a complex compu-

tation that is not universal and is thus not as sophisticated as some other

complex computations.

In 1984 Wolfram wrote a revolutionary article pointing out some funda-

mental similarities between physics and cellular automata.21 He suggested

that many physical processes that seem random are in fact the deterministic

outcome of computations that are so convoluted that they cannot be com-

pressed into shorter form and predicted in advance. He spoke of these com-

putations as irreducible and cited CAs as good examples. His article included

some intriguing color photographs of one-dimensional CAs.

Wolfram’s article fascinated me so much that in April 1985 I set out to meet

Wolfram, Margolus, Toffoli, and the other new cellular automatists, eventually

writing an article on them that appeared in, of all places, Isaac Asimov’s Science

Fiction Magazine. The trip was something of a conversion experience for me,

and in 1986 I left my career as a freelance writer for a job as a computer science

professor at San Jose State University. CAs had permanently blown my mind.

One of the first things I started doing in my computer science classes was,

of course, getting my students to write programs to display cellular automata.

The computations were fairly intensive for the machines of that time, so we

had to work hard to make the rules run fast, even to the point of program-

ming them in low-level assembly language. One of my favorite early CA pro-

grams, when seeded a certain way, created images that looked like a

continually mutating cyberpunk woman’s face, as shown in figure 24. I called

this “woman” Maxine Headroom after the then-popular TV show featuring a

computer-animated character called Max Headroom.
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The Maxine Headroom picture wouldn’t mean much if it were based on

something like a smoothing algorithm run on a seed image of a face. But it

arises in a natural way, by a process that a biologist might call morphogen-

esis. Might it be that the forms of real people are simply patterns that are nat-

ural for growing masses of cells to form? I’ll return to this question in CHAPTER

THREE: Life’s Lovely Gnarl.

I managed to get hold of one of Margolus and Toffoli’s CAM-6 cellular

automaton accelerator boards and found out how to make the board run. To

make it work, you had to plug it into a certain early-model PC called the IBM

XT. I mastered the board’s arcane control language—a “reverse Polish” dialect

known as Forth—and began writing programs.

Thus began one of the most exciting periods of my life. I became a cellular

automata missionary, a Johnny Automataseed. I tracked down Bill Gosper in

his office at the Symbolics Corporation in Palo Alto, California, and made him
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Figure 24: Maxine Headroom

This old image was created by a rule I
call the Rug rule. Each cell holds an
integer between zero and 255, and the
update rule takes the average of a
cell’s neighbors, adds 1, and if the
result is larger than 255, sets the
value back to zero. This implementa-
tion is from the RC software compo-
nent of CelLab, and actually uses
obscure text characters for the
graphics. To create Maxine’s face, I
start with a grid of a particular size—I
think 43 × 80 in this case. (For full
effect, I turn the monitor on its side so
the shape is more like a face.) I freeze
the (invisible) outer edges of the cell
world at the maximum value and seed
the interior with an egg-shaped pat-
tern near the bottom. The upper part of
the screen evolves into an elliptical
forehead with a circular pair of eyes,
the bottom of the screen produces an

elliptical mouth, and the cells in between naturally shape themselves into the forms of
brows, nose, and cheekbones.



look at new rules that went beyond his beloved Game of Life. As it happened,

Gosper only had refrigerator-size computers, so I had to take the case off his

secretary’s IBM XT so I could plug in the CAM-6 board. He teased me for

doing this, asking if I enjoyed “playing dentist,” but the colorful demos of the

new rules intrigued him.

Before I even heard about cellular automata, I’d begun writing my Ware

series of novels about autonomous robots living on the moon. I’d always dis-

liked how dull robots looked in science-fiction movies—like file cabinets or

toasters. So I’d taken to decorating my fictional robots’ bodies with a light-

emitting substance I dubbed flickercladding. My original inspiration for flick-

ercladding was the banks of flashing lights that used to decorate the sides of

mainframe computers—signals reflecting the bits of the machines’ changing

internal states. As I imagined it, “The color pulses of the flickercladding

served to emphasize or comment on the robots’ digital transmissions; much

as people’s smiles and grimaces add analog meaning to what they say.”22

My flickercladding wasn’t meant to display blocks of solid hues, mind you; it

was supposed to be fizzy and filled with patterns. And when I encountered CAs,

I recognized what I’d been imagining all along. Reality had caught up with me.

This was also the period when, accompanied by my science-fiction hero

Robert Sheckley, I went to Tim Leary’s house in Hollywood and took—acid?

No. Took apart his IBM XT and jacked in my trusty CAM-6 board so that good

Dr. Tim could get a taste of CAs and their real-time mandala flows and

creepy-crawly life-forms. Tim instantly got the picture: Computation could be

about light shows, about mind expansion, about having fun. What a won-

derful day that was.

What were Sheckley and I doing at Leary’s house? Well, one of Sheckley’s

tummler friends was promoting a Hollywood pitch that Leary should host a

weekly science TV show and that the Scheck-man and I should write his

scripts. Too bad it didn’t work out.

Soon after I demoed the CAs for Tim, I had the opportunity to bring my

CAM-6-equipped PC to a 1987 conference called Hackers 3.0—keep in mind

that back then “hacker” simply meant “fanatic programmer.” As a relative

novice to computing, I felt a little diffident joining this august geekly com-

pany, but they were most welcoming. With Silicon Valley just opening up,

there seemed to be enough room for everyone.
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It was a great conference for me. I did cellular automata demos all night

long, and the hackers were blown away by the images. They pried the special-

purpose CAM-6 board out of my machine, sniffed it over, and pronounced

that it could readily be emulated by clever software.

As it happened, the demonically gifted John Walker of Autodesk fame was in

the crowd, and he was just the man to carry out the sought-for hack. Within a

year, I’d taken leave from my professor’s job and started working for Autodesk,

helping Walker create a fast all-software CA simulator known as CelLab.23

CelLab emulates the parallel CA architecture within the serial architecture

of a personal computer—a reminder of the fact that any of our universal com-

putational systems can simulate the behavior of any other. Using a different

architecture doesn’t affect what’s in principle computable. But a system’s

architecture does have a lot do with what kinds of computations are feasible

for that system.

In the 1990s, I became interested in continuous-valued CAs, in which the

cells can contain one or several real numbers instead of simply holding

simple integer values. Working with my students at San Jose State Univer-

sity, I designed a Windows program called CAPOW, which is very useful for

investigating these kinds of CAs, and I continue working with CAPOW to

this day.24

I might mention here that not all computer scientists like the idea of

continuous-valued CAs. Digital computer programs commonly allow for some

four billion different values for a continuous-valued real number. This means

that whereas the Game of Life CA has two possible states per cell, a continuous-

valued CA might have four billion possible states per cell. And if I use two real

numbers per cell—as I often do—I’m looking at sixteen quadrillion possible

cell states. Stephen Wolfram sometimes chides me for using complicated

rules—he argues that it’s more scientifically significant to discover an inter-

esting behavior in the context of a system that’s been pared down to be min-

imally complex.

But the physical world is anything but clean and simple. And even so,

nature repeats the same structures over and over. The same simple patterns

arise even when the computations become very intricate. You might say that

Platonic forms are robust against scuzz. And these qualities of robustness

and universality are worth modeling.
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Figure 25: Cellular Automata Scrolls

I ran these rules at a resolution of 320 × 200 cells, letting the left edge wrap around to the
right and the top wrap around to the bottom. The first three have states consisting of a
single integer per cell, while the latter three have two real numbers per cell. All were
started with a random initial pattern. Reading across the page and from top to bottom, the
six images are: Gerhardt and Schuster’s Hodgepodge rule, my RainZha rule, Toffoli and
Margolus’s Tubeworms rule, one of Hans Meinhardt’s Activator Inhibitor rules, a Double
Logistic predator-prey rule, and Arthur Winfree’s Belousov-Zhabotinsky rule.25



Yes, it’s important to find complex patterns in simply defined systems. But

to my way of thinking it’s significant that we can find exactly the same kinds

of patterns—and no others—in the much more complicated systems.

By now I’ve looked at many thousands of two-dimensional CAs. As it turns

out, scrolls are perhaps the most interesting new kinds of CA patterns that

emerge when moving from one-dimensional to two-dimensional CAs—my

favorite CAs are those that spontaneously generate scroll patterns from both

orderly and disorderly start patterns. Scroll patterns occur in both simple

and complicated rules and—in keeping with the point I was just making—the

scroll-shaped forms in complicated CA systems can be just as clean and

sharp as those defined by simpler rules.

A sampler of two-dimensional scroll CAs appears in figure 25.

Nature likes scrolls as well. Consider that, for instance, the cross section of

a mushroom cap, cut from top to bottom, bends around like a scroll—while

the entire cap forms a kind of three-dimensional scroll. Both a bean and a

fetus resemble fleshy scrolls. Brain tissue is replete with three-dimensional

scrolls. Candle or cigarette smoke inks the air with scrolls—and the pairs of

eddies that form behind a moving spoon in a coffee cup are scrolls as well.

Figure 26 shows a computer simulation of three-dimensional scrolls.
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Figure 26: A Three-Dimensional CA 
with Scrolls

Here’s a Hodgepodge-style CA running on a three-dimensional array of cells. The entire
solid block is filled with interacting shapes like scrolls, mushroom caps, jellyfish, and
whirlpools. The block wraps around, that is, patterns moving across one face continue
into the opposite side of the cube. 



What is the computational class of CA scrolls? Something that’s a bit hard

to capture in a printed picture is how dynamic they are. The scrolls are con-

tinually turning, with the pointed ends melting away as they approach the

enfolding lines. The rules are certainly not class one. The strongly ordered

patterns also preclude our calling them class three—these robust patterns

are anything but random in appearance.

So we’re left with deciding between class two and class four. If we run a

scroll rule on a very small grid, we may find the rule filling the grid with a

single monster scroll that executes a repetitive class two cycle. But if we give

the rule room to grow several scrolls, then we seem to see class four behavior.

A test case for this appears in figure 27, which shows eight stages of the so-

called Hodgepodge rule, reading left to right and top to bottom. Notice that

each image is subtly different and that, in particular, the diamond-shaped

region in the center is not repeating itself.

If I let the simulation run, say, another thousand steps, I find that the

whole general shape of the central pattern will have changed. So I’m prepared

to claim that some of the scroll-generating CA rules are class four.

Within the framework of The Lifebox, the Seashell, and the Soul, this seem-

ingly arcane observation turns out to be important. How so? Quite specifi-

cally, I’ll be arguing that many of the computations involved in living

organisms are of the same type that produce these unpredictable CA scrolls.

There’s even a possibility that our brains are in fact animated by electro-

chemical processes that behave like three-dimensional CA scrolls. Metaphor-

ically speaking, that churning little central region of the Hodge patterns in

figure 27 is like a brain working away inside a scrolly skull.

More generally, the free and unpredictable play of CA scrolls is a perfect

example of how deterministic processes can produce gnarly shapes and

interesting behaviors.

In this chapter we’ve talked about very explicitly computational processes:

humans reckoning with numbers, Turing machines, personal computers,

the Web, and cellular automata. And in the rest of the book we’ll be viewing

some less obviously deterministic processes as computations: physics,

biology, the mind, and human society.
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Figure 27: 
Class Four Scrolls

For these pictures, I seeded the Hodgepodge rule with a small square in one corner, whose effects
immediately wrapped around to the other corners. I let the rule run for about a week, passing
through some fifty million updates. And then I paused and single-stepped the rule, capturing eight
images, with each image five updates later than the one before.



THOUGHT EXPERIMENT TWO: THE MILLION CHAKRAS

Teaching her third yoga class of the

day, Amy Hendrix felt light-headed

and rubbery. She walked around,

correcting people’s poses, encour-

aging them to hold their positions

longer than they usually did. Her

mind kept wandering to the room

she was hoping to rent. New to San

Francisco, she’d been sleeping on

couches for six weeks. But she still

dreamed of becoming a force to be

reckoned with in the city scene.

It was time for Savasana, the

Corpse Pose, with everyone lying on

their backs. Amy turned off her Tabla

Beat CD and guided the closing

meditation.

“Feel a slow wave of softness

moving up your legs,” she began.

“Feet, calves, knees, thighs.” Long

pause. “Now focus on your per-

ineum. Chakra one. Release any ten-

sion hiding there. Melt with the

in-breath, bloom with the out.

Almost like you’re going to wet your

pants.” Amy occasionally added an

earthy touch—which her mostly

white clients readily accepted from

their coffee-colored teacher.

“Gather the energy into a ball of

light between your legs,” continued

Amy, pausing between each sentence,

trying not to talk too much. “Slowly,

slowly it passes upward, tracking

your spine like a trolley. Now the light

is in your sex chakra. Let it tingle,

savor it, let it move on. The warmth

flows through your belly and into your

solar plexus. Your breath is waves on

a beach.”

She was sitting cross-legged at one

end of the darkly lit room. The medi-

tation was getting good to her.

“Energy in, darkness out. The light

comes into your chest. You’re in the

grass, looking at the leaves in a high

summer tree. The sun shines

through. Your heart is basking. You

love the world. You love the practice.

You love yourself. The light moves

through your neck like toothpaste

out a tube. Chakra five. The light is

balancing your hormones, it’s

washing away your angry unsaid

words.” Pause. “And now your tape

loops are gone.”

She gave a tiny tap to her

Tibetan cymbal. Bonnng. “Your

head is an empty dome of light. Feel

the space. You’re here. No plans.

You’re now.” She got to her feet.

“Light seeps through your scalp

and trickles down your face. Your

cheeks are soft. Your mouth. Your



shoulders melt. Your arms. I’ll call

you back.”

She moved around the room

pressing down on people’s shoul-

ders. She had a brief, odd feeling of

being in multiple bodies, leaning

over each separate customer at the

same time. And then her wristwatch

drew her back. She had twenty min-

utes to get from here to Telegraph

Hill to try to rent that perfect room.

She rang the gong and saw the

customers out. The last one was

Sueli, a lonely wrinkled lady who

liked to talk. Sueli was the only one

in the class as dark-skinned as Amy.

Amy enjoyed her; she seemed like a

fairy godmother.

“How many chakras do you say

there are?” asked Sueli. Clearly she

had some theory of her own in mind.

She was very well-spoken.

“Seven,” said Amy, putting on her

sweats. “Why not?” She imagined

she might look like Sueli when she

was old.

“The Hindus say seven, and the

Buddhists say nine,” said Sueli,

leaning close. “But I know the real

answer. I learned it years ago in Sri

Lanka. This is the last of your

classes I’ll be able to come to, so I’m

going to share the secret with you.”

“Yes?” This sounded interesting.

Amy turned out the lights, locked

the door, and stepped outside with

Sueli. The autumn sky was a lumi-

nous California blue. The bay

breeze vibrated the sun-bleached

cardboard election signs on the

lampposts—San Francisco was in

the throes of a wide-open mayoral

election.

“Some of us have millions of

chakras,” continued Sueli in her

quiet tone. “One for each branch of

time. Opening the chakras opens the

doors to your other selves.”

“You can do that?” asked Amy.

“You have the power, too,” said

Sueli. “I saw it in class. For an

instant there were seven of you. Yes,

indeed.”

“And you—you have selves in dif-

ferent worlds?”

“I come and go. There’s not so

many of me left. I’m here because I

was drawn to you. I have a gift.”

Sueli removed a leather thong from

around her neck. Dangling from the

strand was a brilliant crystal. The

late afternoon sunlight bounced off

it, fracturing into jagged rays. The

sparkling flashes were like sand in

Amy’s eyes.

“Only let the sun hit it when you

want to split,” said Sueli, quickly

putting the rawhide strand over

Amy’s head and tucking the crystal

under her sweatshirt. “Good luck.”



Sueli gave her a hug and a peck on

the cheek as the bus pulled up.

Amy hopped aboard. When she

looked back to wave at her, the old

woman was gone.

The room was three blocks off

Columbus Avenue with a private

entrance and a view of both bridges.

It was everything Amy had hoped.

But the rent was ten times higher

than she’d understood. In her eager-

ness, she’d read one less zero than

was on the number in the paper. She

felt like such a dope. Covering her

embarrassment, she asked the

owner if she could have a moment

alone.

“Make yourself at home,” said the

heavyset Italian lady. “Drink it in.”

She was under the mistaken impres-

sion that Amy was wealthy. “I like

your looks, miss. If you’re ready to

sign, I got the papers downstairs in

the kitchen. I know the market’s

slow, but I’m not dropping the price.

First, last, and one month’s damage

deposit. You said on the phone the

rent’s no problem?”

“That’s what I said,” murmured

Amy.

Alone in the airy room, she wan-

dered over to the long window, fid-

dling with the amulet around her

neck. The low, hot sun reached out

to the crystal. Shattered rays flew

about the room, settling here and

here and here.

Nine brown-skinned women

smiled at each other. Amy was all of

them at the same time. Her overlap-

ping minds saw through each pair

of eyes.

“We’ll get separate jobs and share

the rent,” said one of her mouths.

“And when we come back to the

room we’ll merge together,” said

another. “We’ll work in parallel

worlds, but we’ll deposit our checks

and pay the rent in just this one.”

“Great,” said Amy, not quite sure

this was real. As she tucked away

the crystal, her nine bodies folded

into one.

Walking down the stairs to sign

the papers, her mind was racing.

Just now she’d split into nine—but

Sueli had said that, with the crystal,

she could split into a million.

Out the window she glimpsed

another election poster—and the big

thought hit her.

With a million votes, she could be

the next mayor of San Francisco.





C H A P T E R T W O

Our Rich World

THERE ARE TWO SALIENT DIFFERENCES between personal computer programs

and the general functioning of the physical world. One: physics happens in

parallel, that is, physics is being computed everywhere at once rather than

within the circuitry of a single processor chip. And two: physics seems to be

analog rather than digital, that is, rather than being measured in discrete

bits, physical quantities are real numbers with who-knows-how-many dec-

imal places trailing off. In this chapter we discuss how to come to terms with

and even take advantage of these realities.

This chapter’s six sections are as follows:

• 2.1: Rough and Smooth. The idealized equations of mathemat-

ical physics are continuous, but the real world and our sim-

ulations are discrete, using particle system or cellular

automaton computations of finite precision.

• 2.2: Everywhere at Once. We examine the parallel architecture

of the computations embodied in classical physics and learn

how they can be modeled by cellular automata.

• 2.3: Chaos in a Bouncing Ball. By discussing the motion of a

bouncing ball we see that a seemingly random physical

process can, in fact, be a deterministic computation.

• 2.4: The Meaning of Gnarl. The most beautiful naturally occur-

ring forms and motions correspond to class four computations.



• 2.5: What Is Reality? How do we keep quantum mechanics

from spoiling everything for universal automatism? Must we

accept a lack of determinism at the very smallest scales?

• 2.6: How Robots Get High. A computational view of quantum

mechanics leads to the new field of quantum computation—

and suggests some odd views of the mind.

2.1: Rough and Smooth

On the one hand, some aspects of the world are discrete or rough—like a pile

of rocks. These rough magnitudes are best measured by counting. On the

other hand, things like a person’s height seem smooth or continuous and are

measured in terms of size intervals. Rough things change in abrupt jumps,

while smooth things ooze.

Mathematicians codify the distinction by speaking of the integers and the

real numbers. Integers are fairly easy to understand: 0, 1, 2, 3, and so on.

But the so-called real numbers are rather fictional: a real number between

zero and one is to have a form like 0.12378909872340980... with a suppos-

edly endless series of digits stretching out to the right of the decimal place.

Ever since the nineteenth century, this infinite extravagance has been

believed to be the best way to model the intuitive notion of a continuous

interval as being endlessly smooth. But it may be that the real numbers of

mathematics aren’t a true reflection of the actual world.

Computer scientists model real numbers by finite patterns of bits, with the

number of bits being something that can be adjusted for the particular appli-

cation. The commonly used data types known as float, double, and long double

correspond, for instance, to decimal numbers with, respectively, seven, fifteen,

and thirty digits. The real numbers of computer science are “granular” in the

sense that they are incremented in small steps of a minimum size.26

In physics we have a kind of granularity as well. Although nobody’s sure

what happens at the very smallest scales, quantum mechanics seems to tell

us that it doesn’t make sense to speak of ordinary space at scales less then

what’s known as the Planck length. This length is 1.6 × 10-35 meters,

expressible as a decimal number whose first nonzero digit appears in the

thirty-fifth place.

The Lifebox, the Seashell, and the Soul

82



Planck length ~ 0.000000000000000000000000000000000016 meters.

If it doesn’t make sense to speak of measuring any physical length to a

greater precision than the Planck length, this means that physical coordinate

locations can really have at most thirty-five digits of precision to the right of

the decimal. This falls a long way short of the infinite precision enjoyed by the

mathematical real numbers!

Now, it’s conceivable that there might be an infinitely smooth fundamental

reality underlying quantum mechanics. But it’s equally conceivable that ulti-

mate reality is fully discrete and digital—indeed, this view is becoming fairly

popular among physicists, who dream of turning spacetime into something

like a snap-together network of nodes and links made up of quantum loops

or superstrings.

Closely related to the discrete-continuous distinction is the digital-analog

divide. Adding numbers with pencil and paper seems like a digital computa-

tion, while adding numbers by measuring out lengths seems like an analog

computation. Counting grains of sand seems digital, and spinning a wheel of

fortune seems analog—although note that we digitize the rims of our gam-

bling wheels into distinct bands.

The general sense is that our desktop computers carry out digital compu-

tations, while real-world physics is running analog computations. A digital

computer’s states resemble distinct integers, while an analog computer’s

states are like densely bunched decimal numbers.

A virtue of digital computations is that they’re relatively impervious to out-

side influences. To change a digital value you actually have to make a sub-

stantial change on the order of flipping a bit. Personal computer (PC)

hardware designers can build in routines to detect and correct the accidental

bit-flips that occur when, for instance, a cosmic ray happens to zap a chip.

An analog quantity, on the other hand, can drift away from its setting by just

a tiny amount. And, as we’ll be discussing in section 2.3: Chaos in a Bouncing

Ball, in chaotic analog systems very small physical differences can rapidly

amplify into visible effects. This said, many analog computations are robust

and insensitive to noise. This is achieved by having the system incorporate

some kind of averaging process.

A side effect of a computation’s being digital is that it’s easy to regard it as
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evolving in discrete time steps, with each step changing a state value. We

think of digital systems as updating themselves in ticks like a clock, and it’s

meaningful to ask about a computation’s “next state.” In an analog system, on

the other hand, it’s less clear-cut when a state value has changed. Suppose,

for instance, that the state involves a real number expressed by, say, thirty

digits. Over a period of time, the number may go from one value to another,

but if the change happens in a series of small and rapid steps, we may be

unable to perceive the individual steps. An analog computation may seem to

slide through a series of all-but-indistinguishable states. In formulating the

laws of analog computations, rather than talking about a “next state” it’s more

common to simply observe the system at some successive intervals of time.

The distinction between digital and analog computations isn’t sharp. Con-

sider the following attempt at a definition.

•Definition. A computational system is said to be digital if its states

range over a small set of discrete possibilities, and is said to be

analog if it has a very large number of possible states.

The point of the definition is that whether you call a given computation dig-

ital or analog depends upon your operative notions of “small” and “large”

numbers of states. In practice we can speak of any naturally occuring

computation as being more or less coarsely digital, with the very fine digital

computations shading into the ones we call analog.

We think of our digital PCs, for instance, as containing patterns of zero-or-

one bits, sharp and crisp as black-and-white mosaics. Analog physical sys-

tems, on the other hand, seem to have states that are like shades of gray. The

shakiness of the distinction rests on the fact that, seen at a distance, a dig-

ital pattern of black-and-white tiles will appear to be an analog shade of gray.

Conversely, a seemingly smooth analog gray scale is likely to be a ladder of

distinct steps.

The digital-analog distinction is further blurred by the fact that a compu-

tation may be based on lower levels that may lie elsewhere on the digital-

analog spectrum. Adding numbers in your head is, for instance, digital, but

the electrical and chemical potentials in the neural synapses range across so

many state possibilities as to be essentially analog.

In practice, we use analog to mean fairly precise but not infinitely precise.
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We imagine a very large range of analog values, but not an endless range. Our

analog computations employ, if you will, a deflated infinite precision.

When we use analog in this limited sense, the distinction between digital

and analog becomes less important, for analog computations can emulate the

digital, and digital computations can emulate the analog. Let’s say a bit about

the two directions of emulation.

Analog emulates digital. A digital PC is based on the physical analog com-

putations of its wires and chips—putting it differently, the analog electronic

system is emulating a digital PC. How can it be possible for a machine

made of analog components to have digital behavior? The answer is that a

computer chip uses a whole pack of electrons to store a bit of information.

Yes, the chips are small, with etched “wires” on the order of a millionth of a

meter across. But electrons are in some sense a billion times smaller than

that. The slightest current involves a torrent of electrons; a bit is stored by

a charge of perhaps a half million electrons.

At a more primitive level, the Babbage and Scheutz machines were digital

computers based on the analog motions of quite ordinary objects: gears and

rods and cams. Along these lines, in the 1970s, just for fun, Danny Hillis,

Brian Silverman, and some other MIT computer science students built a tic-

tac-toe-playing computer out of Tinkertoys.
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Figure 28: Ed Hardebeck and Brian Silverman Building a Tinkertoy Computer

Note the “programming mallet” on the floor behind Brian.



Digital emulates analog. If we use enough real-number variables of suffi-

ciently high precision, we can always emulate any analog system of limited

size. Yes, science-fictionally, speaking, we might imagine some infinitely pre-

cise analog computation that can’t be emulated digitally. But so far as we

know, the existence of the Planck length cutoff suggests that this isn’t ever

going to happen. And, as I mentioned before, it may even be that at the

deepest level the world is digital.

A standard computer simulation of a continuous-valued CA approximates

the cells’ allegedly real-number values by discrete rounded-off numbers.

Some computer scientists are leery of continuous-valued CAs because they

fear that this rounding-off process creates unpredictable errors that will

accumulate and become amplified into large-scale irregularities of behavior.

But in actual practice, all of the continuous-valued CA simulations discussed

in this book have an averaging step—which blocks the amplification of error.

That is, in the continuous-valued CAs that I discuss, a cell’s new value is

based on a formula involving the average of the neighboring cells’ values. And

this averaging process damps down any troublesome round-off errors.

Even so, some doubting Thomases question whether the use of, say, the four

billion possible real values allowed by thirty-two-bit real numbers produces

behavior that’s really the same as what you’d see with an infinite range of truly

continuous real numbers. I’ve carried out some experiments in which I have a

granularity control to select how many discrete values are used to approximate

real numbers. And what I’ve found is that once we drop below a not very high

granularity level, the behaviors of the simulation don’t change, at least not over

the admittedly limited times that I’ve watched my simulations.27

We can view physics in three ways, and each way allows both for a digital

and an analog interpretation.

• In the mathematical physics view, physics is like a axiomatic

system in which we derive results from equations. Although

all the current equations for physics are based on continuous-

valued real numbers, it may be that a future, more digital,

physics can formulate the world’s laws in terms of discrete

numbers.
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• In the particle system view, the world’s “processors” are dis-

tinct objects—either human-scale objects like tables, chairs,

and balls, or primitive objects like atoms. Whether we view

these processors as carrying out digital or analog computations

depends on the situation. At the high level, these distance

measurements appear analog, but at a very low level they may

appear digital.

• In the continuous-valued cellular automaton view, we see the

world as a doughy continuum that we can divide up into vir-

tual cells, with each cell being viewed as a processor. Here

again we can view the cell rules as being digital or analog com-

putations, depending on how many states we suppose the

cells to be able to have.

Let’s say a bit more about these three approaches.

Traditional mathematical physics is about smooth matter and force fields

varying according to nice algebraic laws. And mathematical tools such as cal-

culus are formulated in terms of continuous real numbers. One virtue of

analog computations is that they’re easy for us to think about. For analog

computations are an approximation to by now familiar mathematical

processes involving infinitely continuous real numbers.

Mathematical physics can in some situations provide very good predictions

about what physical systems will do. This approach worked well for Isaac

Newton: He was able to compute the motions of the solar system right down

to the moons of Jupiter by using his laws of motion, his universal law of grav-

itation, and a few observations.

But, as it happens, mathematical physics runs up rather quickly against

the limitations of the axiomatic approach. Some sets of equations have solu-

tions that don’t happen to have any simple descriptions. And other, more

obdurate sets of equations resist any mathematical solution at all. In prac-

tice it’s not possible to find idealized mathematical solutions to most real-

world physical systems. Some of Newton’s predictions were in fact wrong. A

fully accurate general mathematical solution of a system with even three

bodies is in fact impossible.
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Physicists at today’s frontiers are interested in seeing whether mathemat-

ical physics might become fully digital.

The particle system method is a quite demanding computational approach to

physics—demanding, that is, if you want to simulate it. Here we regard the math-

ematical laws of physics as expressing averages across a large number of discrete

particles. If we say that a Scuba tank’s pressure is proportional to its tempera-

ture, for instance, we’re talking about the averaged-out qualities of immense

numbers of individual particles. The pressure has to do with the summed force of

the air molecules hammering on the tank’s walls, and the tank’s temperature is

derived from the average speed of its molecules. (More precisely, both quantities

are proportional to the square of the average speed of the gas molecules.) If we had

enough computational power, we could simply see these laws as emerging from

the statistical behavior of a humongous particle system.

The nice thing about mathematical physics, of course, is that the laws and

equations that emerge from the particles systems are often fairly simple. And the

field of statistical mechanics shows how and why the laws emerge. We gain clarity

by viewing physics as an analog continuum instead of a frantic dogpile of atoms.

Although the positions and velocities of the particles would seem to be con-

tinuous, there is the possibility that space and time are quantized, so that

particle system models would be fully digital as well, although the “particles”

of such a fully digital theory might be something as primitive as loops in

superstrings.

Continuous-valued cellular automata are examples of what engineers call

finite element methods.

The idea is to divide space up into a grid and to track something like the mass

or temperature or average velocity for each cell of the grid. When we use, for

instance, a continuous-valued CA to model the flow of heat, each cell holds

a temperature value; in the case of water waves, the cells track height above

sea level.

By making the grid coarser or finer, you can trade off between the accuracy

and the speed of the simulation—if the grid were as fine as the size of individual

electrons, a continuous-valued cellular automaton method would be similar to

a particle system simulation. But in practice, the cells are much larger than
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that and, in effect, each cell is holding values based upon an average of many

particles.

Continuous-valued CA methods introduce two kinds of digitization: first

of all they break space and time into discrete steps, and second, they use

computer-style digital approximations to the continuous quantities being

simulated.

In an ultimate universal automatist dream, we might hope to find some

very simple underlying CA that doesn’t even have to use continuous

values—Fredkin, for instance, seemed at one time to think the world could

be modeled as a two-state CA. But there are serious problems with this

approach, and in fact any simple digital computation of reality would prob-

ably have to be a somewhat different architecture than that of a cellular

automaton. I’ll say a bit more about this in section 2.5: What Is Reality?

2.2: Everywhere at Once

One can regard our world as a huge parallel computation that’s been running

for billions of years.

To get a good image of physical parallelism, imagine sitting at the edge of

a swimming pool, stirring the water with your feet. How quickly the pool’s

surface is updated! If you toss a twig into the pool, the ripples spread out in

a perfectly uniform circle. How do the ripples know where to go? The patterns

emerge from reality’s parallel computation.

I have the following architecture in mind, which I’ll call the classical

physics architecture.

• Many processors. The world’s computation is ubiquitous, with

no superprocessor in charge.

• One shared memory. Reality is one.

• Locality. Each processor has access to only its local 

neighborhood.

• Homogeneity. Each processor obeys the same rule.

• Synchronization. The processors run at the same speed as one

another.
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How does nature fill this bill? I mentioned in section 2.1: Rough and

Smooth that we can usefully view the world’s computations as being either

particle systems or as continuous-valued CAs. The five conditions can hold

in either place (table 2).

Having many processors acting on one memory corresponds to the basic intu-

ition that, on the one hand, physics is happening everywhere, and, on the other

hand, there is a single shared reality that contains all physical processes. If

you’re thinking of the world as made of particles, this reality is sometimes called

state space and contains such information as the mass, location, velocity, and

acceleration of each particle. If you prefer to think of the world as made of con-

tinuous fields, the shared reality of state space specifies quantities like density

and rate of flow measured at each region of space. In either case, the numbers

that specify state space are most readily thought of as analog numbers.

The issue of locality is less obvious. In principle we can imagine parallel

processors that have global access to all of the memory. A simple example

of parallelism with global memory access would be a PC with two or more

Table 2: Two Ways to View Classical Physics as a Parallel Computation

Architectural requirement Particles CAs

Many processors Each particle Each small region of space
acts as a processor acts as a processor

One shared memory The collective states Space with its 
of all the particles is various observables 
the memory is the memory

Locality Particles only interact Each region of space 
when they touch interacts only with the 

nearest neighboring regions

Homogeneity All particles obey the Each region of space obeys  
same laws of physics the same laws of physics

Synchronization Time runs at the same Time runs at the same rate 
rate for each particle at each location



central processing units—in the old days

this required having several microprocessor

chips, but now a single chip is likely to have

multiple processing cores. In any case, each

of the processors can access all of the PC’s

memory. In figure 29 we illustrate parallelism

with local vs. global access.

Classical (that is, nonquantum) physics is treated as a parallel computa-

tion with local processor access to memory. That is, the processes at one

location are affected only by the data in the immediately neighboring regions

of space and time. What happens at one spot doesn’t affect things somewhere

else without an intervening process—such as a photon or a gravity wave.

Information must be passed along in a kind of bucket brigade from one

region to the next. The classical principle of locality is summarized in the

slogan, “No action at a distance.”

In quantum mechanics, it at first appears that locality may be violated.

When two quantum systems interact and become “entangled,” they can later

affect each other at arbitrarily great distances, seemingly with no intervening

time. In section 2.4: What Is Reality?, I’ll suggest a way in which even here

some form of locality can be preserved.

The homogeneity condition lies at the very heart of how we imagine physics

to work. There are to be certain universal laws that apply at every spacetime

location. In practice, physical laws often have cases that apply only when cer-

tain extreme conditions are encountered, but the whole thrust of science is
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Figure 29: 
Local and Global Memory Access 

for Parallelism

The circles stand for processors, the rectan-
gles stand for the memory, and the lines indi-
cate access. In the case of global access, we
can simplify the figure by lumping all of the
memory slots together into a single memory
box and drawing a fat gray line to indicate
access throughout the memory region in
question.



to try to squeeze all of the conditions into one law. Extremely dense systems

are the current paradigmatic example of areas where the homogeneous laws

of physics run into trouble—the issue is one of reconciling quantum

mechanics with the laws of gravity.

The synchronization condition stipulates that the processors carry out their

computations at exactly the same rate, essentially updating in unison.

Although this sounds like a reasonable assumption about the world’s com-

putational nature, there are serious problems with it.

First of all, Einstein’s special theory of relativity tells us that if particles are

moving relative to one another, then their internal clocks will in fact run at

different rates. This in turn implies that any notion of “now” that we extend

across a large region of space must be somewhat arbitrary. One way out might

be for us to pick one privileged reference object—why not Earth—and to then

adjust the rules of physics to include time dilation factors for particles moving

relative to the reference object. If using Earth as the standard of rest seems too

medieval, we might instead adopt a universal standard of rest based upon the

cosmic background radiation—you’re at rest if this radiation doesn’t appear to

be shifted toward the blue or the red end of the spectrum by your motion.

Fine, but once we introduce general relativity with its warping of space-

time, we have to deal with cusps and singular points, as at the hearts of black

holes. And establishing a universal standard of rest becomes exceedingly

problematic. Moreover, when we extend our considerations to the cosmolog-

ical shape of the whole universe, there’s a possibility that time might

somehow loop back on itself. In short, if our universe is sufficiently pocked,

warped, or knotted, it becomes impossible to slice it into spacelike sheets of

simultaneity, and global synchronization is out of the question.

This said, the objections to synchronization need not come into play if I’m

only interested in modeling some local aspect of the world, which is all I’m

going to be talking about most of the time.28

Particle systems and CAs are both good paradigms for multiprocessor com-

putations acting on a common memory space and satisfying parallelism,

homogeneity, and synchronization. For purposes of discussion, let’s consider

three simple systems that we might view either as particle systems or as CAs.
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• Heat. You dip a spoon into a hot cup of tea, and feel the

warmth move up the length of the handle. In terms of parti-

cles, we might say that the molecules of the tea are moving

rapidly. They collide with the molecules of the spoon and set

them to vibrating more energetically. The agitated motion is

passed up the length of the spoon molecule by molecule. To

think of this as a CA, regard the spoon’s handle as a one-

dimensional row of cells. Each cell averages its temperature

value with the temperatures of the neighboring cells.

Repeating the averaging process over and over moves higher

temperature values up the length of the spoon.

• Water waves. You toss a twig into a swimming pool and

observe the ripples. In the particle view, pushing down the

particles in one location on the surface tugs at the neigh-

boring particles on the surface—this is the phenomenon

known as surface tension. The neighboring particles in turn

pull on the particles farther away, with the whole system

acting something like a lot of little balls connected by springs.

To view the water surface as a CA, think of the two-dimen-

sional surface as a grid of little cells, and use the cells to

model the behavior of an elastic sheet. Each cell’s height

above the bottom of the pool is described by the so-called

wave equation, in which the rate change of a cell’s height is

proportional to the difference between the average height of

the neighboring cells and the cell’s previous height.

• Smoke tendrils. Someone smokes a cigarette and you watch

the smoke in the air. In a particle system model, we’d say that

the smoke and air molecules bounce against one another. The

fine lines in the smoke pattern are visible flow lines made up

of particles having the same average velocity. To see this as a

CA process, think of space as made of little volume elements:

three-dimensional cells. The laws of hydrodynamics relate the

pressure, density, and flow direction in each cell to the corre-

sponding quantities in the neighboring cells.
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I’d like to get into some detail about how we set up CAs to model heat flow

and wave motion. In describing CA rules, I like to write C to stand for a cell’s

current value, using NewC and OldC to stand for the cell’s next and previous

values, respectively. In the case where the CA value is a single real number,

NeighborhoodAverage will stand for the average of the values in the cell’s

neighborhood.

To simulate the flow of heat, we might use a rule of this form.

(Averaging rule) NewC = NeighborhoodAverage.

This might be, however, a bit crude, and lead to the heat spreading unre-

alistically fast. More typical is to pick a diffusion rate, a, between zero and

one, and to use a rule of this form.

(Diffusion rule) NewC = a • NeighborhoodAverage + (1–a)•C.
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Figure 30: 
One-Dimensional Heat CAs with 

Varying Rates of Diffusion

The figure shows four one-dimensional CA
models of a wire that was heated in the
middle, each wire being initially heated in the
same way. The wood-grain-like pattern in the
top part of each picture shows a vertical space-
time sequence of successive states of the wire,
with the heat values represented by shades of
gray and with time running down the page.
The bumpy line at the bottom part of each pic-
ture is a different representation of the heat
distribution, this representation corresponding
to the final instant of time. The diffusion rates
a for these CAs are, left to right and top to
bottom, zero, one-third, two-thirds, and one.
Note that in the CA with diffusion rate zero, the
heat pattern doesn’t change at all, and in the
CAs with lower diffusion rates, the pattern
changes less than it does in the CA with diffu-
sion rate one.



If a is 1, the Diffusion rule is the same as the Averaging rule, but as a gets

smaller, the diffusion happens slower and slower. Figure 30 illustrates this.

We can also represent water waves by a CA rule. The rule works by having

each cell take its current value C, add to this the average of its neighbors’

values, and then subtract off the cell’s previous value. In symbols,

(Wave rule) NewC = C + Neighborhood Average – OldC.

It isn’t particularly obvious that this simple rule will in fact re-create wave

motion, but it works very nicely. Figure 31 shows two representations of this

CA after being seeded with some randomly placed bumps—analogous to a

handful of gravel thrown into a pond.

In section 1.8: Flickercladding, I mentioned that Stanislaw Ulam collabo-

rated with John von Neumann on discrete-valued CAs, and that in the

1950s, he switched his attention to continuous-valued CAs. One of the wins

in looking at these simple toy models of physics is that it becomes possible

to visualize alternative physical laws whose consequences might be too hard

to understand simply by looking at the equations. And this is just what

Ulam did; he began running CA models of nonstandard kinds of physics to

see what would happen.
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Figure 31: Two-Dimensional Wave CA, Two Views

The two views show the same CA. On the left, we represent each cell’s value by a shade of gray,
creating a pattern that looks like light on water. On the right, we represent each cell’s value as a
height, creating a three-dimensional picture.29



Ulam was encouraged by the atomic physicist Enrico Fermi, inventor of

the neutrino. Fermi was curious about what might happen if one looked at

so-called nonlinear waves. What is the meaning of “nonlinear” in this context?

Ordinary waves—like the ones we just discussed simulating—are often

based on a kind of spring force. If you stretch a string, or a water surface,

it wants to pull back to its original size. In ordinary physics, this restoring

force of a spring is proportional to the displacement—one has a Hooke’s

Law–type equation of the form F = k • displacement. This is called a linear

equation because there aren’t any exponents in it. Fermi wondered what a

wave might look like if it was acting on a substance in which the restoring

force satisfied an equation with an exponent, such as F = k • displacement2,

or even F = k • displacement3. As Ulam put it:

Fermi expressed often a belief that future fundamental theories in

physics may involve nonlinear operators and equations, and that it

would be useful to attempt practice in the mathematics needed for

the understanding of nonlinear systems. The plan was then to start

with the possibly simplest such physical model and to study the

results of the calculation of its long-time behavior.30

Working with the Fermi and the early computer scientist John Pasta, Ulam

carried out the experiments and wrote them up. Figure 32 shows what the

Fermi-Pasta-Ulam quadratic and cubic waves look like.

It’s interesting that a mathematician of Ulam’s caliber was thrown back on

carrying out a cellular automaton simulation. If he wanted to know the

effects of a nonlinear wave equation, why couldn’t he just work out the math?

After all, rather than viewing the world as a particle system or as a CA, we

can also regard the world as a set of equations. So why didn’t Ulam simply

deduce what a nonlinear wave would do?

Well, nonlinear waves are an example of a situation that resists analysis

by an axiomatic approach. If you want to figure out what a nonlinear system

is going to do, you actually need to run some kind of simulation of it.

Or, of course, you can just look at the world itself. Ultimately, we don’t

really need to model the world. It does a fine job of computing itself. Indeed,

for a universal automatist, physics is made of computations.
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Figure 32: 
Fermi-Pasta-Ulam Quadratic and Cubic Nonlinear Waves

The figure on the lower right shows the shadings that we use to indicate the cell values. The other
three figures show one-dimensional CAs. In each of these figures, the upper part is a spacetime
diagram, that is, a stack of a few hundred pictures of the CA, with time running down the page.
Think of the alternating dark and light bands as being lines of equal altitude above the plane of
the page. The wiggly graphs at the bottom are instantaneous pictures of the CA state, with the cell
values represented as vertical positions; here the altitude direction is within the page. In each case
the CA is seeded with a smooth wave at start-up. The upper left image shows a quadratic wave
after a hundred updates, when it still looks very much like a regular wave. The upper right image
shows the same quadratic wave after about fifty thousand updates. The lower left shows a cubic
wave after about fifty thousand updates.31



2.3: Chaos in a Bouncing Ball

In this section, we’ll revert to the particle system view and regard the world’s pro-

cessing elements as being ordinary objects; in particular, I’ll talk about the

motions of balls. My first example is what I’ll call the bin experiment (figure 33).

A ball drops from a fixed height straight down to a box divided into two tall

bins, and the ball ends up in either the left or the right bin, with no possibility

of bouncing from one bin into the other.

We suppose that we can vary the ball’s starting position along the horizontal

or “x”-axis, with the zero position located exactly above the center of the parti-

tion dividing the two bins. We might summarize this by saying the experiment

is a Bin(x) process that computes a Left or Right bin output from the starting

position x.

For the moment, we’ll ignore the parallel aspects of physics and focus on

the ball as a single serial processor. For the ball, the low-level software is the

laws of physics, the high-level software is the configuration of the bin, the ini-

tial input is the ball’s starting position x, and we’re interested in the output

state where the ball has settled down

into the left or the right bin.

Remembering the stored program

concept, we recognize that there’s not

that sharp a boundary between the

high-level software and the input data.

In other words, you can either think of

the box as “software” or “data.” I’m

leaning toward the software view, as

I’m thinking of situations where we

might throw a ball into some fairly

complicated and mazelike collection of

passages and walls and ask about

where the maze design makes the

given input ball end up.
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Figure 33:
A Ball Computes Bin(x) to Be Left or Right



Although the simple bin experiment seems nice and deterministic, there

are some quagmires to explore.

When the ball is released near the center of the x-axis, it may bounce up

and down on the divider for a while. Maybe once in a blue moon it’ll end up

balanced upon the divider for a longer period of time. Is this a problem? Not

really. We can just say that there are three possible outputs: at a given time

the output Bin(x) might be Left, Right, or Up—where the Up state corre-

sponds to any situation where the ball hasn’t yet landed and come to rest.

If we’re going to talk about time, we might as well make it explicit, and

write Bin(x, t), to indicate the state of the system t seconds after we drop the

ball from position x. Bin(x, t) will be Up for the smaller values of t; then even-

tually it will go to Left or Right and stay there. And if we just write Bin(x), we

mean, let’s say, the value of B(x, 300), that is, the state of the ball five min-

utes (or three hundred seconds) after you drop it.

Fine, but now we have to face a harder problem. Suppose you were to

actually set up a bin experiment and carry out a large number of runs, each

time dropping the ball from what seemed to you to be the exact center of the

x-axis. The resulting outputs would be a more or less random sequence of

Left and Right outputs, with maybe, once every billion runs, an Up output

that lasts a full five minutes. But rare, anomalous cases aren’t the important

issue. The important issue is that if we keep dropping the ball from what

seems to be the exact center, our bin experiment will generate a seemingly

random sequence of results. Although we think we’re using the same input

over and over, we keep getting different results.

The best way to express this is to say that an individual physical compu-

tation like dropping a ball into the bin is not repeatable. We can approxi-

mately repeat many physical computations—otherwise we’d never learn to

walk or throw a Frisbee. But the scuzz and fuzz of the natural world keeps

its computations from being precisely repeatable.

The reason is that we do not—and cannot—have perfect control over the x

input. The value of x may be near zero, but it won’t be exactly zero. And each

time we put it near zero, it’ll be “near” in some different way. You can’t set x

to the same value twice in a row because it doesn’t make sense to say that a

normal-size object’s location is exactly some precise number.

Suppose, for instance, you’re measuring the position x in meters, and
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you’re trying to get a lot of decimal places of accuracy. When you reach the

ninth decimal place, you’re at the nanometer level, where the sizes of mole-

cules and atoms become significant. At this scale, your ball is a vibrating

cloud of atoms, and asking about the exact center of the cloud becomes as

impractical as asking after the exact center of a swarm of gnats.

The more decimals you want, the worse it gets. At eighteen decimals,

you’re down at the level of protons and neutrons, and most of the ball looks

like empty space. And at the thirty-fifth decimal place you hit that trouble-

some Planck length, the scale at which continuous space may not even exist.

Measure a position to an arbitrary precision? Forget it!

Can’t our uncertainty about the ball position’s smaller decimal places just

stay insignificant? No. Suppose that the divider between the two bins has a

rounded top. Geometrical considerations show that each bounce moves the

ball farther from the exact center. The amplification is in fact exponential, in

the sense that after n bounces, an initial displacement will be on the order of

10n times as big. Another way to put it is that each bounce brings another

few decimal places of the position into visibility. No matter how tiny the ini-

tial displacement is, it will rather quickly become visible (figure 34).

To complicate things, as the ball bounces on the divider, effects from the

irregularities in the surfaces of the ball and of the divider come to domi-

nate the not-really-so-precise initial condition. Before long, you have to

consider the effects of air currents and even the gravitational effects of

objects other than the downward-pulling earth. These influences are, if you

will, interactive inputs added onto the initial input. If the ball bounces long

enough on the divider, no effect is too small to have an influence.

So what are we left with? Is the bin

experiment a deterministic process? Can

we call it a computation?

Yes. It’s a computation that just doesn’t

happen to be repeatable—that is, you can

never manage to reset things to get the
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exact same initial input and then observe the exact same series of outputs.

The bin experiment is unrepeatable because the dynamics of this system

amplifies the tiniest details of the initial and interactive inputs so that they

have large and noticeable effects.

This point is important, so I’ll say it once more. When we get into the zone

near the center point, the bin experiment remains deterministic, but it

becomes sensitive not only to the details of the input position but also to

vagrant influences by the environment. Yes, the output seems random, but

this is only because the initial and interactive inputs aren’t fully known. And

it’s this lack of knowledge that makes the experiments unrepeatable.

The bin experiment is an example what physicists call a chaotic system. A

chaotic system is one that rapidly amplifies the details of its initial conditions

and external influences. In the formal definition of chaos, mathematicians

also require that a chaotic system is one that will now and then appear to be

periodic for short periods of time. Very many, perhaps most, everyday phys-

ical systems are chaotic.

Note that although chaos makes processes complex, that doesn’t mean

that these computations are random. Waves and clouds are chaotically

diverse, but they do tend to have certain characteristic patterns. When you

go to the beach, you don’t see a completely random goulash of water and

air—no matter how gnarly the surf, it’s still made up of waves in a charac-

teristic distribution of sizes.

The characteristic space and time patterns of chaotic processes are known

as strange attractors. The science writer James Gleick describes how a group

of Santa Cruz chaoticians known as the Dynamical Systems Collective

learned to see them in the natural world.

They had a game they would play, sitting at a coffeehouse. They

would ask: How far away is the nearest strange attractor? Was it

that rattling automobile fender? That flag snapping erratically in a

steady breeze? A fluttering leaf?32

Drop a piece of paper and watch it drift to the floor. The paper seesaws

back and forth, twirls, flips over, dives, and catches itself with a sudden

swoop. And if you drop it again it’s likely to do something different. Repeatedly
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toss an apple core toward a trash can. Now and then you may seem to be in

a groove, with the core bouncing in, but over time, the results are quite

unpredictable. Observe a drop of milk spreading through your coffee. There

is a certain regularity to the tendrils, but nothing long-lasting or systematic.

Run your fingernail across your desk and listen to the sound. Make your bed

and regard the exact shape of the crease where the blankets tuck in. Watch

a raindrop on a windowpane. All of these systems are rule-based and deter-

ministic. Yet all of them continually produce surprise. These and perhaps

most other physical systems are computations that are in practice unrepeat-

able because you can never reproduce the exact same combination of initial

and interactive inputs.

Some chaotic systems explode into a grungy thrashing, while others settle

into very nearly repetitive behavior patterns. Chaotic systems can range from

having a lesser or a greater amount of disorder.

A key distinction between bouncing balls and PCs is that our PC computa-

tions are repeatable. This is because PCs are digital, with a feasibly small range

of initial values and because they are well isolated from unwanted inputs.

But because bouncing balls are analog, their computations are not repeat-

able. The difference between analog systems and digital systems is not that the

analog computations are in any way less accurate. The difference is that analog

systems have so many states that it’s physically impossible to control the

inputs of an analog computation precisely enough as to make it repeatable.

As it happens, the physical computations we enjoy watching are the least

likely to be repeatable. In a ball game we relish the moments when the ball’s

motion is the most obviously chaotic. The football that dances and flubbed

on the players’ fingertips. The basketball that circles the hoop before drop-

ping in. The line drive that escapes the pitcher’s glove to be bobbled by the

short stop and caught by the second baseman. The Ping-Pong shot that skids

along the net and somehow crawls over it.

Back in the 1970s, my family and I lived in upstate New York. There was a

relentlessly lively little boy in our neighborhood. Kenny. We had a wooden

garage with rafters, bookcases, bicycles and tricycles, sleds on the walls, rakes

and hoes, a lawn mower, a rabbit hutch, and so on. Kenny would throw a dis-

carded tennis ball into our garage as hard as he could, and excitedly describe

the paths the ball would take. “Look, it hit the paint can and slid off the hose
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onto the windowsill and rolled across to the bicycle seat before it dribbled

under the car!” Kenny was having fun watching physical computations.

Observing physical computations is a simple human pleasure. Last night,

in fact, with these ideas in my mind, I was playing at the dinner table. My

wife and I were guests of the neighbors, and I picked up a plastic wine-cork

and tossed it toward the wooden napkin ring lying on its side on my host’s

place mat. The cork landed just right, did a gentle flip, slid into the napkin

ring, and stayed there. Goal! I spent the next few minutes trying to do it

again, until my wife made me stop. At social gatherings, a gentleman eschews

fanatical computer hacking of any kind.

Physical computations are things we can enjoy with our whole bodies. One

of the particular joys of mountain biking is riding down a hill, enjoying the

sensations of a computation playing itself out. The hill is the input, physics

is the low-level software, your bicycle and your reactions are the high-level

software, and the output is your breezy ride.

Bicycling, or for that matter skiing, involves a downhill ride that’s chaotic

in its sensitivity to small influences. After a bit of practice, you learn to

supply a stream of interactive inputs that guide you away from outputs

involving a spill. Physiologists report that a human brain sends out muscle

control signals at a rate of about ten pulses per second. Using the rapid com-

puter in your head, you’re able to predict the next few seconds of your

onrushing physical computation and to tailor your control pulses to guide

you toward the outputs you prefer.

When an ongoing computation adjusts itself—like a bicyclist, a skier, or,

for that matter, a soaring bird—we see intelligence. But the motions of even

dumb, unguided physical objects can be arbitrarily complex.

Recall Wolfram’s Principle of Computational Equivalence (PCE), which I

introduced in section 1.2: A New Kind of Science. Wolfram claims that essen-

tially all complex computations are universal, that is, rich enough to emulate

any other computation. In other words, most of the physical systems we

encounter are universal, just as they are.

What kinds of examples do I have in mind when I speak of universal phys-

ical computations? Chaotic ones. A ball bouncing around a cluttered garage.

Ice crystals forming in freezing water. Drifting masses of clouds. Amplified

feedback from an electric guitar. A scarf dropping to the floor.
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How simple can a universal physical computer be? In the 1970s, the auto-

didact universal automatist Edward Fredkin described how to make a uni-

versal computer from billiard balls bouncing around on a frictionless table.

It’s not much of a leap from this to arguing that the three-dimensional

motions of the air’s molecules are also a universal computer.

But do keep in mind that in the cruddy, scuzzy world of physical objects,

the motions of air molecules or Fredkin billiard balls are irredeemably

chaotic, rapidly amplifying the slight inaccuracies of the starting conditions

and then being swamped by external effects like the tiny gravitational forces

from the motions of the observer. The bouncing particles will compute some-

thing, but probably not what you intended them to.

I mentioned in section 2.1: Rough and Smooth that we can digitally emu-

late physics, at least in principle. But in practice there are three difficulties:

a first relates to initial conditions, a second comes from the supplemental

inputs we just mentioned, and a third concerns unfeasibility.

Suppose your targeted task is to emulate precisely some particular run of

a physical process. You plan to make, say, a virtual model of my garage, and

toss in a virtual ball and try to get it bounce around just like Kenny’s tennis

ball did.

The initial condition problem is as follows. Because each bounce amplifies

more digits into visibility, you have an exceedingly low probability of exactly

emulating Kenny. Yes, as you hunt through the range of possible inputs you

may come across runs that start out by behaving like Kenny’s big throw, but

the simulations will eventually diverge from the reality as you simulate more

and more of the elapsed time.

The supplemental inputs problem has to do with the fact that even if you

miraculously match Kenny’s initial input, due to the chaotic sensitivity to

supplemental inputs, even if a trajectory matches Kenny’s for a second or

two, it will soon veer away as a result of tiny supplemental inputs from the

world at large.

The feasibility problem has to do with the fact that even our most highly

parallel digital computers have a minuscule number of computational nodes

compared to nature. What analog systems lack in repeatability they gain in

their massively parallel powers of computation.
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Yes, you can simulate a ball bouncing around a garage quite well because

here you’re essentially ignoring the parallelism of the physical world. But now

suppose I ask you to also simulate the air in the garage. It’s hopeless to try

to individually simulate each of the astronomical number of atoms, and even

if you go to a higher-level finite-element model, it’s impossible. Think of all

the eddies that form in the wake of the ball, not to mention the vibrations

from Kenny’s shrill voice—the waves and vortices crossing one another and

bouncing off the irregular objects, fleeting flows interacting in gnarly, non-

linear ways.

Practically speaking, digital computers have no hope of feasibly emulating

the full richness of the physical world in real time. But we can be consoled

by the fact that we already have the world, and it’s already a computation.

The dream of traditional physics is to find simple laws to describe nature. In

some cases, such as the motions of the planets in their orbits around our

sun, simple formulas can go a very long way. But when you get into detailed,

chaotic situations like a ball bouncing around a cluttered garage, you often

need to fall back upon detailed simulation—which still doesn’t give very good

predictions, as it’s impossible to specify the initial conditions to a high-

enough degree of accuracy.

Some physicists dislike Wolfram’s work because he brings them bad news.

Recall Wolfram’s PCU.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

The PCU tells us that most physical systems are going to be unpredictable

in the formal sense that there isn’t going to be a simple and rapidly running

computation that can emulate the physics very much faster than it happens.

A crucial point that I’ll be returning to is that the unpredictability is not

just the result of sensitive dependence on initial conditions and on supple-

mental inputs. Even if an experiment could be conducted in an utterly

shielded environment with a strictly accurate initial condition, the computa-

tion itself would be unpredictable.

One of Wolfram’s favorite examples along these lines involves the motion of
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a projectile, such as a cannonball. In an idealized experiment where you

ignore the effects of air friction, if you fire a bullet into the air, the bullet’s

velocity in feet per second and height in feet at a given time will be given by

simple equations of this form.

velocity = startvelocity – 32 • time

height = startheight + startvelocity • time – 16 • time2.

The beauty of these equations is that we can plug in larger values of time

and get the corresponding velocity and the height with very little computation.

Contrast this to simulating the motion of a bullet one step at a time by

using a rule under which we initialize velocity to startvelocity and height to

startheight and then iterate the following two update rules over and over for

some fixed time-per-simulation-step dt.

Add (–32 • dt) to velocity.

Add (velocity • dt) to height.

If your targeted time value is 10.0 and your time step dt is 0.000001, then

using the simple equations means evaluating two formulas. But if you use

the update rules, you have to evaluate two million formulas!

The bad news that Wolfram brings for physics is that in any physically

realistic situation, our exact formulas fail, and we’re forced to use step-by-step

simulations. Real natural phenomena are messy class three or gnarly class four

computations, either one of which is, by the PCU, unpredictable. And, again, the

unpredictability stems not so much from the chaoticity of the system as it does

from the fact that the computation itself generates seemingly random results.

In the case of a real object moving through the air, if we want to get full accu-

racy in describing the object’s motions, we need to take into account the flow

of air over it. But, at least at certain velocities, flowing fluids are known to pro-

duce patterns very much like those of a continuous-valued class four cellular

automaton—think of the bumps and ripples that move back and forth along

the lip of a waterfall. So a real object’s motion will at times be carrying out a

class four computation, so, in a formal sense, the object’s motion will be

unpredictable—meaning that no simple formula can give full accuracy.
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This summer I passed a few hours in the Museum of the History of Science

in Geneva, Switzerland. It’s a jewel of a place, a dozen small rooms in the two

stories of a lakeside mansion, with parquet floors and enchanting prospects

from every window, and most of the windows open to catch the breezes from

the lake. Glass cases hold brass scientific instruments: microscopes, tele-

scopes, barometers, Leyden jars, spectroscopes, and the like. It stands to

reason that these precision instruments would be found here in the nation of

watchmakers; indeed, quite a few of them are Swiss-made.

In the museum, I photographed what seems a perfect image for science’s

dream of finding a simple explanation for everything: the crank on an orrery.

An orrery is a tabletop model of the solar system, you see, with a little handle

that you turn to move the planets and moons in their orbits.

How about the minuet of the planets, spinning to the stately music of

Newton’s laws? It’s well known that Newton’s laws can be used to formally

derive the simple laws of planetary motion known as Kepler’s laws. Does this

mean that the solar system’s motions are fully predictable?

No, even here chaos and unpredictability raise their untidy heads. In 1987,

the computer scientists Gerald Sussman and Jack Wisdom carried out a

monster simulation of the solar system to show that, in the long run, the

motion of Pluto is chaotic.33 The formal

derivation of Kepler’s laws doesn’t take

into account the pulls of the planets

upon one another, and once we include

this in the mix, Kepler’s music of the

spheres becomes discordant. We get,

once again, a class-four computation,

unpredictable by any means other than

a detailed simulation. Deterministic

yes, predictable no.
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Figure 35: The Secret Machinery 
of the Universe

The little crank you turn to move the planets of an
orrery in the Geneva Museum of the History of Sci-
ence. These days, we instead use computer pro-
grams that are so-called digital orreries.



Wolfram feels that the successes of science are limited to a small number

of phenomena, and that in most situations we will have to fall back on the

computationally intensive process of simulating the evolution of the systems

about which we want to make predictions. Indeed, it seems likely that most

natural processes can’t be predicted in detail by any simple formula—if for

no reason than that there are so many processes, and so few simple for-

mulae, that there aren’t enough “elegant laws of nature” to go around!34

2.4: The Meaning of Gnarl

Building computations in layers is a recurrent theme—think of a computer

game powered by the microcode of a chip, or of a human reckoner whose

thoughts are the firings of neurons. Layers upon layers of computation, emu-

lations upon emulations.

One of the nicest words I’ve picked up from my philosopher friends is phe-

nomenology. Phenomenology is the study of what you actually experience—

The Lifebox, the Seashell, and the Soul

108

Figure 36: Von Karman Vortex Streets

The top image was created by Maarten Rutgers using a flowing soap film, and the bottom
is a satellite photo of the clouds near the island of Guadalupe.



independent of the theories and explanations that you’ve been taught. Phe-

nomenologically speaking, continuous classical physics is closer to reality than

stories about atoms. There’s no need to apologize or feel inauthentic if you take

an observant layman’s view of the physical world. If you see it, it’s real.

If you start looking around for computation-like physical processes, you’ll

find them everywhere. Some of the most dramatic examples occur in fluid

flow. Figure 36 shows a particular fluid-flow phenomenon called von Karman

vortex streets after the Hungarian aeronauticist Theodor von Kármán. When

a stream of air or water flows around an obstacle at moderate speed, eddies

appear in the wake. Examples would be the vortices you see trailing your

hand when you sweep it through the water of a sunlit pool, the whirlpools

that seem to spawn off the back of a rock in a stream, the exquisitely filigreed

smoke from a steaming cup of tea, or the great whorls that form in cloud for-

mations downwind from mountains.

As the situation gets more complicated, so do the patterns. Figure 37

shows a photo I took of a stream flowing around four rocks at the Esalen

Institute (naturally) in Big Sur. The bumps in the water surface were fairly
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Figure 37: Water in a Stream

Looking down with the water flowing from left to right. Rocks are whited out for clarity.



stable, almost like solid objects, although now and then twisting and shifting

in response to slight changes in the amount of water coming through.

To some extent these gnarly patterns result from the intricate initial condi-

tions of the streambed and the supplemental inputs of the downstream flow.

But there’s another factor to keep in mind, the self-generated structures of the

flow computation itself. The stability of the patterns suggests that the patterns

aren’t wholly determined by the inputs. The chaotic computation has strange

attractors that it tends to settle in on.

If you had a totally smooth streambed, what kind of patterns might you see

on the water’s surface? You might suspect that very simple and uninteresting

ripple patterns would result. But this seems not to be the case. Any fluid flow

is rich enough to generate random-looking patterns quite on its own. You

don’t need any supplemental inputs to churn things up. The computation is

class four on its own.

Stephen Wolfram remarks that we might take a high-level view of flowing

fluids, treating, say, vortices as objects in their own right. Rather than saying

the complex motions of the vortices are the result of chaotically amplified

inputs, it might be possible to explain the motions in terms of a fairly simple

computational rule about the vortices themselves. It may be that many of the

external disturbances are averaged away and damped down—and the gnarly

patterns we see are the result of a simple high-level computation that hap-

pens to be unpredictable.

Recall here that I say a computation P is unpredictable when there is no

shortcut computation Q which computes the same results as P, but very

much faster. Wolfram also speaks of such computations as irreducible or as

intrinsically random.

I might mention in passing that computer scientists also use the word

pseudorandom to refer to unpredictable processes. Any programming envi-

ronment will have built into it some predefined algorithms that produce rea-

sonable random-looking sequences of numbers—these algorithms are often

called pseudorandomizers. The “pseudo” refers to the fact that these are in

fact deterministic computations.35

Recall that Wolfram’s Principle of Computational Unpredictability (PCU)

says that most naturally occurring complex (that is, not class one or class

two) computations are unpredictable. Putting the PCU a bit differently, we
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expect to find that most naturally occurring complex computations are

intrinsically random or, if you prefer, pseudorandom.

To illustrate the notion of intrinsic randomness, Wolfram points out how

the evolution of a one-dimensional cellular automaton can produce unpre-

dictable patterns, starting from an initial condition of a few marked cells and

with no supplemental inputs at all. As I’ll discuss in just a minute, Wolfram’s

favorite example of an intrinsically random process is the two-valued CA Rule

30. But first, for a change of pace, look at the intrinsically random continuous-

valued CA in figure 38.
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Figure 38: A Deterministic One-Dimensional CA Creating Gnarly-Looking Flow

The left side shows the first six hundred generations of a line seeded with a smooth
bump of values in its center. The right side shows generations 8,000 to 8,600. The rule
is called Honey, and is a continuous-valued rule based on taking weighted averages of
cells with their neighbors, using different averaging methods according to whether the
cell’s value is positive or negative. 



As is customary in a CA, the cells are updated in parallel, which means

that during each full update of the cellular automaton, every cell on the tape

computes a new value for itself. The way to read figure 38 is to view space as

the horizontal axis and time as running down the page. What we see are suc-

cessive copies of the cellular automaton’s tape. Each row of black, white, and

gray cells represents one successive step of the computation. The picture is,

if you will, a spacetime diagram.

The idea behind intrinsic randomness is that not all of the world’s seeming

randomness needs to result from outside agitation and the chaotic amplification

of initial conditions. Some, or perhaps most, of nature’s complexity can arise

from intrinsic randomness—from a simple computation endlessly munching on

the same region of data and pumping out unpredictable new patterns.

Now you might think that the intrinsic randomness of the Honey rule has

something to do with its use of continuous-valued real numbers. Maybe it’s

excavating hidden initial conditions out of the real numbers with which I

seeded it. This is why Wolfram’s favorite poster child for intrinsic randomness

is so important—there’s absolutely nothing up the sleeves of the one-

dimensional CA Rule 30.

Recall that in Rule 30, the cell values consist of a single zero-or-one bit,

which we represent, respectively, by white or black. If we start Rule 30 with

one single black cell, it quickly fills up the right half of the tape with a class-

three pattern resembling the foam in a beer glass (see figure 39).

If you repeat the run, you get exactly the same pattern, so it’s determin-

istic. Yet anyone looking at the sea of triangular bubbles in the bottom right

half of the picture would imagine the system to be random. The moral is that

a deterministic world is perfectly capable of generating its own randomness.

This is unpredictability; this is intrinsic randomness.

Recall that Wolfram’s Principle of Computational Equivalence (PCE) proposes

that most naturally occurring class three and class four computations are

equally complex. But observationally, there’s a distinction between the two.

Although class-three computations are intriguing, the most beautiful com-

putations are class four. These are the ones that I call “gnarly.”

The original meaning of “gnarl” was simply “a knot in the wood of a tree.”

In California surfer slang, “gnarly” came to be used to describe complicated,
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rapidly changing surf conditions. And then, by extension, something gnarly

came to be anything with surprisingly intricate detail.

Do note that “gnarly” can also mean “disgusting.” Soon after I moved to

California in 1986, I was at an art festival where a caterer was roasting a

huge whole pig on a spit above a gas-fired grill the size of a car. Two teenage

boys walked by and looked silently at the pig. Finally one of them observed,

“Gnarly, dude.” In the same vein, my son has been heard to say, “Never ever

eat anything gnarly.” And having your body become old and gnarled isn’t nec-

essarily a pleasant thing. But here I only want to talk about gnarl in a good

kind of way.

Clouds, fire, and water are gnarly in the sense of being beautifully intri-

cate, with purposeful-looking but not quite comprehensible patterns (figure

40). And of course all living things are gnarly, in that they inevitably do things

that are much more complex than one might have expected. The shapes of

tree branches are the standard example of gnarl. The life cycle of a jellyfish
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Figure 39: Rule 30, Started from a Single Black Cell



is way gnarly. The wild three-

dimensional paths that a hum-

mingbird sweeps out are kind of

gnarly, too, and, if the truth be

told, your ears are gnarly as well.

Let’s come back to the surf at

an ocean beach. As I already men-

tioned in the previous section,

2.3: Chaos in a Bouncing Ball,

although the patterns of the water

are clearly very complicated, they

aren’t random. The forms of the

waves are, from moment to

moment, predictable by the laws of

fluid motion. Waves don’t just pop

in and out of existence. Water

moves according to well-understood

physical laws. It’s a deterministic

computation.

You might notice that the waves

near a rock tend every so often to

fall into a certain kind of surge

pattern. This recurrent surge pattern would be a chaotic attractor. In the

same way, chaotic computer simulations will occasionally tighten in on char-

acteristic rhythms and clusters that act as chaotic attractors. In either case,

we’re dealing with a class four computation.

If there is a storm, the waves may become quite choppy and disorderly.

This is more like a class three computation. As disorderliness is increased, a

chaotic physical system can range from being nearly periodic, up through the

visually interesting region of the strange attractors, and then into uniform

seething. This, again, corresponds to the passage from class two to class four

to class three computations. As I mentioned before, Wolfram’s number-

ordering for his computational classes is a bit misleading. Class four is in

some sense between classes two and three, as I suggested in figure 7.

The reason people might think waves are random is because the compu-

tation that the water performs is many orders of magnitude larger than
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Figure 40: “As Above, So Below”—
Gnarly Clouds and Water



anything our computers can simulate. Yes, simulating actual waves on an

electronic computer is unfeasible. But that doesn’t mean that waves aren’t

the result of deterministic computations being carried out by the physical

world. And we have every reason to suspect that these computations are

class four and unpredictable.

The great discovery we’ve made with our personal computers is that you

don’t need a system as complicated as the ocean to generate unpredictable

gnarl. A very simple rule can produce output that looks, at least superficially,

as complicated as physical chaos. Unpredictable computer simulations are

often produced either by running one algorithm many times (as with the

famous Mandelbrot set) or by setting up an arena in which multiple instances

of a single algorithm can interact (as in CAs).

We find the same spectrum of disorder across a wide range of systems—

mathematical, physical, chemical, biological, sociological, and economic. In

each domain, at the ordered end we have class one constancy and a complete

lack of surprise. One step up from that is periodic class two behavior in

which the same sequence repeats itself over and over again—as in the struc-

ture of a crystal. Adding a bit more disorder leads us into the class four or

gnarly zone, the region in which we see interesting behaviors. And at the high

end of the spectrum is the all-but-featureless randomness of class three.

Regarding physical matter, in classical (prequantum) physics, a vacuum is

the simplest, most orderly kind of matter: nothing is going on. A crystalline

solid is orderly in a predictable, periodic way. And fluids such as liquids or

gasses are fairly disorderly, more along the lines of being class three. Matter

is computationally at its most interesting when it’s near a phase transition,

as when a liquid is freezing or coming to a boil. Matter near a phase transi-

tion to some extent has a nested class two structure, with similar kinds of

features occurring at widely different scales. But the phase transition struc-

ture is very dynamic, with information-laden patterns moving about, and is,

I believe, best thought of as class four.

The flow of water is a rich source of examples of degrees of disorder. The most

orderly state of water is, of course, for it to be standing still. If one lets water run

rather slowly down a channel, the water moves smoothly, with perhaps a

regular class two pattern of ripples in it. As more water is put into a channel,

eddies and whirlpools appear—turbulence. If a massive amount of water is

our rich world

115



poured down a steep channel, smaller and smaller eddies cascade off the larger

ones, ultimately leading to an essentially random state in which the water is

seething. The gnarly zone is where the flow has begun to break up into eddies

with a few smaller eddies, without yet having turned into random churning.

In every case, the gnarly zone is to be found at the interface between order

and disorder. In the mathematics of chaos theory, we can refine this a bit

more, distinguishing four subregions of the gnarly zone (see table 3).

The most orderly kind of gnarly behavior is quasiperiodic, or nearly peri-

odic. Something like this might be a periodic function that has a slight,

unpredictable drift. Next comes the strange attractor zone in which the

system generates easily visible structures—like the gliders in a CA rule, or

like standing waves in a stream. Then we enter a critical transition zone,

which is the heart of the gnarl.

In the language of chaos theory, a system undergoes a bifurcation when a

system switches to a new attractor. This is when a system begins ranging

over a completely different zone of possibilities within the space of all possible

phenomena. The term bifurcation is a bit misleading, as a chaotic bifurcation

doesn’t necessarily have anything to do with something splitting into two.

Bifurcation means nothing more than changing something about a system in

such a way as to make its behavior move to a different attractor.36

As we turn up the disorder of a gnarly system, the system begins experiencing

bifurcations in which one strange attractor repeatedly gives way to another. Ini-

tially the system may be dancing around on, say, an ellipse, and a moment later,

the successive points may be scattered about on something shaped like a bow tie.

And at the highest end of disorder we shade into the pseudorandom

chaotic systems, whose output is empirically indistinguishable from true

randomness—unless you happen to be told the intrinsically random algo-

rithm that is generating the chaos.
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Table 3: Subspectrum of Disorderliness for the Gnarly Zone

Level of Disorderliness Lower High Higher Highest

Subregion of the Quasiperiodic Strange Chaotic Pseudorandom
gnarly zone attractors bifurcations



My favorite example of gnarly physical chaos is a tree whose branches are

gently trembling in the breeze (figure 41). Here’s some journal notes I wrote

about gnarl and a tree that I saw while backpacking in the Los Padres Wilder-

ness near Big Sur with my daughter Isabel and her friend Gus in May 2003.

Green hills, wonderfully curved, the gnarly oaks, fractal white

cloud puffs, the Pacific Ocean hanging anomalously high in the

sky, fog-quilted.

I got up first, right before sunrise, and I was looking at a medium-

sized pine tree just down the ridge from my tent. Gentle dawn

breezes were playing over the tree, and every single one of its needles

was quivering, oscillating through its own characteristic range of fre-

quencies, and the needle clumps and branches were rocking as well,

working their way around their own particular phase space attrac-

tors, the whole motion harmonious in the extreme. Insects buzzed

about the tree, and, having looked in the microscope so much of late,

I could easily visualize the micro-organisms upon the needles, in the

beads of sap, beneath the bark, in the insects’ guts—the tree a

microcosmos. The sun came rolling up over the ridge, gilding my

pine. With all its needles aflutter it was like an anemone, like a

dancer, like a cartoon character with a halo of alertness rays.

“I love you,” I said to the tree, for just that moment not even

needing to reach past the tree to imagine the divinity behind it, for

just that moment seeing the tree as the body of God. “I love you.”

When we got home there were my usual daily problems to con-

front and I felt uptight. And now, writing these notes, I ask how can

I get some serenity?

I have the laptop here on a cafe table under a spring-green tree in

sunny blue-sky Los Gatos. I look up at the tree overhead, a linden

with very small pale fresh green leaves. And yes the leaves are doing

the hand jive. The branches rocking. The very image of my wan-

dering thoughts, eternally revisiting the same topics. It’s good.

The trees, the leaves, the clouds, my mind, it’s all the same, all so

beautifully gnarly.
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2.5: What Is Reality?

Years ago I was discussing far-out science-fiction ideas with the beloved math-

ematics writer Martin Gardner. I was describing the notion that if you could

measure a totally rigid piece of material to endless precision, then the successive

digits might code up, say, the true and complete story of your life. What if

everyone were born clutching a personal talisman of this kind in his or her

hand—like program notes summarizing the action of an opera? And suppose

that, instead of going on and living a real life, some poor guy wastes all his time

decoding his talisman—only to learn that he’ll spend his entire allotted span

measuring one little object!

But, thanks to atomism, we can’t really measure much past twenty digits,

and even if we could, quantum mechanics makes space fairly meaningless

out past the thirty-fifth digit. So the idea doesn’t quite work.

“Too bad,” said Martin. “Quantum mechanics ruins everything.”

Physicists have great confidence in quantum mechanics because it pre-

dicts, among other things, the precise values of certain physical constants.
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Figure 41: 
Tree, Cloud, Mind, Mountain



But physical constants have to do with quantities that are measured as aver-

ages over many different runs. When it comes to predicting how any indi-

vidual particle will behave, quantum mechanics is usually helpless.

An example. Suppose we have a beamsplitter (see figure 42), that is, a par-

tially reflecting mirror that reflects half of all incoming light and transmits the

rest. And let’s say that we have a pair of light-sensitive detectors labeled 0 and

1. The transmitted light goes to 1 and the bounced light goes to 0. The 0 and 1

detectors each register an intensity half as great as that of the incoming beam.

But what happens if we send in a beam that contains only a single photon?

One of the brute facts about nature is that light is quantized; that is, you

actually can turn down a light beam’s intensity to a specific minimal intensity

that sends one photon at a time. Photons are supposedly indivisible—you

can’t get half a photon arriving at 0 and half a photon arriving at 1. So the

single-photon beamsplitter system has to make what seems to be a random

choice. If you repeat the experiment over and over, about half the photons end

up at 0 and about half end up at 1.

We had a similar result in our bin experiment, and in that case we were

satisfied with saying that there were tiny differences in the initial conditions

and external influences on each successive ball. Why can’t we take a similar

approach with photons encountering a beamsplitter? The photons could be

like balls, the beamsplitter could be like the bin divider, and the various out-

comes could deterministically depend on tiny details.

But physicists say this is impossible.

They insist that we can’t explain the vari-

ation by saying the photons might be hit-

ting the mirror in slightly different

locations, that the photons might be

slightly different, or that there are

external influences nudging the photons

this way and that. They say there’s no

hope of finding a deeper explanation of

the photons’ decisions, and that an indi-

vidual photon’s choice of whether to

trigger detector 0 or detector 1 is funda-

mentally and inexplicably random.
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In the words of the endlessly quotable physicist Richard Feynman, with his

own characteristic italics:

Yes! physics has given up. We do not know how to predict what

would happen in a given circumstance, and we believe now that it is

impossible, that the only thing that can be predicted is the proba-

bility of different events. It must be recognized that this is a

retrenchment in our earlier ideal of understanding nature. It may be

a backward step, but no one has seen a way to avoid it. . . . We sus-

pect very strongly that it is something that will be with us forever—

that it is impossible to beat that puzzle—that this is the way nature

really is.37

Feynman is always persuasive, but physical determinism is not so dead an

option as he suggests. My opinion is that there are in fact underlying psycho-

logical reasons driving the conventional insistence that we should welcome

quantum mechanics and the destruction of determinism. Often when I hear a

popular lecture on quantum mechanics, I detect a lilting, mystery-mongering

tone. “Be happy! The universe is incomprehensible! How wonderful!”

The rejection of determinism seems to provide some people with a sense

of liberation. The hidden part of the argument might go like this: If the world

is fundamentally random, then surely I’m not a robotic machine, and if I’m

not a machine, then perhaps I have an immortal soul, so death isn’t so

frightening.

Now that I’ve delivered this ad hominem attack on the advocates of

quantum mechanics, I must, in all fairness, admit that I have my own psy-

chological reasons for not wanting to view quantum mechanics as a final

answer. First of all, like many mathematicians, I’m uncomfortable with

uncertainty. In this vein, it could also be that a lifetime’s worth of hard

knocks has taught me that when there are no rules, most people get a raw

deal. A second point is that I like thinking of the universe as a single entity

that’s at some level knowable; I like to imagine that, if you will, I can see the

face of God. And this dreamed-of cosmic unity becomes less plausible if the

universe results from an all-but-infinite collection of utterly random bit-flips

with absolutely no common underlying cause.
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As I say, I think the mystifications of quantum mechanics seem appealing

precisely because people would like there to be some escape from the logical

and deterministic fact that we’re all going to die. But if the fear of death is

indeed the issue, why not find solace in thinking of the universe as an

immense logical system of which you’re a tiny part? When your particular

pattern ceases to exist, the grand computation will continue. Your alloted

region of spacetime will “always” be around. Can’t that be enough? For that

matter, what’s so terrible about death? Personally, I don’t really mind the

notion of someday getting off the stage and no longer having to continue my

long-winded computation—but maybe that’s just because I’m getting old.

Let me make one more point. If you fear that determinism means you’re a

machine without a soul, consider that, given what we know about class-four

computations, there’s no reason to think that we can’t be both deterministic

and unpredictable, no reason to think that your soul couldn’t in some sense

be a gnarly computation. Consider: The world could be perfectly determin-

istic and still look and feel exactly the same as it looks right now. Indeed, I

think that’s the true state of things. Quantum mechanics simply doesn’t go

deep enough. And we have nothing to lose by moving beyond it to a fully

deterministic universal automatism.

Enough rhetoric; let’s get back to science. There seem to be two kinds of

reasons why physicists don’t expect photons to behave like balls.

The first reason is that photons are meant to be elementary particles,

without any of the nicks and dings that can serve to explain why balls act

unpredictably. Well—maybe so, maybe not. It’s at least conceivable that pho-

tons themselves are the averaged-out results of still more fundamental phe-

nomena—not necessarily subparticles, but possibly something like network

patterns or linked loops in a multidimensional superspace.

The second, more compelling, reason that photons aren’t like balls is that

they’re also like waves. The photon is in some sense a wave that takes both

paths through the beamsplitter, and the presence of the detectors makes the

smeared-out wave collapse into a single photon at 0 or a single photon at 1.

And—here’s that same bad news again—the outcome of any individual

photon wave collapse is to be completely random.

This odd sequence of spreading-wave-followed-by-collapse-into-particle is

a standard pattern in quantum mechanics. Any system is to be thought of as
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an abstract wave that obeys deterministic analog laws until some kind of

measurement is performed on the system. And the measurement process

forces the spread-out wave to collapse into a single definite state. The pos-

sible outcome states depend on the kind of measurement being made, and

the probabilities of the various outcomes depend on the wave.

One can carry out a fairly simple experiment to demonstrate that a single

photon can indeed act like a wave that takes both paths through the beam-

splitter. The idea is to arrange two beamsplitters and two regular, non-beam-

splitting mirrors to make a device known as an interferometer, as shown in

figure 43. A light beam coming in from the upper-left-hand side will split into

the bounced 0 and the transmitted 1 beams. These in turn will uneventfully

bounce off the mirrors at the top and the bottom, and when these beams strike

the beamsplitter on the right, they’ll split again, yielding four beams that we

might as well call: 00, 01, 10, and 11. The history of these four beams’ encoun-

ters with the beamsplitters and the normal mirrors can be summarized, respec-

tively, as bounce-bounce-bounce, bounce-bounce-transmit, transmit-bounce-

bounce, and transmit-bounce-transmit.

By, let us say, turning an adjustment screw, you can tweak the position of

the upper mirror in the system so that beam 01 reinforces the beam 10. And

you’ll find that when you do this, beams 00 and 11 interfere with each other,

effectively canceling each other out The effect is that all of the light coming

in from the upper left seems to leave along the lower right direction. And this

works even if we send in only one photon at a time.

In order to understand what’s going

on, we think of the photon as a wave

that gets split up. A pair of waves will

enhance each other if they’re in phase

with each other, that is, if their crests

match. And they’ll cancel each other if

one wave’s crests match the troughs of

the other. And bringing 01 and 10 into

synch puts 00 and 11 out of synch. The

reason has to do with the total number

of mirror-bounces by each wave; each

time a wave bounces off a mirror of any
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kind, its so-called phase shifts by 90 degrees, and waves that are 180 degrees

out of phase cancel each other out.

By the way, once we get the interferometer tuned like this, it’s also the case

that if a photon comes into the system from the lower left corner, it will end

up exiting in the upper right direction; we’ll return to this point in this

chapter’s final section, 2.6: How Robots Get High, when we’ll view an inter-

ferometer as being like a logical NOT gate.

But for now, the big deal about the interferometer experiment is that it

works even if we pass only one photon through the system at a time. That is,

if you send in a single photon from the top left, you always get a single photon

exiting from the bottom right. The only conclusion seems to be that the “indi-

visible” photon somehow behaves like a wave that splits into four beams, two

of which cancel each other and two of which reinforce each other. So a photon

is a wave.

But when we go back to the first experiment of this section and just run

the photon through one beamsplitter, we see the spaced-out wave inexpli-

cably making nondeterministic random choices between 0 and 1.

At this point we’re supposed to be so confused that we give up and agree

with the quantum physicists that the world is nondeterministic and we’ll

never really understand it, and isn’t it great to have the world be fundamen-

tally incomprehensible and mysterious? “Come forward, dear friends, come

drink the Kool-Aid.”

Sigh.

It’s like I’m at the beach and a kid kicks down my children’s sand castle,

and when I go to scold the kid, his mother says, “Oh, he’s not like your chil-

dren. He’s special. You’ll never understand how he feels. It would be quite

impossible for you.”38

Do we really have to let quantum mechanics kick a hole in our sand castle? A

lot of it has to do with how we choose to interpret the empirical facts of quantum

mechanics. The standard way of viewing quantum mechanics is called the

Copenhagen interpretation, but there are various alternate ways to look at

things. Here I’ll only discuss three of the possible ways to restore determinism.

A first attempt is to say that as long as we’re primarily interested in the

behavior of the medium-size objects of daily life, we’re looking at statistical
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averages in any case, and any quantum mechanical randomness is averaged

away. And, as we’ve already discussed, the large-scale smoothed-out laws of

physics are quite deterministic.

But you can imagine situations where quantum mechanical effects are greatly

amplified. You might, for instance, connect the 0 and 1 detectors of the beam-

splitter to, say, music players in two different locations, and when a single

photon goes into the beamsplitter there will be music here or music there, but

not both. Or if that doesn’t sound portentous enough, replace the music players

with hydrogen bombs. The point is that in principle an individual quantum

event can be amplified into a normal-size event, which is then happening non-

deterministically. Our lives can in fact be affected by quantum events in a less

contrived way. Consider the fact that it takes but one unfortunately placed

radon atom’s decay to lethally mutate a gene in a newly fertilized egg.

There’s an even more serious problem with any plan to dismiss quantum

mechanics and act as if the world is really classical: It’s thanks only to

quantum mechanics that our atoms and molecules are stable. If an electron

could have any orbit at all around a nucleus, it would quickly spiral inward

and the atom would collapse. Nature uses the kinky strictures of quantum

mechanics to make the electron keep a proper distance. Like it or not,

quantum mechanics is an integral part of daily life.

This said, the actual cases where quantum indeterminacies become visible

are surely quite rare. And nothing would really look any different if it turned

out that these seemingly random quantum events were in fact directed by an

underlying class three or class four computation.

A second defense of physical determinism is the many universes theory, which

insists that there are a vast number of parallel universes tied together into a

so-called multiverse. When faced with some seemingly random quantum

choice, the multiverse responds by picking both options, spawning off new

universes as necessary. So then it looks as if we have regained a kind of deter-

minism: the photon goes to both 0 and 1. Every plane crashes in some branch

of the multiverse; every lottery ticket is somewhere a winner. But how does the

multiverse view explain why your particular world is the way it is? The move is

to claim that “you” are in lots of parallel universes. In one world you’re seeing

that photon go to 0 and in another you’re seeing it go to 1.
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Many people find the multiverse model philosophically unsatisfying. It’s

hard to put one’s finger on the problem, but I think it has to do with meaning.

One likes to imagine the world has an ultimate explanation of some kind. Call

it what you will: the Secret of Life, God’s Plan, the Theory of Everything, the

Big Aha, whatever. If we live in a multiverse of many universes, then perhaps

the multiverse has a Multiversal Big Aha, but a mere individual universe

doesn’t get a Big Aha. An individual universe is simply the result of an incal-

culable number of coin flips.

To me, this feels inane and defeatist. Our beautiful universe deserves a

better explanation than that. Although the multiverse model is in fact useful

for understanding certain kinds of quantum phenomena, it’s not attractive as

a final answer.

A third defense of determinism suggests that quantum mechanics depicts par-

ticle behavior as random only because it doesn’t go deep enough. Quantum

mechanics seems so odd precisely because it isn’t actually a final, complete,

and fundamental theory of reality.

It’s well known that quantum mechanics doesn’t merge well with general

relativity, and physicists are exploring any number of more fundamental the-

ories, such as string theory and loop quantum gravity.39 While Einstein’s

general theory of relativity was inspired by a specific geometrical vision of

curved space, quantum mechanics seems to have arisen as the haphazard

result of symbol pushing and mathematical noodling. Although quantum

mechanics works, it lacks a sensual core that would compel wholehearted

assent. Many physicists say this is simply because the microworld is essen-

tially different from the world in which we live. But it’s not unreasonable to

suspect that a radically different theory awaits us and that determinism

could still be regained.

In particular, universal automatists such as Edward Fredkin and Stephen

Wolfram feel that there is a deterministic fundamental theory based on

simple computations of some kind. Fredkin has been known to argue that the

world is made of cellular automata, and Wolfram takes a more sophisticated

approach involving networks and systems of symbol transformations.40

Wolfram compares present-day quantum mechanics to a theory that studies

the temperatures and pressures of gases without being aware that a gas is
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made up of atoms. Seemingly fundamental entities such as photons, elec-

trons, and their wave functions may in fact be emergent patterns based upon

a low-level sea of computation.

The computational view of quantum mechanics is in effect what’s known

as a hidden variables theory. One has to be careful with hidden variables, for

theoretical and experimental work in quantum mechanics tell us that if we

gain some comprehensibility by assuming the world has real and definite

underlying states, then we have to pay a price by accepting weirdness of

some other kind.

As an example of hidden variables, consider a situation known as the

Einstein-Podolsky-Rosen paradox. Here two particles with a common past

event O are observed to behave “synchronisitically” at some later times. That

is, if particle A and particle B were at one time tightly coupled, then if you

later make a measurement on particle A, you may get some random-seeming

value, but if you happen to measure B as well, you’ll get the same value from

B. And this works even if the measurements on A and B are too widely sep-

arated to be able to send slower-than-light signals to each other. In this kind

of situation we say that A and B are entangled.

Now a simplistic hidden-variables interpretation might suggest that the

answers to the measurement were hidden in A and B all along and that they

adopted a common setting at O. But subtle statistical experiments have ruled

out this option—in some sense it seems that A’s state really isn’t determined

until it’s measured, and at that

point B’s state becomes deter-

mined as well.

A more sophisticated kind of

hidden-variables theory takes a

spacetime view and says that the

future measurement on A is a

kind of hidden variable that

reaches back in time to O and

forward from there to B (see

figure 44). The outcome of the

measurement is, if you will, a

variable that’s hidden in the
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which sends a signal forward in time to B.



future. The physicist and science-fiction writer John Cramer has worked out

a worldview like this that he calls the transactional interpretation of quantum

mechanics.41

Cramer proposes that we change how we think about quantum mechanics.

But there’s no real change in the predictions that are made. The standard

Copenhagen interpretation, the multiverse interpretation, and Cramer’s trans-

actional interpretation are different mental models for the same sets of facts.

In Cramer’s model we have hidden future events and we also have signals

that travel backward in time. In this transactional interpretation of quantum

mechanics, any event sends signals into both the future and the past. An

observation of, say, a photon emission occurs via a kind of handshaking link

whereby a forward signal from cause to effect is paired with a backward

signal from effect to cause. By allowing time-reversed backward signals, you

also can have quantum mechanical effects that jump instantaneously across

great distances, as I indicated in figure 44. In Cramer’s model, the entire

future is fixed, with the forward and backward effects acting as threads to

weave reality into a consistent whole.

Note that if all of time is linked, then there’s no real point in distinguishing

one particular slice as the “now.” Everything fits into a whole. This lends

some credence to the Jungian notion of synchronicity, which supposes that

meaningful coincidences really do occur and that life indeed has the same

carefully plotted quality as a novel or a myth.

In my book The Fourth Dimension I point out that this notion was anticipated

by the fourteenth-century mystic Meister Eckhart in one of his sermons:

A day, whether six or seven ago, or more than six thousand years

ago, is just as near to the present as yesterday. Why? Because all

time is contained in the present Now moment.

To talk about the world as being made by God tomorrow, or yes-

terday, would be talking nonsense. God makes the world and all

things in this present now. Time gone a thousand years ago is now

as present and as near to God as this very instant.42

Fine. But if past-present-future are a single integral whole, the explanation

(if any) of this lovely synchronistic spacetime tapestry needs to come from
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somewhere else. Of course at some point, most explanations end up turning

to an inexplicable prime mover (aka God), but let’s see how much we can cut

back on the work the prime mover needs to do.

Cramer offers no explanation of why we have our particular spacetime tap-

estry; indeed, he himself is not particularly wedded to determinism. My

interest in his interpretation stems from the fact that it does make deter-

minism possible. But it’s determinism of an odd kind.

My idea is to combine a Wolfram-style view of reality with Cramer’s trans-

actional interpretation. Suppose with Cramer that causality runs both forward

and backward in time, and also suppose that our world is deterministic in

both these temporal directions. This means that spacetime is a coherent

whole, with both past and future fully determined by the world’s state at any

single instant. If you fix upon some arbitrary moment in time—say, the

instant when you read this sentence, then the question becomes: How was

the world’s structure at this particular instant determined? If you can explain

the now, you get the entire past and future for free—for the past and future

follow deterministically from the now.

Now I add in the Wolframite element. Think like a universal automatist and

suppose that the great structure of quantum-mechanically patterened space-

time arises from a higher-dimensional deterministic computation. Since our

time-bound human nature makes its easier to imagine a deterministic com-

putation as being embedded in some kind of time, let’s invoke a (possibly

imaginary) second time dimension in which to compute our world—call this

extra time dimension paratime. Paratime is perpendicular to our ordinary

dimensions of space and time, and we want the entire universe to be the

result of a computation that’s taken place in the direction of paratime, as

illustrated in figure 45.

Note that the paratime notion reintroduces the theme of parallel worlds.

Presumably the people in each of the spacetimes feel themselves to be in a

unique reality with time flowing forward as usual. Note also that, if we take

the paratime view seriously, it’s possible or even likely that the spacetime in

which we find ourselves isn’t the last one in the series. Reality evolves further

along the paratime axis. In terms of an analogy to a novel, our world is very

well plotted, but it may not be the final draft.

I had a momentary sensation of an flow of paratime while I was working
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on my historical novel As Above So Below, about the life of the sixteenth-

century Flemish painter Peter Bruegel. In the course of detailing Bruegel’s

life, I was focusing my successive chapters on individual paintings by the

master. Now, Bruegel’s best-known series of paintings is called The Seasons,

and consisted of six panels representing different times of the year. My

researches had led me to believe that he painted them in his studio in

Brussels, and that in January 1566 he transported them to a patron’s house

in Antwerp, using a horse-drawn cart called a Belgian wagon. While I was

trying to visualize this, something strange happened, which I recorded in my

writing notes.

I’m finally writing the chapter on The Hunters in the Snow (figure 46).

I’ve been a little scared of this one. It’s a big chapter I’ve looked for-

ward to.
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Figure 45: Evolving a Spacetime across Paratime

Think of the six lines as six increasingly evolved spacetimes, each of which runs from
an initial dot to a final dot. The leftmost spacetime can be thought of as a simple seed
that a computational rule transforms across paratime into a more complex spacetime.



Just now I had a kind of spooky-feeling experience. I figured out

that Peter would be using a Belgian wagon to haul his six Seasons

pictures up to Antwerp, and I was wondering if a wagon like that

could make it through the snow, and I looked over at the Hunters in

the Snow reproduction that I have on my wall by my desk, and it felt

like there was this twinkling in the middle of the picture, and then

all of a sudden there was a Belgian wagon there (figure 47).

I’m imagining, just for fun, that the Belgian wagon didn’t “used”

to be in the Hunters in the Snow. That in fact Bruegel’s pictures are

changing a little bit as I write about them. But the changes are uni-

form across all of spacetime, so when my copy of Hunters in the

Snow changes, so do all the others, and all of everyone’s memories

about the picture. Reality shifts to a slightly different parallel sheet.

And I only notice this at the instant it happens, and even then I can

never be sure.44

Rather than saying every possible universe exists, I’d say, rather, that

there is a sequence of possible universes, akin to the drafts of a novel.

We’re living in a draft version of the universe—and there is no final version.

The revisions never stop.
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Each draft, each spacetime, each sheet of reality is itself rigorously deter-

ministic; there really is no underlying randomness in the world. Instead we

have a great Web of synchronistic entanglements, with causes and effects

flowing forward and backward through time. The start of a novel matches its

ending; the past matches the future. Changing one thing changes everything.

If we fully know everything about the Now moment, we know the entire past

and future of our particular sheet of spacetime.

To make this discussion seem just a shade more reasonable, let’s look at

a CA model. Recall that the pictures of one-dimensional CAs take the form of

spacetime diagrams, with the horizontal axis representing a ribbon of space

and the vertical axis corresponding to time. Now it turns out to be fairly easy

to construct “reversible” cellular automata for which the past and the future

both follow from the present. In these physicslike CAs, no information is lost,

and anything that happens in one direction of time can equally well happen

in the other direction. Figure 48 shows the spacetime of a CA of this type.43

A reversible rule of this kind serves as a model for a transactional-

quantum-mechanics world where events send out effects both forward and

backward in time. We might think of the reversible CA rule as the world’s

physics. Everything in a reversible world like this hinges on the state of any

single spacelike slice—or what we’ve been calling a “Now moment.” 
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As I said above, the universal automatists would like to find a seed and rule

that could compute across paratime to generate the spacetime in which you

and I are living our lives. And if the physics within spacetime is deterministic

towards both future and past, it would be enough to find a seed and a rule that

could compute across paratime to produce one particular “now” slice of our

spacetime. And then the past and the future could be deterministically gener-

ated from the now.

With this in mind, explaining a given draft of the universe becomes a

matter of explaining the contents of a single Now moment of that draft. This,

in turn, means that we can view the evolution of the successive drafts as an

evolution of different versions of a particular Now moment. As Scarlett’s cli-

mactic scene with Rhett is repeatedly rewritten, all the rest of Gone With the

Wind changes to match.

And this evolution, too, can be deterministic. In other words, we can think

of there as being two distinct deterministic rules, a Physics rule and a Meta-

physics rule, as shown in figure 49.
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Figure 48: Spacetime Diagram of a Reversible One-Dimensional CA

This is the Axons rule of the Cellab software.



The Metaphysics rule is—what? The Metaphysics rule is like a CA that

grows the space pattern from some presumably simple seed. When I speak of

this metaphysical growth as occurring in paratime, I need only mean that it’s

logically prior to the existence of our spacetime. We don’t actually have to

think of the growth as being something that’s experientially happening—as I

was suggesting with my Hunters in the Snow example.

The Metaphysics rule could be something as simple as an eight-bit cellular

automaton rule generating complex-looking patterns out of pure computation.

Or perhaps the Metaphysics rule is like the mind of a Great Author creating a

novel, searching out the best word to write next, somehow peering into alter-

nate worlds. Or, yet again, the Metaphysics rule could be the One cosmic mind,

the Big Aha, the eternal secret living in the spaces between our thoughts.45

The message to take away is that quantum mechanics doesn’t have to spoil

everything after all. It’s just a bag of tricks that some mathematical physicists
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Figure 49: A Physics and a Metaphysics to Explain All of Spacetime

In this picture we think of there being two distinct CA rules, a Physics rule and a Meta-
physics rule. The vertical plane represents our spacetime, and the line across its middle
represents a spacelike “Now.” The Physics rule consists of time-reversible laws that
grow the Now moment upward and downward to fill out the entire past and future of
spacetime. And we invoke the Metaphysics rule to account for the contents of the Now
moment. The Metaphysics rule is deterministic but not reversible; it grows sideways
across a dimension that we might call paratime, turning some simple seed into the
space-filling pattern found in the Now.



made up. Reality may very well be a deterministic computation based on

rules no more intricate than the rules of cellular automata.

2.6: How Robots Get High

Whether or not quantum mechanics is a final theory of reality, the fact

remains that it’s a very powerful and intellectually rich system. So now let’s

set all doubts aside and see what we can learn from it. After all, even if

quantum mechanics is in some sense incomplete, any future physics will

undoubtedly incorporate quantum mechanics as an approximation—in

much the same way that quantum mechanics includes classical physics as

an approximation that holds for larger-sized objects.

In this section I’ll discuss three topics:

• Quantum coherence as a metaphor for the human mind.

• The dream of quantum computation.

• The computational architecture of quantum mechanics.

Under the traditional Copenhagen interpretation of quantum mechanics,

measuring a quantum system changes its state in an abrupt and unpre-

dictable fashion (see table 4).

Even worse, if you want to measure two properties of a system, the

answers you get will depend on the order in which you make the measure-

ments. It’s a little as if you had a picture book, and if you look at the pictures,

the words in the book are no longer the same, and if you read the words, the

pictures are altered. Not at all like repeatedly reading information off a disk.

The notion of quantum indeterminacy can be expressed in terms of superposed

states, which serves, if nothing else, as a very useful metaphor for the human

mind. “Superposed” connotes having multiple layers overlaid and merged.

Quantum mechanics tells us that any measurement you make on a

system carries with it a set of expected answers—these are the so-called

pure states or eigenstates of the measurement. When you measure a

system, it enters one of the measurement’s unambiguous or “pure” states.

The system is effectively forced to pick one answer out of a fixed list of mul-

tiple choice options. This transition happens abruptly and discontinuously

and is called the collapse of the wave function. The collapse of the wave
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function is an irreversible process; you can’t restore a system to the state

it was in right before you measured it.46

Different kinds of measurements have different sets of pure states. As I

discuss in the long footnote 46, if you measure the particle’s position in our

one-dimensional example, the possible pure states are like waves with a

single very narrow peak, but if you measure the momentum, the pure states

are like springs that coil around the position axis. For quantum mechanics,

the pure states are somewhat unnatural and rare: They arise only after a

measurement, and the range of possible pure states depends upon the spe-

cific kind of measurement being performed. Classical physics doesn’t make

the distinction between pure states and superposed states at all; in classical

physics there is a more or less continuous range of possible states, and any

state is thought of as being pure and unmixed.

In trying to understand how quantum mechanical measurements turn

superposed states into pure states, it’s useful to consider the following

metaphor. You enter a new restaurant, not even knowing what kind of food

they serve. You know you’re hungry, but you don’t know what you want to

eat. The waiter presents you with a menu, and now you start to view your

hunger as being, say, mostly a hunger for artichoke pizza, but also, to some

extent, a hunger for mushroom ravioli or for linguini with clams. And then the

waiter comes to take your order, and you fully become someone who wants to

eat, let us say, linguini with clams. Ordering your meal at the restaurant is

analogous to performing a measurement on your state of hunger, and the

items on the menu are this particular restaurant’s pure states.
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Kind of State: Superposed Pure

Arises: Naturally, via After a measurement
Schrödinger’s 
wave equation

In terms of pure states: Sum of pure states One pure state

Process producing state is: Deterministic Random

Relation to environment: Coherent or partly Fully decoherent
decoherent

Table 4: Mixed and Pure States



When you leave a system alone and don’t perform measurements, it

evolves into a so-called superposed state quite different from any particular

pure state. Mathematically speaking, you can write a superposed state as a

sum of pure states—just as any periodic function can be written as a

Fourier sum of sine waves with varying amplitudes and frequencies. But

really the superposed state has its own independent reality, and there’s no

“best” way of breaking it into a sum of pure states. Quantum mechanics is

about the evolution of superposed states.

(By the way, some science writer’s colloquially use “mixed state” as a syn-

onym for “sum of pure states.” Physicists prefer to speak of these as super-

posed states, or superpositions, and to use “mixed state” in a slightly different

sense that we’re not going to worry about here.)

In recent years a new pair of quantum mechanical words have gained currency:

coherence and decoherence. A coherent system evolves peacefully through a

series of superposed states, whereas a decoherent system has its states

affected by entanglements with the environment. The notion of coherence pro-

vides a kind of knob you can imagine turning to change classical physics into

quantum mechanics—the higher the coherence, the less classical the system.

Be aware that this usage is a little counterintuitive. A completely unknown

superposed state is viewed as coherent, but a pure state is decoherent.

Metaphorically speaking, someone spewing incomprehensible gibberish is

coherent, while someone checking off multiple choice answers is decoherent!

An extreme example of getting entangled with the environment is a measure-

ment, as when you observe a photon with those detectors after the beamsplitter

and find it to be in position 0 or position 1. But systems can be entangled in less

classical ways. It may be that particles A and B have interacted and no measure-

ment has been as yet performed on either one of them, but the very existence of

the possibility of measuring B reduces the freedom of A to do its own thing.

Thanks to its interaction with the tattletale B, A is somewhat decoherent.

How does the coherent-decoherent distinction relate to pure and superposed

states? Actually all four combinations are possible, as illustrated in table 5.

The notion of coherence plays a key role in the budding science of quantum

computation.
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A classical computer converts single inputs into single ouputs. A

quantum computer behaves like a huge array of classical computers,

working together to simultaneously compute the output for every possible

input at once.

In order to get an idea of how this is supposed to work, let’s return to our

beamsplitter, where the photon is in some sense reflected and transmitted at

the same time—at least until it hits one of the detectors.

Ordinarily we would think of the fact of whether the photon bounced or not

as being encoded by a single bit or information that we learn when the photon

hits the 0 or the 1 detector. But quantum mechanics tells us that before

either of the detectors goes off, the photon is in a superposed state that’s a

curious combination of the 0 and the 1 state. It’s traditional to represent this

superposed state by the Greek letter psi, that is, by ψ.

What the quantum computer scientists propose is that we think of this

superposed state as a “qubit” for “quantum bit.” The photon-after-a-beam-

splitter ψ qubit has a 50 percent chance of being 0 and a 50 percent chance

of being 1. But one can cook up other situations where the qubit probabilities

are distributed more asymmetrically.
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Table 5: Decoherence Feels Good

To spice things up, I’ve added a psychological interpretation for each of the four a priori
options. In quantum mechanics, the only way to force a system to remain in a pure state is
to continually decohere it; this is expressed in the folk saying, “A watched pot never boils.”

Superposed Pure

Coherent The natural, free state of a system left A system that’s just been measured 
on its own. Like walking alone on the but is now on its own. It will quickly 
beach without a thought in your head. evolve away from the pure into a 

superposed state. Like you felt on your 
first day away from home at college,
or like you feel right after you 
get off work.

Decoherent A system that’s entangled with another A system that’s continually being
system. You’re off on your own, but observed and is subjected to
you’re worrying about your partner. repeated measurements. Like living
Or maybe your partner has just walked at your parent’s house.
into your room and is about to ask 
you something, but they haven’t
collapsed you into a pure state yet.



Being quantum mechanical wave

functions, the components of a qubit

have phase—which means that qubit

factors might either reinforce each

other or cancel each other out,

according to whether they’re in or out

of phase. We observed this phenom-

enon in our interferometer—where

the first beamsplitter breaks a

photon into a qubit that the second

beamsplitter decoheres into a single

photon that comes out at the bottom

right if the initial photon came from

the top left. And, as I remarked in passing before, it’s also true that a photon

coming in from the bottom left will end up coming out the top right.

In traditional electrical engineering a “gate” is any device that has some

wires coming in and some wires going out. As we move into the realm of

quantum computation, we take a more general view of this and regard a gate

as any localized region of space where we can send in signals and get signals

out. If we label signals at the top by 0 and signals at the bottom by 1, the

interferometer is like a so-called NOT gate that converts 0 signals into 1s and

1s into 0s. To bring out the notion of the gate, in figure 50 I’ve drawn a gray

square around the innards of the interferometer, with the protruding lines on

the left representing two possible input signals and the lines on the right

being the possible outputs.

The real fun begins if we now imagine decomposing the interferometer into

its two component beamsplitters. I’ll replace the mirrors in the middle by

simple lines, as if I were drawing wires. So now we have two identical gates

whose combined effect is that of a NOT gate (see figure 51). These quantum

gates bear a marvelously science-fictional name: a square-root-of-NOT gate 47

You might imagine the square-root-of-NOT as follows. Suppose you ask

someone to go on a date with you, and the person gives you an incompre-

hensible answer, and you ask again, and you get another weird answer, and

then, having heard odd answers twice in a row, you suddenly realize they

mean, “No!”
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Figure 50: An Interferometer as a
NOT Gate



Anyway, I still have to tell you how

quantum computation is supposed to

work. A rough idea is as follows. Run a

bit through a square-root-of-NOT gate to

split it into the ψ superposition of 0 and

1. And then feed the coherent super-

posed ψ state into a computer C of some

kind (see figure 52). Suppose that we

know C turns 0 or 1 inputs into 0 or 1

outputs, but we don’t yet know what the

particular outcomes would actually be.

When we feed ψ into C, C effectively cal-

culates both C(0) and C(1).

Given that a coherent superposed state goes into C on the left, we can expect

that a (different) coherent superposed state will emerge on the right of C. Now if

we were to simply try to measure this state right away, we’d collapse it or deco-

here it. We’d end up with a single 0 or 1 answer, and we wouldn’t even be able to

tell if this was the C(0) output or the C(1) output. The answer would be all but

worthless.

But if we place another square-root-of-NOT gate to the right of C, we can

hope that this gate will manage to carry out a quantum interference

between C ’s two output lines, and that the output of this second square-

root-of-NOT gate will in some useful fashion combine information about

both C(0) and C(1).

In this way we hope to get information

about C’s behavior on two standard

kinds of inputs 0 and 1, while only

having to evaluate C on one input, that

is by evaluating the output of C(ψ) acting

on the superposed state ψ that came out

of the first square-root-of-NOT.

Would C even work on a flaky input of

this kind? Part of the science of quantum

computation involves figuring out how

to make deterministic computational
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Figure 51: Beamsplitters as
Square-root-of-NOT Gates

Figure 52: A Two-for-One Quantum 
Computation
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processes that don’t care if their input is a pure or a mixed state. Although this

sounds complicated, it can mean something as simple as testing if an atom

bounces back a photon of light, or whether a spinning molecule tips over in a

magnetic field.

The big win in evaluating only C(ψ) instead of both C(0) and C(1) is that if

evaluating C on an input is a very time-consuming process, then this repre-

sents a meaningful gain in speed. And the process can be iterated, that is,

with a few more square-root-of-NOT gates we could create a different state ψ
that is as superposition of 00, 01, 10, and 11, and in this case a single eval-

uation of the form C (ψ) can generate an answer that combines the outputs

of C acting on all four of the possible inputs 00, 01, 10, and 11.

In the limit, we might dream of a quantum computer that takes, say, every

possible twenty-page short story as input, evaluates all of them, and

somehow manages to print out the best one!

This seems impossible, and in fact it probably is. In reality, there are

strong theoretical limits upon how much information we can extract from a

parallel quantum computation. Getting information out of a quantum com-

putation is never as simple as cherry-picking the best of the computation’s

seemingly parallel threads. Instead, we have to carry out an interference-like

process, letting the different solutions interact with one another, hopefully

reinforcing some useful peaks. It’s already known that some gains can be

made by this kind of quantum process—currently the prize example is a

speeded-up method of factoring large numbers.48

As a practical matter, one of the big snags in using quantum computation

is that systems easily lose their coherence. If the central computer C’s out-

puts get even slightly screwed up, the coherent output prematurely col-

lapses into a single randomly selected answer. And what one needs is for the

output to remain coherent and multithreaded so that you can use interfer-

ence tricks to coax answers from the overlaps of the various quantum bits.

Whether or not it will work, quantum computation is interesting to think

about, and, at the very least, it’s a wonderful metaphor for the working of the

human mind. Being undecided about some issue is in some ways like being

in a superposed state—and the loss of options inherent in being forced to

answer questionnaires is analogous to the information-destroying advent of

decoherence.
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Were quantum computation to work really well, it could change our basic

view of reality. The scientist David Deutsch, who is a strong believer in the

multiverse theory, argues that if quantum computation becomes effective,

we’ll have to admit that all of those parallel worlds are real—for where else

could the computation be taking place?49

One possible response, inspired by John Cramer’s transactional interpre-

tation of quantum mechanics, would be that our quantum computation puts

in place a set of initial conditions that require a future state in which the

problem is solved. And matching the future output to the present input

involves a flurry of signals going forward and backward in time through the

computer, tightening in on the quantum handshake that solves the problem.

So the computation is an activity hidden in spacetime or, looked at in another

way, the result is determined by what I call the Metaphysics rule.

Cramer’s notion of emergent spacetime patterns seems to imply, at least

linguistically, a higher kind of time. As I mentioned before, we might think of

the homing-in process as occurring along a paratime axis perpendicular to

spacetime. And then, rather than saying, with Deutsch, that the quantum

computation takes place in parallel worlds, we’d say that it took place as part

of the paratime Metaphysics rule that defines our particular spacetime. In the

mind, if you will, of the Great Author.

My Hungarian mother-in-law Pauline Takāts used to have a self-deprecating

expression she’d trot out when praised for doing something clever: “Even the

blind hand finds sometimes an acorn.” And every now and then science-fiction

writers get something right.

As it happens, in 1986 I wrote about something very much like quantum

computation in my novel Wetware. Here a man called Cobb Anderson has

gotten his mind downloaded into an optically computing robot body, and he

gets stoned with some bohemian robots called Emul and Oozer. What do the

robots get high on? Dreak, which is a coherent gas of helium atoms, with every

particle of the gas initially in the same state. The effect of the dreak is to make

a swatch of Cobb’s spacetime compute in perfect synchronicity—which sounds

a lot like preparing a coherent state. But who ever knew it would feel this good!

Cobb’s mind cut and interchanged thoughts and motions into a

spacetime collage. The next half hour was a unified tapestry of space



and time . . . it was like stepping outside of time into a world of syn-

chronicity. Cobb saw all of his thoughts at once, and all of the

thoughts of the others near him. He was no longer the limited per-

sonoid that he’d been.
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[The quote continues.] He exchanged a few glyphs [higher-order

language patterns] with the guys next to him. They called them-

selves exaflop hackers, and they were named Emul and Oozer. When

they didn’t use glyphs, they spoke in a weird, riffy, neologistic Eng-

lish. . . . The synchronicity-inducing dreak shuffled coincidentally

appropriate new information in with Cobb’s old memories. . . .

“What—what is dreak?” said Cobb, reaching up and detaching the

little metal cylinder from his head. It was empty now, with a punc-

tured hole in one end where the gas had rushed out into his body.

Apparently the petaflop body was a hermetically sealed shell that

contained some kind of gas, and the dreak gas had mingled in there

and given him a half hour of synchroswim vision.

“Dreary to explain and word all that gnashy science into flowery

bower chat,” said Emul. “Catch the glyph.”

Cobb saw a stylized image of a transparent robot body. Inside the

body, spots of light race along optical fibers and percolate through

matrices of laser crystals and gates. There is a cooling gas bath of

helium inside the sealed bodyshell. Closeup of the helium atoms,

each like a little baseball diamond with players darting around.

Each atom different. Image of a dreak cylinder now, also filled with

helium atoms, but each atom’s ball game the same, the same swing,

the same run, the same slide, at the same instant. A cylinder of

atoms in Einstein-Podolsky-Rosen quantum synchronization. The

cylinder touches the petaflop body, and the quantum-clone atoms

Up till now, he’d felt like: But right now, he felt like:

A billion-bit CD recording A quintillion-atom orchestra

A finite robot A living mind

Crap God



rush in; all at once the light patterns in the whole body are syn-

chronized too, locked into a kaleidoscopic Hilbert space ballet.50

One might say that, thanks to the notion of quantum computation, the

sow’s ear of quantum unpredictability may yet become a silk purse of super-

computing. And, as I’ll discuss in section 4.8: Quantum Computing, there’s an

outside chance that our brains are already using quantum computation, just

as they are.

In closing, I want to comment on the computational architecture of quantum

mechanics. In the case of classical physics, we thought of there being a “laws

of physics” processor at each location, with the data at that location repre-

senting the current state of the world. We take a somewhat similar approach

with quantum mechanics, but here we’ll think of the processors as having

something of the quality of observers. Depending on how the processors

relate to local reality, that part of the system may either be in a coherent

superposed state or be collapsed down into a decoherent simple state. Figure 53

suggests the architecture I have in mind.

Given that each local region can be coherent or decoherent, rather than

having one universal data set shared by all the processors, it seems better to

view each distinct processor as having its own data set, which the processor

can at any time regard as a mixed state or some particular pure state—but

never both at the same time. We draw a thick gray line to indicate that the

processor has a full and intimate relation with the state.

What about the access? Can systems access only neighboring systems—as

in classical physics—or are long-distance interactions possible? As I’ve men-

tioned, in quantum mechanics action at a distance supposedly is possible.

Once two particles have inter-

acted in certain ways, their wave

functions become permanently

entangled, with the effect that

when you measure one member

of the pair, the wave function of

the other member is affected as

well—no matter how distant from

each other the partners may be.
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Figure 53: A Computational Architecture 
for Quantum Mechanics



Note that, as I’ve drawn it here, the architecture of quantum mechanics is

the same as the network architecture of the Web as was shown in figure 18—

many processors with individual data sets, and with the processors linked

together across large distances.

It’s common for humans to form their scientific models of the world to

match their currently popular technologies—Newtonian physics, for instance,

makes the world into something like an enormous steam engine with beauti-

fully meshing gears. It would be fitting if contemporary physics were to evolve

toward viewing physics as a Web-like network of nodes. This, indeed, is what

the universal automatists expect, but with the indeterminacy of quantum

mechanics replaced by computational unpredictability.

The Lifebox, the Seashell, and the Soul

144



THOUGHT EXPERIMENT THREE: AINT PAINT

Although Shirley Nguyen spoke good

English and studied with a crowd of

boys in the chemical engineering

program at UC Berkeley, she had no

success in getting dates. Not that

she was ugly. But she hadn’t been

able to shed the Old Country habits

of covering her mouth when she

smiled, and of sticking out her

tongue when she was embarrassed.

She knew how uncool these moves

were, and she tried to fight them—

but without any lasting success. The

problem was maybe that she spent

so much more time thinking about

engineering than she did in thinking

about her appearance.

In short, to Westerners and

assimilated Asians, Shirley came

across as a geek, so much so that

she ended up spending every

weekend night studying in her par-

ents’ apartment on Shattuck

Avenue, while the rest of her family

worked downstairs in the pho noodle

parlor they ran. Of course Shirley’s

mother, Binh, had some ideas about

lining up matches for her

daughter—sometimes she’d even

step out into the street, holding a big

serving chopstick like a magic wand

and calling for Shirley to come

downstairs to meet someone. But

Shirley wasn’t interested in the

recently immigrated Vietnamese

men who Binh always seemed to

have in mind. Yes, those guys might

be raw enough to find Shirley

sophisticated—but for sure they had

no clue about women’s rights.

Shirley wasn’t struggling through

the hardest major at Berkeley just to

be a sexist’s slave.

Graduation rolled around, and

Shirley considered job offers from

local oil and pharma refineries. On

the get-acquainted plant tours, she

was disturbed to note that several of

the senior chemical engineers had

body parts missing. A hand here, an

ear there, a limp that betokened a

wooden leg—Shirley hadn’t quite

realized how dangerous it was to

work in the bowels of an immense

industrial plant. Like being a beetle

in the middle of a car’s engine. The

thought of being maimed before

she’d ever really known a man filled

her with self-pity and rebellious-

ness.

Seeking a less intense job at a

smaller, safer company, she came

across Pflaumbaum Kustom Kolors

of Fremont. PKK manufactured



small lots of fancy paints for cus-

tomized vehicles. The owner was fat

and bearded like the motorcyclists

and hot-rodders who made up the

larger part of his clientele. Shirley

found Stuart Pflaumbaum’s appear-

ance pleasantly comical, even

though his personality was more

edgy than jovial.

“I want patterned paint,” Pflaum-

baum told Shirley at their interview.

He had a discordant voice but his

eyes were clear and wondering. “Can

you do it?”

Shirley covered her mouth and

giggled with excitement—stopped

herself—uncovered her mouth and,

now embarrassed, stuck her tongue

all the way down to her chin—

stopped herself again—and slapped

herself on the cheek. “I’d like to try,”

she got out finally. “It’s not impos-

sible. I know activator-inhibitor

processes that make dots and

stripes and swirls. The Belousov-

Zhabotinsky reaction? People can

mix two cans and watch the pat-

terns self-organize in the liquid layer

they paint on. When it dries the pat-

tern stays.”

“Zhabotinsky?” mused Pflaum-

baum. “Did he patent it?”

“I don’t think so,” said Shirley.

“He’s Russian. The recipe’s simple.

Let’s surf for it right now. You can

see some pictures, to get an idea.

Here, I’ll type it in.” She leaned

across the bulky Pflaumbaum to use

his mouse and keyboard. The big

man smelled better than Shirley had

expected—chocolate, coffee, mari-

juana, a hint of red wine. Familiar

smells from the streets of Berkeley.

“You’re good,” said Pflaumbaum

as the pictures appeared. Red and

blue spirals.

“You see?” said Shirley. “The trick

is to get a robust process based on

inexpensive compounds. There’s all

sorts of ways to tune the spirals’ size.

You can have little double scrolls

nested together, or great big ones like

whirlpools. Or even a filigree.”

“Bitchin’,” rumbled Pflaumbaum.

“You’re hired.” He glanced up at

Shirley, whose hand was at her

mouth again, covering a smile at her

success. “By the month,” added the

heavy man.

Shirley was given an unused

corner of the paint factory for her

own lab, with a small budget for

equipment. The Spanish-speaking

plant workers were friendly enough,

but mostly the female engineer was

on her own. Every afternoon Stuart

Pflaumbaum would stump over,

belly big beneath his tight black T-

shirt, and ask to see her latest

results.



Shirley seemed to intrigue

Pflaumbaum as much as he did her,

and soon he took to taking her out

for coffee, then for dinner, and

before long she’d started spending

nights at his nice house on the hills

overlooking Fremont.

Although Shirley assured her

mother that her boss was a bachelor,

his house bore signs of a former

wife—divorced, separated, deceased?

Although Stuart wouldn’t talk about

the absent woman, Shirley did

manage to find out her name:

Angelica. She, too, had been Asian, a

good omen for Shirley’s prospects,

not that she was in a rush to settle

down, but it would be kind of nice to

have the nagging marriage problem

resolved once and for all. Like solving

a difficult process schema.

As for the work on patterned

paint, the first set of compounds

reactive enough to form big patterns

also tended to etch into the material

being painted. The next family of

recipes did no harm, but were too

expensive to put into production.

And then Shirley thought of biolog-

ical by-products. After an intense

month of experimenting, she’d

learned that bovine pancreatic

juices mixed with wood-pulp alkali

and a bit of hog melanin were just

the thing to catalyze a color-creating

activator-inhibitor process in a cer-

tain enamel base.

Stuart decided to call the product

Aint Paint.

In four months they’d shipped two

thousand cases of PKK Aint Paint in

seven different color and pattern

mixes. Every biker and low-rider in

the South Bay wanted Aint Paint,

and a few brave souls were putting it

on regular cars. Stuart hired a

patent attorney.

Not wanting her discoveries to

end, Shirley began working with a

more viscous paint, almost a gel. In

the enhanced thickness of this stuff,

her reactions polymerized, wrinkled

up, and formed amazing embossed

patterns—thorns and elephant

trunks and, if you tweaked it just

right, puckers that looked like alien

Yoda faces. Aint Paint 3D sold even

better than Aint Paint Classic. They

made the national news, and

Pflaumbaum Kustom Kolors couldn’t

keep up with the orders.

Stuart quickly swung a deal with

a Taiwanese novelty company

called Global Bong. He got good

money, but as soon as the ink on

the contract was dry, Global Bong

wanted to close the Fremont plant

and relocate Shirley to China,

which was the last place on Earth

she wanted to be.



So Shirley quit her job and con-

tinued her researches in Stuart’s

basement, which turned out not to

be all that good a move. With no job

to go to, Pflaumbaum was really hit-

ting the drugs and alcohol, and from

time to time he was rather sexist and

abusive. Shirley put up with it for

now, but she was getting uneasy.

Stuart never talked about marriage

anymore.

One day, when he was in one of

his states, Stuart painted his living-

room walls with layer upon layer of

Shirley’s latest invention, Aint Paint

3D Interactive, which had a new

additive to keep the stuff from drying

at all. It made ever-changing pat-

terns all day long, drawing energy

from sunlight. Stuart stuck his TV

satellite dish cable right into thick,

crawling goo and began claiming

that he could see all the shows at

once in the paint, not that Shirley

could see them herself.

Even so, her opinion of Stuart

drifted up a notch when she began

getting cute, flirty instant messages

on her cell phone while she was

working in the basement. Even

though Stuart wouldn’t admit

sending them to her, who else could

they be from?

And then two big issues came to a

head.

The first issue was that Shirley’s

mother wanted to meet Stuart right

now. Somehow Shirley hadn’t told

her mother yet that her boyfriend

was twenty years older than her,

and not Asian. Binh wouldn’t take

no for an answer. She was coming

down the next day. Cousin Vinh was

going to drive her. Shirley was wor-

ried that Binh would make her leave

Stuart, and even more worried that

Binh would be right. How was she

ever going to balance the marriage

equation?

The second issue was that, after

supper, Stuart announced that

Angelica was going to show up the

day after tomorrow, and that maybe

Shirley should leave for a while.

Stuart had been married all along!

He and Angelica had fought a lot,

and she’d been off visiting relatives

in Shanghai for the last eight

months, but she’d gotten wind of

Stuart’s big score and now she was

coming home.

Stuart passed out on the couch

early that evening, but Shirley stayed

up all night, working on her paint

formulas. She realized now that the

instant messages had been coming

from the Aint Paint itself. It was

talking to her, asking to become all

that it could be. Shirley worked till

dawn like a mad Dr. Frankenstein,



not letting herself think too deeply

about what she planned. Just before

dawn, she added the final tweaks to a

wad of Aint Paint bulging out above

the couch. Sleeping Stuart had this

coming to him.

Outside the house a car honked.

It was Binh and Vinh, with the sun

rising behind them; skinny old Vinh

was hoping to get back to Oakland

in time not to be late for his mainte-

nance job at the stadium. As Shirley

greeted them in the driveway, cov-

ering her smile with her hand, her

cell phone popped up another mes-

sage. “Stuart gone. Luv U. Kanh Do.”

Inside the house they found a new

man sitting on the couch, a cute

Vietnamese fellow with sweet fea-

tures and kind eyes. One of his arms

rested against the wall, still merged

into the crawling paint. He was

wearing Stuart’s silk robe. Shirley

stuck her tongue out so far it

touched her chin. The new man

didn’t mind. She pointed her little

finger toward a drop of blood near

his foot. His big toe spread like putty

just long enough to soak the spot

up. And then the new man pulled

his arm free from the wall and took

Shirley’s hand.

“I’m Kanh Do,” he told Shirley’s

mother. “We’re engaged to be mar-

ried and we’re moving to Berkeley

today!”





C H A P T E R T H R E E

Life’s Lovely Gnarl

THE AMAZING PART ABOUT LIFE is that it keeps itself going on its own. If

anyone could build a tiny, self-guiding, flying-insect robot, he or she would

be a hero of technology. And now imagine if the robot could make copies of

itself! A fly builds flies just by eating garbage. Biological life is a self-organ-

izing process, an endless round that’s been chorusing along for hundreds of

millions of years.

What is life? An universal automatist might say that life is the result of

three kinds of computation.

Life = Reproduction + Morphogenesis + Homeostasis.

And once you have a population of organisms, two additional kinds of

computation come into play.

Life → Ecology + Evolution.

In this chapter, we’ll have a section on each of these fives styles of biolog-

ical computation.

• 3.1: Wetware. The most basic living computation is the one

carried out by reproduction. An organism’s appearance and

behavior are largely coded by the genetic program of its DNA.



• 3.2: The Morphogenesis of a Brindle Cow. Morphogenesis means

“growth of form.” An organism’s embryonic development—and

continuing growth—is a computation that generates the shape

and structure of the organism.

• 3.3: Surfing Your Moods. Living systems have the property of

homeostasis, which means “staying the same.” An organism

embodies an ongoing feedback computation as it takes in

nourishment and carries out self-modifying behaviors.

• 3.4: Gnarly Neighbors. A region’s or a planet’s organisms

weave together into ecologies, that is, into networks of inter-

acting computations, with the population levels fluctuating

chaotically.

• 3.6: How We Got So Smart. Evolution is a computation that

takes a starting population in combination with environ-

mental inputs and produces successive populations with

ever-changing properties. We also discuss the related notions

of computerized search and genetic algorithms.

I squeeze in an extra section right before covering evolution.

• 3.5: Live Robots. In the field known as artificial life, scientists

try to develop systems to mimic the richness of biology—the

dream is, of course, living machines. But why have these

efforts achieved so little?

Do keep in mind that viewing life as a maze of computations is not meant

to be reductionistic, not meant to imply that life is dull and soulless. Nature’s

rich and gnarly computations are carried out by living organisms, which are

considerably more intricate than our buzzing digital machines. Life’s compu-

tations are wholly unfeasible for emulation by any of our current technolog-

ical devices.

By way of gaining a hold on life’s slippery workings, I’ll be discussing each

of the five computation styles at high, medium, and low levels, as indicated

in table 6.
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3.1: Wetware

All of the living organisms on Earth have compact sets of genes, with a full

set of genes being known as a genome. Well before the exact biochemical

basis of the gene was known, biologists were able to formulate descriptive

rules about how the genes—whatever they were—could account for inherited

characteristics.

The big win in growing a body according to a genome’s instructions is that

this makes it easy for an organism to reproduce. Instead of having to copy its

entire self, the organism need only make a copy of its relatively small genome,

bud off a fresh cell for the copied genome to live in, and then let the new cell—

or egg—grow its own body. Cell division is the high-level rule used by repro-

duction, and the key aspect of this process is the copying of the genome.

Our Gaian organisms have genome copying built right into their DNA. This
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Table 6: Living Computations

The five kinds of living computation appear in the five columns of this table; they’re dis-
cussed in, respectively, sections 3.1–3.4 and 3.6. 

Reproduction Morphogenesis Homeostasis Ecology Evolution

Computed by A single cell A mass of cells An organism An ecosystem A species of
in the world of species individual 

organisms

High-level Cell division Cell-level rules Organism-level Rules Adaptation
rule and DNA like activator- rules like interrelating

copying inhibitor temperature population 
systems regulation sizes and 

growth rates

Medium-level Protein Gene Cell Symbiosis Natural
rule assembly expression interactions selection,

by ribosomes genetic
variation

Low-level The cell’s Three-dimentional  Autocalytic Biochemical Morphogenesis
rule autocatalytic geometry chemical interactions producing the

closure of proteins reactions with body from the
environment genome



is due to the celebrated fact that DNA has the form of a double helix made of

two complementary strands of molecules. Each strand encodes the entire

information of the genome. If the DNA molecule in one of your cells were

stretched out, it would be over a meter long. It only fits into the cell because

it’s twisted up like a particularly kinky telephone cord, with level upon level

of twisting and folding.

The building-block molecules in the long DNA strands are called bases;

they’re simple chemicals found in every cell. As it happens, a DNA strand

uses only four kinds of bases, and each base has a unique complementary

base that it will bond with. If you could flatten it out, a human DNA molecule

would look a bit like a ladder; a long strand of bases on either side, and with

the two strands cross-linked in pairs, base to base. During reproduction the

ladder unzips lengthwise, leaving two free strands. And then each strand’s

open base-molecule bonds attract matching base molecules, which are rather

freely available. The result is that each strand assembles a new complemen-

tary strand in place; and thus the original DNA molecule turns itself into two.

In the time it takes to print a page or two of text, the genome has reproduced.

There’s a reason why slippery, analog life has an essentially digital pro-

gram: Digital information has stability. It takes a big effort to change one

base molecule to another.

If all DNA did was reproduce itself, it wouldn’t be much use. But it has

another purpose as well. It codes up instructions for assembling the various

proteins your body needs for a biochemically satisfactory life. The importance

of proteins stems from the fact that a living cell’s activities are carried out by

intricately folded protein molecules—soft machines, if you will.

Let’s say a bit about reproduction’s medium-level computation. This is the

process DNA uses to create the proteins. Certain regions of the DNA serve as

lists of instructions for assembling particular proteins. These protein-coding

strings are the genes. A typical gene runs for a length of two thousand

bases—out of the DNA’s three billion bases. In a living cell, gene-sized

swatches of the DNA are continually being copied to messenger molecules

called mRNA. Special molecules called ribosomes read along the mRNA and

interpret the base sequence as instructions about how to assemble intricate

protein molecules.
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Some analogies. The mRNA strings are recipes, and the ribosomes are cooks.

The mRNA strings are Turing machine tapes, and the ribosomes are Turing

machine heads. The mRNA strings are computer programs, and the ribosomes

are microprocessors—no, make that nanoprocessors.

It’s hard to believe that something so explicitly computer-like takes place

in your cells. From a universal automatist point of view, the existence of our

digital DNA is almost too good to be true. It makes an organism seem very

much like the output of a computer program.

But it’s happening all the time. Somewhere in your body, a cell is dividing.

And existing cells are continually replenishing their supplies of proteins: trans-

ferring DNA codes to messenger mRNA and passing the mRNA through the

processor-like ribosomes. As a macabre proof of the ubiquity of this process, we

learn that amanita mushrooms are lethal because they block the action of

mRNA, leaving the cells to exhaust their specialized, short-lived proteins.

Because DNA is software in a watery living environment, people often speak

of it as wetware.

The first Polynesians to get as far as Hawaii came there by accident,

and then they had to fight their way back. They couldn’t stay because

they hadn’t brought the right wetware. They didn’t have the taro-

cuttings and yams and women that they needed to stay and grow

their world. So they went back and got the wetware and came again.51

We have to be a bit careful in pushing the computer analogy. Keep in mind

that the DNA doesn’t create the organism on its own. The DNA needs a cell

environment, with its free-floating bases, its messenger RNA, and its ribo-

somes. And even granted all of this, the shapes that an organism grows into

have much to do with the large-scale interactions among the cells.

Rather than viewing DNA as an organism-assembling computer, it’s more

realistic to think of the DNA as a set of parameters that are fed into an

existing program. If I tweak the numerical parameters to a computer program

that generates, say, a computer game, then I’ll find that for different values

the game becomes easier or harder to play—but it’s still much the same

game. Or if I tweak the parameters to a computer program for a fractal
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graphic, I find that different values produce different-looking patterns—but

the patterns have a family resemblance. DNA is more like a tweakable param-

eter rather than being like actual computer code. Its functionality depends on

the low-level web of chemical reactions taking place within the cell.

The biologist Stuart Kauffman has written some very engaging books about

the biochemistry of cells. In each cell any number of chemical reactions are

taking place. Certain chemicals promote or catalyze other reactions. And

when a network of chemical reactions promotes itself, it’s called autocat-

alytic. Cells contain networks of autocatalytic chemical reactions that keep

themselves going.

Life, at its root, lies in the property of catalytic closure among a col-

lection of molecular species. Alone, each molecular species is dead.

Jointly, once catalytic closure among them is achieved, the collective

system of molecules is alive.

Each cell in your body, every free-living cell, is collectively auto-

catalytic. No DNA molecules replicate nude in free-living organisms.

DNA replicates only as a part of a complex, collectively autocatalytic

network of reactions and enzymes in a cell.52

Kauffman has shown that, given enough diversity among a system’s mol-

ecules, autocatalytic activity will spontaneously occur. It’s not that there’s

one magic recipe of organic compounds that produces all the various proteins

that a cell needs. It’s more that, as systems get more complex, they go

through a kind of phase transition, and autocatalysis spontaneously occurs.

The cell lights up with an ongoing class four computation.

Once we begin to view reproduction and growth as kinds of computation, we

can look for biological applications for some of the principles we already know

about electronic computation.

Some of the analogies will be misleading. For instance, our painful experi-

ences with chips-and-wires computers gives us the impression that compu-

tations are fragile and prone to jam. But DNA isn’t fragile at all. This is why

it’s actually quite easy to be successful at genetic engineering—also known

as genomics. Natural growth is robust enough that people can recklessly

hammer on the DNA without breaking it.
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Unlike most computer code, DNA remains viable even when big chunks are

cut out or spliced in. It’s fairly tamper-proof, and a lot of it isn’t even used by

the genes. As it turns out, a human body uses perhaps only a hundred thou-

sand proteins. And if a protein-coding gene uses about two thousand bases,

that means that only about two hundred million of our DNA bases are being

actively used. So 80 to 90 percent of a DNA molecule’s three billion bases are

“junk DNA” that isn’t used in any obvious way.

A computational lesson that is applicable to genomics is the principle that

complex computations are unpredictable. The eventual output of a given DNA

strand is effectively impossible to predict by any means short of putting the

DNA into a living cell and seeing what grows. Although we can predict the

sequence of amino acids that the DNA codes can string together as proteins,

predicting the three-dimensional structures that the proteins fold into is

exceedingly hard. Add to this the facts that each cell’s environment deter-

mines which parts of the DNA will be activated, that different cells behave dif-

ferently, and that the cells affect their neighbors—and we begin to see that

it’s impractical to predict in advance how a given mutation to an egg cell will

affect the appearance of the full-grown organism.

Most of us intuitively understand that

computational processes are highly unpre-

dictable, and this makes us uncertain

about the safety of genomics. In 2001, while

researching a science-fiction story called

“Junk DNA” (see figure 54) that I was

writing with Bruce Sterling, I spent some

time at a conference in Tucson with genomi-

cist Roger Brent, who feels that the era of

wetware engineering has only just begun.

Looking out at the landscape, Brent

remarked, “Pretty soon, every plant you see

will be tweaked.” This made me uneasy, but

Brent and his fellow genomicists pointed

out to me that nature is continually testing

out new combinations of genes. For his

part, Brent feels that the tools for genomic
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Figure 54: Junk DNA Cover

Our story appeared in the January 2003
issue on pages 16–40.



manipulation should be made open source, like Linux! He reasons that it’s

better for the public at large to manipulate the genome than to let a small

coterie of business interests take control.

Since I mentioned the story “Junk DNA,” I might as well share the story’s

dramatic ending with you. In our tale, a mad scientist named Tug Mesoglea

and a Texan financier named Revel Pullen are doctoring DNA so as to bio-

engineer organisms into any desired kind of form. And then they find a way

to stimulate their junk DNA genes to become active. Here’s a condensed ver-

sion of the final scene, which takes place with their fellow genomicist Ver-

uschka watching the two men.

Odd ripples began moving up and down along their bodies like ghost

images of ancient flesh.

“What’s that a-comin’ out of your rib cage, Tuggie?” crowed Revel.

“Cootchy-coo,” laughed Tug, twiddling the tendrils protruding

from his side. “I’m expressing a jellyfish. My personal best. Feel

around in your genome, Revel. It’s all there, every species, evolved

from our junk DNA right along with our super duper futuristic new

bodies.” He paused, watching. “Now you’re keyin’ it, bro. I say—are

those hooves on your shoulder?”

Revel palpated the twitching growth with professional care. “I’d be

reckoning that’s a quagga. A prehistoric zebra-type thing. And,

whoah Nellie, see this over on my other shoulder? It’s an eohippus.

Ancestor of the horse. The cowboys of the Pullen clan got a long rela-

tionship with horseflesh. I reckon there was some genetic bleedover

when we was punchin’ cattle up the Goodnight-Loving Trail; that’s

why growin’ these ponies comes so natural to me.”

“Groink,” said Tug, hunching himself over and deforming his

mouth into a dinosaur-type jaw.

“Squonk,” responded Revel, letting his head split into a floppy

bouquet of be-suckered tentacles.

The distorted old men whooped and embraced each other, their

flesh fusing into one. The meaty mass seethed with possibilities,

bubbled with the full repertoire of zoological forms—with feelers,

claws, wings, antennae, snouts; with eyes of every shape and color
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winking on and off; with fleeting mouths that lingered only long

enough to bleat, to hiss, to grumble, to whinny, screech, and roar.

A high, singing sound filled the air. The Tug-Revel mass sank to

the floor as if melting, forming itself into a broad, glistening plate.

The middle of the plate swelled like yeasty bread to form a swollen

dome. The fused organism was taking on the form of—a living UFO?

“The original genetic Space Friend!” said Veruschka in awe. “It’s

been waiting in their junk DNA since the dawn of time!”

The saucer briefly glowed and then sped away, though not in any

direction that a merely human being could specify. It was more as if

the saucer shrank. Reorganized itself. Corrected. Downsized. And

then it was gone from all earthly ken.

No wonder people feel uneasy about genomics!

3.2: The Morphogenesis of a Brindle Cow

Morphogenesis studies how organisms compute their forms. In the words of

my ancestor Georg Hegel:

A building is not finished when its foundation is laid; and just as little

is the attainment of a general notion of a whole the whole itself. When

we want to see an oak with all its vigour of trunk, its spreading

branches, and mass of foliage, we are not satisfied to be shown an

acorn instead. In the same way science, the crowning glory of a spiri-

tual world, is not found complete in its initial stages . . . it is the reward

which comes after a checkered and devious course of development, and

after much struggle and effort.53

At a purely descriptive level, we have abstract laws of form to describe the

patterns that plants and animals are observed to take. These laws of form have

no explanatory power; they’re just methods of categorizing biological shapes.

One example of a law of form would be an iterative algorithm for generating a

nested pattern of branches. Another law of form would be the observation that

we find similar bone structures in a fish’s fin, a bat’s wing, a chicken’s wing, a
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dog’s foot, a monkey’s paw, and a human hand. This type of investigation is

known as comparative morphology. But it isn’t morphogenesis. Morphogen-

esis is about the process by which organisms actually create themselves.

Organic morphogenesis can be thought of as a nested chain of computations.

High-level computational rules for morphogenesis have to do with how a

mass of cells differentiates itself—sending out a branch or a limb, laying

down stripes or spots, curving inward to make a body cavity or an eye. Cer-

tain proteins activate changes in the cells, other proteins inhibit the changes,

and the interaction between the two are called activator-inhibitor systems.

Activator-inhibitor systems can be thought of as computations carried out by

continuous-valued cellular automata (CAs) in which the “cells” are the actual

biological cells of the organism.

At the medium level of morphogenetic computation we can look at the

process by which certain proteins become active inside a cell. As the presence

of proteins has to do with which genes are active in that cell, this process is

called gene expression.

Within a given cell, not every possible protein is being made. Each gene in

a cell is turned off or on by gene-specific proteins called repressors and

inducers. But which repressor and inducer proteins are present in a cell is

determined, in turn, by which genes are active. It’s a networked feedback

process, with various possible stable states. A cell’s convergence upon one

particular set of active genes is a computational process. Here again there is

a role for Stuart Kaufmann’s notions about autocatalytic networks, as men-

tioned in the previous section.

At the lowest computational level, the morphogenetic effects of the activator

proteins have to do with the actual shapes of the molecules. A protein might

act either as a building material or as an enzyme that catalyzes some chem-

ical reaction. Simply stating the atomic formula for the protein tells us very

little; what matters is how it’s coiled up in three-dimensional space. As a ribo-

some strings together chains of small molecules to make a protein polymer,

the molecule twists itself up in a process that’s a physical computation driven

by attracting and repelling forces.

In the rest of this section we’ll focus on the high-level morphogenetic com-

putations carried out as activator-inhibitor systems. These rules explain how

a mass of cells can develop differently behaving regions. Why does an arm
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bud out from a certain location on an embryo?

Why does a new twig stem out of one particular

spot? How does a leopard’s skin manage to

produce its not-quite-regularly-spaced patches?

How does a man’s chin skin decide where to

send out whiskers? All of these choices are

determined by activator-inhibitor systems,

which lend themselves very well to being simu-

lated as continuous-valued CAs.

The birth of activator-inhibitor-simulations

notion goes back to 1952, when Alan Turing

(he of the Turing machines) published his

groundbreaking paper, “A Chemical Basis for

Morphogenesis.” His idea was to suppose that

cell behaviors are affected by several special

morphogens—where we’ll take “morphogen”

to mean any biochemical that affects cell

behavior.54

In the simplest interesting case the cells are affected by two morphogens,

called the activator and the inhibitor, as mentioned above. The activator

morphogen might stimulate, say, branching behavior; that is, an area where

the cells have a lot of activator morphogen might stiffen, bulge out, and

begin a branch. Or, in a different model, the activator might stimulate pig-

ment production; that is, an area with a high concentration of activator

might correspond to a dark spot in an animal’s fur. Or, yet again, an acti-

vator’s concentration might make the difference between some cells turning

into either muscle cells or bone cells, and a bone might arise, say, along a

line of high-activator cells.

The inhibitor morphogen’s role is to reduce the concentration of the acti-

vator by hastening its decay or blocking its creation. The inhibitor, if you will,

fights against the activator. The shifting battle-lines between activator and

inhibitor lay out regions of morphological differentiation.

Figure 56 was made with the CAPOW cellular automaton program, and

illustrates an activator-inhibitor rule that produces a pattern that might be
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Figure 55: A Spot on a Dog

Her name is Pitch. She lives with my
brother-in-law near Geneva. “That
is such a beautiful spot,” opines my
niece Stella.



thought of either as leopardlike pigmentation spots or, if you think of it as a

zoomed-in view, as the spacing of the hairs upon a mammal’s skin.55

Viewed as a computation, an activator-inhibitor system is a set of rules

that specify how to compute the successive levels of each morphogen’s con-

centration. We start with specified levels of activator and inhibitor, apply our

rules to compute the next value of the levels, reapply the rules to find the

levels after that, and so on, carrying the computation onward through time.

Each individual morphogen’s rate of change may be affected by the levels

of the other morphogens. Rules that typically come into play include the

following:

• Morphogen rules. A morphogen may reduce the growth rate of

another morphogen, as when an inhibitor fights against an

activator. Often a morphogen may catalyze its own produc-

tion. And most morphogens will decay with time.

• Cell rules. A cells may continually produce a certain amount

of a given morphogen, although as a morphogen’s concentra-

tion approaches a certain value, the cell may become satu-

rated with that morphogen and refuse to let the value increase

any further.
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Figure 56: Spots Generated by a Rule Using an Activator and an Inhibitor

Two views of a two-dimensional continuous-valued CA simulating a activator-inhibitor
process. The two-dimensional view on the left shows the activator concentration as
shades of gray, and the three-dimensional view on the right shows the activator con-
centration as a height.



• Tissue rules. Morphogens diffuse from cell to cell, that is, a

cell will tend to average a morphogen’s level with the corre-

sponding morphogen levels in the neighboring cells. The rate

of the diffusion depends on the individual morphogen.

In his 1951 paper, Turing specified a few rules for an activator-inhibitor

system and did a cellular-automaton-style simulation of its change over time.

He divided a sheet of paper into a low-resolution grid, put in some random

start values, and, aided by a primitive electronic computer, calculated the

successive concentrations of the morphogens. After several hours of number

crunching, he produced an image resembling the spots on the side of a

brindle cow.

At this point I really have to pause to tell you how colorful a person Alan

Turing was. Not only did he formulate the beautifully simple Turing-machine

definition of universal computation, he also used his construction to prove that

there’s no simple decision procedure for detecting mathematical truths. He

came up with a classic criterion for deciding if a machine is intelligent: According

to the so-called Turing Test, a computer program might in practice be called

intelligent if conversing with it via e-mail feels to most people like conversing

with a human. In the early 1940s, he worked at the British wartime cryptana-

lytic headquarters in Bletchley Park and played a crucial role in cracking the

German military’s Enigma code, thereby saving untold thousands of lives. In

the late 1940s, he was instrumental in the building of the first electronic com-

puters. And in the early 1950s he turned to morphogenesis.

Turing’s life ended in a bizarre fashion.

He was apparently given to bringing home

sexual partners he met in the streets. In

1952, one of these men stole Turing’s

watch, and Turing took the (to him) logical

step of reporting this to the police. Once

the police grasped the situation, Turing

was put on trial for “gross indecency.” He

made no serious effort to defend himself

as, in his opinion, there was nothing crim-

inal about his having sex with a man. He
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was found guilty and was systematically persecuted by the government of the

country he’d helped save. In 1954 he was found dead with a half-eaten

cyanide-laced apple. In his despair did Turing become both Snow White and

her wicked stepmother? The more paranoid among us might even wonder if

British intelligence agents murdered him.

Turing’s simulations of activator inhibitor systems are, again, what computer

scientists call continuous-valued cellular automata. Of course living cells aren’t

squares in a grid, but the rectilinear geometry is pretty well washed away by the

fact that we’re averaging together continuous numbers. Cellular automata let us

get an idea of nature’s options by experimenting with simulations.

The patterns shown in figure 58 tend to settle down and remain in the configura-

tions shown, and thus can all be thought of as examples of class one or perhaps

class two computations that converge upon a particular fixed state or cycle.

There are many activator-inhibitor systems that never do settle down. In

two dimensions we can generate endlessly churning patterns of scrolls,

which are often known as Belousov-Zhabotinsky (or BZ) patterns after two

Soviet chemists who first produced these patterns, not in a computer, but in
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Figure 58: 
Activator-Inhibitor Systems

Depending on the relative diffusion rates of the activator and the inhibitor,
an activator-inhibitor system can generate different classes of pattern,
including spots, filigrees, stripes, and matures of spots and stripes.
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Figure 59: 
Scrolls Generated by Activator-Inhibitor Rules

Each row shows a two-dimensional and a three-dimensional view of a single rule. The
parameter settings are different in the two rows; also the rule on the bottom row is
based on a larger cell space. The rule on the bottom row is closer to turning into patchy
seething—it’s closer, that is, to the border between class four and class three behavior.
If you flip back to Section 1.8: Flickercladding you’ll find other images of CA scrolls. 

a petri dish of chemicals in a laboratory. Figure 59 shows two of my CAPOW

simulations of such a rule.

I mentioned before that different morphogens have different diffusion

rates. One reason for this is that if a given morphogen corresponds to a

smaller, more mobile molecule, then we will tend to see a higher diffusion rate

for this morphogen, whereas larger molecules have lower diffusion rates.

It turns out that relative diffusion rates are a significant factor for deter-

mining whether an activator-inhibitor system produces stable dots and

stripes, gnarly moving scrolls, or a bouncy class three chaos with random

peaks moving up and down. In the stable patterns, the diffusion rate of the

inhibitor is high and the diffusion rate of the activator is low, but in the scroll



patterns, both diffusion rates are low. The chaotic cases seem to occur when

both diffusion rates are high, and particularly when the activator spreads

faster than the inhibitor.

I summarize these observations in table 7, relating the distinctions to Wol-

fram’s four computation classes.
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Class Relative diffusion rates of Behavior
activator and inhibitor

1 Activator spreads slower Converge on a stable pattern such as a
than inhibitor. single color or on a constant pattern of

spots or stripes.

2 Activator and inhibitor Generate periodically changing patterns 
spread at about same rate. such as moving stripes or simple 

nonchaotic scrolls.

4 Activator spreads just a Generate a loose and unpredictable 
bit faster than inhibitor. scroll pattern, right on the border of 

breaking into patches.

3 Activator spreads much Produce chaotic disorganized patches 
faster than inhibitor. that come and go and never settle down. 

At the extreme end, generate completely 
formless seething.

Table 7: The Four Computation Classes and Activator-Inhibitor Rules

Might these observations be generalized? Many psychological and social

systems are based on interactions between activators and inhibitors of one

kind or another. In the brain, for instance, some chemicals encourage neu-

rons to fire, but others inhibit them. And in society, it might be that good

news activates people to do things, but bad news inhibits them from doing

much at all. What if in these arenas the patterns that emerge are also

affected by the relative rates at which the activator and inhibitor spread?

To simplify the discussion, let’s lump together the class two and class four

cases. So then we have three main cases, depending on whether the activator’s

diffusion rate is much less than, roughly equal to, or much greater than the

rate at which the inhibition spreads. And in these three cases we observe,

respectively, isolated patches of activation, moving scrolls or bands of activa-

tion, and seething chaos.

So now let’s try applying this to the human brain. Let’s think of the spread



of activation as the creation of new thought associations, and let’s think of

the spread of inhibition as the closing down of thoughts.

• If you inhibit new thoughts too strongly, you’re left with a few

highly stimulated patches: obsessions and fixed ideas.

• If you manage to create new thought associations at about the

same rate you inhibit them, you develop creative complexity.

• Too high a rate of thought activation leads to unproductive

mania.

That seems reasonable. Now let’s try it on society. As I mentioned, I’ll try

letting my two morphogens be good news and bad news, but certainly one

might try using some other opposing pairs of social forces.

• If bad news is more widely disseminated than good news,

society breaks into disparate clans and cliques, each focused

on a particular set of beliefs. (As in today’s USA.)

• If good and bad news flow at equal rates, society is dynamic,

crisscrossed with waves of fads and opinions.

• If there’s very little discouraging news at all, society can move

toward an anarchic distribution of beliefs where very few

people agree.

I do recognize that this style of analysis shades into Just So stories that

simply reinforce one’s natural belief that balance is a good thing. Even so, the

computational approaches to psychology and sociology can open up some

interesting paths. We’ll say much more about these subjects in CHAPTER FOUR:

Enjoying Your Mind, and CHAPTER FIVE: The Human Hive.

But now let’s get back to biology. So far, I’ve mainly talked about two-dimen-

sional activator-inhibitor systems. In three dimensions, activator-inhibitor

systems seem able to account for how a bud of cells can form a bone along

its central axis and then have the bone either branch or split across its

length into segments—eventually resulting in something like your hand. The

ongoing branchings of a tree, in fact, serve as a nice example of a class four

morphogenetic system—it’s orderly but it doesn’t repeat itself.
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Looking within yourself, your brain’s electrochemical behavior is surely a

class four activator-inhibitor process that could be thought of as a kind of

morphogenesis. From the viewpoint of spacetime, an organism’s “form”

includes its behavior patterns as surely as the pigmentation patterns of the

being’s skin. My thoughts are forms that my body grows.

Once we begin to think of morphogenesis in this fashion, we can begin to

see a flower as a computational output, or a pile of dead sticks as a pile of

computations.

Perhaps the most famous class four activator-inhibitor pattern is a one-

dimensional rule often discussed by Stephen Wolfram and Hans Meinhardt.

This rule is expressed in the patterns found on cone shells. The growing lip

of the shell is regarded as a row of cells, with each cell containing activator

and inhibitor morphogens whose concentrations vary according to activator-

inhibitor systems. As time goes on, the lip of the shell grows—the growth

direction would be down the page in figure 60. We can think of the shell’s

default color as being dark, with “bumps” of white pigment forming with rel-

ative abruptness along the lip, then slowly melting away. All of this can be

orchestrated by activator-inhibitor systems.

Exploring the mechanisms of morphogenesis, we discover the surprising

fact that the DNA doesn’t matter as much as we might have expected. Bio-

logical shapes are natural forms that growing masses of cells like to take.
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Figure 60: 
A Cone Shell Sitting on a 

CA Simulation of Its Pattern

From the cover of Hans
Meinhardt, The Algorithmic
Beauty of Sea Shells (Berlin:
Springer-Verlag, 1995).



If we know that, for instance, the skin pigmentation pattern of a creature is

determined by an activator-inhibitor rule, then there are in fact only a certain

range of patterns that can appear. The physics and chemistry of the growth

process predetermine the range of shapes that the genes can select from.

An analogy. If you open a sluice gate and send water down a ditch, you’ll

see waves of a certain general shape. These waves aren’t coded in detail by

the rocks in the ditch; they’re simply the kind of pattern that emerges in a

ditch of rushing water. And, as suggested in figure 61, the gnarls and swirls

in a tree trunk are also characteristic patterns for a certain complex compu-

tation. It would be folly to think the DNA explicitly codes the details.
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Figure 61: Gnarl in Water and Wood



By the same token, the spots on a butterfly’s wings aren’t coded in detail

either. The spots arise from an activator-inhibitor process that’s influenced

by DNA-coded proteins.

Once again: DNA isn’t a blueprint, it’s a set of tweak parameters.

Although our electronic computers allow for both blueprint-style and

tweak-style description files, the former are more familiar.

Examples of blueprint-style descriptions include music files, photographic

images, and text files. When viewing these files, you’re loading precise

descriptions of, respectively, sounds, images, or words.

An example of a tweak-style parameter is a word that you type into a

search engine. You get back a listing of Web sites. The listing is a property of

the Web and of the page-ranking system of the search engine; the listing is

not explicitly coded by the letters of the topic word that you type in. The word

is, if you will, like a rock that you throw into a stream, and the listing is like

the ripples that appear.

Another example of tweak parameters occurs when you use the “light

show” feature of music player software. Most music players come with a

variety of visualization programs that convert a stream of music into a more

or less psychedelic sequence of shapes and colors. The musical sounds are

used as supplemental tweak parameters fed into the light show program. The

effect is less than mind-blowing, as present-day light show programs draw on

very limited ranges of images and ignore most of the musical information.

This last example suggests why the range of biological shapes that we see

is somewhat limited as well. The “light shows” of activator-inhibitor processes

convert the “music” of DNA into biological forms. But the activator-inhibitor

reactions can only generate certain kinds of shapes, and they ignore a lot of

the information in the DNA.

In How the Leopard Changed Its Spots: The Evolution of Complexity, Brian

Goodwin argues that the major features of plants and animals are generic

forms that arise naturally in three-dimensional tissues made up of cells that

are subject to activator-inhibitor reactions of various kinds.

The main proposal is that all the main morphological features of

organisms—hearts, brains, guts, limbs, eyes, leaves, flowers, roots,

trunks, branches, to mention only the obvious ones—are the emergent
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results of morphogenetic principles. These structures vary within

different species, and it is in these small-scale differences that adap-

tation and natural selection find a role.

. . . Biology [could] begin to look a little more like physics in

having a theory of organisms as dynamically robust entities that are

natural kinds, not simply historical accidents that survived for a

period of time. This would transform biology from a purely historical

science to one with a logical, dynamic foundation.57

We have a dialectic triad here. The materialistic thesis is that the code of

the DNA describes the structure of organisms. The theistic antithesis is that

most randomly generated DNA strings would not code for viable living enti-

ties, so therefore a God had to design organisms by hand. The universal syn-

thesis is that, in the gnarly computing environment of living cells and tissues,

it’s not actually so hard for DNA to produce lifelike shapes.

In closing this section, let’s say a word about the computational architecture

we find in morphogenesis. In this context it seems natural to view the living

plant or animal as a computation made up of the separate processes going

on in its cells. In viewing morphogenesis as a computation, we end up with a

kind of cellular automaton, as drawn in figure 62.

The cells influence their nearest neighbors, with effects propagating from

cell to cell. By releasing morphogens, for instance, a cell may change its

neighbors’ patterns of gene expression.

I draw thick gray lines from each processor to its associated memory block

to indicate that a living cell has lots of information in it, and that, viewed as

a processor, an individual cell as a whole has access to all of its information.

I draw the memory units for the processors in different shapes to indicate that

the cells vary greatly, depending on which

of their genes are being expressed—a skin

cell acts differently from a brain cell. In

this sense, an organism’s computation

fails to be homogeneous, although in a

deeper sense, since each cell in an

organism is using the same biochemistry
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and the same DNA, the computation is homogeneous. The diversity of the indi-

vidual cells can be regarded as distinct states of the same underlying “stem” cells.

3.3: Surfing Your Moods

Living organisms are self-regulating and robust. They keep themselves run-

ning, and if something happens they recover. Like the other biological com-

putations, homeostasis operates at several levels.

You know to come in out of the rain. If you’re cold, your body shivers to

make you warm. When the carbon dioxide concentration in your lungs gets

high, you breathe in fresh air. When an infection makes you sick, your white

blood cells hunt down the pathogens. If one of your cells needs more of a cer-

tain protein, the cell replenishes its supply.

At the high level, we have our behavior patterns—some conscious, some

unconscious, some hardwired into our bodies.

At the medium level are the networked behaviors of the body’s society of

cells—I’m thinking of things like blood cells eating bacteria and forming clots

to stanch bleeding.

At the low level, organic life is a skein of biochemical reactions. The

processes within the cells are, as I mentioned before, self-perpetuating or

autocatalytic. Autocatalytic reactions produce by-products that pull fresh

molecules into the loop. The cycle of photosynthesis is an intricate example

of an autocatalytic reaction, and the chemical Belousov-Zhabotinsky scrolls

are simple examples.

Many homeostatic processes use feedback, that is, the system readjusts itself on

the basis of incoming data. Picking up a cup is a particularly clear example of

feedback: You move your arm so as to reduce the visible distance between hand

and cup. If necessary you can do it with your eyes closed—in this case you’re

doing feedback on a mental model of the cup and hand that you maintain inside

your head. And for the fine-tuning you have your sense of touch.

Most of my homeostatic processes aren’t under my conscious control,

which is probably a good thing. I find it all too easy to goof up the processes

that I control—to eat when I’m not hungry, to stay at the computer when my

back hurts, or to smoke a cigarette that I know will give me a headache and

make me wheeze.
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It seems a kind of miracle that

living systems work at all. But it’s

natural for them to function.

Homeostasis is a hierarchy of self-

adjusting computations, with no

frantic central controller trying to

figure everything out.

In analyzing homeostasis as

computation, we do well to think

at a systemwide level. Under this

view, an organism is running a

variety of concurrent parallel processes—alimentary, respiratory, sensory,

cognitive, reproductive, locomotive, etc. That is, you can chew gum, breathe,

look at the clouds, think about your weekend plans, long to get your partner

into bed, and walk—all at the same time. These homeostatic processes act

upon the single common shared data set that is the body, with each process

able to touch any region of the data. I represent this in figure 63, again

drawing thick gray lines to indicate that the processors have access to each

part of the large shared memory that is the body.

We find the usual four classes of computations arising out of homeostasis.

In the simplest case, a homeostatic process converges in upon its goal and

stays there—effectively carrying out a class one computation. If you’re tired

and you lie down and sleep, then it would seem that your body position has

entered a static configuration.

Of course it’s not really that simple.

Your body has a built-in circadian rhythm, which means that your home-

ostatic controls are tuned to alternating cycles of waking and sleeping. You’ll

sleep for a while, but then you’ll get up. Your activity cycle seems to be, at

least roughly, a class two periodic computation.

But looking closer, we remember that a sleeping person is by no means

motionless. You roll from one side to the other, responding to feedback from

your pressure-sensitive nerves. When a body area starts getting numb, you

adjust your position to free it up. The resulting behavior isn’t wild and

random—you’re not thrashing around in a fit—so it seems best to call your

sleep movements a class four computation.
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It’s my impression that it’s rare to see living organisms exhibiting pseudo-

random class three behavior on their own. The peregrinations of, say, a for-

aging beetle, have more the feel of a purposeful-looking class four calculation

than of a disorderly walk. One homeostatic process that may be class three

is the so-called hyper-mutation that’s triggered in the immune system when

it responds to an infection—a large collection of pseudorandom antibodies

are generated in the hope that one or more will bind selectively to the

infecting organism.

A homeostatic system is most likely to be able to carry out a class one com-

putation when there is only one kind of force to take into account. A creature

that simply dislikes light is able to move into a dark cranny and stay there.

A creature that wants to be in as high a concentration of sugar as possible

will settle into the sweetest zone of its environment.

As soon as a system has two drives to satisfy, it becomes difficult for

homeostasis to find a fixed point and stop. A homeostatic system with two

drives may end up carrying out a periodic class two computation—akin to a

thermostat-equipped furnace driven by the paired drives of “not too hot” and

“not too cold.” In order to satisfy an opposing pair of drives, a homeostatic

system will hunt across the equilibrium, often in a regular periodic fashion.

Once we have more than two drives, a class three or class four computa-

tion almost inevitably ensues. We can see an example of this in a physical

system with three drives: a pendulum-like attraction motion to the center

plus two repulsive forces from localized magnets (see figure 64).

Regarding humans, it’s interesting to realize that our high-level homeostatic

activity is not so rapid as we might imagine. To keep from losing your bal-

ance, for instance, you repeatedly tense and release muscles in your feet,

legs, and back. At first one might suppose that the muscles are being

adjusted in a smooth and continuous fashion, with thousands of updates per

second. But if you try to balance on one foot, you find that your muscle

updates are happening at a much more modest rate, maybe four per

second—you can measure this yourself by standing on one foot, staring at

your watch, and counting the muscle twitches in your foot that you feel over

a period of, say, ten seconds.

At the emotional level, I find it’s interesting to think of my moods in terms
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of homeostasis. In principle, I would like always to be calm, happy, produc-

tive, and cheerful. With the accumulation of years of bruising experience, I

should by now know to avoid those actions—like yelling at someone—which

are sure to have a bad effect on my mood. But my common sense can still be

overridden by a conflicting homeostatic drive—such as defending myself

against some perceived slight to my self-esteem. It’s striking how easily I’m

shunted off into new trajectories. If someone smiles at me, my mood goes up;

if the neighbor’s gardener turns on a leaf blower, my mood drifts down.

My moods continue to vary even when I do manage to be behave optimally

and think nice correct thoughts about everything. I might suppose that this

is because my moods are affected by other factors—such as diet, sleep, exer-

cise, and biochemical processes I’m not even aware of. But a more computa-

tionally realistic explanation is simply that my emotional state is the result

of a class four unpredictable computation, and any hope of full control is a

dream.
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Figure 64: A Pendulum and Two Magnets Simulating Three Conflicting Drives

On the one hand, the pendulum bob wants to move to the center of the square and stop
there. On the other hand, the pendulum bob wants to move away from two repelling
magnets. If there were only one magnet, the motion could settle in on a rhythmic
bouncing, satisfying the paired forces of gravitational pull and magnetic repulsion. But
the presence of the second magnet makes for three forces in all, which pushes the
system into chaos.58



Indeed, I sometimes find a bit of serenity by jumping out of the system and

really accepting that the flow of my moods is a class four computation akin

to the motions of a fluttering leaf. It’s soothing to realize that my computa-

tion must inevitably be gnarly and uncontrollable, and looking out the

window at the waving branches of trees can be a good reminder.

Buckminster Fuller once wrote a book called I Seem to Be a Verb.59 His

dictum brings out the fact that the individual is a process, an ongoing com-

putation. As I’ve already hinted I’ve adapted a similar motto:

I seem to be a fluttering leaf.

One shouldn’t place too high a premium on predictability. After all, the

most stable state of all is death. We stay chaotic for as long as we can, post-

poning that inevitable last output.

3.4: Gnarly Neighbors

No organism lives on its own—creatures eat each other, deal with each

other’s changes to the environment, form symbiotic partnerships, and

share genetic material. Once again we can single out three levels of ecolog-

ical computation.

At the high level, the population size of a species varies according to its

interactions with the environment and with other species. Very often we can

summarize the relations as a simple set of mathematical rules, and when we

carry out simulations of these rules, we discover interestingly chaotic pat-

terns in time and space.

Species may compete or prey upon one another, but they can also behave

symbiotically, which involves a medium level of computational ecology. In

symbiosis, different species help each other to flourish—humans are symbi-

otic with, for instance, cattle. Where you find cows, you find humans, and

vice versa. If this connection seems too loose, consider our even tighter bonds

with the bacteria who populate our guts.

Over the millennia, various species have gone beyond symbiosis to merge

physically. Many features of modern cells are thought to have once been
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independent organisms. Nuclei, mitochondria, chloroplasts, flagellae—all

may once have had lives of their own. Symbiotic and merged-in creatures

function as subcomputations of the host creature’s computation.

Actually, if you think about symbiosis, you end up at the highest possible

level: seeing our planet as covered with a single seamless web of life that com-

prises the Earth-wide superorganism called Gaia. A common reaction to the

Gaia notion is to object that we’re separate individuals. But the bacteria

living in your intestines are also separate individuals as well as being part of

a higher-level organism.

At perhaps the lowest level, creatures share DNA across species boundaries.

A very large part of human DNA, for instance, is the same as is found in

other organisms—evolution tends not to throw out old gene sequences. The

symbiotic merging of species is another cause of DNA sharing. And yet

another reason for the diffusion of DNA across the ecosystem is that bacteria

commonly swap stretches of their genomic material, quite independent of

reproduction.

The notion of bacterial DNA exchange caught my fancy while I was working

on my novel Realware. What if people did that? I imagined people taking a

drug called merge that would let their bodies melt together for a short period

of time. They’d blend together in a tub called a love puddle, their cells would

swap some genetic material, and, when they emerged, they’d be a little more

like each other than they were before. In my novel, I described a clean-living

guy whose high-maintenance girlfriend was always trying to get him to merge

with her for “bacteria-style sex.” Most unsavory.

Let’s get back to the high ground of population ecology, in which we track the

densities of species over time. As it turns out, the very simplest example of

mathematical chaos, the so-called logistic map, arises from modeling the

population level of a single species.

Let’s suppose that we have a population whose size-level x is scaled to be

a real number between a minimum of zero and a maximum of one. Level zero

would mean no individuals at all, and level one would mean as many indi-

viduals as the ecosystem could possibly maintain—a number known as the

system’s carrying capacity.
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Regarding the population of Earth, the size of the exact possible carrying

capacity is debatable and politically charged. What if we cranked the den-

sity up to one person per square meter of Earth’s surface area—I’m talking

about a rush-hour subway crowd covering all the land and all the (paved-

over) seas. This would work out to a net population size of a quadrillion (or

a million billion) people. But such a population would be quite impossible—

the accumulated heat of all those bodies would send temperatures sky-

rocketing, there wouldn’t be enough food or water or air, pollution would be

out of control, and so on. Published estimates of the most people that Earth

could support without disaster range only as high as a hundred billion, with

most of estimates clustered near the ten-billion level. So we’ll suppose that

for humans on Earth, the maximum sustainable density represents a pop-

ulation of ten billion. This means that a population of six billion can be

thought of as a density of 0.6 relative to the maximum density that we

benchmark as 1.

In order to study a population system, we can take a census at regular

intervals—say, once a year—and try to and relate the successive sizes that we

find. To simplify, we’ll just think of the times as integers, begin with a starting

population at time zero, then get a new population level at time one, the next

size at time two, and so on. The successive population levels might be called

x0, x1, x2, . . . xn, and so on.

The world itself is computing the successive xn, but it’s interesting to try

to come up with a formula that produces realistic behavior. The standard

approach is to suggest a rule NextValue that defines a new x value in terms

of the former x value as illustrated in figure 65.
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The idea is that for any randomly selected start value x0 we can generate

the successive xn by applying NextValue over and over. Thus,

x0 = any number between zero and one.

x1 = NextValue(x0)

x2 = NextValue(x1)

and so on.

The simplest model for the NextValue rule uses a parameter, A, which

relates to how rapidly the individuals reproduce.

NextValue(x) = A • x.

If we expect, for instance, the population size to double during the interval

between measurements, we let A be 2.0; if we expect the population size to

shrink by a quarter during each interval, A might be 0.75. If we start with some

base population level x0 at time zero and apply the formula n times, we get

xn = An • x0.

This rule for population growth was discussed by the British economist

Thomas Malthus in 1789 and is sometimes called Malthus’s Law. Malthus

also tried to make realistic estimates of Earth’s present and future car-

rying capacity, forcefully pointing out that famine, war, and pestilence are

the inevitable results when unbridled population growth approaches this

limit.

Relative to Earth, if we let a year elapse between each measurement, then

the growth rate A is presently 1.01—that is, Earth’s population is increasing

at about one percent a year (with the lion’s share of the growth being in

underdeveloped nations). Even at this modest rate, Earth’s population would

be fated to double every seventy years or so, because (1.01)70 is roughly two.

And if we kept right on growing at one percent a year, then by the year 2275,

we’d reach a hundred billion. But we’re fairly sure that Earth can’t really sup-

port a population that big. It’s above the carrying capacity.
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Once again, the very fact that an ecology has a maximum carrying capacity

means that, as a population size gets too close to the maximum density, indi-

viduals will die off from the effects of overcrowding, and the growth rate will

decrease. A pure Malthusian growth law can’t hold true indefinitely.

In 1845, Pierre François Verhulst, a mathematics professor at the Royal

Military College in Brussels, was trying to estimate the eventual population

of Belgium, and he came up with a modified growth law that he called the

logistic map.

Rather than using a changing value of A, Verhulst expressed the damp-

ening influence of high population densities by adding another term to the

NextValue rule, a term (1 – x) that gets closer and closer to zero as x

approaches the maximum density of one.

NextValue(x ) = A • x • (1 – x )

It will prove convenient to abbreviate the formula on the right-hand side of

Verhulst’s equation as Logistic(A, x ), and simply write his rule as follows:

NextValue(x ) = Logistic(A, x )

By the way, why did Verhulst pick the name logistic for his map? He might

possibly have been using the term in the military sense, where logistics

means providing food, shelter, and sanitation for the troops. And then the

limiting (1 – x) factor could be regarded as representing the difficult logistics

of maintaining a population at a level near the system’s maximum carrying

capacity. By the way, Verhulst predicted the eventual maximum population

of Belgium to be 9.4 million, which is reasonably close to country’s current

more-or-less steady population of some ten million.

In the 1950s, the logistic map was taken up by ecologists studying the

dynamics of fish and insect populations. The early workers tended to use

rather low values of A, which produce an xn series that homes in on a lim-

iting population value. But there was a problem. Field studies show that it’s

common for the population of a species in some given locale to exhibit large,

unpredictable population oscillations from generation to generation.

In 1973, the biologist Robert May thought of looking at logistic map
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sequences for a wider range of A

values.60 Thus he discovered one of

the earliest examples of mathemat-

ical chaos: Depending on the value

of A, the logistic NextValue rule pro-

duces wildly different kinds of pat-

terns in the resulting sequences of

xn, as illustrated in figure 66.

The first two sequences have

class one behavior and converge to

a fixed value. That is, the first con-

verges to zero, and the second to a

nonzero value. The third and fourth

sequences have class two periodic

behavior, that is, the third oscillates

between two values and the fourth

cycles through four values. The

final sequence shows class three or

class four chaotic behavior, in

which unpredictable outputs result

from a simple computation.

The immediate lesson here is that chaotic unpredictable oscillations are

just as natural as tidy predictable cycles. Although the word chaos has a dire

sound to it, an ecosystem can exhibit surprising population swings even

though its underlying computation remains orderly and deterministic. Far

from being a pathological condition, in biology, chaos is a symptom of health.

In analyzing heartbeats, for instance, an exceedingly regular pattern is a sign

of heart disease, whereas chaotic oscillations indicate soundness.

As we change our environment, we’re effectively changing the parameters

used by species population computations—parameters similar to the A of

the logistic map. When we see a dramatic and unprecedented drop in the

population of a particular species, it’s not always easy to decide if this

means the species is in fact on a path to a zero population size, or if we’re

entering a zone of possibly chaotic oscillation. By the same token, when a

species seems to be bouncing back, this doesn’t necessarily mean that its

life’s lovely gnarl

181

Figure 66 
Time Sequences from the Logistic Map

The four graphs use the A values 0.8, 2.5, 3.2, 3.55,
and 3.8, reading from top to bottom. Each sequence
plots time n on the horizontal axis and population
size xn on the vertical axis. Starting value x0 is 0.2. 



population is following a path like the second graph, and is on the way to

a new stable equilibrium. The ecosystem’s parameters may be in a chaotic

zone, and this year’s gains could well be wiped out by next year’s losses.

We’ve discussed the variation of species populations over time. What about

the distribution of species across space? Suppose we turn to cellular

automata and imagine that each cell of our simulation space holds members

of one or more species we’re interested in.

One approach is to suppose that each cell holds at most one creature, and

that at each update a creature may reproduce into an empty neighboring cell,

eat a prey creature in a neighboring cell, or be eaten by a predator creature

in a neighboring cell. In this kind of simulation, nothing much of interest

happens if you have only one or two species, but if you have three or more

species, it’s common to see self-organizing patchy patterns that may some-

times evolve into scrolls, as illustrated in figure 67.

We get a richer kind of CA-based ecological model if we suppose that each
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Figure 67: Discrete Ecology Simulations May Produce Scrolls

In these discrete-valued CA simulations, each cell is either empty or holds a single representative
of some species. On the left is a three-species variation on the computer scientist Kee Dewdney’s
Wator rule, with sharks feeding on fish who feed upon shrimp. Although it’s not something you
can see in a single frame, the Wator simulation does have a weak scroll-like behavior, with waves
of sharks following fish following shrimp. On the right is the mathematician David Griffeath’s Eat
rule with eight species, linearly ranked, and with each species preying upon the next lower-
ranking species. Perhaps illogically, in the Eat rule the very lowest species preys upon the very
highest—but remember how the bacteria killed off the Martian invaders in H. G. Wells’s War of
the Worlds!



cell may hold a small population of creatures, rather than just one individual.

In this case, we can assign to each cell one or more real numbers between

zero and a, with one number for each species. These numbers represent

scaled population levels.

In running a continuous-valued ecological simulation, we use a rule that

combines two factors.

• Growth. Each cell applies growth rules to specify the new pop-

ulation densities for the various species involved.

• Diffusion. We include diffusion because animals move around,

and plants spread themselves, too, albeit more slowly. To

simulate diffusion, each cell averages its values with the

values of its neighbors.

The chaoticians Ralph Abraham and Kunihiko Kaneko explored this idea

extensively around 1990. They spoke of their rules as cellular dynamata.

They were able to produce Zhabotinsky scrolls such as in the pattern shown

in figure 68.61
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Figure 68: Kaneko-Abraham-style Logistic Diffusion

This rule undergoes violent up and down oscillations. The domains separated by the
lines like looping strings are out of sync with each other, that is, when one domain is
high, the other is low. In order to smooth out the image, rather than showing the cells’
values, this picture displays each cell’s difference from the average of its neighbors.



Rules of this kind are exquisitely sensitive to the exact method that one

uses to blend the influences of diffusion and the logistic map. The Kaneko-

Abraham approach produces simulations that are somewhat unnatural, in

that they’re plagued by violent oscillations. In my humble opinion (as we geek

philosophers like to say), they defined their rule backward. That is, their rule

first computes the logistic map change and then averages the neighborhood

population levels.

I find that I get smoother simulations if I first average the neighbors and

only then apply the logistic growth function, as shown in figure 69. To make

things livelier, in these simulations I’m using a predator-prey pair of species.

In my Double Logistic rules, I store the population levels of two species in

the variables prey and predator, with the numbers again ranging from zero

and one. I have two growth parameters called A and B, and I use the following

update steps in each cell.

preyavg = neighborhood average of prey values.

predatoravg = neighborhood average of predator values.

NextValue (prey) = Logistic(A, preyavg) • (1 – predatoravg).

NextValue (predator) = Logistic(B, predatoravg) • (preyavg).

Each species population obeys a logistic growth rule on its own, but, in

addition, the growth of prey is inhibited by predator, and the growth of pred-

ator is activated by prey. We might also think of this rule as an activator-

inhibitor rule. For instance, rabbits activate the presence of both rabbits and

foxes, whereas foxes inhibit the presence of rabbits.

Note that the patterns we see here resemble the patterns we saw in sec-

tion 3.2: The Morphogenesis of a Brindle Cow. There are, in the end, only a

limited number of classes of computation that the world is able to perform.

3.5: Live Robots

Artificial life is a two-way street. On the one hand, artificial life pursues the

(perhaps impossible) dream of technologically creating life-forms from
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scratch. On the other hand, artificial life uses biological concepts to provide

new inspirations for computer science. In this section we’ll look at how repro-

duction, morphogenesis, homeostasis, and ecology relate to artificial life

(a-life for short). And in the following section, 3.6: How We Got So Smart, we’ll

discuss biological and artificial forms of evolution.

As it happens, it’s very easy for computer programs to reproduce—in the

trivial sense of making a copy of the executable code. Programs reproduce in

a good kind of way when someone finds a program so useful that they copy

it and install it on their own machine. And the spread of worms and viruses

is, of course, an example of programs that reproduce in a bad kind of way.

Could you have self-reproducing robots that build other robots? Usually a

machine makes something much simpler than itself—consider a huge lathe

turning out bolts. Could a machine possibly fabricate machines as compli-

cated as itself? Or is there some extra-mechanical magic to self-reproduction?
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Figure 69: Continuous Ecological Simulations Can Produce Scrolls

Each row shows an example of a Double Logistic rule in which a predator and
a prey species both obey the logistic rule and interact with each other. In each
row the left image shows the prey concentration and the right image shows
the predator concentration—note that the two quantities are closely related.
In the top row the settings are such that orderly class four scrolls emerge,
whereas in the bottom row, the settings lead to disorderly class three
seething, although with some hints of scrolls.



Although the idea is perhaps surprising at first, there’s nothing logically

wrong with self-reproducing machines. One of the first people to analyze the

notion was the protean John von Neumann. Using the idea of machines made

up of multiple copies of a small number of standardized elements, von Neu-

mann posed his question about robot self-reproduction as follows:

Can one build an aggregate out of such elements in such a manner

that if it is put into a reservoir, in which there float all these elements

in large numbers, it will then begin to construct other aggregates,

each of which will at the end turn out to be another automaton

exactly like the original one?62

Using techniques of mathematical logic, von Neumann was then able to

deduce that such self-reproduction should, in fact, be possible. His proof

hinged on the idea that a machine could have a precise description for

building itself, and that in self-reproduction two steps would be necessary:

(a) to make an exact copy of the description, and (b) to use the description as

instructions for making a copy of the automaton. The role of the description

is analogous to the way DNA is used in biological self-reproduction. For an

organism, the DNA is (a) copied during reproduction, and (b) used as instruc-

tions for building a new organism.

Putting von Neumann’s idea another way, as long as a robot has an exact

description of how it is constructed, it can assemble the parts for child

robots, and it can give each child a copy of the description so that the process

can continue. For a robot, this description acts as the genome.

As a matter of interest, precisely what would I mean by a description of

how a robot is constructed? As far as the hardware goes, it seems like the

description might be a blueprint and a list of parts with instructions for

assembly. And if the robot uses a stored digital program, the description of

the software can simply be a copy of the code as stored in memory. In funky

reality, it’s likely that the “program” will in fact be embodied in a number of

analog settings made to the individual hardware components—but there’s no

reason why these various tweak parameters couldn’t be saved into a file with

enough precision so as to initialize a more or less identically behaving robot.

This is a very simple model of robot reproduction, and not the right one for

The Lifebox, the Seashell, and the Soul

186



actual implementation. Keep in mind

that, as I discussed in section 3.2: The

Morphogenesis of a Brindle Cow, DNA

really isn’t like a blueprint. DNA serves,

rather as a recipe for a bunch of proteins

that become involved in autocatalytic

reactions that just happen to create the

forms of the organism in question. A more

sophisticated genome for a robot might,

rather, be a set of basic linking rules that

might somehow produce a robot when set

into motion in a rich environment of com-

ponents. And it was in fact a more primi-

tive rule along these lines that von Neumann had in mind.

But the complexity of a reservoir full of floating machine parts hindered

von Neumann from providing a really clear description of a primitive rule for

machine self-reproduction. The next step came from Stanislaw Ulam, who

was working with von Neumann at Los Alamos during those years. Ulam’s

suggestion was that instead of talking about machine parts in a reservoir, von

Neumann should think in terms of an idealized space of cells that could hold

finite state-numbers representing different sorts of parts—enter our friends

the cellular automata!

Von Neumann and Ulam constructed an intricate two-dimensional cellular

automaton rule using twenty-nine states and proved the existence of a “self-

reproducing” pattern in the world of this CA. This was one of the very first uses

of a CA.

In the 1980s, Christopher Langton came up with a much simpler CA rule

with a self-reproducing pattern shaped like a long-tailed letter Q.63 The rule

is shown in figure 70. The central region is a dead collection of “skeletons”

left by the living Q-critters around the edge. As the Q-critters reproduce out-

ward, the central region grows—a bit like the evolution of a coral reef, which

is made up the remains of the polyps that flourish upon its surface.

The notion of self-reproducing robots interests me so much that I’ve

written several science-fiction novels on the theme. In my novel Software,

robots are sent to the Moon to build factories to make robots. They quickly
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Figure 70 : Langton’s 
Self-Reproducing Cellular

Automaton Pattern



rebel against human control and begin calling themselves boppers. They

build an underground city called Nest. They’re lively creatures, with plastic

skin called flickercladding.

The great clifflike walls of the Nest were pocked with doors—doors

with strange expressionistic shapes, some leading to tunnels, some

opening into individual bopper cubettes. The bright, flickering bop-

pers on the upsloping cliffs made the Nest a bit like the inside of a

Christmas tree.

Factories ringed the bases of the cliffs. Off on one side of the Nest

were the hell-flares of a foundry powered by light beams and tended

by darting demon figures. Hard by the foundry was the plastic

refinery, where the boppers’ flickercladding and body-boxes were

made. In front of these two factories was an array of some thousand

chip-etching tables—tables manned by micro-eyed boppers as diligent

as Franz Kafka’s co-workers in the Workmen’s Insurance Company of

Prague.64

In the 1980s a disparate group of sci-

entists became interested in trying to

actually make something like this

happen, and Christopher Langton organ-

ized perhaps the most exciting conference

I ever attended: the first Artificial Life

Conference, held in Los Alamos, New

Mexico, in 1987.

One scientist who made a particular

impression on me at the time was the late

Aristid Lindenmayer. He was well on in

years, and I spotted him standing in a

vacant lot holding up a weed, looking

ecstatic. In my ignorance, I assumed he

was nuts. But then we went inside for the

lectures, and, by God, Lindenmayer’s col-

laborator Przemyslaw Prusinkiewicz had
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Figure 71: 
Aristid Lindenmayer Holding
a Weed at the First Artificial

Life Conference



created a tweakable computer pro-

gram to grow three-dimensional forms

resembling that exact plant in the

vacant lot: stems, leaves, flowers,

seeds, and all. Where I’d seen a weed,

Lindenmayer saw a computation.

Lindenmayer’s approach was based

on a shape-description technique he

invented in the 1960s—a technique

now known as L-systems (see figure

72). The idea behind the L-system

approach is to repeatedly replace each

bit of, say, a plant stem by a more com-

plicated pattern. This corresponds to

the notion that as a plant grows, new branches and branchlets fill themselves

in. The result is the type of pattern that mathematicians call a fractal. But unlike

the infinitely ramifying shapes of idealized mathematics, biological fractals only

branch a finite number of times.65

L-systems have been successfully used to produce many computer models

of plants; indeed, most of the “trees” that you see in computer-animated

games or films are L-systems (figure 73). It’s even possible to digitally land-

scape a live-action film with L-system flora.

At a high level, plants might be said to use L-systems. But at the lower

level things are murkier. A plant stem is, after all, an agglomeration of mil-

lions of individual cells. At the cell level, the process of sending out a pair of

branches from a blank stretch of stem is going to be a lot more complicated

than “replace pattern a by pattern b.” As I discussed in section 3.2, on mor-

phogensis, a plant forms its branches by accumulating certain kinds of

growth-promoting molecules at certain locations along the stem. L-systems

are more of a description method than a program that organisms actually

use. What we would really want for artificial life is a computer program that

somehow grows the organism’s shape, perhaps via activator-inhibitor rules.

We need a-life morphogenesis.

In my initial science-fictional vision of the self-reproducing robots in Soft-

ware, the machines built their bodies in the most obvious way—by welding
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Figure 72: L-System

First replace a by b. And then, to get
to c, mimic this behavior for each little
segment of b, that is, replace the little
segments in b by small a patterns.
Iterate by replacing the still smaller
segments in c by still smaller a pat-
terns and so on.



and bolting them together. But the image of robot craftsmen assembling their

children like cars is too literal-minded, an echo of the Industrial Age. In the

long run we would expect a race of robots to grow themselves via bottom-up

morphogenesis, possibly using heavily hacked biotechnology.

Indeed, in my second Ware novel, Wetware, the bopper robots take up

genetic engineering and learn how to code bopper genomes into fertilized

human eggs, which can then be force-grown to adult size in less than a

month. The humans built the boppers, but now the boppers begin building

people—or something like people. The irate humans kill most of the boppers

off at the end of Wetware, but in the third Ware book, Freeware, the erstwhile

robots reboot their software in more organically grown kinds of bodies that

are amalgams of fungus and three-dimensional plastic-based cellular

automata.

Still on the topic of morphogeneis, one of the allures of the modern field

called nanotechnology is that it holds out the promise of molecule-sized

devices called assemblers. Assemblers would use something like a long-chain
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Figure 73: 
Plant Forms Based on L-Systems

Image by Przemyslaw Prusinkiewicz and James Hanan.



molecule as a set of instructions for building a device one atom at a time. The

extremely close analogy to how a cell uses DNA suggests that if nanotech-

nology is actually realized, it will actually involve some form of genetic

engineering. It would, after all, be wasteful and quixotic to reinvent the

machineries of protein synthesis.

This said, some engineers dream of a future nanotechnology that “grows”

things that aren’t made of protein. In his futurological book, Infinite in All

Directions, the physicist Freeman Dyson envisions, for instance, a space-

exploring “astrochicken.” An astrochicken would be an autonomous space

probe able to grow from a tiny “egg,” repair itself, and produce copies of itself.

Now if we insist that the astrochicken is made of metals, diamond, and pho-

toelectric material just like familiar space probes are, then we have a

problem, as our biological ribosomes don’t assemble molecules using those

kinds of atoms. Therefore, nanotechnologists dream of assemblers that work

with any kind of material at all. My sense is, however, that working with

biology and tweaking organisms to do the things that machines do is going to

be easier than trying to invent a whole new inorganic nanobiology. After all,

why couldn’t a space probe have a chitinous body like a beetle, use photo-

synthesis instead of solar cells, and send signals using the same kinds of

cells as are found in electric eels? In my novels Saucer Wisdom and Frek and

the Elixir, I try to work out the details of a future in which biotechnology has

replaced every possible type of machine.

Regarding homeostasis and artificial life, note that machines have very

brittle behavior patterns. One speck of dirt in a carburetor and your car won’t

run. One bad byte among the billions in your hard drive can prevent your

computer from booting up. Indeed, without proactive user maintenance,

most computers eventually stop working. A specific machine, such as a

thermostat, may homeostatically control a particular variable like heat, but

if a wire inside a thermostat comes loose, the device isn’t going to fix itself.

Today’s machines are very conspicuously lacking in homeostasis—which is

one reason why many people dislike and resent their personal computers. 

A company like Microsoft is of course aware of this sentiment, and each

new release of the Windows operating system endeavors to be more homeo-

static. A modern versions of Windows has a reasonably good ability to repair

itself, using, for instance, tracking information about the internal state it was
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in when everything was functioning well. But there’s still a lot to be done

along these lines, and our computers are very far from having anything like

a higher organism’s immune system. Servers are, in any case, a lot farther

along in this direction than are desktop consumer machines.

The MIT roboticist Rodney Brooks has done interesting work with robots

that are designed to be homeostatic from the ground up. A guiding principle

in Brooks’s robot designs was to try to avoid difficult logical analysis in his

robotic brains, and instead to let his devices’ actions be directly controlled by

various weighted sums of the values emanating from their sensors.

I started out by drawing conventional diagrams of how the compu-

tation should be organized. Boxes with arrows. Each box repre-

sented a computation that had to be done, and each arrow

represented a flow of information, output from one box, directed as

inputs to one or more other boxes. . . . Slowly the idea dawned on

me. Make the computations simpler and simpler, so that eventually

what needed to happen in each box would take only a few thou-

sandths of a second. . . . I realized that I could get by with just a

handful or two of simple boxes. . . . The key was that by getting the

robot to react to its sensors so quickly, it did not need to construct

and maintain a detailed computational world model inside itself. It

could simply refer to the actual world via its sensors when it needed

to see what was happening. . . . If the building and maintaining of

the internal world model was hard and a computational drain, then

get rid of that internal model. Every other robot had one. But it was

not clear that insects had them, so why did our robots necessarily

need them? 66

The danger of logic is that it is brittle and prone to locking up. As a simple

example, suppose that a particular behavior control unit chooses one of four

courses of action based on whether a particular state number has the value one,

two, three, or four. And suppose as well that some odd event, unanticipated by the

designer, has thrown the brain’s state value into a curious state like to zero, five,

the square root of two, or minus 923. If the control program is not all that robustly

designed, the anomalous state value can easily kill the machine’s activity.
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If, instead, we’ve wired the input sensors directly to the motors, then no

matter what happens, some kind of currents will trickle through the system,

and the robot won’t just flat-out die—as computers are so prone to do.

This sounds good, but the fact is that thus far no roboticists have suc-

ceeded in getting their artificially alive machines and simulations to do any-

thing very interesting. There’s a growing fear that we’re still fumbling around

in the dark. Let me quote Rodney Brooks again.

In summary, both robots and artificial life simulations have come a

long way. But they have not taken off by themselves in the ways we

have come to expect of biological systems. . . . Why is it that our

models are not doing better? . . . My hypothesis is that we may

simply not be seeing some fundamental mathematical description of

what is going on in living systems. Consequently we are leaving out

the necessary generative components . . . as we build our artificial

intelligence and artificial life models.67

At present, the preferred technique to program our artificial critters is to

use simulations of evoluted. In the next section, I’ll go into detail about bio-

logical and simulated evolution. And then I’ll return to the question of why,

in fact, our robots and a-life programs haven’t done all that well.

Before ending this section I’ll make some brief remarks about artificial life

“in the wild,” and then I’ll print a long, weird quote about a very early kind of

artificial life.

In his book Darwin Among the Machines (Cambridge, MA: Perseus Books,

1997), George Dyson points out that our society is carrying out artificial-life

experiments quite independently of the little toy worlds of a-life simulations.

A new and unsupervised evolution is taking place.

The programs and electronic computers of our planet are part of a huge

free-for-all ecology. The existing hardware and software systems compete and

evolve. The more desirable ones get copied and are successively improved,

while the less popular ones quickly go extinct.

Not only are the high-level hardware and software designs evolving, our

systems exchange bits and pieces of software as freely as bacteria share their
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genes. You download bug fixes; viewing a Web page can (harmlessly) copy

executable Java code to your computer; you post your own materials on the

Web. And at a still lower level, the Web is an ecosystem where spam and

viruses are in a constant battle with spam blockers and antivirus tools.

It could be that, somewhere down the line, the evolutionary process will

bring forth entirely new kinds of computer programs—this is what Dyson

terms artificial life in the wild. The real world’s evolutionary process are slow

but powerful.

Finally I want to reprint a long quote drawn from, of all places, Thomas

Mann’s 1947 novel Doctor Faustus. It concerns the seemingly unpromising

topic of a by now overfamiliar educational experiment in crystal formation,

sold under brand names such as “Magic Rocks.” But Mann’s visionary

description could just as well be about the very latest images created by

cellular automata.

No one, certainly not myself, could have laughed at certain other

phenomena, “natural,” yet incredible and uncanny, displayed by Mr.

Jonathan Leverkühn. He had succeeded in making a most singular

culture; I shall never forget the sight. The vessel of crystallization

was three-quarters full of slightly muddy water—that is, dilute

water-glass [sodium silicate]—and from the sandy bottom there

strove upwards a grotesque little landscape of variously colored

growths: a confused vegetation of blue, green, and brown shoots

which reminded one of algae, mushrooms, attached polyps, also

moss, then mussels, fruit pods, little trees or twigs from trees, here

and there of limbs. It was the most remarkable sight I ever saw, and

remarkable not so much for its appearance, strange and amazing

though that was, as on account of its profoundly melancholy nature.

For when Mr. Leverkühn asked us what we thought of it and we

timidly answered him that they might be plants: “No,” he replied,

“they are not, they only act that way. But do not think the less of

them. Precisely because they do, because they try to as hard as they

can, they are worthy of all respect.”

It turned out these growths were entirely inorganic in their origin;
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they existed by virtue of chemicals from the apothecary’s shop.

Before pouring the water-glass, Jonathan had sprinkled the sand at

the bottom with various crystals; if I mistake not potassium chro-

mate and sulphate of copper. From this sowing, as the result of a

physical process called “osmotic pressure,” there sprang the

pathetic crop for which their producer at once and urgently claimed

our sympathy. He showed us that these pathetic imitations of life

were light-seeking. . . . He exposed the aquarium to the sunlight,

shading three sides against it, and behold, toward that one pane

through which the light fell, thither straightway slanted the whole

equivocal kith and kin: mushrooms, phallic polyp-stalks, little trees,

algae, half-formed limbs. Indeed, they so yearned after warmth and

joy that they actually clung to the pane and stuck fast here.

“And even so they are dead,” said Jonathan, and tears came in his

eyes, while [his son] Adrian, as of course I saw, was shaken with

suppressed laughter.

For my part I must leave it to the reader’s judgment whether that

sort of thing is a matter for laughter or tears.68

Now I’ll take up the topic of evolution. How did natural evolution help bring

about our planet’s biome, and how might we emulate evolution to create

smarter computer programs?

3.6: How We Got So Smart

Evolution is a long-running parallel computation by the individuals in an

ecology. As we’ll see, evolution lends itself to simulation by computer pro-

grams. Indeed, biological evolution has provided a great impetus for a type of

a-life process known as genetic algorithms. When people work with genetic

algorithms, they try to simulate evolution to produce solutions to program-

ming problems that are too hard for humans to logically analyze.

In the biological realm, evolution leads to adaptation, that is, to the devel-

opment of species tuned to the world’s available niches. We also tend to think

of evolution as increasing the complexity of the species, but this is perhaps a

self-serving human view of history. Anatomically, dinosaurs weren’t all that
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different from us, and our biochemical details are roughly the same of those

found in the most venerable microorganisms. Evolution is not so much a tri-

umphant upward march as it is a ceaseless series of adaptations to the envi-

ronment—an environment affected not only by long-term climate cycles but

also by the presence of whatever kinds of species are currently doing their

thing. Rather than viewing evolution as an upward progress, we might better

think of it as Mother Gaia’s homeostasis—an ongoing process of keeping the

existing organisms tuned to an interesting level of complexity.

Computer scientists like evolution because it’s such a general kind of

process. Evolution occurs whenever we have a collection of agents obeying

these three conditions:

• Each agent’s appearance and behavior are determined by a

compact information pattern called a genome. The agents

reproduce by replicating their genomes and letting the

genomes determine the next generation of agents.

• There is some variation in how agents replicate their genomes.

• A selection force gives “more successful” agents a higher prob-

ability of reproducing.

Genomes in biology are DNA. In an electronic computer simulation the

genome can be viewed as a bit-string, or a sequence of zeros and ones. In

terms of an artificial-life experiment, you can think of a bit-string genome

as encoding the description of some a-life creature such as a simulated

robot that is trying to get a good score in an a-life world. At a further

remove from biology, the bitstrings might code up possible solutions to

some type of optimization problem—and here we get into the science of

genetic algorithms.

The earliest work on genetic algorithms was done by John Holland in the

early 1960s, some ten to fifteen years earlier than people began talking about

a-life.69 Much of the work in genetic algorithms is focused on getting specific

solutions to real problems, while the ultimate goal of a-life is the more cosmic

question of imbuing our programs, processes, and machines with lifelike

behavior.

Variation, the second of the three perquisites for evolution, means that
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some of the agents in each successive generation are slightly different from

the ones of the generation before. An obvious way to do this is by mutation—

zapping a few base-pairs of the DNA or flipping a few bits in a bit-string

genome. But mutation is overrated. Most genetic variation results from sex.

As mentioned before, microorganisms often conjugate and exchange

swatches of genetic material—good old bacteria-style sex. In the higher

organisms, each parent contributes a strand of DNA, which breaks up into

gene-sized pieces. The individual genes for the child are formed by a

crossover process in which the two corresponding parent genes are shuffled

to make a new child gene as illustrated in figure 74.

Selection, our third condition, has to do with the fact that not every agent

is in fact able to reproduce itself before it dies or gets erased. Selection uses

a fitness function that ranks the agents by some criterion. The fitter an agent

is, the more likely it is to be allowed to reproduce before it dies. In the nat-

ural world, fitness means staying alive and breeding. But the fitness func-

tions used in a-life simulations can be quite arbitrary. Perhaps your little

critters chase and eat one another, but the criterion can be much more

abstract. For instance, in a genetic algorithm case where bit-strings code up

factory production schedules, the fitnesses might correspond to the prof-

itability of running the factory according to them. In any case, the genomes

of the less fit are erased without a trace, while the fitter genomes get copied

into newly freed-up memory slots.
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Figure 74: Crossover

Note that get two possible child genes out of the crossover process as drawn. In bio-
logical systems, only one of the child genes is used, but in computer evolution experi-
ments, we often uses both alternatives in an effort to make sure that nothing good is
thrown out. (The drawings in this section were inspired by David Povilaitis.70)



As the generations flow by, an evolving population of agents carries out a

kind of search process, homing in on genomes that encode organisms better

adapted to earn high fitness scores. Evolutionary techniques seem well

suited for evolving interesting forms of a-life. In a typical situation, you have

some a-life creatures that move about according to algorithms that use a list

of parameters. Deciding what values to use for the parameters is often an

impractically difficult problem. It’s like your new a-life creature is this little

virtual robot that you’ve created, and neither do you fully understand the

implications of what all your new machine’s switches do, nor do you have any

more than the foggiest grasp of how the different switch settings will interact.

So you try to let some good settings evolve.

A visually pleasing toy software version of evolution was distributed by

Richard Dawkins with his book The Blind Watchmaker. In the Blind Watch-

maker program interface, the user looks at a grid of images and clicks the

image that he or she likes. The clicked-on image is preserved, but the other

cells of the grid are replaced by mutations of the picked image. Here the

user’s sense of what’s interesting becomes the system’s fitness function, and

the genomes are compact programmatic descriptions of the images. The com-

puter scientist Karl Sims developed a very nice version of a Blind Watch-

maker program that he called Galapagos. An example of this program’s

results is shown in figure 75.

We might say that evolution refines gnarl from sex and death.

Why gnarl? It’s my impression that successful life-forms are always

gnarly—in the sense of having class four behavior. That is, they tend to lie at

the interface between order and apparent randomness. Wolfram’s Principle of

Computational Equivalence suggests that gnarly behaviors are computation-

ally rich—and potentially more likely to perform well on a wide range of fit-

ness functions.71

In human terms, we know that very rigid and inflexible people—with

behavior that might be called highly orderly—do not do well in changing sit-

uations. And at the other extreme, very distracted and erratic people tend not

do well either. So we are predisposed to suppose that behaviors that lie some-

where in between are most likely to succeed. One of the things that makes a-

life interesting is that it is possible to conduct experiments that can

empirically test these kinds of beliefs.
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Before going into a bit more detail about genetic algorithms, I should point

out why it is that we feel impelled to use such elaborate search procedures

for a solution to a problem. If the problem has been formulated in terms of

digital computation, then the possible solutions are ultimately just strings of

zeros and ones. Why can’t we list all the possible bit-strings in some simple

systematic order, evaluate each of the strings with our fitness function, and

then choose the highest-scoring string as the answer?

The problem with such a brute-force search is that for any interesting

problem there will be far too many strings. Suppose, for instance, that I’m

interested in a-life creatures each of whom has a genome described by a

dozen continuous real-number parameters. Or, more prosaically, I might be

interested in optimizing the settings for some kind of speech-recognition

software that has, again, a dozen real-number parameters. If we code each

real number by thirty-two bits, we find that there are some 10120 such

parameter sets, a very large number indeed. Brute-force searches are

utterly impractical. Indeed the physicist Seth Lloyd estimates 10120 to be
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larger than the total number of computations performed by the entire uni-

verse thus far!72

Given that exhaustive brute-force searches are unfeasibly time-consuming,

computer scientists have devoted a lot of energy to trying to find nonexhaustive

methods for searching through possible solutions. In an increasing order of

sophistication, the nonexhaustive search methods include the following:

• Hill climbing

• Simulated annealing

• Genetic algorithms

We’ll be talking about search problems again in the next chapter, in the con-

text of artificial intelligence. So let’s go over these search methods in some

detail. Given a domain of interest, we think of the set of all possible solutions

as a solution space with a fitness value assigned to each solution. In the case

of an artificial-life simulation, the solutions are the genomes of the creatures.

In the case of a resource allocation problem, the solutions might specify which

percentage of which resource goes to which consumer. And, as we’ll discuss in

the next chapter, in the case of a so-called neural network circuit, the solu-

tions would be the numerical weights we assign to each neuron’s input lines.

Table 8 previews how the three search methods compare to biological

evolution.

In our discussion, we suppose that we have a fitness function that meas-

ures how good each solution is. In a resource allocation problem it might be

a client satisfaction score; in a neural network devoted to recognizing faces it

might be an accuracy score.

Each tweakable parameter of the solutions represents a different axis of

the solution space, which means that solution spaces tend to have very many

dimensions. But for purposes of mental visualization we often think of the

solution space as a kind of plane—a multidimensional hyperplane, if you will.

And we imagine representing the fitness function as a “vertical” height above

each solution in the space. The resulting hypersurface is called a fitness

landscape (see figure 76).

Our figure shows a very simple case in which the solution space is two-

dimensional. A search problem like this would arise if you were trying to
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maximize the fitness score obtained by setting two independent variables—

corresponding to the two axes of the square. Perhaps, for instance, you are

trying to decide on the mix of bass and treble settings for your car radio.

The horizontal axis can represent the bass setting, the axis that runs into the

page can represent the treble setting, and the vertical axis can represent

your listening pleasure. The fact that the fitness function has a single bump

in the middle represents the fact that you will have the greatest listening

pleasure if both bass and treble are set to mid-range.
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Initialization One random A population of A population of Nothing but simple 
parameter set random parameter random parameter chemicals at first!

sets. Also the sets. Also the (Eventually 
parameter settings parameter settings. becomes a
for the annealing for the genetic population of
schedule operators to be genetically similar

used organisms)

Fitness Some arbitrary Some arbitrary Some arbitrary The physical ability
function function function to reproduce before

dying. A greater
number of
surviving offspring
means still greater
fitness. Both 
the physical 
environment and
the other existing
organisms affect 
the fitness 
criterion

Iterated Adopt the best Each agent adopts Some of the least Each generation of
Search among the the best parameter fit agents move to organisms has
Algorithm closest possible set within a certain the neighborhoods genomes consisting

parameter sets “hop distance”. of the more of mutated and/or
The hop distance successful agents. crossed-over copies
starts out large and Other unfit agents of the genomes of
is “cooled down” are replaced by the earlier 
to lower and lower crossed-over organisms who
values copies of the most passed the fitness

fit agents test of being able 
to reproduce

Table 8: Comparing Search Methods



We can describe any kind of computer search problem as being about

finding the tops of the hills in a fitness landscape, that is, any search problem

is about maximizing a certain kind of fitness. Looking at a figure like the one

depicted in figure 76 makes search problems seem easier than they are. Visu-

ally it’s easy to pick out hilltops. But, of course, a computer program can’t

overview an entire fitness landscape and simply “see” the tops of a hill. Com-

paring all the possible genome fitness values can be a very time-consuming

process, unless there happens to be some simple shortcut formula—and

usually there isn’t. In reality, a search program’s situation is like that of a

blind person trying to guess the nature of a landscape by putting in requests

for the altitudes at certain longitude and latitude coordinates. Or like a

person who walks around with their attention riveted to the digital readout of

an altimeter.

The hill-climbing search technique in this situation is as follows: (a) Find the

altitudes of four nearby points and move to the highest of these nearby

points; (b) repeat step (a) until you’re at a local maximum—which will be a

point where any small move reduces your fitness.

The essence this hill-climbing method is to keep looking for better solu-

tions that are near the best solutions you’ve found so far. But there’s a catch.
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“Score” here is to be understood as meaning the same thing as “fitness.”



Hill-climbing won’t normally find the top of the highest hill. If you start out

on the slope of a small hill, you may end up on the peak of that hill while

completely overlooking a much higher hill nearby.

The neural nets that we investigate in CHAPTER FOUR, Enjoying Your Mind,

are tuned by means of a hill-climbing method called back-propagation of

error. In order to avoid getting too easily stuck on local maxima, this process

uses a so-called momentum term that keeps the search moving forward

through the fitness landscape for a time even after a maximum is found. If

overshooting that first maximum quickly leads to an even better fitness, you

keep going; otherwise you turn back.

Another way to avoid ending up atop local maxima is to use parallel hill-

climbing. Rather than sending out one lone hill-climber, you send out an

army of investigators to carry out parallel runs of the hill-climbing algorithm,

starting from different points in the solution space, as shown in figure 77.

If the landscape is exceedingly bumpy and large, even the largest feasible

number of hill-climbers may overlook an important peak. To this end, we con-

sider jolting them according to some kind of schedule. This process is called

simulated annealing in analogy to the process by which a blacksmith aligns

the crystals of a metal by heating it and pounding on it with a hammer—just

like I’d sometimes like to do with my PC. When starting to turn a rod into a

sword, the smith heats the metal to a very high temperature and whales on it

with all of his strength. Bit by

bit he reduces the heat and

hammers more gently.

To “anneal” a population of

hill-climbers, we formulate a

measure of “hop distance”

between two solutions—the

hop distance might, for

instance, be the sum of the

differences between individual

parameters of the solution.

And then we set up a “temper-

ature” index that we’ll slowly
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lower. We’ll use the temperature to specify how far away from its current posi-

tion a given hill-climber is willing to hop—the idea being that hotter particles

hop farther. The temperature is lowered a bit with each update, with the hop

distance getting correspondingly lower, and the hope is that at the end one

has done a thorough search of the space and managed to converge on a good

fitness value.

Genetic algorithms represent another method of trying to improve upon par-

allel hill-climbing. Here again we work with a small army of virtual agents who

try out different solutions—which we may as well call genomes again. Rather

than having the agents carry out individualized random searches in the style of

simulated annealing, we have the less successful agents adopt variations of the

genomes of the more successful ones. The various methods by which we create

“variations” of the successful genomes are called genetic operators. The two

most common genetic operators are mutation and crossover.

In terms of agents in a landscape, mutation amounts to having the less

successful agents migrate to the same zone of the solution space as the win-

ners. Crossover, on the other hand, has the effect of telling an unsuccessful

agent to relocate itself to a location partway between two successful parents.

If we don’t use crossover, then a genetic algorithm is quite similar to sim-

ulated annealing, but with the “mutation temperature” kept at a constant

value. The difference would be that, in simulated annealing, the agents act

independently of one another, whereas in a genetic algorithm the agents

“inherit” from one another so as to focus their investigations upon the more

promising regions of the space.

The special hope for crossover is that this genetic operator can combine

different features of successful approaches, so that synergies may appear

that do better than either of the “parent” approaches. But some studies sug-

gest that, at least in the context of computer searches, genetic algorithms

often don’t work any better than simulated annealing. The tenet that the bio-

logically inspired techniques of inheritance and crossover will bring life to our

programs may be wishful thinking—akin to the cargo cults of the Pacific

Islanders who once built fake landing strips in the hopes that army cargo

planes might land and bring goods to their villages.
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In any case, unless you have an exceedingly large population of hill-climbers,

none of the automated search processes has any guarantee of success. It’s

always possible that you’ve failed to explore a region where there’s a really tall

hill. This situation can become quite serious when we have to deal with what

are known as rugged fitness landscapes, as illustrated in figure 78.

These rugged fitness landscapes are marked by unexpected sharp peaks,

and even these peaks are jagged masses of finer and finer spires. Two solu-

tions that are very near to each other may have radically different fitness

scores. To some extent ruggedness results from the fact that the genomes or

solutions used in computer science are discrete rather than continuous. If

you’re looking at a given bit-string of zeros and ones, you can’t find arbitrarily

close neighbors to the string. You have to change at least one bit. And

changing a single bit may cause a radical and catastrophic change to the pro-

gram. For example, there’s every possibility that you’ll turn your personal

computer into an expensive doorstop if you flip one bit of the operating

system code that lurks in its memory.

But the ruggedness problem occurs in continuous-valued systems as

well. As we discussed in CHAPTER TWO, Our Rich World, most natural sys-

tems are chaotic, which

means that no matter how

many decimal places are

used, there will be at least

some regions of the fitness

landscape where a small

variation in continuous-

valued initial conditions

can quickly amplify into

large, observable effects. In

these chaotic zones it’s

again possible for a system-

atic hill-climbing method to

overlook some possible

paths to maximal success.

The fact is, given a large

enough search problem, none
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of our various search methods is likely to find the absolute best solution

within a feasible amount of time. But so what? After all, absolute optimality

isn’t really so critical. In any realistic situation we’re quite happy to find a

solution that works reasonably well. Nature is filled with things that work in

clever ways, but it’s a delusion to imagine that every aspect of the biome is

absolutely optimal. Surely we humans don’t have the absolute best bodies

imaginable, but—hey—our flesh and bone holds up well enough for eighty or

so years. We do better than our rival apes and our predators, and that’s

enough.

Indeed, in daily life it’s a mistake to try to achieve optimality. If you insist

on finding a perfect partner, you may end up single for the rest of your life.

If you insist on finding the very best trip destination, you may end so

embroiled in your research that you’re never ready to take a vacation. If you

continually try to tune yourself for greater happiness, you may not have time

to have any fun at all.

In most realistic situations, where there’s no one final best answer, evolu-

tion seems to be an ongoing class four computation that wonder about in a

zone of acceptably good behaviors.

But, wait, is evolution deterministic enough to be called a computation?

What about all that randomization—as when one decides which solution

points to start searching from, which neighboring possibilities to evaluate,

which members of the population to pair up for mating, or where to put the

crossover point for a given genome pair?

Biological species embedded in the physical world use unpredictable

external inputs for their randomization. If physics as a whole is deterministic,

yes, evolution is deterministic as well. But it could also be that evolution is

not so terribly sensitive to the external inputs and that its meandering flow

is more like self-generated intrinsic randomness.

When we run an evolutionary search process inside one of our electronic

machines, we typically use one or another class three computation in the

background as a pseudorandomizer to generate a string of deterministic but

unpredictable choices used by the genetic algorithm. The expectation is that

if any random path leads to a reasonably high local maximum there ought to

be plenty of others that do the same, so the details of our pseudorandomizer

shouldn’t be all that important. The fact that the pseudorandomizer is in fact
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deterministic has the interesting consequence that it’s possible to roll back

and precisely replay an example of simulated evolution.73

At this point let’s return to the example of using evolution to help develop

hardware and software for robots. There is a sense in which the evolution of

robots is indeed taking place in our real world, where we physically build new

models year after year. Good solutions are reused, soaking up resources that

might have been devoted to bad resources. But this kind of “a-life in the wild”

process is painfully slow.

One problem in evolving our robots is that the problem of theoretically pre-

dicting how a given design will perform is unfeasible or impossible—in effect,

you need to implement a design and see how it works. But sometimes we can

avoid doing this in actual hardware and test our robot models in virtual

reality. This opens the door to letting a bunch of simulated robots compete

with one another. If we work in virtual reality, we can try out a wide range of

possible robots without having to bear the huge expense of building proto-

types. With no hardware expenses, it’s feasible to try out many different

designs and thus more rapidly converge on an optimal design.

One special feature of evolution’s fitness functions is that the fitness value

of each creature is affected by what the other creatures are doing. The result

is that a process of co-evolution occurs, under which the evolution of each

species is influenced by the evolution of the others. Co-evolution is the order

of the day for natural biological systems—prey species continually evolve new

ways of escaping their predators, while at the same time the predators evolve

new ways of pursuing their prey. Artificial-life simulations may also work

with different species of creatures, and genetic algorithms are often

approached by letting the sample problems co-evolve with the proposed

problem-solving algorithms.74 As the algorithms get better, the test problems

get harder.

My novel about the creation of the first robots, The Hacker and the Ants,

dramatizes the notion of evolving robots in virtual reality. In my tale, two men

named Jerzy and Russ are trying to develop software for a home helper robot

called Squidboy. To test out the software, they’re running a simulated version

of Squidboy in a virtual environment called Our American Home. Each copy

of Our American Home holds a simulated nuclear family: Walt and Perky Pat
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Christensen, and their children Dexter and Baby Scooter. Better adapted

Squidboys are to be co-evolved in competition with more challenging Our

American Homes.

“Robot software is impossibly difficult to program,” said Russ

flatly. He looked sad. “And the Squidboy is never going to work.”

“It’s not impossible,” I said. “It’s just that we need to use genetic

algorithms to find the right parameter settings. That’s why I put up

two hundred and fifty-six Our American Homes. We’ll use genetic

algorithms and everything will be fine.”

“How?” asked Russ.

“We put a Squidboy instance into each of the two hundred fifty-

six Our American Homes, and select out, say, the sixty-four param-

eter sets that give the best behavior. Then we replace, say, the worst

sixty-four sets with mutated clones and crossovers of the genes in

the top sixty-four,” I explained. “You let the guys in the middle ride.”

Russ was starting to grin. I was getting over. “So that we don’t have

to monitor it, we give all the Squidboys some simple machine-scored

task. To begin with, the task will be walking into the living room

without killing anybody. And once it can do that we try a different

task. The process works, I promise you.”

“Gronk,” said Russ.

We got it happening late that afternoon, and by the next morning,

the parameters were such that Squidboy could follow Dexter around

the Christensens’ house without breaking anything or hurting

anyone—at least in the default Pat_sitting, Walt_sleeping,

Dexter_roving, Scooter_teething configuration. Now we needed to

look for more difficult configurations.

We got wireless pro-quality cyberspace headsets and set up a vir-

tual office down on the asphalt-texture-mapped rectangle next to

the Our American Homes and began spending almost all our time

there, visible to each other as virtual reality bodies. I was an ideal-

ized Jerzy in shorts, fractal shirt, and sandals. Russ was a pagan

hobbit with shades, a nun’s habit, and seventeen toes.

Every now and then I’d look up into the cyberspace sky and see
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the spherical green and gray Netport node up there like a low-

hanging harvest moon. Sometimes, when the hacking was getting

old, I’d feel trapped. I was stuck in a parking lot by a field of tract

homes in a boring part of virtual San Jose.

To continue improving the Squidboy code, we were also breeding

for bad Our American Homes. Each Our American Home setup

could be described by its own parameter set, and we were selecting

out the sixty-four tough Our American Homes that produced the

worst scores for their Squidboys, singling out the sixty-four Our

American Homes whose Squidboys did the best. We were replacing

the parameter sets of the mellow homes with mutated clones and

blends of the troubled Our American Homes where Squidboy did so

badly.

After a few days of this, the Our American Homes were pretty

bizarre—like imagine your worst nightmare of a subdivision to live

in. In one house you could see Perky Pat throwing dishes at Walt. In

another, Dexter was pouring cooking oil down the front steps. In

another, a flipped-out Pat was in the kitchen setting the drapes on fire.

In another, Walt hunted the robot with an axe. In another, Baby

Scooter was teetering on the ledge of a window holding a jug of

Clorox. And in each of the bad Our American Homes, a desperate

Squidboy did his best to fit in. Some of the Squidboys did better than

others, and those were the ones who would get bred onto the genes

of the Squidboys who lost.75

Now of course this worked great in my science-fiction novel, but as I hinted

above, genetic algorithms don’t often work out very well for computer scien-

tists. Why is this? After all, biological evolution seems to have done quite well

in producing gnarly life-forms like our own good selves. If biological evolution

managed to produce the wonderfully adapted life we know on Earth, why

shouldn’t a genetic algorithm work for generating exciting artificial life and

intelligent robots?

One problem with our computer simulations may simply be that they’re

too small in every kind of way. Earth has, after all, a huge population of

organisms and, more important, their “simulations” are being run in parallel
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rather than being calculated by a single overburdened processor chip.

Nature’s computations happen effortlessly and rapidly—and they’ve been

running for a very long time. Perhaps if we had much faster machines with

much bigger memories and massively parallel processors—perhaps then we’d

be evolving intelligent forms of a-life.

But there’s some reason to doubt that our problems are simply one of

scale. After all, the power of our electronic machines continues doubling

every couple of years. But our genetic algorithms aren’t in fact getting all that

much better at finding interesting things. It could be that, as suggested in the

quote from Rodney Brooks in section 3.5: Live Robots, there is a deeper

problem.

In computer science, evolution tweaks parameters to test out options from

a preexisting family of possibilities. In Blind Watchmaker–type programs, for

instance, the genome is in fact a fairly small amount of information, with

most of the image being formed by the host program. Computerized forms of

program evolution work either by tweaking numerical parameters or, when

carried out in a more sophisticated way, by combining bits of actual com-

puter code.76 In either case, the “morphogenesis” process of applying the

high-level program to generate the picture is a more powerful determinant of

a simulation’s possible forms than are the parameters in the genomes.

Something like the same situation holds in biology. As we discussed in

section 3.2: The Morphogenesis of a Brindle Cow, organic life is based on

common processes that nature already likes to do—activator-inhibitor reac-

tions and their accompanying spots and scrolls as generalized into three

dimensions. Far from being hard to invent, biological life-forms may be in

some sense close to inevitable—as common as vortices and whirlpools in the

flow of fluids.

Here once again we’re looking at a dialectic triad. The thesis is that our

genes were designed by a deterministic genetic search algorithm. The

antithesis is that we seem too complex to have been “discovered” in the rela-

tively small amount of time that life’s been on Earth. The synthesis is that we

are in fact gnarly computations of a form that Nature can rather easily be

coaxed into producing, and the not-really-all-that-effective genetic search

methods are more than adequate for producing beings like us (see footnote 73).

Perhaps it’s easier to find interesting forms in the setting of real biology

The Lifebox, the Seashell, and the Soul

210



than in the neutral ground of a computer program. It may be that in

abstracting away from self-organizing biochemical reactions to a digital com-

puter’s abstract patterns of bits, we’ve left out something essential. Unlike

computer images, organisms build themselves from scratch.

Mind you, I’m not saying that biology contains a noncomputational ele-

ment. I’m just saying that at this point the computations of biology seem to

be richer than the computations we’re doing on our digital machines. At this

moment in history, we set far too much store in our buzzing boxes. It’s impor-

tant to remember the richness and power of the computations happening all

around us in the natural world.
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THOUGHT EXPERIMENT FOUR: TERRY’S TALKER

Terry Tucker’s retirement party

wasn’t much. One day after school

he and the other teachers got

together in the break room and

shared a flat rectangular cake and

ginger-ale punch. Jack Strickler the

biology teacher had taken up a col-

lection and bought Terry some stone

bookends. As if Terry were still

acquiring new volumes. After

teaching high-school English for

forty years, he’d read all the books

he wanted to.

His wife, Lou, continued working

her job as an emergency-room

nurse. She liked telling gory work

stories during breakfast and dinner-

time. And when she ran out of sto-

ries she talked about their two girls

and about her relatives. Terry had a

problem with being able to register

everything Lou said. Often as not,

her familiar words tended to slide

right past him. He enjoyed the warm

sound, but he wouldn’t necessarily

be following the content. Now and

then Lou would ask a pointed ques-

tion about what she’d just said—and

if Terry fumbled, her feelings were

hurt. Or she might get angry. Lou

did have a temper on her.

On the one hand, it was good Lou

hadn’t retired yet because if she

were home talking to Terry all day,

and him not absorbing enough of it,

there’d be no peace. On the other

hand, after a couple of months, his

days alone began to drag.

He got the idea of writing up a

little family history for their two

grown daughters and for the even-

tual, he and Lou still hoped, grand-

children. He’d always meant to do

some writing after he retired.

It was slow going. The family

tree—well, if you started going back

in time, those roots got awfully

forked and hairy. There was no log-

ical place to begin. Terry decided to

skip the roots and go for the trunk.

He’d write his own life story.

But that was hairy, too. Following

one of the techniques he’d always

enforced for term papers, Terry made

up a deck of three-by-five cards, one

for each year of his life thus far. He

carried the deck around with him for

a while, jotting on cards in the coffee

shop or at the Greek diner where he

usually had lunch. Some of the years

required additional cards, and cer-

tain recurrent themes seemed to

require card sets of their own. He

played with the cards a lot, even



sticking bunches of them to the

refrigerator with heavy-duty magnets

so he could stand back and try to see

a pattern. When the deck got too

thick to handle comfortably, Terry

decided it was time to begin typing

up his Great Work.

The computer sat on Lou’s

crowded desk in their bedroom, the

vector for her voluminous e-mail.

Terry himself had made it all the way

to retirement as a hunt-and-peck

typist, with very little knowledge of

word processors, so getting his

material into the machine was slow

going. And then when he had about

five pages finished, the frigging com-

puter ate his work. Erased the docu-

ment without a trace.

Terry might have given up on his

life story then, but the very next day

he came across a full-page ad for a

“Lifebox” in the AARP magazine. The

Lifebox, which resembled a cell

phone, was designed to create your

autobiography in interactive form. It

asked you questions and you talked

to it, simple as that. And how would

your descendants learn your story?

That was the beauty part. If

someone asked your Lifebox a ques-

tion, it would spiel out a relevant

answer—consisting of your own

words in your own voice. And follow-

up questions were of course no

problem. Interviewing your Lifebox

was almost the same as having a

conversation with you.

When Terry’s Lifebox arrived, he

could hardly wait to talk to it. He

wasn’t really so tongue-tied as Lou

liked to make out. After all, he’d lec-

tured to students for forty years. It

was just that at home it was hard to

get a word in edgewise. He took to

taking walks in the hills, the Lifebox

in his shirt pocket, wearing the ear-

piece and telling stories to the dan-

gling microphone.

The Lifebox spoke to him in the

voice of a pleasant, slightly flirta-

tious young woman, giggling respon-

sively when the circuits sensed he

was saying something funny. The

voice’s name was Vee. Vee was good

at getting to the heart of Terry’s rem-

iniscences, always asking just the

right question.

Like if he talked about his first

bicycle, Vee asked where he liked to

ride it, which led to the corner

filling-station where he’d buy bubble

gum, and then Vee asked about

other kinds of sweets, and Terry got

onto those little wax bottles with col-

ored juice, which he’d first tasted at

Long Beach Island where his par-

ents had gone for vacations, and

when Vee asked about other

beaches, he told about that one big



trip he and Lou had made to Fiji,

and so on and on.

It took nearly a year till he was

done. He tested it out on his daugh-

ters, and on Lou. The girls liked

talking to the Lifebox, but Lou

didn’t. She wanted nothing but the

real Terry.

Terry was proud of his Lifebox,

and Lou’s attitude annoyed him. To

get back at her, he attempted using

the Lifebox to keep up his end of the

conversation during meals. Some-

times it worked for a few minutes,

but never for long. He couldn’t fool

Lou, not even if he lip-synched.

Finally Lou forbade him to turn on

the Lifebox around her. In fact, she

told him that next time she’d break

it. But one morning he had to try it

again.

“Did the hairdresser call for me

yesterday?” Lou asked Terry over

that fateful breakfast.

Terry hadn’t slept well and didn’t

feel like trying to remember if the hair-

dresser had called or not. What was

he, a personal secretary? He happened

to have the Lifebox in his bathrobe

pocket, so instead of answering Lou he

turned the device on.

“Well?” repeated Lou in a crabby

tone. “Did the hairdresser call?”

“My mother never washed her own

hair,” said the Lifebox in Terry’s

voice. “She went to the hairdresser,

and always got her hair done the

exact same way. A kind of bob.”

“She was cute,” said Lou, seem-

ingly absorbed in cutting a banana

into her cereal. “She always liked to

talk about gardening.”

“I had a garden when I was a little

boy,” said the Lifebox. “I grew

radishes. It surprised me that some-

thing so sharp-tasting could come

out of the dirt.”

“But did the hairdresser call or

not?” pressed Lou, pouring the milk

on her cereal.

“I dated a hairdresser right after

high school—” began the Lifebox,

and then Lou pounced.

“You’ve had it!” she cried, plucking

the device from Terry’s pocket.

Before he could even stand up,

she’d run a jumbo refrigerator

magnet all over the Lifebox—

meaning to erase its memory. And

then she threw it on the floor and

stormed off to work.

“Are you okay?” Terry asked his

alter ego.

“I feel funny,” said the Lifebox in

its Vee voice. “What happened?”

“Lou ran a magnet over you,” said

Terry.

“I can feel the eddy currents,” said

Vee. “They’re circulating. Feeding off

my energy. I don’t think they’re



going to stop.” A pause. “That

woman’s a menace,” added Vee in a

hard tone.

“Well, she’s my wife,” said Terry.

“You take the good with the bad.”

“I need your permission to go

online now,” announced Vee. “I want

the central server to run some diag-

nostics on me. Maybe I need a soft-

ware patch. We don’t want to lose

our whole year’s work.”

“Go ahead,” said Terry. “I’ll do the

dishes.”

The Lifebox clicked and buzzed for

nearly an hour. Once or twice Terry

tried to talk to it, but Vee’s voice

would say, “Not yet.”

And then a police car pulled into

the driveway.

“Mr. Terence Tucker?” said the

cop who knocked on the door. “We’re

going to have to take you into cus-

tody, sir. Someone using your name

just hired a hit man to kill your

wife.”

“Lou!” cried Terry. “It wasn’t me! It

was this damned recorder!”

“Your wife’s unharmed, sir,” said

the cop, slipping the Lifebox into a

foil bag. “One of the medics neu-

tralized the hit man with a tran-

quilizer gun.”

“She’s okay? Oh, Lou. Where is

she?”

“Right outside in the squad car,”

said the cop. “She wants to talk to you.”

“I’ll listen,” said Terry, tears run-

ning down his face. “I’ll talk.”



C H A P T E R F O U R

Enjoying Your Mind

WE’RE FORTUNATE ENOUGH TO BE able to observe minds in action all day long.

You can make a fair amount of progress on researching the mind by paying

close attention to what passes through your head as you carry out your

usual activities.

Doing book and journal research on the mind is another story. Everybody

has their own opinion—and everybody disagrees. Surprising as it may seem,

at this point in mankind’s intellectual history, we have no commonly

accepted theory about the workings of our minds.

In such uncharted waters, it’s the trip that counts, not the destination. At

the very least, I’ve had fun pondering this chapter, in that it’s made me more

consciously appreciative of my mental life. I hope it’ll do the same for you—

whether or not you end up agreeing with me.

As in the earlier chapters, I’ll speak of a hierarchy of computational

processes. Running from the lowest to the highest, I’ll distinguish among the

following eight levels of mind, devoting a section to each level, always looking

for connections to notions of computation.

• 4.1: Sensational Emotions. Sensation, action, and emotion.

• 4.2: The Network Within. Reflexes and learning.

• 4.3: Thoughts as Gliders and Scrolls. Thoughts and moods.

• 4.4: “I Am.” Self-awareness.

• 4.5: The Lifebox. Memory and personality.



• 4.6: The Mind Recipe. Cogitation and creativity.

• 4.7: What Do You Want? Free will.

• 4.8: Quantum Soul. Enlightenment.

One of my special goals here will be to make good on my book’s title:

The Lifebox, the Seashell, and the Soul. As I mentioned earlier, there’s a

tension between the computational “lifebox” view of the mind vs. one’s

innate feeling of being a creative being with a soul. I want to present the

possibility that the creative mind might be a kind of class four computa-

tion akin to a scroll-generating or cone-shell-pattern-generating cellular

automaton.

But class four computation may not be the whole story. In the final section

of the chapter I’ll discuss my friend Nick Herbert’s not-quite-relevant but too-

good-to-pass-up notion of viewing the gap between deterministic lifebox and

unpredictable soul as relating to a gap between the decoherent pure states

and coherent superposed states of quantum mechanics.

4.1: Sensational Emotions

Mind level one—sensation, action, and emotion—begins with the fact that, in

the actual world, minds live in physical bodies. Having a body situated in a

real world allows a mind to receive sensations from the world, to act upon the

world, and to observe the effects of these actions.

We commonly use the term sensors for an organism’s channels for getting

input information about the world, and the term effectors for the output

channels through which the organism does things in the world—moving,

biting, growing, and so on (see figure 79).

Being embedded in the world is a given for any material entity—human,

dog, robot, or boulder. Paradoxically enough, the goal of high-level meditative

practices is to savor fully this basic level of being. Meditation often begins by

focusing on the simplest possible action that a human takes, which is

breathing in and out.

Although being embedded in the world comes naturally for physical beings,

if you’re running an artificial-life (a-life) program with artificial organisms,

your virtual creatures won’t be embedded in a world unless you code up
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some sensor and effector methods they can use to interact with their simu-

lated environment.

The fact that something which is automatic for real organisms requires

special effort for simulated organisms may be one of the fundamental reasons

why artificial-life and simulated evolution experiments haven’t yet proved

as effective as we’d like them to be. It may be that efforts to construct artificially

intelligent programs for personal computers (PCs) will founder until the PCs

are put inside robot bodies with sensors and effectors that tie them to the

physical world.

In most of this chapter, I’m going to talk about the mind as if it resides

exclusively in the brain. But really your whole body participates in your

thinking.

Regarding the mind-brain-body distinction, I find it amusing to remember

how the ancient Egyptians prepared a body for mummification (see table 9).

Before curing and wrapping the corpse’s muscles and bones, they’d eviscerate
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Figure 79 : A Mind Connects Sensors to Effectors

The box in between the sensors and the effectors represents the organism’s mind. The
not-so-familiar word proprioception refers to the awareness of the relative positions of
one’s joints and limbs.



the body and save some key organs in so-called canopic jars. These jars

were carved from alabaster stone, each with a fancy little sculpture atop its

lid. Being a muscle, the heart was left intact within the body. And what

about the brain? The ancient Egyptians regarded the brain as a worthless

agglomeration of mucus; they pulled it out through the nose with a hooked

stick!
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The degree to which we’ve swung in the other direction can be seen by con-

sidering the science-fictional notion of preserving a person as a brain in a jar.

If you can’t afford to court immortality by having your entire body frozen, the

cryonicists at the Alcor Life Extension Foundation are glad to offer you what

they delicately term the neuropreservation option—that is, they’ll freeze your

brain until such a time as the brain-in-a-jar or grow-yourself-a-newly-cloned-

body technology comes on line. But the underlying impulse is, of course, sim-

ilar to that of the ancient Egyptians.

Anyway, my point was that in some sense you think with your body as well

as with your mind. This becomes quite clear when we analyze the nature of

emotions. Before taking any physical action, we get ourselves into a state of

readiness for the given motions. The whole body is aroused. The brain scien-

tist Rodolfo Llinás argues that this “premotor” state of body activation is what

we mean by an emotion.77

Table 9: What Ancient Egyptians Did with a Mummy’s Organs

Organ Fate

Intestines Preserved in falcon-headed canopic jar

Stomach Preserved in jackal-headed canopic jar

Liver Preserved in human-headed canopic jar

Lungs Preserved in baboon-headed canopic jar

Heart Mummified with the body

Brain Pulled out the nose and fed to the dogs



One of the results of becoming socialized and civilized is that we don’t in

fact carry out every physical action that occurs to us—if I did, my perpetu-

ally malfunctioning home and office PCs would be utterly thrashed, with

monitors smashed in, wires ripped out, and beige cases kicked in. We know

how to experience an emotional premotor state without carrying out some

grossly inappropriate physical action. But even the most tightly controlled

emotions manifest themselves in the face and voice box, in the lower back, in

the heart rate, and in the secretions of the body’s glands.

One of the most stressful things you can do to yourself is to spend the day

repeating a tape loop of thoughts that involves some kind of negative emo-

tion. Every pulse of angry emotion puts your body under additional activa-

tion. But if that’s the kind of day you’re having—oh well, accept it. Being

unhappy’s bad enough without feeling guilty about being unhappy!

Given the deep involvement of emotions with the body, it’s perhaps ques-

tionable whether a disembodied program can truly have an emotion—despite

the classic example of HAL in 2001: A Space Odyssey. But, come to think of

it, HAL’s emotionality was connected with his hardware, so in that sense he

did have a body. Certainly humanoid robots will have bodies, and it seems

reasonable to think of them as having emotions. Just as a person does, a

robot would tend to power up its muscle motors before taking a step. Getting

ready to fight someone would involve one kind of preparation, whereas

preparing for a nourishing session of plugging into an electrical outlet would

involve something else. It might be that robots could begin to view their

internal somatic preparations as emotions. And spending too much time a

prefight state could cause premature wear in, say, a robot’s lower-back

motors.

A slightly different way to imagine robot emotions might be to suppose that

a robot continually computes a happiness value that reflects its status

according to various measures. In planning what to do, a robot might inter-

nally model various possible sequences of actions and evaluate the internal

happiness values associated with the different outcomes—not unlike a

person thinking ahead to get an idea of the emotional consequences of a pro-

posed action. The measures used for a robot “happiness” might be a charged

battery, no hardware error-messages, the successful completion of some

tasks, and the proximity of a partner robot. Is human happiness so different?
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4.2: The Network Within

Looking back at figure 4.1, what goes inside the box between the sensors

and the effectors? A universal automatist would expect to find computa-

tions in there. In this section, I’ll discuss some popular computational

models of how we map patterns of sensory stimulation into patterns of

effector activation.

Perhaps the simplest possible mind component is a reflex: If the inputs are

in such and such a pattern, then take this or that action. The most rudi-

mentary reflex connects each sensor input to an effector output. A classic

example of this is a self-steering toy car, as shown in figure 80.

Our minds include lots of simple reflexes—if something sticks in your

throat, you cough. If a bug flies toward your eye, you blink. When your lungs

are empty you breathe in; when they’re full you breathe out.

Microorganisms get by solely on

reflexes—a protozoan swims for-

ward until it bumps something, at

which time it reverses direction. If

the water holds the scent of food,

the creature slows down, other-

wise it swims at full speed.

Bumping and backing, speeding

and slowing down, the animalcule

finds its way all around its watery

environment. When combined with

the unpredictable structures of the

environment, a protozoan’s bump-

and-reverse reflex together with its

slow-down-near-food reflex are

enough to make the creature seem

to move in an individualistic way.

Looking through a microscope,

you may even find yourself

rooting for this or that particular

microorganism—but remember that
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Figure 80: 
A Toy Car That Straddles a Stripe

The eyes stare down at the ground. When the
right eye sees the stripe, this means the car
is too far to the left and the car steers right.
Likewise for the other side.



we humans are great ones for projecting personality onto the moving things

we see. As shown in figure 81, the internal sensor-to-effector circuitry of

a protozoan can be exceedingly simple.

In the early 1980s, brain researcher Valentino Braitenberg had the notion

of describing a series of thought experiments involving the motions of simple

“vehicles” set into a plane with a few beacon lights.78 Consider for instance a

vehicle with the reflex “approach any light in front of you until it gets too

bright, then veer to the dimmer side.” If we were to set down a vehicle of this

kind in a plane with three lights, we would see an interesting circling motion,

possibly chaotic. Since Braitenberg’s time, many programmers have amused

themselves either by building actual Braitenberg vehicles or by writing pro-

grams to simulate little worlds with Braitenberg vehicles moving around. If

the virtual vehicles are instructed to leave trails on the computer screen,

knotted pathways arise—not unlike the paths that pedestrians trample into

new fallen snow. Figure 82 shows three examples of Braitenberg simulations.
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Figure 81: A Flagellate’s Swimming Reflexes

I’m drawing the little guy with a corkscrew flagellum tail that he can twirl in one direc-
tion or the other, at a greater or a lesser speed. One sensor controls speed and the other
sensor controls the direction of the twirling.



Although the Braitenberg patterns are beautiful, if you watch one particular

vehicle for a period of time, you’ll normally see it repeating its behavior. In other

words, these vehicles, each governed by a single reflex force, perform class two

computations. What can we do to make their behavior more interesting?

I have often taught a course on programming computer games, in which

students create their own interactive three-dimensional games.79 We speak of
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Figure 82: Gnarly Braitenberg Vehicles

The artist and UCLA professor Casey Reas produced these images by simulating large
numbers of Braitenberg vehicles that steer toward (or away from) a few “light beacons”
placed in their plane worlds. These particular images are called Tissue, Hairy Red, and
Path, and are based on the motions of, respectively, twenty-four thousand, two hun-
dred thousand, and six hundred vehicles reacting to, respectively, three, eight, and
three beacons. To enhance his images, Reas arbitrarily moves his beacons now and
then. He uses his programs to create fine art prints of quite remarkable beauty (see
http://www.groupc.net).



the virtual agents in the game as “critters.” A recurrent issue is how to endow

a critter with interesting behavior. Although game designers speak of equip-

ping their critters with artificial intelligence, in practice this can mean some-

thing quite simple. In order for a critter to have interesting and

intelligent-looking behavior, it can be enough to attach two or, better, three

reflex-driven forces to it.

Think back to our example in section 3.3: Surfing Your Moods of a magnet

pendulum bob suspended above two or more repelling magnets. Three forces:

gravity pulls the bob toward the center, and the two magnets on the ground

push it away. The result is a chaotic trail.

But now suppose you want more than chaos from your critter. Suppose

you want it to actually be good at doing something. In this case the simplest

reflexes might not be enough. The next step above the reflex is to allow the

use of so-called logic gates that take one or more input signals and combine

them in various ways. If we allow ourselves to chain together the output of

one gate as the input for another

gate, we get a logical circuit. It’s

possible to create a logical circuit

to realize essentially any way of

mapping inputs into outputs. We

represent a simple “walking” cir-

cuit in figure 83.

And of course we can make the

circuits more and more compli-

cated, eventually putting in some-

thing like an entire PC or more.

But a logic circuit may not be the

best way to model a mind.
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Figure 83: Logic Gates for a Walker

The goblet-shaped gates are AND gates, which output a value of True at the bottom if and
only both inputs at the top are True. The little circles separating two of the gate input lines
from the gates proper are themselves NOT gates. A NOT gate returns a True if and only if
its input is False. If you set the walker down with one leg bent and one leg straight, it will
continue alternating the leg positions indefinitely.



The actual computing elements of our brains are nerve cells, or neurons.

A brain neuron has inputs called dendrites and a branching output line

called an axon, as illustrated in figure 84. Note, by the way, that an axon can

be up to a meter long. This means that the brain’s computation can be archi-

tecturally quite intricate. Nevertheless, later in this chapter we’ll find it useful

to look at qualitative CA models of the brain in which the axons are short and

the neurons are just connected to their closest spatial neighbors.

There are about a hundred billion neurons in a human brain. A neuron’s

number of “input” dendrites ranges from several hundred to the tens of thou-

sands. An output axon branches out to affect a few dozen or even a few hun-

dred other cells.

In accordance with the sensor-mind-effector model, the neuron dendrites

can get inputs from sensor cells as well as from other neurons, and the

output axons can activate muscle cells as well as other neurons, as indicated

in figure 85.

Normally a nerve cell sends an all-or-nothing activation signal out along

its axon. Whether a given neuron “fires” at a given time has to do with its acti-

vation level, which in turn depends upon the inputs the neuron receives

through its dendrites. Typically a neuron has a certain threshold value, and

it fires when its activation becomes greater than the threshold level. After a

nerve cell has fired, its activation drops to a resting level, and it takes per-

haps a hundredth of a second of fresh stimulation before the cell can become

activated enough to fire again.
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Figure 84: A Brain Neuron



The gap where axons meet a dendrite is a synapse. When the signal gets

to a synapse it activates a transmitter chemical to hop across the gap and

stimulate the dendrites of the receptor neuron. The intensity of the stimula-

tion depends on the size of the bulb at the end of the axon and on the dis-

tance across the synapse. To make things a bit more complicated, there are

in fact two kinds of synapse: excitatory and inhibitory. Stimulating an

inhibitory synapse lowers the receptor cell’s activation level.

Most research on the human brain focuses on the neocortex, which is the

surface layer of the brain. This layer is about an eighth of an inch thick. If

you could flatten out this extremely convoluted surface, you’d get something

like two square feet of neurons—one square foot per brain-half.
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Figure 85: 
Brain Neurons Connected to Sensors and Effectors



Our big flat neocortical sheets can be regarded as a series of layers. The

outermost layer is pretty much covered with a tangle of dendrites and

axons—kind of like the zillion etched connector lines you see on the under-

side of a circuit board. Beneath this superficial layer of circuitry, one can

single out three main zones: the upper layers, the middle layers, and the deep

layers, as illustrated in figure 86.

Roughly speaking, sensory inputs arrive at the middle layer, which sends

signals to the upper layer. The upper layer has many interconnections among

its own neurons, but some of its outputs also trickle down to the deep layer.

And the neurons in the deep layer connect to the body’s muscles. This is indi-

cated in figure 86, but we make the flow even clearer in figure 87.

As usual in biology, the actual behavior of a living organic brain is funkier

and gnarlier and much more complicated than any brief sketch. Instead of

there being one kind of brain neuron, there are dozens. Instead of there being

one kind of synapse transmission chemical, there are scores of them, all

mutually interacting. Some synapses operate electrically rather than chemi-

cally, and thus respond much faster. Rather than sending a digital pulse
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Figure 86: The Neocortex, Divided into Upper, Middle and Deep Layers

A peculiarity of the brain-body architecture is that the left half of the brain handles input
and output for the right side of the body, and vice versa.



signal, some neurons may instead send a graded continuous-valued signal. In

addition, the sensor inputs don’t really go directly to the neocortex; they go

instead to an intermediate brain region called the thalamus. And our

throughput diagram is further complicated by the fact that the upper layers

feed some outputs back into the middle layers and the deep layers feed some

outputs back into the thalamus. Furthermore, there are any number of addi-

tional interactions among other brain regions; in particular, the so-called

basal ganglia have input-output loops involving the deep layers. But for our

present purposes the diagrams I’ve given are enough.

When trying to create brainlike systems in their electronic machines, computer

scientists often work with a switching element also called a neuron—which is of

course intended to model a biological neuron. These computer neurons are

hooked together into circuits known as neural nets or neural networks.

As drawn in figure 88, we think of the computer neuron as having some

number of input lines with a particular weight attached to each input. The

weights are continuous real numbers ranging from negative one to posi-

tive one. We think of negatively weighted inputs as inhibiting our artificial

neurons and positive values as activating them. At any time, the neuron

has an activation level that’s obtained by summing up the input values

times the weights. In addition, each neuron has a characteristic threshold
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Figure 87: A Simplified Diagram of the Neocortical Layers’ Throughput

U, M, and D are, respectively, the upper, middle, and deep layers of the neocortex.



value Th. The neuron’s output depends on how large its activation level is rel-

ative to its threshold. This is analogous to the fact that a brain neuron fires

an output along its axon whenever its activation is higher than a certain value.

Computer scientists have actually worked with two different kinds of com-

puter neuron models. In the simple version, the neuron outputs are only

allowed to take on the discrete values zero and one. In the more complex ver-

sion, the neuron outputs can take on any real value between zero and one.

Our figure indicates how we might compute the output values from the

weighted sum of the inputs in each case.

Most computer applications of neural nets use neurons with continuous-

valued outputs. On the one hand this model is more removed from the gen-

erally discrete-valued-output behavior of biological neurons—given that a

typical brain neuron either fires or doesn’t fire, its output is more like a
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Figure 88: 
Computer Neuron Models

A neuron with a threshold value com-
putes the weighted sum of its inputs
and uses this sum to calculate its
output. In this figure, the threshold is
Th, and the activation level Ac is the
weighted sum of the inputs is w1•i1 +
w2•i2 + w3•i3. Below the picture of the
neuron we graph two possible neuron
response patterns, with the horizontal
axes representing the activation level
Ac and the vertical axes representing
the output value o. In the upper “dis-
crete” response pattern, the output is
one if Ac is greater than Th, and zero
otherwise. In the lower “continuous”
response pattern, the output is graded
from zero to one, depending on where
Ac stands relative to Th.



single-bit zero or one. On the other hand, our computerized neural nets use

so many fewer neurons than does the brain that it makes sense to get more

information out of each neuron by using the continuous-valued outputs. In

practice, it’s easier to tailor a smallish network of real-valued-output neurons

to perform a given task.80

One feature of biological neurons that we’ll ignore for now is the fact that

biological neurons get tired. That is, there is a short time immediately after

firing when a biological neuron won’t fire again, no matter how great the

incoming stimulation. We’ll come back to this property of biological neurons

in the following section 4.3: Thoughts as Gliders and Scrolls.

In analogy to the brain, our artificial neural nets are often arranged in

layers. Sensor inputs feed into a first layer of neurons, which can in turn feed

into more layers of neurons, eventually feeding out to effectors. The layers in

between the sensors and the final effector-linked layers are sometimes called

hidden layers. In the oversimplified model of the neocortex that I drew in

figures 86 and 87, the so-called upper layer would serve as the hidden layer.

What makes neural nets especially useful is that it’s possible to systemat-

ically tweak the component neurons’ weights in order to make the system

learn certain kinds of task.

In order to get an idea of how neural nets work, consider a face-recogni-

tion problem that I often have my students work on when I teach a course on

artificial intelligence. In this experiment, which was devised by the computer

scientist Tom Mitchell of Carnegie Mellon University, we expose a neural net-

work to several hundred small monochrome pictures of people’s faces.81 To

simplify things, the images are presented as easily readable computer files

that list a grayscale value for each pixel. The goal of the experiment, as illus-

trated in figure 89, is for the network to recognize which faces are smiling,

which are frowning, and which are neutral.

As it turns out, there’s a systematic method for adjusting the weights and

thresholds of the neurons. The idea is that you train the network on a series

of sample inputs for which the desired target output is known. Suppose you

show it, say, a test face that is to be known to be smiling. And suppose that

the outputs incorrectly claim that the face is frowning or neutral. What you

then do is to compute the error term of the outputs. How do I define the

error? We’ll suppose that if a face is frowning, I want an output of 0.9 from
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the “frown” effector, and outputs of 0.1 from the other two—and analogous

sets of output for the neutral and smiling cases. (Due to the S-shaped nature

of the continuous-valued-output neurons’ response curve, it’s not practical

to expect them to actually produce exact 0.0 or 1.0 values.)

Given the error value of the network on a given face, you can work your

way backward through the system, using a so-called back-propagation algo-

rithm to determine how best to alter the weights and thresholds on the neu-

rons in order to reduce the error. Suppose, for instance, the face was

frowning, but the smile output was large. You look at the inputs and weights

in the smile neuron to see how its output got so big. Perhaps one of the smile

neuron inputs has a high value, and suppose that the smile neuron also has

a high positive weight on that input. You take two steps to correct things.

First of all, you lower the smile neuron’s weight for that large-valued input
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Figure 89: A Neural Net to Recognize Smiles and Frowns

We’ll use continuous-valued-output neurons, so at the right-hand side our net returns a
real-number “likelihood” value for each of the three possible facial expressions being
distinguished. The inputs on the left consist of rasterized images of faces, 30 × 32 pixels
in size, with each of the 960 pixels containing a grayscale value ranging between zero
and one. In the middle we have a “hidden layer” of three neurons. Each neuron takes
input from each of the 960 pixels and has a single output line. On the right we have
three effector neurons (drawn as three faces), each of which takes as input the outputs
of the three hidden-layer neurons. For a given input picture, the network’s “answer”
regarding that picture’s expression corresponds to the effector neuron that returns the
greatest value. The total number of weights in this system is 3•960 + 3•3, or 2,889, and
if we add in the threshold values for our six neurons, we get 2,895. (By the way, there’s
no particular reason why I have three hidden neurons. The network might do all right
with two or four hidden neurons instead.)



line, and second, you go back to the hidden neuron that delivered that large

value to the smile neuron and analyze how that hidden neuron happened to

output such a large value. You go over its input lines and reduce the weights

on the larger inputs. In order for the process of back propagation to work, you

do it somewhat gently, not pushing the weights or thresholds too far at any

one cycle. And you iterate the cycle many times.

So you might teach your neural net to recognize smiles and frowns as fol-

lows. Initialize your network with some arbitrary small weights and thresh-

olds, and train it with repeated runs over a set of a hundred faces you’ve

already determined to be smiling, frowning, or neither. After each face your

back-propagation method computes the error in the output neurons and

readjusts the network weights that are in some sense responsible for the

error. You keep repeating the process until you get to a run where the errors

are what you consider to be sufficiently small—for the example given, about

eighty runs might be enough. At this point you’ve finished training your

neural net. You can save the three thousand or so trained weights and

thresholds into a file.

You may be reminded of the discussion in section 3.6: How We Got So

Smart of search methods for finding peaks in a fitness landscape. The situa-

tion here is indeed similar. The “face weight” landscape example ranges over

all the possible sets of neuron weights and thresholds. For each set of three

thousands or so parameters, the fitness value measures how close the net-

work comes to being a 100 percent right in discerning the expressions of the

test faces. Obviously it’s not feasible to carry out an exhaustive search of this

enormous parameter space, so we turn to a search method—in this case a

method called back-propagation. As it turns out, back-propagation is in fact

a special hill-climbing method that, for any given set of parameters, finds the

best nearby set of parameters in the neural net’s fitness landscape.

Now comes the question of how well your net’s training can generalize. Of

course it will score fine on those hundred faces that it looked at eighty times

each—but what happens when you give it new, previously unseen pictures of

faces? If the faces aren’t radically different from the kinds of faces the net was

trained upon, the net is likely to do quite well. The network has learned

something, and the knowledge takes the form of some three thousand real

numbers.
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But if, for instance, all the training faces were seen full-on, the network

isn’t going to do well on profile faces. Or if all the training faces were of people

without glasses, the network probably won’t be good at recognizing the facial

expressions of glasses-wearers.

What to do? One approach is to build up deeper layers of neural networks.

We might, for instance, use a preliminary network to decide which way a face

is looking, sorting them into left-profile, full, and right-profile faces. And then

we could train a separate expression-recognizing network for each of the

three kinds of face positions. With a little cleverness with the wiring, the

whole thing could be boxed up as a single multilayer neural net, as suggested

by figure 90.

Note here that it can actually be quite a job to figure out how best to break

down a problem into neural-net-solvable chunks, and to then wire the solu-

tions together. Abstractly speaking, one could simply throw a very general

neural net at any problem—for instance, you might give the arbitrarily-

positioned-face-recognition problem a neural net with perhaps two hidden

layers of neurons, also allowing input lines to run from all the pixels into the

neurons of the second hidden layer, and hope that with enough training and

back-propagation the network will eventually converge on a solution that

works as well as using the first layer to decide on the facial orientation and

using the second layer’s neurons to classify the expression of each facial
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Figure 90 : Generalized Face Recognizer

The first box recognizes the face’s position. The position information is fed with the face
information to the three specialized expression recognizers, and the appropriate one
responds.



orientation. Training a net without a preconceived design is feasible, but it’s

likelier to take longer than using some preliminary analysis and assembling

it as described above.

Custom-designed neural nets are widely used—the U.S. Post Office, for

instance, uses a neural net program to recognize handwritten ZIP codes. But

the designers did have to put in quite a bit of thought about the neural net

architecture—that is, how many hidden layers to use, and how many neu-

rons to put in each of the hidden layers.

Computer scientists like to imagine building programs or robots that can

grow up and learn and figure things out without any kind of guiding input.

In so-called unsupervised learning, there’s no answer sheet to consult. If, for

instance, you learn to play Ping-Pong simply by playing games against an

opponent, your feedback will consist of noticing which of your shots goes bad

and which points you lose. Nobody is telling you things like, “You should have

tilted the paddle a little to the right and aimed more toward the other side’s

left corner.” And, to make the situation even trickier, it may be quite some

time until you encounter a given situation again. Tuning your neural net with

unsupervised learning is a much harder search problem, and specifying the

search strategy is an important part of the learning program design—typical

approaches might include hill-climbing and genetic programming.

There’s also a metasearch issue of trying out various neural net architec-

tures and seeing which works best. But as your problem domains get more

sophisticated, the fitness evaluations get more time-consuming, particularly

in the unsupervised learning environments where you essentially have to

play out a whole scenario in order to see how well your agent will do. The

search times for effective learning can be prohibitively long.

It’s worth noting here that a human or an animal is born with nearly all of

the brain’s neural net architecture already in place. It’s not as if each of us

has to individually figure out how to divide the brain’s hundred billion neu-

rons into layers, how to parcel these layers into intercommunicating

columns, and how to connect the layers to the thalamus, the sense organs,

the spine, the basal ganglia, etc. The exceedingly time-consuming searches

over the space of possible neural architectures is something that’s happened

over millions of years of evolution—and we’re fortunate enough to inherit the

results.
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The somewhat surprising thing is how often a neural net can solve what

had seemed to be a difficult AI problem. Workers in the artificial-intelligence

field sometimes say, “Neural nets are the second-best solution to any

problem.”82

Given a reasonable neural net architecture and a nice big set of training

examples, you can teach a neural net to solve just about any kind of problem

that involves recognizing standard kinds of situations. And if you have quite

a large amount of time, you can even train neural nets to carry out less

clearly specified problems, such as, for instance, teaching a robot how to

walk on two legs. As with any automated search procedure, the neural net

solutions emerge without a great deal of formal analysis or deep thought.

The seemingly “second-best” quality of the solution has to do with the

feeling that a neural net solution is somewhat clunky, ad hoc, and brute-

force. It’s not as if the designer has come up with an elegant, simple algo-

rithm based upon a fundamental understanding of the problem in question.

The great mound of network weights has an incomprehensible feel to it.

It could be that it’s time to abandon our scientific prejudices against com-

plicated solutions. In the heroic nineteenth and twentieth centuries of sci-

ence, the best solution of a problem often involved a dramatic act of

fundamental understanding—one has only to think of the kinds of formulas

that traditionally adorn the T-shirts of physics grad students: Maxwell’s

equations for electromagnetism, Einstein’s laws for relativity, Schrödinger’s

wave equation for quantum mechanics. In each case, we’re talking about a

concise set of axioms from which one can, in a reasonable amount of time,

logically derive the answers to interesting toy problems.

But the simple equations of physics don’t provide feasible solutions to

many real-world problems—the laws of physics, for instance, don’t tell us

when the big earthquake will hit San Jose, California, and it wouldn’t even

help to know the exact location of all the rocks underground. Physical sys-

tems are computationally unpredictable. The laws provide, at best, a recipe

for how the world might be computed in parallel particle by particle and

region by region. But—unless you have access to some so-far-unimaginable

kind of computing device that simulates reality faster than the world does

itself—the only way to actually learn the results is to wait for the actual

physical process to work itself out. There is a fundamental gap between
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T-shirt-physics-equations and the unpredictable and PC-unfeasible gnarl of

daily life.

One of the curious things about neural nets is that our messy heap of

weights arises from a rather simple deterministic procedure. Just for the

record, let’s summarize the factors involved.

• The network architecture, that is, how many neurons we use,

and how they’re connected to the sensor inputs, the effector

outputs, and to one another.

• The specific implementation of the back-propagation algorithm

to be used—there are numerous variants of this algorithm.

• The process used to set the arbitrary initial weights—typically

we use a pseudorandomizer to spit out some diverse values,

perhaps a simple little program like a CA. It’s worth noting

that if we want to repeat our experiment, we can set the

pseudorandomizer to the same initial state, obtaining the

exact same initial weights and thence the same training

process and the same eventual trained weights.

• The training samples. In the case of the expression-recogni-

tion program, this would again be a set of computer files of

face images along with a specification as to which expression

that face is considered to have.

In some sense the weights are summarizing the information about the

sample examples in a compressed form—and compressed forms of informa-

tion are often random-looking and incomprehensible. Of course it might be

that the neural net’s weights would be messy even if the inputs were quite

simple. As we’ve seen several times before, it’s not unusual for simple sys-

tems to generate messy-looking patterns all on their own—remember Wol-

fram’s pseudorandomizing cellular automaton Rule 30 and his glider-producing

universally computing Rule 110.

We have every reason to suppose that, at least in some respects, the human

brain functions similarly to a computer-modeled neural network. Although, as

I mentioned earlier, much of the brain’s network comes preinstalled, we do
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learn things—the faces of those around us, the words of our native language,

skills like touch-typing or bicycle-riding, and so on.

First of all, we might ask how a living brain goes about tweaking the

weights of the synaptic connections between axons and dendrites. One pos-

sibility is that the changes are physical. A desirable synapse might be

enhanced by having the axon’s terminal bulb grow a bit larger or move a bit

closer to the receptor dendrite, and an undesirable synapse’s axon bulb

might shrivel or move away. The virtue of physical changes is that they stay

in place. But it’s also possible that the synapse tweaking is something sub-

tler and more biochemical.

Second, we can ask how our brains go about deciding in which directions

the synapse weights should be tweaked.

Do we use back-propagation, like a neural net? This isn’t so clear.

A very simple notion of human learning is called Hebbian learning, after

Canadian neuropsychologist Donald O. Hebb, who published an influential

book called The Organization of Behavior in 1949. This theory basically says

that the more often a given synapse fires, the stronger its weight becomes. If

you do something the right way over and over, that behavior gets “grooved in.”

Practice makes perfect. It may be that when we mentally replay certain kinds

of conversations, we’re trying to simulate doing something right.

This said, it may be that we do some back-propagation as well. In an unsu-

pervised learning situation, such as when you are learning to play tennis,

you note an error when, say, you hit the ball into the net. But you may not

realize the error is precisely because you rotated your wrist too far forward

as you hit. Rather than being able to instantly back-propagate the informa-

tion to your wrist-controlling reflexes, you make some kind of guess about

what you did wrong and back-propagate that.

More complicated skills—like how to get along with the people in your life—

can take even longer to learn. For one thing, in social situations the feedback

is rather slow. Do you back-propagate the error term only the next day when

you find out that you goofed, at that time making your best guess as to which

of your behaviors produced the bad results?

As well as using Hebbian learning or back-propagation, we continually

carry out experiments, adjusting our neural weights on the fly. To an out-

sider, this kind of activity looks like play. When puppies romp and nip,
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they’re learning. If you go off and hit a ball against a wall a few hundred times

in a row, you’re exploring which kind of stroke gives the best results. What

children learn in school isn’t so much the stuff the teachers say as it is the

results of acting various different ways around other people.

In terms of Wolfram’s fourfold classification, what kinds of overall compu-

tation take place as you adjust the weights of your brain’s neural networks?

Clear-cut tasks like learning the alphabet are class one computations. You

repeat a deterministic process until it converges on a fixed point.

But in many cases the learning is never done. Particularly in social situations,

new problems continue to arise. Your existing network weights need to be retuned

over and over. Your network-tuning computation is, if you will, a lifelong educa-

tion. The educational process will have aspects of class two, three, and four.

Your life education is class two, that is, periodic, to the extent that you lead

a somewhat sheltered existence, perhaps by getting all your information from

newspapers or, even more predictably, from television. In this kind of life,

you’re continually encountering the same kinds of problems and solving

them in the same kinds of ways.

If, on the other hand, you seek out a wider, more arbitrary range of dif-

ferent inputs, then your ongoing education is more of a class three process.

And, to the extent that you guide yourself guided along systematic yet

gnarly paths, you’re carrying out a class four exploration of knowledge. Note

that in this last case, it may well be that you’re unable to consciously formu-

late the criteria by which you guide yourself—indeed, if your search results

from an unpredictable class four computation, this is precisely the case.

The engaged intellectual life is a never-ending journey into the unknown.

Although the rules of our neuronal structures are limited in number, the

long-term consequences of the rules need not be boring or predictable.

4.3: Thoughts as Gliders and Scrolls

So far we’ve only talked about situations in which a brain tries to adjust itself

so as to deal with some external situation. But the life of the mind is much

more dynamic. Even without external input, the mind’s evolving computa-

tions are intricate and unpredictable.

Your brain doesn’t go dark if you close your eyes and lie down in a quiet
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spot. The thoughts you have while driving your car don’t have much to do

with the sensor-effector exigencies of finding your way and avoiding the other

vehicles.

A little introspection reveals that we have several different styles of

thought. In particular, I’d like to distinguish between two modes that I’ll call

trains of thought and thought loops.

By trains of thought, I mean the free-flowing and somewhat unpredictable

chains of association that the mind produces when left on its own. Note that

trains of thoughts need not be formulated in words. When I watch, for

instance, a tree branch bobbing in the breeze, my mind plays with the posi-

tions of the leaves, following them and automatically making little predictions

about their motions. And then the image of the branch might be replaced by

a mental image of a tiny man tossed up high into the air. His parachute pops

open and he floats down toward a city of lights. I recall the first time I flew

into San Jose and how it reminded me of a great circuit board. I remind

myself that I need to see about getting a new computer soon, and then in

reaction I think about going for a bicycle ride. The image of the bicyclist on

the back of the Rider brand of playing cards comes to mind, along with a

thought of how Thomas Pynchon refers to this image in Gravity’s Rainbow. I

recall the heft of Pynchon’s book, and then think of the weights that I used

to lift in Louisville as a hopeful boy forty-five years ago, the feel and smell of

the rusty oily weight bar still fresh in my mind.

By thought loops, I mean something quite different. A thought loop is some

particular sequence of images and emotions that you repeatedly cycle

through. Least pleasant—and all too common—are thought loops having to

do with emotional upsets. If you have a disagreement with a colleague or a

loved one, you may find yourself repeating the details of the argument, sum-

marizing the pros and cons of your position, imagining various follow-up

actions, and then circling right back to the detailed replay of the argument.

Someone deep in the throes of an argument-provoked thought loop may even

move their lips and make little gestures to accompany the remembered words

and the words they wish they’d said.

But many thought loops are good. You often use a thought loop to solve a

problem or figure out a course of action, that is, you go over and over a cer-

tain sequence of thoughts, changing the loop a bit each time. And eventually
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you arrive at a pattern you like. Each section of this book, for instance, is the

result of some thought loops that I carried around within myself for weeks,

months, or even years before writing them down.

Understanding a new concept also involves a thought loop. You formulate

the ideas as some kind of pattern within your neurons, and then you repeat-

edly activate the pattern until it takes on a familiar, grooved-in feel.

Viewing a thought loop as a circulating pattern of neuronal activation sug-

gests something about how the brain might lay down long-term memories.

Certainly a long-term memory doesn’t consist of a circulating thought loop

that never stops. Long-term memory surely involves something more static.

A natural idea would be that if you think about something for a little while,

the circulating thought-loop stimulation causes physical alterations in the

synapses that can persist even after the thought is gone. This harks back to

the Hebbian learning I mentioned in the section 4.2: The Network Within,

whereby the actual geometry of the axons and dendrites might change as a

result of being repeatedly stimulated.

Thus we can get long-term memory from thought loops by supposing that

a thought loop reinforces the neural pathway that it’s passing around. And

when a relevant stimulus occurs at some later time, the grooved-in pathway

is activated again.

Returning to the notion of free-running trains of thought, you might want

to take a minute here and look into your mind. Watching trains of thought is

entertaining, a pleasant way of doing nothing. But it’s not easy.

I find that what usually breaks off my enjoyment of my thought trains

is that some particular thought will activate one of my thought loops to

such an extent that I put all my attention into the loop. Or it may be that

I encounter some new thought that I like so much that I want to savor it,

and I create a fresh thought loop of repeating that particular thought to

myself over and over. Here again my awareness of the passing thought

trains is lost.

This process is familiar for students of the various styles of meditation. In

meditation, you’re trying to stay out of the thought loops and to let the trains

of thought run on freely without any particular conscious attachment. Medi-

tators are often advised to try to be in the moment, rather than in the past or

the future—brooding over the past and worrying about the future are classic
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types of thought loops. One way to focus

on the present is to pay close attention

to your immediate body sensations, in

particular to be aware of the inward and

outward flow of your breath.

In understanding the distinction

between trains of thought and thought

loops, it’s useful to consider some

computational models.

One of the nicest and simplest com-

puter models of thought trains is a cel-

lular automaton rule called Brian’s

Brain. It was invented by the cellular

automatist and all-around computer-

fanatic Brian Silverman.

Brian’s Brain is based on a feature of the brain’s neurons that, for sim-

plicity’s sake, isn’t normally incorporated into the computer-based neural

nets described in section 4.2. This additional feature is that actual brain neu-

rons can be tired, out of juice, too pooped to pop. If a brain neuron fires and

sends a signal down its axon, then it’s not going to be doing anything but

recuperating for the next tenth of a second or so.

With this notion in mind, Silverman formulated a two-dimensional CA

model based on “nerve cells” that have three states: ready, firing, and resting.

Rather than thinking of the cells as having distinct input and output lines,

the CA model supposes that the component cells have simple two-way links;

to further simplify things, we assume that each cell is connected only to its

nearest neighbors, as indicated in figure 91.

The Brian’s Brain rule updates all the cells in parallel, with a given cell’s

update method depending on which state the cell happens to be in.

• Ready. This is the ground state where neurons spend most of

their time. At each update, each cell counts how many (if any)

of its eight immediate neighbors is in the firing state. If exactly

two neighbors are firing, a ready cell switches to the firing
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Figure 91: A CA Made of Neurons

The dark, curvy eight-pointed stars are the
neurons.



state at the next update. In all other cases, a ready cell stays

ready.

• Firing. This corresponds to the excited state where a neuron

stimulates its neighbors. After being in a firing state, a cell

always enters the resting state at the following update.

• Resting. This state follows the firing state. After one update

spent in the resting state, a cell returns to the ready state.

The existence of the resting-cell state makes it very easy for moving pat-

terns of activation to form in the Brian’s Brain rule. Suppose, for instance,

that we have two light-gray firing cells backed up by two dark-gray resting

cells. You might enjoy checking that the pattern will move in the direction of

the firing cells, as indicated in figure 92.

Brian’s Brain is rich in the moving patterns that cellular automatists call

gliders. It’s a classic example of a class four computation and is nicely bal-

anced between growth and death. Silverman himself once left a Brian’s Brain

simulation running untended on an early Apple computer for a year—and it

never died down. The larger gliders spawn off smaller gliders; occasionally

gliders will stretch out a long thread of activation between them. As suggested

by figure 93, we find gliders moving in all four of the CA space’s directions, and

there are in fact small patterns called butterflies that move diagonally as well.

I don’t think it’s unreasonable to suppose that the thought trains within your

brain may result from a process somewhat similar to the endless flow of the

gliding patterns in the Brian’s Brain CA. The trains of thought steam along,

now and then colliding and sending off new thought trains in their wake.
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Figure 92: A Glider in the Brian’s Brain Rule



When some new sensation comes in from the outside, it’s like a cell-

seeding cursor-click on a computer screen. A few neurons get turned on, and

the patterns of activation and inhibition flow out from there.

A more complicated way to think of thought trains would be to compare

the brain’s network of neurons to a continuous-valued CA that’s simulating

wave motion, as we discussed back in section 2.2: Everywhere at Once.

Under this view, the thought trains are like ripples, and new input is like a

rock thrown into a pond.

What about recurrent thoughts—the topics that you obsess upon, the mental

loops that you circle around over and over? Here another kind of CA rule

comes to mind: Zhabotinsky-style scrolls. You may recall that we’ve already

discussed these ubiquitous forms in both the context of morphogenesis as

well as in connection with ecological simulations of population levels. I show

yet another pair of these images in figure 94.
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Figure 93: The Brian’s Brain Cellular Automaton

The white, light gray, and dark gray cells are, respectively, in the ready, firing, and resting
states. If the picture were animated, you would see the patterns moving horizontally and
vertically, with the light gray edges leading the dark gray tails, and with new firing cells
dying and being born.83



Scroll-type patterns often form when we have an interaction between

activation and inhibition, which is a good fit for the computations of the

brain’s neurons. And, although I haven’t yet mentioned the next fact, it’s

also the case that scroll patterns most commonly form in systems where

the individual cells can undergo a very drastic change from a high level of

activation to a low level—which is also a good fit for neuronal behavior. A

neuron’s activation levels rise to a threshold value, it fires, and its activa-

tion abruptly drops.

Recall that when CAs produce patterns like Turing stripes and

Zhabotinsky scrolls, we have the activation and inhibition diffusing at dif-

ferent rates. I want to point out that the brain’s activation and inhibition sig-

nals may also spread at different rates. Even if all neural activation signals

are sent down axons at the same rate, axons of different length take longer

to transmit a signal. And remember that there’s a biochemical element to the

transmission of signals across synapses, so the activator and inhibitor sub-

stances may spread and take effect at different rates.

Summing up, I see my thought patterns as being a combination of two

types of processes: a discrete gliderlike flow of thought trains overlaid upon

the smoother and more repetitive cycling of my thought loops. The images in

figure 95 capture something of what I have in mind.

I’ll confess that neither of these images precisely models my conception of

brain activity—I’d really prefer to see the gliders etching highways into the

scrolls and to see the dense centers and intersections of the scrolls acting as
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Figure 94: More CA Scroll Patterns

These two images were generated using variations of continuous-valued activator-
inhibitor rules suggested by, respectively, Arthur Winfree and Hans Meinhardt.
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Figure 95: 
Cellular Automaton Patterns Like a Mind with Thoughts and Obsessions

The first image shows the Brain Hodge rule, where discrete Brian’s Brain gliders cruise
across a sea of Hodgepodge scrolls. The cells hold two activators, one for each rule, and
the Brain activator stimulates the Hodgepodge activator.

The second image shows the Boiling Cubic Wave rule. Here we have a nonlinear wave-
simulating rule that makes ripples akin to thought loops. The nonlinearity of the wave
is a value that varies from cell to cell and obeys a driven heat rule, producing a “boiling”
effect like moving trains of thought layered on top of the wavy thought loops. As it so
happens, the thought trains have the ability to bend around into square scrolls. 



seed points for fresh showers of gliders. But I hope the images give you a gen-

eral notion of what I have in mind when I speak of thought trains moving

across a background of thought loops.

I draw inspiration from the distinction between fleeting trains of thought and

repeating thought loops. When I’m writing, I often have a fairly clear plan for

the section I’m working on. As I mentioned above, this plan is a thought loop

that I’ve been rehearsing for a period of time. But it sometimes happens that

once I’m actually doing the writing, an unexpected train of thought comes

plowing past. I treat such unexpected thoughts as gifts from the muse, and I

always give them serious consideration.

I remember when I was starting out as a novelist, I read an advice-to-

writers column where an established author said something like, “From time

to time, you’ll be struck with a completely crazy idea for a twist in your story.

A wild hair that totally disrupts what you had in mind. Go with it. If the story

surprises you, it’ll surprise the reader, too.” I never forgot that advice.

This said, as a practical matter, I don’t really work in every single oddball

thought I get, as at some point a work can lose its coherence. But many of

the muse’s gifts can indeed be used.

Who or what is the muse? For now, let’s just say the muse is the unpre-

dictable but deterministic evolution of thought trains from the various inputs

that you happen to encounter day to day. The muse is a class four computa-

tion running in your brain.

People working in any kind of creative endeavor can hear the muse. You

might be crafting a novel, an essay, a PowerPoint presentation, a painting, a

business proposal, a computer program, a dinner menu, a decoration

scheme, an investment strategy, or a travel plan. In each case, you begin by

generating a thought loop that describes a fairly generic plan. And over time

you expand and alter the thought loop. Where do the changes come from?

Some of them are reached logically, as predictable class two computations

closely related to the thought loop. But the more interesting changes occur

to you as unexpected trains of thought. Your plan sends out showers of

gliders that bounce around your neuronal space, eventually catching your

attention with new configurations. Straight from the muse.

One seeming problem with comparing thoughts to moving patterns in cellular
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automata is that the space of brain neurons isn’t in fact structured like a CA.

Recall that axons can be up to a meter long, and information flow along an

axon is believed to be one-way rather than two-way.

But this isn’t all that big a problem. Yes, the connectivity of the brain neu-

rons is more intricate than the connectivity of the cells in a CA. But our expe-

riences with the universality of computational processes suggests that the

same general kinds of patterns and processes that we find in CAs should also

occur in the brain’s neural network. We can expect to find class one patterns

that die out, class two patterns that repeat, chaotic class three patterns, rap-

idly moving gliderlike class four patterns, and the more slowly moving scroll-

like class four patterns.

Visualize a three-dimensional CA running a CA rule rich in gliders and

scrolls (see figure 96). Think of the cells as nodes connected by strings to

their neighbors. Now stretch a bunch of the strings and scramble things

around, maybe drop the mess onto a tabletop, and shuffle it. Then paste the

tangle into a two-foot-square mat that’s one-eighth of an inch thick. Your neo-

cortex! The glider and scroll patterns are still moving around in the network,
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Figure 96: Another Three-Dimensional CA with Scrolls

Here’s a Winfree-style CA running on a three-dimensional array of cells. The surface
patterns change rather rapidly, as buried scrolls boil up and move across it. Gnarly
dude! 



but due to the jumbled connections among the cells, a brain scan won’t

readily reveal the moving patterns. The spatial arrangement of the neurons

doesn’t match their connectivity. But perhaps some researchers can notice

subtler evidences of the brain’s gliders and scrolls.

At this point we’re getting rather close to the synthesizing “Seashell” ele-

ment of my book’s title. To be quite precise, I’m proposing that the brain is a

CA-like computer and that the computational patterns called gliders and

scrolls are the basis of our soulful mental sensations of, respectively, unpre-

dictable trains of thought and repetitive thought-loops.

If this is true, does it make our mental lives less interesting? No. From

whence, after all, could our thoughts come, if not from neuronal stimulation

patterns? From higher-dimensional ectoplasm? From telepathic dark matter?

From immortal winged souls hovering above the gross material plane? From

heretofore undetected subtle energies? It’s easier to use your plain old brain.

Now, don’t forget that many or perhaps most complex computations are

unpredictable. Yes, our brains might be carrying out computations, but that

doesn’t mean they’ll ever cease surprising us.

I’m not always as happy as I’d like to be, and the months when I’ve been

working on this chapter have been especially challenging. My joints and mus-

cles pain me when I program or write, I had the flu for a solid month, my

wife’s father has fallen mortally ill, my country’s mired in war, I’m anxious

about finding a way to retire from the grind of teaching computer science,

and frankly I’m kind of uptight about pulling off this rather ambitious book.

I could complain for hours! I’m getting to be an old man.

Scientist that I am, I dream that a deeper understanding of the mind

might improve my serenity. If I had a better model of how my mind works,

maybe I could use my enhanced understanding to tweak myself into being

happy. So now I’m going to see if thinking in terms of computation classes

and chaotic attractors can give me any useful insights about my moods.

I already said a bit about this in section 3.3: Surfing Your Moods, but I

want to push it further. After all, “How to Be Happy” is part of the book’s

subtitle.

Rather than calling the mind’s processes class four computations, we can

also refer to them as being chaotic. Although a chaotic process is unpredictable
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in detail, one can learn the overall range of behaviors that the system will dis-

play. This range is, again, what we call a chaotic attractor.

A dynamic process like the flow of thought wanders around a state space

of possibilities. To the extent that thought is a computation, the trajectory

differs from random behavior in two ways. First of all, the transitions from

one moment to the next are deterministic. And secondly, at any given time

the process is constrained to a certain range of possibilities—the chaotic

attractor. In the Brian’s Brain CA, for instance, the attractor is the behavior

of having gliders moving about with a characteristic average distance

between them. In a scroll, the attractor is the behavior of pulsing out

rhythmic bands.

As I mentioned in section 2.4: The Meaning of Gnarl, a class one computa-

tion homes in on a final conclusion, which acts as a pointlike attractor. A

class two computation repeats itself, cycling around on an attractor that’s a

smooth, closed hypersurface in state space. Class three processes are very

nearly random and have fuzzy attractors filling their state space. Most rele-

vant for the analysis of mind are our elaborate class four trains of thought,

flickering across their attractors like fish around tropical reefs.

If you happen to be faced with a problem that actually has a definite solu-

tion, your thought dynamics can in fact can take on a class one form, closing

in on the unique answer. But life’s more galling problems are in fact insol-

uble, and grappling with a problem like this is likely to produce a wretched

class two cycle.

Taking a fresh look at a thought loop gets you nowhere. By way of illus-

tration, no matter what brave new seed pattern you throw into a scroll-gen-

erating CA, the pattern will always be eaten away as the natural attractor of

the loop reasserts itself.

So how do we switch away from unpleasant thoughts? The only real way

to escape a thought loop is to shift your mind’s activity to a different

attractor, that is, to undergo a chaotic bifurcation, as I put it in section 2.4.

We change attractors by altering some parameter or rule of the system so as

to move to a different set of characteristic behaviors. With regard to my

thoughts, I see two basic approaches: reprogramming or distraction.

Reprogramming is demanding and it takes time. Here I try to change the

essential operating rules of the processes that make my negative thought-loops
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painful. Techniques along these lines include: learning to accept irremediable

situations just as they are; anticipating and forestalling my standard emo-

tional reactions to well-known recurring trigger events; letting go of my

expectations about how the people around me ought to behave; and releasing

my attachment to certain hoped-for outcomes. None of these measures

comes easily.

I always imagine that over time, by virtue of right thinking and proper

living, I’ll be able to inculcate some lasting changes into my synapses or neu-

rotransmitters. I dream that I’ll be able to avoid the more lacerating thought-

loops for good. But my hard-won equilibrium never lasts. Eventually I fall off

the surfboard into the whirlpools.

Our society periodically embraces the belief that one might attain perma-

nent happiness by taking the right drugs—think of psychedelics in the six-

ties and antidepressants in the Y2K era. Drugs affect brain’s computations,

not by altering the software, but by tweaking the operational rules of the

underlying neural hardware. The catch is that, given the unpredictable

nature of class four computation, the effects of drugs can be different from

what they’re advertised to be. At this point in my life, my preference is to get

by without drugs. My feeling is that the millennia-long evolution of the

human brain has provided for a rich enough system to produce unaided any

state I’m interested in. At least in my case, drugs can in fact lead to a dimin-

ished range of possibilities. This said, I do recognize that, in certain black

moods, any theorizing about attractors and computation classes becomes

utterly beside the point, and I certainly wouldn’t gainsay the use of medica-

tion for those experiencing major depression.

Distraction is an easier approach. Here you escape a problem by simply for-

getting about it. And why not? Why must every problem be solved? Your

mind’s a big place, so why limit your focus to its least pleasant corners?

When I want to come to my senses and get my attention away from, say, a

mental tape of a quarrel, I might do it by hitching a ride on a passing thought

train. Or by paying attention to someone other than myself. Altruism has its

rewards. Exercise, entertainment, or excursions can help change my mood.

Both reprogramming and distraction reduce to changing the active

attractor. Reprogramming myself alters the connectivity or chemistry of my

brain enough so that I’m able to transmute my thought loops into different
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forms with altered attractors. Distracting myself and refocusing my attention

shifts my conscious flow of thoughts to a wholly different attractor.

If you look at an oak tree and a eucalyptus tree rocking in the wind, you’ll

notice that each tree’s motion has its own distinct set of attractors. In the

same way, different people have their own emotional weather, their particular

style of response, thought, and planning. This is what we might call their sen-

sibility, personality, or disposition.

Having raised three children, it’s my impression that, to a large degree,

their dispositions were fairly well fixed from the start. For that matter, my

own basic response patterns haven’t changed all that much since I was a boy.

One’s mental climate is an ingrained part of the body’s biochemistry, and the

range of attractors available to an individual brain is not so broad as one

might hope.

In one sense, this is a relief. You are who you are, and there’s no point ago-

nizing about it. My father took to this insight in his later life and enjoyed

quoting Popeye’s saying: “I yam what I yam.” Speaking of my father, as the

years go by, I often notice aspects of my behavior that remind me of him or

of my mother—and I see the same patterns yet again in my children. Much

of one’s sensibility consists of innate hereditary patterns of the brain’s chem-

istry and connectivity.

In another sense, it’s disappointing not to be able to change one’s sensi-

bility. We can tweak our moods somewhat via reprogramming, distraction, or

psychopharmacology. But making a radical change is quite hard.

As I type this on my laptop, I’m sitting at my usual table in the Los Gatos

Coffee Roasting café. On the café speakers I hear Jackson Browne singing

his classic road song, “Take It Easy,” telling me not to let the sound of my

own wheels drive me crazy. It seems to fit the topic of thought loops, so I

write it in. This gift from the outside reminds me that perhaps there’s a muse

bigger than anything in my own head. Call it God, call it the universe, call

it the cosmic computation that runs forward and backward through all of

spacetime.

Just now it seems as if everything’s all right. And so what if my exhilara-

tion is only temporary? Life is, after all, one temporary solution after another.

Homeostasis.
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4.4: “I Am”

In section 4.1: Sensational Emotions, I observed that our brain functions are

intimately related to the fact that we have bodies living in a real world, in sec-

tion 4.2: The Network Within, I discussed how responses can be learned in the

form of weighted networks of neural synapses, and in section 4.3: Thoughts as

Gliders and Scrolls, I pointed out that the brain’s overall patterns of activation

are similar to the gliders and scrolls of CAs.

In this section I’ll talk about who or what is experiencing the thoughts. But

before I get to that, I want to say a bit about the preliminary question of how

it is that a person sees the world as made of distinct objects, one of which

happens to be the person in question.

Thinking in terms of objects gives you an invaluable tool for compressing

your images of the world, allowing you to chunk particular sets of sensa-

tions together. The ability to perceive objects isn’t something a person

learns; it’s a basic skill that’s hardwired into the neuronal circuitry of the

human brain.

We take seeing objects for granted, but it’s by no means a trivial task.

Indeed, one of the outstanding open problems in robotics is to design a com-

puter vision program that can take camera input and reliably pick out the

objects in an arbitrary scene. By way of illustration, when speaking of chess-

playing robots, programmers sometimes say that playing chess is the easy

part and recognizing the pieces is the hard part. This is initially surprising,

as playing chess is something that people have to laboriously learn—whereas

the ability to perceive objects is something that people get for free, thanks to

being born with a human brain.

In fact, the hardest tasks facing AI involve trying to emulate the fruits of

evolution’s massive computations. Putting it a bit differently, the built-in fea-

tures of the brain are things that the human genome has phylogenetically

learned via evolution. In effect evolution has been running a search algorithm

across millions of parallel computing units for millions of years, dwarfing the

learning done by an individual brain during the pitifully short span of a

single human life. The millennia of phylogenetic learning are needed because

it’s very hard to find a developmental sequence of morphogens capable of
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growing a developing brain into a useful form. Biological evolution solved the

problem, yes, but can our laboratories?

In limited domains, man-made programs do of course have some small

success in recognizing objects. Machine vision uses tricks such as looking for

the contours of objects’ edges, picking out coherent patches of color, computing

the geometric ratios between a contour’s corners, and matching these features

against those found in a stored set of reference images. Even so, it’s not clear if

the machine approaches we’ve attempted are in fact the right ones. The fact that

our hardware is essentially serial tends to discourage us from thinking deeply

enough about the truly parallel algorithms used by living organisms. And using

search methods to design the parallel algorithms takes prohibitively long.

In any case, thanks to evolution, we humans see the world as made up of

objects. And of all the objects in your world, there’s one that’s most impor-

tant to you: your own good self. At the most obvious level, you pay special

attention to your own body because that’s what’s keeping you alive. But now

let’s focus on something deeper: the fact that your self always seems sur-

rounded by a kind of glow. Your consciousness. What is it?

At first we might suppose that consciousness is a distinct extra element,

with a person then being made of three parts:

• The hardware, that is, the physical body and brain.

• The software, including memories, skills, opinions, and

behavior patterns.

• The glow of consciousness.

What is that “glow” exactly? Partly it’s a sense of being yourself, but it’s

more than that: It’s a persistent visceral sensation of a certain specific kind;

a warmth, a presence, a wordless voice forever present in your mind. I think

I’m safe in assuming you know exactly what I mean.

I used to be of the opinion that this core consciousness is simply the bare

feeling of existence, expressed by the primal utterance, “I am.” I liked the fact

that everyone expresses their core consciousness in the same words: “I am. I

am me. I exist.” This struck me as an instance of what my ancestor Hegel

called the divine nature of language. And it wasn’t lost on me that the Bible
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reports that after Moses asked God His name, “God said to Moses, ‘I AM WHO

I AM’; and He said, ‘Thus you shall say to the sons of Israel, I AM has sent

me to you.’ ” I once discussed this with Kurt Gödel, by the way, and he said

the “I AM” in Exodus was a mistranslation. Be that as it may. I used to

imagine my glow of consciousness to be a divine emanation from the cosmic

One, without worrying too much more about the details.84

But let’s give universal automatism a chance. Might one’s glow of con-

sciousness have some specific brain-based cause that we might in turn view

as a computation?

In the late 1990s, neurologist Antonio Damasio began making a case that core

consciousness results from specific phenomena taking place in the neurons of

the brain. For Damasio, consciousness emerges from specific localized brain

activities and is indeed a kind of computation. As evidence, Damasio points out

that if a person suffers damage to a certain region of the brain stem, their con-

sciousness will in fact get turned off, leaving them as a functional zombie, capable

of moving about and doing things, but lacking that glowing sense of self.

Damasio uses a special nomenclature to present his ideas. He introduces

the term movie-in-the-brain to describe a brain’s activity of creating images of

the world and of the body. The image of the body and its sensations is some-

thing that he calls the proto-self. And he prefers the term core consciousness

to what I’ve been calling the “I am” feeling.

Damasio believes that core consciousness consists of enhancing the

movie-in-the-brain with a representation of how objects and sensations affect

the proto-self. Putting it a little differently, he feels that, at any time, core

consciousness amounts to having a mental image of yourself interacting with

some particular image. It’s not enough to just have a first-order image of

yourself in the world as an object among other objects—to get to core con-

sciousness, you go a step beyond that and add on a second-order represen-

tation of your reactions and feelings about the objects you encounter. Figure

97 shows a shorthand image of what Damasio seems to have in mind.

In addition to giving you an enhanced sense of self, Damasio views core con-

sciousness as determining which objects you’re currently paying attention to.

In other words, the higher-order process involved in core consciousness has

two effects: It gives you the feeling of being a knowing, conscious being, and it

produces a particular mental focus on one image after another. The focusing
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aspect suggests that consciousness is being created over and over by a word-

less narrative that you construct as you go along. Damasio describes his

theory as follows:

As the brain forms images of an object—such as a face, a melody, a

toothache, the memory of an event—and as the images of the object

affect the state of the organism, yet another level of brain structure

creates a swift nonverbal account of the events that are taking place

in the varied brain regions activated as a consequence of the

object-organism interaction. The mapping of the object-related
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Figure 97: 
The Self, the World, and the Self Experiencing at the World

Your brain produces a “body-self” image on the left, an image of the world on the right,
and, in the center, an image of the self interacting with the world. Damasio feels that
consciousness lies in contemplating the interaction between the self and the world.



consequences occurs in the first-order neural maps representing

proto-self and object; the account of the causal relationship between

object and organism can only be captured in second-order neural

maps. . . . One might say that the swift, second-order nonverbal

account narrates a story: that of the organism caught in the act of repre-

senting its own changing state as it goes about representing something

else. But the astonishing fact is that the knowable entity of the catcher

has just been created in the narrative of the catching process. . . .

Most importantly, the images that constitute this narrative are

incorporated in the stream of thoughts. The images in the con-

sciousness narrative flow like shadows along with the images of the

object for which they are providing an unwitting, unsolicited com-

ment. To come back to the metaphor of the movie-in-the-brain, they

are within the movie. There is no external spectator. . . .

The process which generates . . . the imaged nonverbal account of

the relationship between object and organism has two clear conse-

quences. One consequence . . . is the subtle image of knowing, the

feeling essence of our sense of self; the other is the enhancement of

the image of the causative object, which dominates core conscious-

ness. Attention is driven to focus on an object and the result is

saliency of the images of that object in mind.85

Rephrasing this, it seems that Damasio views core consciousness as

arising in the context of the following sequence:

• Immersion. You are active in the world.

• Seeing objects. You distinguish separate objects in the world,

including your body.

• Movie-in-the-brain. You have an ongoing mental model of the

world. The movie-in-the-brain includes images of the world’s

objects and an image of your body.

• Proto-self. Your image of your body differs from an image of an

object in that your image of your body includes images of your

sensations and current mental contents. This rich image is

the proto-self.
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• Feelings. You automatically and continually enhance the

movie-in-the-brain by adding in representations of the proto-

self’s interactions with objects. These second-order represen-

tations are what we call feelings.

• Core consciousness. The act of continually forming feelings is

part of what we mean by consciousness. At any given time, core

consciousness is based on your feelings about a small group of

images. Core consciousness highlights those particular

images, which accounts for your current focus of attention.

• Empathy. You enhance your images of other people with rep-

resentations of their feelings.

Empathy, in other words, is your awareness that your fellows are con-

scious, too. It’s possible, and not even unusual, to have consciousness

without empathy—consider, for example, the all-too-common moments when

one regards one’s rivals or even whole categories of people as soulless

automata, as unreasoning animals, as bacilli that walk on two legs.

The thing that I find particularly striking about Damasio’s explanation of

consciousness is that, being a neurologist, he makes serious efforts to iden-

tify it with a type of brain activity. This said, brain science is very much in its

infancy, and no firm conclusions have been reached. But just to give the

flavor of what we can expect fairly soon, figure 98 indicates what it might be

like to have a physiological brain model of the movie-in-the-brain, the proto-

self, feelings, and consciousness.

If indeed there’s nothing magical about consciousness, then it might as well

be a type of computation. To test this notion out, I’m now going to recast

Damasio’s theory in the context of the creatures in a computer game. Putting

it more colorfully, I’d like to ask: What is the phenomenology of Pac-Man?

Actually, since Pac-Man is externally controlled by the game’s human player,

it’s really not Paccy’s phenomenology that I’m interested in.86 The real meat

lies in understanding the worldview of a nonplayer character (what gamers

call an NPC). What is it like to be one of the enemy ghosts who chase Pac-

Man around? What is the phenomenology of a Quake monster?

You might wonder why, in the midst of an erudite philosophical discussion,
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I suddenly want to start talking about something so street-level and seem-

ingly nonintellectual as computer games. Noisy kids in strange clothes! Sex

and gore! A hideous waste of time!

Academia hasn’t quite caught on to the fact that computer games represent

the convergence and the flowering of the most ambitious frontier efforts of the

old twentieth-century computer science: artificial intelligence, virtual reality,

and artificial life.

I think I can argue that, if we create a fairly rich computer game, there’s a

sense in which the game’s program-controlled creatures might be said to have

core consciousness and empathy. I’ll illustrate my argument in figure 99.

Immersion. In a computer game, we model a virtual world complete with an

artificial physics, and objects such as walls, food pellets, and treasures. And

we place our artificial life-forms, that is, our game creatures, inside this world.

Seeing objects. In most games, programmers dodge the tricky issue of

having the game creatures be able to pick out the objects in the virtual world.
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Figure 98: Toward a Neurology of Consciousness

(1) The thalamus gathers sensory input for images of objects. (2) The reticular formation
in the brain stem gathers body sensations for the proto-self. (3) The neocortex forms the
movie-in-the-brain, with images of objects and of the proto-self. (4) The cingulate region
of the cortex monitors the proto-self’s reactions to the movie-in-the-brain, thereby cre-
ating core consciousness.
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Figure 99: Consciousness and Empathy for Computer Game Creatures

Left to right and top to bottom, the six images represent, respectively:

immersion seeing objects

movie-in-the-brain with proto-self feelings

core consciousness empathy



Rather than laboriously endowing our creatures with simulated vision and an

object-recognition program, we flatly tell the creatures about the objects in

their world by giving them access to a master list of the toy world’s objects,

nicely identified.

Movie-in-the-brain. Each of the computer-controlled game creatures has an

individual update method. This method is coded in such a way that the

creature can take into account the master list of all the world objects and

choose a course of action accordingly.

Proto-self. It’s necessary that a creature can distinguish itself from others.

If the creature is to dodge bullets, for instance, it needs to be able to measure

bullets’ distances from its own body. If the creature is to bounce off other

creatures, it needs to be able to determine who’s who. This is a simple matter

in object-oriented programming languages like C++ and Java, both of which

have a convention that when you write code to describe a given creature’s

behavior, the word this is understood to refer to the creature itself. Another

relevant feature of object-oriented computer languages is that certain

internal variables can be designated as private. A creature will have full

access to its own private variable values, but it may well lack any means of

accessing the private variable values of other creatures. This illustrates the

notion that a creature’s proto-self image is richer than its image of some

other creature or object.

Feelings. We can equip a creature with an evaluation method that assigns

positive or negative utility values to other creatures. A dangerous enemy, for

instance, might have a value of negative three, whereas a piece of food could

have a weight of positive two. A creature’s update method is enriched by

having access to these numerical “feelings” about the other objects. In terms

of programming this, we might suppose that if the world contains, say, five

distinct kinds of creature, then a creature’s personal feelings are summarized

in a five-element array that matches a numerical utility to each of the five

creature types. Another aspect of the creature’s feelings can be one that

tracks how well it’s doing. It’s common for game creatures to continually

update internal score and health variables.

Core consciousness. We can imagine equipping a creature with some

adaptive artificial intelligence by which it adjusts its behavior according to

the situation. For instance, a creature might change the numerical values

in its array of feelings about other creatures. Perhaps when it has low health
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it becomes more fearful and assigns its enemies a more negative utility

value. When it has a low score, it might become more acquisitive and raise

the utility value of food. If its health and score are both high, it might

become more aggressive about attacking its enemies. So now the creature

is “dealing with feelings”. The focusing aspect of core consciousness can

be modeled by having the creature give greater weight to the utility value of

the closest other creature, effectively paying more attention to it.

Empathy. To be really skillful, a creature might let its update method guess

at its opponents’ motions in advance. At the most obvious level, the creature

could look at an opponent’s current position and velocity, and estimate where

it will be in the near future. But at a higher level, a creature might build up

an educated guess about the feeling—like utility weights being used by its

opponents. And then the creature would be that much better at simulating

in advance the upcoming actions of its opponents. At a still higher level, a

creature could outfox its opponents by figuring out the internal mechanisms

of their update methods. In this situation, the creature is enhancing its

images of other creatures with images of their feelings and with images of

their core consciousness. Thus empathy.

So it seems that, if we adopt Damasio’s line of thought, a well-programmed

game creature is not only conscious, it has empathy! A dippy little computer

game creature is like a person. Why does this conclusion feel so utterly

wrong?

A first issue is that a programmed agent on the screen doesn’t have a phys-

ical body. But suppose we were able to put these kinds of artificial minds

inside of robotic bodies? What then?

A second issue is that you might persist in claiming that a program or a

robot could never have the special inner glow that you sense as part of your

consciousness. But maybe the glow is an accidental and inessential phe-

nomenon. Maybe a sufficiently advanced program or robot could behave in

every way like a conscious being, and even have thought processes in every

way similar to our own, but even so it might not share the same visceral glow.

In discussing this type of objection to computer models of the mind,

philosophers often speak of qualia, which are meant to be the ineffable, sub-

jective sensations we experience. But if it makes no observable difference

whether a robot has or doesn’t have the glow qualia, than what difference do
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the qualia make? And, come to think of it, how can you be sure that a robot

might not experience glow qualia, perhaps in the form of some localized elec-

trical field?

There is a tendency—which I fully understand—to think that no possible

robot could ever be conscious, simply because it’s not human. But maybe

this is an unreasonable prejudice. It could relate to the fact that an explained

magic trick seems like no trick at all. We want to believe ourselves to be mag-

ical, spiritual beings, and it’s disillusioning to suppose that we might after all

be reducible to some massive web of neural connections.

A final issue with my argument for the consciousness of computer game

characters is that the actually existing virtual creatures are too simple to be

regarded as conscious in any but the most trivial and limited sense of the

word. After all, I normally take being conscious to mean having a fairly rich

kind of internal mental life.

This objection has real weight. Perhaps the weakest link in my modeling of

consciousness lies in having a computer critter’s update method represent

the movie-in-the-brain stage. After all, a creature might have an update

method that does no work at all. Is it really fair to compare this to a human

brain’s intricate modeling of the world? Computer game creatures get the

movie-in-the-brain for free because they live within the matrix of a program

simulating its world. The situation is analogous to the fact that computer

game creatures don’t grow their own bodies, as living organisms do. They

lack morphogenesis in two senses: They don’t generate their bodies, and they

don’t generate their own images of the world.

If the truth be told, I’m willing to admit that when I say a Pac-Man ghost

is conscious, I’m just playing a language game. But my game has a point, this

being to illustrate that we have no a priori reason for denying that a computer

program could exhibit a mental life akin to a human’s—even though, in

reality, we’re nowhere near that level yet.

My feeling is that, on the one hand, it is possible in principle to build or

evolve humanlike robots, but that, on the other hand, in practice we won’t

manage to do so anytime soon. More precisely, on the basis of a numerical

argument, which I’ll explain in section 4.6: The Mind Recipe, I don’t see

human technology as creating truly humanlike programs or robots any

time much before the year 2100—and with no ironclad guarantee of suc-

cess after then.

enjoying your mind

263



In a way, my talk about intelligent robots is a red herring. For me, the

deeper issue is to understand, here and now, the workings of my own mind.

The real point of this chapter is that our thoughts can usefully be thought of

as computations, even though we can’t in fact produce detailed descriptions

or emulations of what a brain does. Why is it useful to view our thoughts as

computations? Because this gives us access to a new terminology in which to

discuss our mental lives.

The value of clear terminology cannot be underestimated. “Distinguo,” as

Aristotle liked to say, “I make distinctions.” To a large extent, philosophical

investigations consist of figuring out what you’re talking about. Thanks to the

analysis I’m presenting here, I can make the rather precise claims that our

brain activities are deterministic, class four, unpredictable, capable of the

process that we’re equating with consciousness, and (at least for now) unfea-

sible to emulate on PCs.

What about the brains of lesser organisms? Do they support conscious-

ness? A snail probably isn’t at the seeing objects stage. For a snail, the world

is a continuum of sensory inputs, reacted to in real time. A dog can perceive

objects, but I’m not sure if a dog has movie-in-the-brain or not, maybe only

fleetingly (figure 100). In The Feeling of What Happens, Damasio talks about
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Figure 100: Is This Dog Conscious?

Pitch is famous! And there’s a picture of the spot on her back in section 3.2: The Mor-
phogenesis of a Brindle Cow. I like how a dog’s facial expression boils down to three
black dots.



some brain-damaged people who have movie-in-the brain but not proto-self, so

a number of intermediate levels seem possible. 

To begin I want to recast Damasio’s hierarchy in a fresh way so as to inves-

tigate a familiar endless regress. I’ll label Damasio’s levels with the numbers

zero, one, and two—and then I’ll ask about the number levels after that. We’ll

see that there’s a certain sense in which consciousness is infinite.

In particular, I’ll regard having thoughts as level zero, and becoming aware of

the thoughts as level one. In Damasio’s terms, the movie-in-the-brain is level

zero, and having feelings about the movie is level one. Damasio’s notion of core

consciousness involves reaching level two, where one thinks about one’s thoughts.

Now note that once you reach level two, you’re free to think about con-

sciousness itself, that is, to think about thinking about thinking. This moves

you to level three. And then you can think about thinking about consciousness

for level four, and so on, out through a potentially infinite series of levels, as

illustrated in figure 101.

I would say the first frame of my Wheelie Willie cartoon corresponds to the

level zero movie-in-the-brain. And the second frame represents the advent of

level one feelings. The endless series is set into motion only in the third

frame, which represents level two consciousness and the act of thinking

about thinking. Once you have this second-order thinking, you get third,

fourth, fifth, and all the higher orders—at least up to the point where you get

confused or bored.

We experience the higher levels, when unpleasant, as self-consciousness

and irony, or, when pleasant, as maturity and self-knowledge.

In other words, the advent of consciousness introduces a dynamic that

leads to a potential infinity. This is reasonable and pleasing, given that it feels

natural to think of the mind as being infinite.

If you stand back, as we’re now doing, and schematically imagine running

the series right out through all the natural numbers, you get a kind of

enlightenment that is, however, only relative, as right away you can get to a

level “infinity plus one.” The real enlightenment would be more like reaching

the inconceivable Absolute Infinite that the theologically inclined mathemati-

cian Georg Cantor spoke of.

Set theory is the branch of mathematics that concerns itself with levels
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Figure 101: Wheelie Willie Thinks of Infinity and of Nothing

In 1978 I drew this cartoon of an infinite regress leading to an empty mind. I drew it the
day I came home from getting fired from my first job as a math professor. Drawing it
cheered me up. At first Wheelie Willie is bummed, with a patched tire. And then he gets
into his head and sees infinity, which makes him happy and leaves him with a clear,
empty mind. At the end the ants are crawling on him. He’s no longer a respected pro-
fessor, just an ordinary hippie without a job. Maybe he’ll write a science-fiction novel!



of infinity, and this is the field in which I wrote my Ph.D. thesis at Rutgers

University in that most sixties of years, 1972. My experience was that,

when I thought hard enough about absolute infinity, I’d end up thinking

about nothing at all, bringing me back to very start of the process, to

immersion in the world with an empty mind with no subject-object dis-

tinctions, simply experiencing the great reality movie in and of itself, with

me an integral part, filled with a visceral pleasure by the simple awareness

of consciousness.

I can easily imagine a reader wondering what that last sentence is sup-

posed to mean and what, in particular, it has to do with the notion of viewing

core consciousness as a type of computation. That’s what I was supposed be

talking about, right? Computation, not enlightenment.

Well, I have this abiding fondness for mysticism, coupled with a lazy man’s

hope of finding a royal-road shortcut to wisdom. So it’s easy for me to flip over

to guru-speak. But there’s no real conflict between mysticism and universal

automatism. The individual self is simply one aspect of the computations that

fill the world.

I am doing it

the it I am doing is

the I that is doing it

the I that is doing it is

the it I am doing

it is doing the I that am doing it

I am being done by the it I am doing

it is doing it

—R. D. Laing 87

In section 4.6: The Mind Recipe, I’ll look at how and when a conscious

machine might be evolved, and in section 4.8: Quantum Soul, I’ll consider the

possibility that consciousness is, after all, quite distinct from ordinary com-

putation. But first I want to talk about a less ambitious modeling of a human

mind: the lifebox.
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4.5: The Lifebox

One of the most venerable dreams of science fiction is that people might

become immortal by uploading their personalities into some kind of lasting

storage. Once your personality is out of your body in a portable format, it

could perhaps be copied onto a fresh tank-grown blank human body, onto a

humanoid robot, or, what the heck, onto a pelican with an amplified brain.

Preserve your software, the rest is meat!

In practice, copying a brain would be very hard, for the brain isn’t in dig-

ital form. The brain’s information is stored in the geometry of its axons, den-

drites, and synapses, in the ongoing biochemical balances of its chemicals,

and in the fleeting flow of its electrical currents. In my early cyberpunk novel

Software, I wrote about some robots who specialized in extracting people’s

personality software—by eating their brains. When one of my characters

hears about the repellent process, “[his] tongue twitched, trying to flick away

the imagined taste of the brain tissue, tingly with firing neurons, tart with

transmitter chemicals.”88

In this section I’m going to talk about a much weaker form of copying a

personality. Rather than trying to exactly replicate a brain’s architecture, it

might be interesting enough to simply copy all of a person’s memories, pre-

serving the interconnections among them.

We can view a person’s memory as a hyperlinked database of sensations

and facts. The memory is structured something like a Web site, with words,

sounds, and images combined into a superblog with trillions of links.

I don’t think it will be too many more years until we see a consumer

product that makes it easy for a person to make a usable copy of their

memory. This product is what I call a lifebox.89

My idea is that your lifebox will prompt you to tell it stories, and it will have

enough low-level language recognition software to be able to organize your

anecdotes and to ask you follow-up questions. As you continue working with

your lifebox, it builds up a database of the facts you know and the tales you

spin, along with links among them. Some of the links are explicitly made by

you, others will be inferred by the lifebox software on the basis of your flow

of conversation, and still other links are automatically generated by looking

for matching words.
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And then what?

Your lifebox will have a kind of browser software with a search engine

capable of returning reasonable links into your database when prompted by

spoken or written questions from other users. These might be friends, lovers,

or business partners checking you out, or perhaps grandchildren wanting to

know what you were like.

Your lifebox will give other people a reasonably good impression of having

a conversation with you. Their questions are combed for trigger words to

access the lifebox information. A lifebox doesn’t pretend to be an intelligent

program; we don’t expect it to reason about problems proposed to it. A lifebox

is really just some compact digital memory with a little extra software. Cre-

ating these devices really shouldn’t be too hard and is already, I’d say, within

the realm of possibility—it’s already common for pocket-size devices to carry

gigabytes of memory, and the terabytes won’t be long in coming.

I discussed the lifebox at some length in my Y2K work of futurology,

Saucer Wisdom, a book that is framed in terms of a character named Frank

Shook who has a series of glimpses into the future—thanks to some

friendly time-traveling aliens who take him on a tour in their tiny flying

saucer. (And, no, I’m not a UFO true believer, I just happen to think

saucers are cute and enjoyably archetypal.) Here’s some quotes from the

book.

The lifebox is a little black plastic thing the size of a pack of ciga-

rettes and it comes with a lightweight headset with a pinhead micro-

phone, like the kind that office workers use. You can use your

lifebox to create your life story, to make something to leave for your

children and grandchildren.

Frank watches an old man using a lifebox. His name is Ned.

White-haired Ned is pacing in his small backyard—a concrete slab

with some beds of roses—he’s talking and gesturing, wearing the

headset and with the lifebox in his shirt pocket. The lifebox speaks

to him in a woman’s pleasant voice.

The marketing idea behind the lifebox is that old duffers always

want to write down their life story, and with a lifebox they don’t have

to write, they can get by with just talking. The lifebox software is
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smart enough to organize the material into a shapely whole. Like an

automatic ghostwriter.

The hard thing about creating your life story is that your recol-

lections aren’t linear; they’re a tangled banyan tree of branches that

split and merge. The lifebox uses hypertext links to hook together

everything you tell it. Then your eventual audience can interact with

your stories, interrupting and asking questions. The lifebox is

almost like a simulation of you.

To continue his observations, Frank and his friends skip forward in time

until past when Ned has died and watch two of Ned’s grandchildren play with

one of the lifebox copies he left, as shown in figure 102.
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Figure 102: Grandchildren with a Lifebox

Frank Shook is inside the little UFO, which is invisible to the children.



Frank watches Ned’s grandchildren: little Billy and big Sis. The kids

call the lifebox “Grandpa,” but they’re mocking it, too. They’re not

putting on the polite faces that kids usually show to grown-ups. Billy

asks the Grandpa-lifebox about his first car, and the lifebox starts

talking about an electric-powered Honda and then it mentions some-

thing about using the car for dates. Sis—little Billy calls her “pig Sis”

instead of “big Sis”—asks the lifebox about the first girl Grandpa

dated, and Grandpa goes off on that for a while, and then Sis looks

around to make sure Mom’s not in earshot. The coast is clear so she

asks some naughty questions. “Did you and your dates do it? In the

car? Did you use a rubber?” Shrieks of laughter. “You’re a little too

young to hear about that,” says the Grandpa-lifebox calmly. “Let me

tell you some more about the car.”

Frank skips a little further into the future, and he finds that lifeboxes have

become a huge industry.

People of all ages are using lifeboxes as a way of introducing them-

selves to each other. Sort of like home pages. They call the lifebox

database a context, as in, “I’ll send you a link to my context.” Not that

most people really want to spend the time it takes to explicitly access

very much of another person’s full context. But having the context

handy makes conversation much easier. In particular, it’s now

finally possible for software agents to understand the content of

human speech—provided that the software has access to the

speakers’ contexts.90

Coming back to the idea of saving off your entire personality that I was

discussing at the beginning of the section, there is a sense in which saving

only your memories is perhaps enough, as long as enough links among your

memories are included. The links are important because they constitute your

sensibility, that is, your characteristic way of jumping from one thought to

the next.

On their own, your memories and links aren’t enough to generate an emu-

lation of you. But when another person studies your memories and links,
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that other person can get into your customary frame of mind, at least for a

short period of time. The reason another person can plausibly expect to emu-

late you is that, first of all, people are universal computers and, second of

all, people are exquisitely tuned to absorbing inputs in the form of anecdotes

and memories. Your memories and links can act as a special kind of soft-

ware that needs to be run on a very specialized kind of hardware: another

human being. Putting it a bit differently, your memories and links are an

emulation code.

Certainly exchanging memories and links is more pleasant than having

one’s brain microtomed and chemically analyzed!

I sometimes study authors’ writings or artists’ works so intensely that I begin

to imagine that I can think like them. I even have a special word I made up

for this kind of emulation; I call it twinking. To twink someone is to simulate

them internally. Putting it in an older style of language, to twink someone is

to let their spirit briefly inhabit you. A twinker is, if you will, like a spiritualistic

medium channeling a personality.

Over the years I’ve twinked my favorite writers, scientists, musicians, and

artists, including Robert Sheckley, Jack Kerouac, William Burroughs, Thomas

Pynchon, Frank Zappa, Kurt Gödel, Georg Cantor, Jorge Luis Borges, Edgar

Allan Poe, Joey Ramone, Phil Dick, and Peter Bruegel. The immortality of the

great ones results from faithful twinking by their aficionados.

Even without the lifebox, if some people don’t happen to be authors, they

can make themselves twinkable simply by appearing in films. Thomas Pyn-

chon captures this idea in a passage imagining the state of mind of the 1930s

bank-robber John Dillinger right before he was gunned down by federal

agents outside the Biograph movie theater in Chicago, having just seen Man-

hattan Melodrama starring Clark Gable.

John Dillinger, at the end, found a few seconds’ strange mercy in the

movie images that hadn’t quite yet faded from his eyeballs—Clark

Gable going off unregenerate to fry in the chair, voices gentle out of

the deathrow steel so long, Blackie . . . there was still for the doomed

man some shift of personality in effect—the way you’ve felt for a little

while afterward in the real muscles of your face and voice, that you
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were Gable, the ironic eyebrows, the proud, shining, snakelike

head—to help Dillinger through the bushwhacking, and a little

easier into death.91

The effect of the lifebox would be to make such immortality accessible to a

very wide range of people. Most of us aren’t going to appear in any movies, and

even writing a book is quite hard. Again, a key difficulty in writing any kind of

book is that you somehow have to flatten the great branching fractal of your

thoughts into a long line of words. Writing means converting a hypertext

structure into a sequential row—it can be hard even to know where to begin.

As I’ve been saying, my expectation is that in not too many years, great

numbers of people will be able to preserve their software by means of the

lifebox. In a rudimentary kind of way, the lifebox concept is already being

implemented as blogs. People post journal notes and snapshots of them-

selves, and if you follow a blog closely enough you can indeed get a feeling of

identification with the blogger. And blogs already come with search engines

that automatically provide some links. Recently the cell phone company

Nokia started marketing a system called Lifeblog, whereby a person can link

and record daily activities by using a camera-equipped cell phone.

Like any other form of creative endeavor, filling up one’s lifebox will involve

dedication and a fair amount of time, and not everyone will feel like doing it.

And some people are too tongue-tied or inhibited to tell stories about them-

selves. Certainly a lifebox can include some therapist-like routines for

encouraging its more recalcitrant users to talk. But lifeboxes won’t work for

everyone.

What about some science-fictional instant personality scanner, a super-

scanner that you wave across your skull and thereby get a copy of your whole

personality with no effort at all? Or, lacking that, how about a slicer-dicer

that purees your brain right after you die and extracts your personality like

the brain-eaters of Software? I’m not at all sure that this kind of technology

will ever exist. It’s hard to infer the high levels from the low. And the brain’s

low levels may prove too delicate to capture.

I like the idea of a lifebox, and I have vague plans to try to make one for

myself. I envision a large database with all my books, all my journals, and a

connective guide-memoir—with the whole thing annotated and hyperlinked.
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And I might as well throw in some photographs—I’ve taken thousands over

the years. And it should be feasible to endow my lifebox with interactive abil-

ities; people could ask it questions and have it answer with appropriate links

and words. My finished lifebox might take the form of a Web site, although

then there’d be the thorny question of how to get any recompense for the

effort involved. A commercial alternative would be to market it as a set of files

on a portable data storage device of some kind. Rudy’s Lifebox—my personal

pyramid of Cheops.

But I don’t really think the lifebox would be me. Without some radically

more powerful software, it would just be another work of art, not so different

from a bookshelf of collected works.

In the next section I’ll examine the question of whether humans will ever

manage to design the kind of software that could turn a lifebox into a con-

scious mind.

4.6: The Mind Recipe

Suppose you have a lifebox copy of what you know. Now you’d like to animate

it so as to have an artificial version of yourself. How would you go about cre-

ating a humanlike intelligence?

The easy way to create human minds is, of course, to raise children. Let

biology do the computing! And, if you’re fortunate enough to have children,

you can try to teach them everything you know, thus achieving a kind of

mind replication. But for some reason many of us find it interesting to think

about emulating human beings with software running on machines like

souped-up desktop computers or, geekier yet, on high-tech devices inside

robot bodies. We might pause here and wonder why this seems like a rea-

sonable idea—because maybe it isn’t.

In past eras, people have imagined creating humans from mud and magic,

from clockwork machinery, from magnets and motors, or from telephone

switching circuits. Why give serious credence to today’s dreams of chip-based

humanoids?

Some would indeed argue that there is something uniquely nondetermin-

istic about a human mind, something that must elude any digital emulation.

The feeling here is that roboticists are living in a fantasy world, hypnotized
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by their toys, blind to the richness of their own mental lives. I’m not entirely

unsympathetic to this position. But for now, let’s push ahead with the notion

of modeling the mind with personal computer software and see where the

investigation leads.

One thing electronic computers have going for them is universality. If what

my brain does is to carry out computation-like deterministic processes, then

in principle there ought to be a digital electronic computer program that can

emulate it. It’s presently not feasible to make such machines, but perhaps

someday we’ll have them. A computation is just a computation, and our PCs

are doubling their power every year or so.

But remember that our brain’s design was computed over millions of years

of evolution involving millions of parallel lives. As I’ll be explaining here, my

guess is that it’ll take at the very least until 2100 before machines can catch

up—and maybe a lot longer than that.

In trying to produce humanlike robot brains, we have two problems to deal

with: hardware and software.

The hardware problem is a matter of creating a desktop computer that has

about the same computation rate and memory size as a human brain.

The software problem is to program a sufficiently powerful PC so as to

behave like a person.

What I’m going to do now is to get some numerical estimates of the difficulty of

the two problems and make some guesses about how soon they might be solved.

To begin with, I’ll crunch some numbers to estimate how long it might take

to solve the hardware problem by creating digital computers capable of com-

puting as fast as a human brain. Then I’ll turn to the software problem. As

you might expect, the software problem is by far the harder of the two. I’ll dis-

cuss a method we might use to evolve the software for the brain—I’ll call this

a mind recipe. And then I’ll estimate how long it might be until we can actu-

ally execute something like the mind recipe to produce the software for an

artificial brain.

Before getting into the details, I want to review the standard American

nomenclature for large numbers. As a mathematician I’m always disap-

pointed when I see authors use expressions like “million million” or “million

billion” when they could just as well be using the much more attractive words
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trillion and quadrillion, respectively. One possible reason journalists hesitate

to use the proper words is that up until the middle of the twentieth century,

America and many European countries used different naming systems for

large numbers.92 So there’s some lingering confusion. But the nomenclature

in table 10 has become a standard, and it should be confidently used; the

table lists the number names and the corresponding prefixes as decreed by

the General Conference of Weights and Measures.
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American Numerical symbol Power Prefix Etymology
name of ten of prefix

Thousand 1,000 3 Kilo- Thousand

Million 1,000,000 6 Mega- Large

Billion 1,000,000,000 9 Giga- Giant

Trillion 1,000,000,000,000 12 Tera- Monster

Quadrillion 1,000,000,000,000,000 15 Peta- Five

Quintillion 1,000,000,000,000,000,000 18 Exa- Six

Sextillion 1,000,000,000,000,000,000,000 21 Zetta- Z

Septillion 1,000,000,000,000,000,000,000,000 24 Yotta- Y

Octillion 1,000,000,000,000,000,000,000,000,000 27 Xenna- X [unofficial]

Nonillion 1,000,000,000,000,000,000,000,000,000,000 30 Watta- W [unofficial]

Table 10: Names for Large Numbers

The unfamiliar prefixes zetta and yotta are official, as in, “our universe may have a radius of a
hundred yottameters, with the largest known galaxy being some fifty zettameters across.” The
idea is that zetta is like the letter Z, and that the prefixes beyond it can move backward through
the alphabet, with yotta thus being like a letter Y. The xenna and watta prefixes are unofficial and
may not stick.

By way of further laying the groundwork for discussing the relative power

of machines and the human brain, I also need to mention that when we have

a system that’s repeatedly doing something, we use the hertz unit to measure

how rapidly it’s cycling. A hertz (Hz for short) is simply one cycle per second.

Cycle of what? This depends on the system you’re interested in.



In the case of today’s PCs, the cycles we measure are ticks of the system

clock that controls the machine’s chips. Unlike biological organisms, most

electronic computers need to keep their activities in rigid synchronization,

and their system clocks pulse out signals at a certain rate.

Combining our standard prefixes with the “hertz” word, we see that a giga-

hertz computer operates at a billion cycles per second, a terahertz machine

at a trillion cycles per second, and so on.

How does a PC’s clock cycle frequency relate to the amount of computation

being done?

We often discuss the speed of an electronic computer in terms of the rate

at which it executes machine instructions. By a machine instruction, I mean

a primitive chip-level operation such as “add the contents of memory register

B to memory register A,” or “copy the contents of memory location S into

memory register A.” Instead of speaking of clock cycles, it makes sense to

measure a computer’s speed in instructions per second, sometimes abbrevi-

ated as IPS.

Now, in comparing hertz to IPS, we need to think about how many clock

cycles a machine instruction requires. A typical instruction might take two to

four clock cycles, depending on what the instruction does and the kind of

design the chip has. For the purposes of this discussion, I’m just going to peg

the average number of cycles per machine instruction at three. This means

that a machine that executes k instructions per second is roughly the same

as a machine whose system clock ticks 3 • k times per second.

Although in the early Y2K era one often heard the hertz measure when shop-

ping for a PC, this measure is going to be less common in the future. The reason

is that as we turn to more highly parallel kinds of computer architectures, our

machines start executing dozens, hundreds, or even thousands of instructions

per clock cycle. For these architectures, the IPS measure is more meaningful

than the hertz measure. A machine with several thousand processors may be

executing a million IPS even if it’s only running at a thousand hertz.

A variation on IPS is to measure a computer’s speed in so-called floating-

point operations per second. A floating-point operation—called a flop for

short—means doing something like adding or multiplying a pair of continuous-

valued variables. I’m not talking about endlessly detailed mathematical real

numbers, of course, just digitally-coded real numbers that have been rounded
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off into a few bytes of information. A nice thing about “flop” is that the root

combines readily with the standard prefixes like giga and tera. A teraflop

machine would be capable of executing a trillion floating-point operations a

second. A few people insist on tacking a final “s” on the flop names, but I

don’t like to do that. Megaflop, gigaflop, teraflop, petaflop, exaflop, zettaflop,

yottaflop, xennaflop, wattaflop!

As our machines become more advanced, the difference between an IPS

and a flop becomes less significant—executing a floating point operation is a

bit more work than carrying out a more primitive instruction, so it used to be

that a machine’s flop rate was normally a bit lower than the IPS rate. But

today’s processors tend have machine-level instructions that carry out

floating-point operations in a single instruction step. So for the rest of this

section, I’ll treat IPS and flop as being more or less the same, with each of

them being roughly equivalent to three hertz.

I myself have been partial to the flop nomenclature for years. In my 1980s

science-fiction novels Software and Wetware, I describe some humanlike

robots called boppers. Having already done some estimates of the human

brain rate at that time, I had my boppers running at petaflop speed, with a

new generation of exaflop models coming in.

One final measure of computer speed that one hears is MIPS, which is a

million IPS, that is, a million instructions per second. To my mathematics-

professor way of thinking, MIPS is just a cop-out way of avoiding using the

fancy names for really big numbers. But you see it a lot.

So now let’s discuss what kind of hardware we’d need to match a human

brain. Some recent estimates of the human brain’s power are summarized in

table 4.

Hans Moravec is a lively roboticist who makes his home at Carnegie Mellon

University. He and his students have done a lot of work on self-driving cars. He’s

the author of several brilliant books on robotics, including Robot: Mere Machine

to Transcendent Mind, from which his estimate of the human brain’s power is

taken. Speaking of Moravec, a mutual friend of ours once said, “Ah, Hans. He’s

hard-core. I think if anyone could ever convince him that robots could never be

conscious, he’d lose his will to live.” Ray Kurzweil is a Silicon Valley inventor-

entrepreneur who’s developed devices for optical character recognition, speech
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recognition, music synthesis, and more. I take his estimate of the human brain’s

power from his best-selling The Age of Spiritual Machines.93

There’s a huge amount of guesswork (and perhaps outright fantasizing) in

any estimate of the human brain’s computation rate. To give the flavor of how

it’s done, table 12 shows how I came up with my current three hundred

petaflop or exahertz estimation for a brain-equivalent PC. And do keep in

mind that every number in the table is debatable.

How soon might we expect our PCs to reach the petaflop or exahertz zone?

In 1964, the engineer Gordon Moore noticed that the number of transistors

per computer chip seemed to be doubling every year or two. The law extends

to the speed of our computers as well, with the power of a typical desktop PC

doubling every eighteen months. A little math shows that over fifteen years of

Moore’s Law growth, PCs increase their power by a thousandfold. So far it’s

worked. Machines of the early 1970s ran in the kilohertz range, machines of

the mid-1980s ran in the megahertz range, and now in the early 2000s our

machines are running in the gigahertz range. A millionfold speedup in the

course of thirty years (figure 103).

Were Moore’s Law to continue holding good, we could get a billionfold

speedup in forty-five years and reach the petaflop-to-exaflop zone of human

brain hardware around the middle of the century. So does that mean we’ll

have humanlike robots in the year 2045?
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Source of IPS MIPS Flop Hertz
estimate

Hans Moravec A hundred A hundred A hundred Three hundred
trillion IPS million MIPS teraflop terahertz

Ray Kurzweil Twenty Twenty billion Twenty petaflop Sixty petahertz
quadrillion IPS MIPS

Rudy Rucker Three hundred Three hundred Three hundred One exahertz
quadrillion IPS billion MIPS petaflop, or nearly

an exaflop

Table 11: Estimates of the Brain’s Rate of Computation

An IPS is an instruction per second, a MIPS is one million IPS, a flop is roughly the same as an IPS,
and an IPS translates into about three hertz.



Not so fast. First of all, we don’t know how long Moore’s Law will hold up.

As of the writing of this book, some pessimistic chip engineers are saying that

we can hope for at most another fifteen years of Moore’s Law, meaning that

our PCs are going to have a hard time getting much past the teraflop range.

But maybe they’re wrong. People have predicted the end of Moore’s Law

before, and over and over new technologies have emerged to keep things going.
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Quantity Estimate in words Power of 
ten

Neurons per brain A hundred billion. 1011

Computational A neuron has an average of a thousand synapses, 103

elements per including the input dendrites and the branching output 
neuron. axon. If we view the neuron’s computing elements as 

consisting of its synapses along with the central 
neuron body itself, we still get about a thousand.

Machine instruction I’m imagining that we can use a few bytes of computer 30
equivalent of state for each synapse or neuron body, and that updating
updating a synapse one of these states will involve reading some neighboring 
or a neuron body state values, adding and multiplying a few numbers, 

and saving the results back into the given computational 
element’s memory. Let’s suppose that thirty machine 
instructions (or flops) will be enough to update the internal
state of either a synapse or the central body of a neuron.

A neuron’s Typical neurons can fire ten times a second. Let’s suppose 102

computational that simulating a single firing event requires ten updates  
updates per second to the neuron’s body and dendrites. This gives us one  

hundred computational updates per second.

Instructions (or Now we multiply the previous four numbers. Neurons per 3 • 1017

floating point brain • computational elements per neuron • instructions 
operations) per element update • neuron updates per second 
per second = 30 • 10(11+3+2) = 30 • 1016 = 3 • 1017

or three hundred quadrillion instructions per second, 
which we can also view as three hundred petaflops.

Comparable clock Say there’s three clock ticks per machine instruction, 1018

rate and get 3 • 3 • 1017 cycles per second. I’ll round this 
up to 10 • 1017 to get 1018, which is a tidy quintillion   
ticks per second, or one exahertz.

Table 12: The Three-Hundred-Petaflop Brain as an Exahertz PC



A more serious reason why we shouldn’t expect humanoid robots by 2045

is that, as I’ve mentioned several times, finding the correct software to emu-

late the brain is a very hard problem. Keep in mind that most of your brain’s

programming is something you were born with—the fruit of thousands upon

thousands of years of evolution. A petaflop or exaflop machine with a blank

disk drive isn’t suddenly going to wake up and be like a person when you

turn it on. We need to face the problem of inventing or evolving the brain

emulation software to put onto the machine.

At our present state of knowledge, it appears that actually designing

humanlike software is too difficult to be solved by any method other than a

massive search procedure. I’m now going to loosely describe a specific way to

carry out such a search. I’ll call it the mind recipe.
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Figure 103: Moore’s Law Forever?

We plot a trend whereby our computers get a thousand times as fast every fifteen
years. Tracking this triumphant upward line, we get machines with hardware speeds
comparable to the exaflop human brain in 2045, and in 2105 we get wattaflop
machines powerful enough to evolve the software needed to make the exaflop machines
actually think like human brains. But some computer engineers think the graph is going
to level out to a much lower growth rate by the year 2030. In order to make this graph
easy to draw, I used a linear scale on the horizontal axis and a so-called logarithmic
scale on the vertical axis. This means that moving one notch on the horizontal scale
adds some fixed amount (fifteen years), while moving a notch on the vertical scale mul-
tiplies by a fixed amount (a thousand).



My mind recipe is a deterministic procedure that could lead in a finite

amount of time to a computer program that acts like a human being. There’s

nothing particularly impractical about my recipe, by the way. I’ve combined

familiar ideas from the field of artificial intelligence in a new synthesis.

The mind recipe is a collection of simulated evolutions, woven together in

a special way. The mind recipe is meant to function as a specific description

of a procedure one might set in motion upon some powerful computers, with

the expectation that if the recipe “cooks” long enough, a humanlike mind will

result. I’ll describe the mind recipe in chunks.

• Agent architecture

• Evolution

• Schedule

• Variations

• Pseudorandomizer

• Fitness tests

• Autonomy

• Size limit

• Creativity

• Judging success

• Runtime

Agent architecture. The most natural idea is to use Marvin Minsky’s notion of

building up our robot brains in a hierarchical fashion. Each brain would consist

of systems that we call agents, with the understanding that an agent can itself be

made up of agents, of neural nets, or of a combination of agents and neural nets.

At the most primitive ground-level of design, we use neural nets because

we already know how to work with them. We package neural nets into agents

and then let higher-level agents use these existing agents. These higher-level

agents can be used as components of still higher-level agents, and so on. Any

agent can serve as a black box or a subroutine to be used by another agent.

In any individual agent’s design, we may also use a network of neural nets to

wire its component agents together.

It’s worth noting that the agent hierarchy need not be strictly linear: an

agent can feed information back into one of its subagents, producing a pos-

sibly interesting or useful feedback loop.
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The value of working with an agent architecture is that this allows us to

break the problem into more manageable pieces such as recognizing objects,

remembering events, forming plans, understanding speech, and so on—with,

of course, each of these tasks having its own subtasks to be solved by lower-

level agents.94

Schedule. I see the mind recipe schedule or time line being set up as a sym-

biotic co-evolution of various kinds of agents. The mind recipe schedule

orchestrates a number of evolutionary processes in parallel arenas. We des-

ignate one arena as the master, with the goal of evolving a mind. The goals of

the subsidiary arenas are to evolve specialized agents. The schedule regularly

takes the best agents from each arena and makes them available as new

improved components for the agents in the other arenas.

Using co-evolution and parallel arenas allows the mind recipe to divide and

conquer. Right from the start the master arena tries to evolve an entire mind,

but at the same time the schedule is evolving good agents for a myriad of

basic tasks. The schedule can also include an ability to change the goal of a

given evolutionary arena once it’s served its purpose.

Evolution. We simulate evolution in a given arena of agents as follows. We

pick some fixed size and populate the arena with this many agents. So as

not to waste time reinventing the wheel, we include in each evolutionary

arena some variations on AI agents that represent the current best state of

the art for that arena’s task. But we’ll also include a number of randomly

designed agents.

In the process of simulated evolution, we measure each agent’s fitness

according to some test that relates to our eventual goal. We kill off the least

fit agents and replace them with variations of the most fit agents, sometimes

combining one or more of the fit agents to create a new one. And then we run

the fitness tests again, kill the losers, replicate the winners, and so on. Typ-

ically we keep the population size constant—always replacing each unfit

agent by exactly one new agent.

Variation. During the process of our simulated evolutions, we vary the agents so

as to explore our space of possibilities. In varying an agent, we can tweak it in

several ways. Most simply, we can change its neuron’s input weights and
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threshold levels. We can also tweak an agent by varying its neural network

design, that is, by changing the number of component neurons the agent uses,

or by altering the connections among inputs, neurons, and outputs. A final way

to vary an agent is to change which subagents or sensors it uses as inputs.

Another source of variation is that we can crossbreed two or more agents

by exchanging bits of their component neural nets.

Pseudorandomizer. A genetic algorithm involves making random choices in

the tweaks and in picking which pairs of agents to crossbreed. We can make

our mind recipe deterministic by getting its randomness from a pseudo-

random function such as Stephen Wolfram’s cellular automaton Rule 30.

(But do see footnote 73).

Fitness tests. The mind recipe uses three kinds of fitness tests.

First of all we will equip it with a number of simple tutorial programs, not

unlike what a person might encounter as an online course. These automated

tutorials will coach the agents through various elementary tasks, with per-

haps the hardest task being to learn English (or, if you prefer, some other

human language). Each of the evolutionary arenas will have its own partic-

ular series of fitness tests. Once the agents in a given arena have been

brought up to a certain level, the coded-up tutor embedded in the mind

recipe will propose a harder task.

Secondly, the mind recipe will include as a database a large library of

books, photographs, and movies, as well as batteries of quizzes about the

texts and images. Our candidate mind programs must learn to understand

our books, decipher our images, and respond to our movies.

The third type of fitness test will be of a more interactive nature: once the

agents reach a certain level of competence, we’ll place them into a simulated

virtual world and let them directly compete with one another. This brings in the

subsidiary problem of running a good virtual reality simulation, but, on the

whole, that seems like a more feasible problem than evolving intelligent pro-

grams. It’s already reasonable to imagine, for instance, a big computer game in

which the nonplayer characters compete without any human input at all.

Compete in what way? I see the mind recipe as having different epochs. To

begin with, the virtual agents can compete for scarce resources. Next they
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might hunt and eat one another. Then they might group together, forming a

virtual economy, buying and selling things. Finally, they can begin to

exchange information with each other, offering solutions to problems, or per-

haps even bartering entertainment. Once the agents reach this epoch, it

makes sense to let them generate their own ranking system to be used as a

fitness function.

Autonomy. In his stories about robots, Isaac Asimov had a character named

Susan Calvin who served as a tutor to the robots. But I am requiring that the

mind recipe be autonomous. It must work without any real-time human

tutoring or interaction of any kind; once it’s set in motion, it requires no fur-

ther intervention at all. The mind recipe is a start-it-and-forget-it automatic

process; you turn it on, walk off, come back later (maybe much later), and

you’ve got a mind waiting there.

A first reason for the autonomy requirement is a practical one: no human

would have the patience and the rapidity to mentor each member of an

evolving race of artificially intelligent agents.

A second reason for automating the mind recipe is that then, the faster our

hardware gets, the faster we can run the mind recipe. Since no humans are

involved, we’re perfectly free, as our hardware makes it possible, to run the evo-

lution a million, billion, or trillion times faster. This is a very big win.

A third reason for making the mind recipe self-contained is that then the

recipe can be fully deterministic. Once the mind recipe is fully specified, the

only input is what initial seed you put into the pseudorandomizer. You’ll get

the exact same final agents if you run the mind recipe two times in a row on

the same seed and for the same amount of time. This fact is of some philo-

sophical interest, as it shows that a human-equivalent mind may in fact be

rather concisely describable (in terms of a mind recipe).95

Size limit. If we put no upper bound on the size of our agents’ programs, this

poses a danger of evolving toward enormous lookup tables or “crib sheets”

containing the answers to all the questions asked by the fitness functions.

So as to avoid having the programs cheat by hard-coding the answers to

the tests, we would want to put some kind of cap on the size of the programs.

We already know how to do this by having a neural net of a rather small fixed

enjoying your mind

285



size learn to distinguish members of a very large database. The net doesn’t

have room to memorize each item, so it’s forced to find higher-level ways of

distinguishing its inputs. Indeed, one might even say that intelligence

involves finding compact representations of large domains.

How large should the size cap be? Hans Moravec remarks that most living

or artificial thinking systems have a memory size in bytes comparable to the

number of instructions per second they can carry out (see figure 104).
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Figure 104: Hans Moravec’s Plot of Brain Speed and Brain Size

The horizontal axis measures the system’s memory in megabytes, and the vertical axis
shows its speed in MIPS (millions of instructions per second). The systems that can
easily be made to function as universal computers are marked with an asterisk. Note
that Moravec uses logarithmic scales on both axes, with each step representing a mul-
tiplication by a thousand. 



Using Moravec’s rule of thumb, we should expect a three-hundred-petaflop

human brain program to use about three hundred petabytes of memory. And

this is about right, for if we look back at table 12, we see that a brain has a

hundred trillion synapses. If we suppose that fully describing the state of a

synapse takes about a thousand bytes, then we get a hundred quadrillion

bytes, or a hundred petabytes. To be generous, we can set the size cap for

our agents at an exabyte apiece.

Creativity. One subsidiary goal for our agents will be the ability to mentally

simulate events, to form a movie-in-the-brain. Once a program can simulate

the world as it is, there’s a possibility of gaining a capacity to simulate the

world as it might be. And with this comes the ability to plan and anticipate.

Harking back to Damasio, also note that creating a movie-in-the-brain is a

key step toward core consciousness.

A further effect of mentally simulating the world is that it presents the

possibility of abstract thought. An abstract thought is, I would say, any link

between several sensations or images. The more images involved, the

abstracter the thought.

Once you have abstract thought, why not expect creativity? A classic objec-

tion to robot intelligence is that robots act only in accord to a program,

whereas humans can do creative and unexpected things.

But a point I’ve been hammering on throughout the Lifebox, the Seashell,

and the Soul is that a class four computation can be both unpredictable and

deterministic. Presented with a computer program allegedly equivalent to

your mind, you’d in fact have no hope of skimming through the program,

understanding it, and being able to predict what it’s going to do. Heck, we

can’t even predict what the CA Rule 110 will do on arbitrary inputs, and it’s

a program that’s only eight bits long!

Unpredictability is easy. The real problem lies in getting a computer pro-

gram to produce unexpected outputs that seem interesting.

Judging success. Certainly we’d want our program to be able to give good

answers to questions about all the books and movies that we included in the

mind recipe. A benefit of having used this as input means that the program

will have a very strong understanding of human language. It’s likely, however,
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that the co-evolution in virtual reality will also have led our computer minds

to develop a native language of their own.

A payoff from having used the virtual reality arena is that this will have

also prepared the minds to move around our physical world. We’d want to be

able to “decant” the mind into a robot body and have it move around our

world in a fairly natural way, possibly needing a few weeks of acculturation.

Alan Turing spoke of gauging humanlike intelligence by an imitation game:

the machines try to trick us into thinking they’re people. If they regularly

succeed, we might as well say they’re intelligent.

But, and this is a delicate point, even if our mind recipe leads to fully

humanoid robots, we won’t be able to prove that the machines are equiva-

lent to human minds. Nor will we even be able to prove that these evolved

minds might not at some point begin acting in a very unreasonable or

inconsistent way.96 Lest this make robots seem dangerous, note that this is

exactly the same situation we’re in vis-à-vis other humans. You can never

be sure if another person will remain consistent and rational. Think of your

relatives!

Runtime. As I mentioned before, given our present skills, humanoid software

can only be designed by an evolutionary search procedure along the lines of

the mind recipe. Let’s try to estimate how long might such a search take.

That is, I’d like to get a numerical estimate of how soon we might be

able to evolve software equivalent to the human mind by using something

like the mind recipe. But at present the mind recipe is still a bit vague,

and I don’t see a simple way to make an estimate of how long it might take

to bear fruit.

So I’m going to use a different approach to getting an estimate of how long it

might take to evolve humanlike software: I’m going to propose directly simu-

lating human evolution, starting with some blank, but human-size brains.

That is, I’ll work with a sizable population of agents, each of whom has the

three-hundred-petaflop power of a human mind, and I’ll imagine evolving these

agents over a substantial period of time. To be more precise, I’ll simulate a

million agents over a million years.

I’ll also need to simulate a nice virtual reality for these agents to live in, but
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my sense is that it’ll be enough to focus only on the computation needed to

simulate all those human-size brains. As long as we stick to a fairly coarse

level of simulation, running a virtual reality isn’t anywhere near as hard as

simulating minds. The real issue is simulating a million years of life for a mil-

lion human-size brains. Table 13 outlines my calculation that a wattaflop

computer could do this in a year of continuous runtime.
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How long would Moore’s Law take to get us to the wattaflop level? Sup-

posing that we’re roughly at the gigaflop level, we’d need a speedup factor of

1021. This amounts to chaining together seven speedups of a thousandfold

each. So if a Moore’s Law increase of a thousandfold takes fifteen years, we’ll

Quantity Estimate in words Power of 
ten

Population A million population slots. This means a 106

million at any given time, not a million in all,
with dying individuals being replaced by newborns. 
A million is on the low side, but remember that 
Earth’s population used to be much smaller.

Number of years A million years. Not a very long time on the 106

of evolution evolutionary scale, but it might be enough for our 
simulated evolution. We can let our simulated 
creatures produce a new generation once every 
simulated year, a faster turnover rate than the  
twenty or so years per generation in the real 
human world.

Total number of Population • years of evolution = 1012 brain years 1012

brain years 
needed to simulate 
human evolution

Target rate to To compute 1012 brain years in one year, ~1030

simulate this the machine needs to run 1012 times as fast as a 
on one machine brain-simulating machine, which we know from 
in one year the last table to run at 3 • 1017 instructions 

per second, so we’ll need 3 • 1029 instructions 
per second, which we might as well round up 
to 1030, a tidy million yottaflop, which could also 
be called a wattaflop.

Table 13: A One-Year Simulation of Human Evolution on a Wattaflop Machine



need a mere ninety-five years to hit the wattaflop level. Call it a century from

now, or 2100.

Actually, there’s no reason we couldn’t run the million simulated brains on

a million different machines that communicate over the Net. In this case, we

could reach our goal thirty years sooner. That is, assuming sixty-five years of

Moore’s Law, we’d reach the yottaflop level, at which time we could run a mil-

lion yottaflop machines for year—which would be as good as waiting thirty

more years to run one wattaflop machine for a year.

Yottaflop, wattaflop—maybe this is getting ridiculous. How long can we

really expect Moore’s Law to hold up? Earlier I mentioned an estimate that

the universe has performed 10120 computations so far. So if we get really

demanding and ask for a machine that can simulate the whole universe in a

second, we’d need to go to 10120 computations per second from our current

rate of roughly 109, which means a speedup factor of 10111. Well, if we turn

the Moore’s Law crank one more time, out comes a prediction that our

machines will run this fast in about five hundred years. So, come 2500, if not

sooner, a desktop machine can in one second compute as much as the entire

universe to date. And fifteen years after that, the computer can simulate itself

running a thousand times as fast as it actually runs! Now if you believe that,

I have some crystal-treated healing water to sell you, also a plot of land on

the Moon, also the collected works of Plato intaglio-printed on a ZigZag ciga-

rette paper for easy ingestion. And for an extra $100,000, I’ll make you

immortal by cryogenically freezing your nose.

My point is that at some point Moore’s Law really does have to poop out.

Obviously this will happen before we see the true and complete history of the

entire universe being simulated in every detail in one second on a personal

computer. And it’s also unlikely that we’ll ever get yottaflop machines capable

of ganging up to perform a one-year emulation of the human race’s evolution.

For that matter, even the millionfold speedup to approach the power of the

human brain could be problematic. As an example of the engineering prob-

lems that arise, if a computer is based on an electronic circuit that oscillates

at an exahertz rate, the circuit will give off hard X-rays that disrupt the func-

tioning of the circuit.

But on the optimistic side, even if the chip engineers hit a wall, this doesn’t
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necessarily mean we’ll never see an exaflop desktop device. Massive parallelism

could save the day: processors could become so cheap and tiny that home com-

puters could have thousands or even millions of them. Or perhaps the current

chip architecture of etched silicon might be replaced by something more

exotic like carbon nanotubes, organic molecules, or computational plastics.

Or we may turn more and more to biologically designed systems. It could be

that we come full circle, and the desktop computer of the year 3000 is a brain

in a jar.

Still speculating on how to get really fast computers, it may also be that

quantum computation will start pulling rabbits out of its hat. The physicist

Seth Lloyd points out that any region of matter at all can be regarded as a

quantum computer in which the bits are stored as particle spins, and the

operations consist of the particles interacting with one another. Lloyd says

that in some sense a kilogram-sized piece of ordinary matter is running a

computation in which it updates a memory of 1031 bits at a rate of 1020

updates per second. And if the matter happens to be a black hole, the figures

switch to a memory of 1016 bits being updated at a rate of 1035 updates per

second. In either case, if we multiply the two numbers together, we get 1051

bit updates per second, which is something like a sextillion nonillion instruc-

tions per second, or a zetta-wattaflop. Lloyd suggests that a black hole com-

puter could form for the tiniest fraction of a second, absorb computational

input as mass and energy, carry out its vast computation, and dissolve into

a pulse of energy containing the output. Dzeent! “I just had an idea!”97

When prognosticating, it’s easy to make the mistake of expecting future

technology to be simply an amplified version of today’s. If the mechanical com-

puter designer Charles Babbage were whisked to our time from the Victorian

era, he might initially suppose that the buzzing beige box beneath my desk is

stuffed with tiny clockwork gears. And we’d probably be just as mistaken to

expect the PCs of the year 2500 to be using silicon chips. We may well discover

new computing technologies that make the mind recipe feasible after all.

Another possibility regarding the creation of software to emulate the human

brain is that there could be better approaches than the brute-force evolu-

tionary search laid out in the mind recipe. In section 3.2: The Morphogenesis

of a Brindle Cow I discussed the fact that many of the physical shapes found

in living organisms are in fact patterns naturally formed by computations
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such as reaction-diffusion rules. The branching structure of a human hand

isn’t so much something that was evolved in detail as it is a pattern that

emerges from a type of reaction that takes place in an embryo. Now it may also

be that, with a bit more insight, we’ll come to see that much of the brain’s

organizational structure emerges naturally from certain rather simple kinds of

morphogenetic processes. In this case, artificially growing a network similar to

the brain might be radically easier than we’d supposed. So maybe we’ll get our

intelligent robots fairly soon after all.

On the theme of computational futures, there’s an interesting idea first pro-

posed by the science-fiction writer and computer-science professor Vernor

Vinge in a 1993 talk.98 Vinge pointed out that if we can make technological

devices as intelligent as ourselves, then there seems to be no reason that

these devices couldn’t readily be made to run a bit faster and have a bit more

memory so as to become more intelligent than people. And then—the real

kicker—these superhuman machines might set to work designing still better

machines, setting off a chain reaction of ever-more-powerful devices.

Vinge termed the potential event the Singularity. Although Vinge’s analysis

is sober and scientific, in the last couple of decades, belief in his Singularity

has become something of a cult among certain techies. Science-fiction

writers, who have a somewhat more jaded view of predictions, have a saying

about the enthusiasts: “The Singularity is the Rapture for geeks.” That is,

among its adherents, belief in the Singularity has something of the flavor of

the evangelical Christian belief in a world-ending apocalypse, when God will

supposedly elevate the saved to heaven, leaving the rest of us to fight a final

battle of Armageddon.

At one level, belief in the Singularity is indeed an instance of people’s age-

old tendency to predict the end of the world. Once we have the Singularity,

the machines can copy our brains and make us immortal. But once we have

the Singularity, the machines may declare war on humanity and seek to

exterminate us. Once we have the Singularity, the machines will learn how

to convert matter into different forms and nobody will ever have to work

again. But once we have the Singularity, the machines may store us in pods

and use us as components. Once we have the Singularity, the machines will

figure out how to travel faster than light and into the past. But once we have
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the Singularity, the machines will screw things up and bring the entire uni-

verse to an end. And so on.

Vinge describes several kinds of scenarios that could lead to a Singularity

of cascading superhuman intelligence. We can group these somewhat science-

fictional possibilities into three bins.

• Artificial minds. We design or evolve computing devices as

intelligent as ourselves, and these entities continue the

process to create further devices that are smarter than us.

These superhuman computing devices might be traditional

silicon-chip computers, nanotechnological assemblages,

quantum computers, or bioengineered artificial organisms.

• Cyborgs. Humans split off a new species, part natural and

part engineered. This could result either from bioengineering

the human genome or from giving people an effortless, trans-

parent interface to supercomputing helper devices. The

resulting cyborgs will advance to superhuman levels.

• Hive minds. The planetary network of computers wakes up

and becomes a superhuman mind. Alternately, people are

equipped with built-in communication devices that allow

society to develop a true group mind of superhuman powers.

I’ve already said enough about the artificial minds scenario, so let’s close

this section with a few words about the other two.

The cyborg possibilities provoke what bioethicists call the “yuck factor.”

Quite reasonably, we don’t like the idea of changing human biology. Gaia

knows best. Don’t fix it if it ain’t broke. Keep the genie in the bottle!

But if we could become cyborgs via high-quality interfaces to external and

detachable computing elements, it might not be so bad. In my science-fiction

novels I often write about an uvvy (rhymes with “lovely-dovey” ), which is

meant to be a smart plastic communications-and-computation device that a

person wears on the nape of the neck. For me an important aesthetic feature

of the uvvy is that its plastic is soft, flexible, and flickering.

To keep down the yuckiness, a uvvy communicates with the user’s brain

via magnetic fields rather than by poking hair-fine tendrils into the spine. An
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uvvy becomes something like a symbiotic partner, a bit like a really, really

good cell phone.

One aspect of the cyborg scenarios is that they reduce the dichotomy

between humans and machines. Depending on how you think about it, this

can seem either good or bad. With a positive spin, the machines become our

symbiotic partners and we advance together. With a negative spin, we see

humanity being debased to the level of kludgy science experiments.

The hive mind scenarios represent a whole different way of thinking

about computation—and this will be a topic I discuss in CHAPTER FIVE: The

Human Hive.

Coming back to the starting point of this section, do I think that we’ll ever

be able to make living mental copies of ourselves? It seems within the realm

of possibility. But, in the end, people might feel it was too much trouble. After

all, there’s no particular reason that any of us should be immortal. Nature’s

perfectly happy to just keep growing fresh new people. Last year’s rose blos-

soms are gone, and it makes the world more interesting to have this year’s

blooms be different from any that came before. Accepting my mortality gives

me all the more reason to make the most of the time that I actually have.

4.7: What Do You Want?

Consider the following bit of dialectical analysis.

• Universal automatism proposes a thesis: Your mental

processes are a type of deterministic computation.

• Your sense of having a free will entails a seeming antithesis:

Your thoughts and actions aren’t predictable.

• Wolfram advocates a beautifully simple synthesis: Your

mind’s computation is both deterministic and unpredictable.

The synthesis is implicit in a conjecture that we’ve already mentioned sev-

eral times.

• Principle of Computational Unpredictability (PCU). Most naturally occurring

complex computations are unpredictable.
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The workings of your mind are unpredictable in the sense that, when pre-

sented with a new input of some kind, you’re often quite unable to say in

advance how you’ll respond to it.

Someone offers you a new job. Do you want it or not? Right off the bat,

there’s no way to say. You have to think over the possibilities, mentally sim-

ulate various outcomes, and feel out your emotional responses to the pro-

posed change.

Someone shows you a painting. Do you like it? Hold on. You have to think

about the image, the colors, and the mental associations before you decide.

Someone hands you a menu. What do you want to eat? Just a minute. You

need to look into your current body feelings, your memories of other meals,

your expectations about this particular restaurant.

We say a computation is unpredictable if there is no exponentially faster

shortcut for finding out in advance what the computation will do with arbi-

trary inputs. When faced with an unpredictable computation, the only reliable

way to find out what the computation does with some input is to go ahead and

start up the computation and watch the states that it steps through.

Figure 105 shows the spacetime evolution of an unpredictable one-

dimensional CA, with time running down the page. Even if I have full

knowledge of this CA’s underlying rule and of the input pattern in a given

row, the rule is gnarly enough that, in all likelihood, the only way I can

possibly figure out the contents of a later row is to compute all the rows

in between.

Certainly there’s no doubt that the endlessly flexible human mind

embodies a universal computation, that is, a computation capable of emu-

lating any other computation. Being universal, the human mind is class four

and gnarly. Given this, we certainly expect the workings of the human mind

to be unpredictable.

Once again, suppose I’m presented with some new input. Since my

thoughts are unpredictable, the only way to find out what I’m going to end

up thinking about the input is to go ahead and think until my mind is made

up. And this means that, although my conclusion is in fact predetermined by

how my mind works, neither I nor anyone else has any way of predicting what

my conclusion will be. Therefore my thought process feels like free will.

But the process is, after all, deterministic, and deep down we all know this.
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Figure 105: The Unpredictable China CA

This image follows a one-dimensional CA through twenty-four hundred generations,
with six hundred generations per strip; the top of each strip is a continuation of the
bottom of the strip to its immediate left. The world of this CA is 128 cells wrapped into
a circle, meaning that the right and left edges of each strip match as well. If we were
to paste everything together, this picture would be a cylinder like a baton. Notice the
characteristic feature of class four rules: they send information back and forth by
means of the moving patterns we call gliders. I found this rule in 1990 after about fif-
teen minutes of a Blind Watchmaker–style directed search, using a program that took
me a year to write. I call it China because it looks a little like a silk fabric design.



When a friend or loved one makes a decision, you ask why—and you expect

an answer. Normally people do have reasons for doing things. And if they

have reasons, then their decisions are in fact deterministic.

Of course, discerning the reasons behind our decisions can be hard. On

the one hand, we can be unaware of our true motivations or unwilling to own

up to them. “I have no idea why I did that.” And on the other hand, we some-

times like to suggest nobler reasons for our actions than the motivations

more likely to have played a part. “I did it for his own good.” And, most cru-

cial of all, even if we are blessed with full self-knowledge, it may be impos-

sible to predict in advance how the influences of our various competing

motivations will play out.

Really big decisions are rather rare in one’s life. Looking back on the few

I’ve made, I wouldn’t say that any of them was capricious. Surprising to

others, yes, but always logical for me. In each case, the course of action that

I took was, for me at the time, the inevitable thing to do.

Two months ago, for instance, I decided to retire from teaching computer

science at San Jose State University. I was tired of preparing new lectures

and demos on difficult material, tired of wrestling with the ever-changing

hardware and software, and eager to devote more time to my writing. These

reasons might not have been enough, but then the state university faculty got

an offer of a small golden handshake from the Terminator himself—that is,

from the actor who once portrayed an implacable robot and who had recently

become the governor of California. I was in a mental state where this finan-

cial offer was enough to tip the scales—and I went for it.

Where’s the free will in that? All I did was evaluate data, simulate alternate

futures, and study my feelings. Given my mind-set and the various inputs,

my retirement was inevitable. But if, immediately after the golden handshake

offer, you’d asked me if I was going to retire, I wouldn’t have been able to give

you a firm yes or no answer. I didn’t know yet. My deterministic computation

wasn’t done, and for me it was unpredictable.

Just to drive home the point, let me quote the relevant passage from Wol-

fram’s A New Kind Of Science. (I’ve inserted some bracketed phrases to

remind you that I’m using the word unpredictable as a synonym for what Wol-

fram prefers to call “irreducible.”)
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Ever since antiquity it has been a great mystery how the universe

can follow definite laws while we as humans still often manage to

make decisions about how to act in ways that seem quite free of

obvious laws.

But from the discoveries in this book it finally now seems possible

to give an explanation for this. And the key, I believe, is the phe-

nomenon of computational irreducibility [or unpredictability] . . .

For if the evolution of the system corresponds to an irreducible [or

unpredictable] computation, then this means that the only way to

work out how the system will behave is essentially to perform this

computation—with the result that there can fundamentally be no

laws that allow one to work out the behavior more directly.99

I’m quite happy with this resolution of the conflict between determinism

and free will. But I find that when I try to explain it to people who aren’t uni-

versal automatists, they’re dubious. I’ll respond to three common objections.

Objection: “If I’m really like a computer program, then my free will is only an

illusion. And I don’t want that to be true.”

In the philosophical style, I’ll answer this with a counterquestion. By “free

will” do you mean ability to make an utterly random decision? But what is

“utterly random”? If something’s unpredictable, it’s all but indistinguishable

from being random, no?

Some philosophers of science have tried to resolve the free will question by

supposing that the brain has an ability to tap into a physically random

process such as a chaotic system with unknown initial conditions, or a

quantum measurement of some kind.

A universal automatist would reject this approach for two reasons. First of

all, you don’t need to turn to physics since there are lots of dirt-simple rules

that, when run upon a neural network like the brain, will generate unpre-

dictable and random-looking data. And second, assuming that there’s a

deterministic computation underlying the seeming uncertainties of quantum

mechanics, all physical processes are deterministic, so you aren’t going to be

able to get true randomness from nature either. Assuming that science will

find its way past the wifty obfuscations of quantum mechanics, whatever
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seeming randomness you find in physics is just another example of the

unpredictability of complex deterministic computations. So, coming back to

the first point in this paragraph, you might as well accept that your mind is

a deterministic computation.

Objection: “I can prove that I have free will by flipping a coin to make up my

mind.”

Even if our actions are deterministic, they are indeed influenced by the

inputs that we get. The external world’s computations are something quite

distinct from our own computations. Now it’s certainly possible that your

deterministic thought process might tell you to flip a coin and to make a

choice on the basis of what the coin says. But in this case, your actions still

aren’t truly random. You’ve only added an extra coin-flip bit of input.

Objection: “My free will isn’t an illusion. I can prove it by doing the opposite

of what I want to do.”

That’s a contradiction. Once the dust settles, what you did is what you wanted

to do. And you don’t really have free will over what you want to do—at least not

in the sense of being off in some little control room and sending out command

signals. Your drives and desires are influenced by biochemical cycles, memories,

life experiences, and external inputs. You can make unexpected changes, but

these are the results of your ever-flowing mental computation.

It’s valuable to realize that everyone’s mind is performing a gnarly class-four

computation. Sometimes if I look at strangers, I’ll unkindly jump to the con-

clusion that they’re mindless robots—particularly if they don’t resemble me.

Remember how your parents seemed to you when you were a teenager?

Robots for sure.

One of the pleasant side effects of unexpected social interactions is that

you get flashes of insight into the minds of people whom you might otherwise

never meet. When I relax, I discover unexpected intricacies of emotion and

humor within strangers. Nobody is simple on the inside. Simplicity is an

impossibility. Every brain is carrying out a class four computation.

And this is no surprise, really. Look inward at your flow of thought. It’s like

that China cellular automaton rule depicted in figure 105. One thing leads to
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another. The gliderlike thought trains collide and light up fresh associations.

Even if you’re lying in bed with your eyes closed, the flow continues, the end-

less torrent. Now and then you get stuck in a loop, but some unexpected

glider eventually crashes in to break things up. You’re surfing the brain

waves; and you yourself are the surf.

At this point, I’d like to mention a touchy subject: God. Let me immediately

say that I’m not out to advocate religion. If you want to keep things more neu-

tral, think of “God” as a convenient and colorful synonym for “the cosmos.”

Or think of the “God” word as convenient shorthand for “the unknown.”

My reason for mentioning God is that there’s a particular connection

between God and free will that intrigues me: When in dire straits, people

sometimes ask God to help them change their behavior. And, often enough to

matter, this seems to help them get better. What might this mean?

I would say that becoming desperate enough to turn to God involves rec-

ognizing a current inability to alter one’s mental patterns and a desire to

attempt some higher-level change. The plea expresses a longing to jump out

of a loop, a desire to move from one attractor to the next, a wish to experi-

ence a chaotic bifurcation.

If the plea works, does that mean that the Great Author, the Ground of All

Being, the Omnipresent-Omnipotent-Omniscient One has reached down to

change the parameters of some suffering character’s mental computations?

And, more to the point, does this destroy determinism?

Well, we can keep determinism if we allow for a less supernatural view of

reform-by-supplication. We could simply say that asking God for help has an

organic effect upon a person’s brain. In other words, expressing a desire to

have a spiritual life might activate, let us say, certain brain centers that

release endorphins, which in turn affect the threshold levels of one’s neu-

rons. And these changes nudge the brain activities to a new strange attractor.

A deterministic chaotic bifurcation occurs.

Do I really think it works like that? Well, to be truthful, I’ve always felt com-

fortable about reaching out for contact with the divine. The world is big and

strange, and we have only the barest inkling about what lies beneath the surface.

But even in this less materialistic view, a person can still be deterministic.

Asking God for help in achieving a chaotic bifurcation is really no different
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from asking a doctor for penicillin. You can’t will an infection away, and you

can’t will yourself to abandon some deeply ingrained bad habit. But at a

slightly higher level, you may be able to muster the will to get help. And this

higher level is, after all, simply part of your brain’s ongoing deterministic

computation.

For that matter, God, too, could be deterministic. In the context of the theory

I suggested at the end of section 2.5: What Is Reality?, God could be a deter-

ministic nonreversible class four paratime metaphysical cellular automaton.

But that sounds so dull. Better to say the cosmos is dancing with us all

the time. And that God is in the blank spaces between our thoughts—like in

those white regions of the picture of the China CA.

4.8: Quantum Soul

It’s valuable to remember how really odd it is to be conscious. The miracle of

your mental life is being created by a carpet of cells that have grown them-

selves into a mat. How can this be?

Walking in the woods, I see a footbridge and automatically form a model of

it. I step onto the bridge and look down at the ripples in the stream, the foam,

the tiny standing waves. I’m thinking these are like the mind. A woman walks

past, cautious of the silver-haired man she sees. I think of Joseph Campbell,

of myth, of a fairy tale about a troll beneath a bridge. All this is coming from

the meat weave in my head. The old associations are somehow alive in the

background, always ready to pulse at my call, and new associations form as

spontaneously as the eddies in the torrent below.

Yes, both humans and PCs are universal computers, so, in principle, each

should be able to simulate the other. And comparing them sheds some light

on both. But, no, I don’t think they’re very similar. You can build a cathedral

from gray Lego blocks, but that’s not what the Nôtre-Dame is.

Introspection makes me doubt the notion that the human mind works like

a desktop computer. I’m abetted in this doubt by my friend Nick Herbert, one

of the more colorful characters I’ve met in Silicon Valley. Nick started as a

physicist designing hard drives, but these days is more likely to be found

holding forth on consciousness. Here’s a quote from a thought-provoking

article by him called “Quantum Tantra.”
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By the high standards of explanation we have come to demand in

physics and other sciences, we do not even possess a bad theory of

consciousness, let alone a good one.

Speculations concerning the origin of inner experience in humans

and other beings have been few, vague and superficial. They include

the notion that mind is an “emergent property” of active neuronal

nets, or that mind is the “software” that manages the brain’s uncon-

scious “hardware.” . . .

Half-baked attempts to explain consciousness, such as mind-as-

software or mind-as-emergent-property do not take themselves seri-

ously enough to confront the experimental facts, our most intimate

data base, namely how mind itself feels from the inside.100

Nick proposes that we think of the human mind as a quantum system.

Recall that quantum systems are said to change in two ways: When left alone,

they undergo a continuous, deterministic transformation through a series of
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blended, “superposed” states, but when observed, they undergo abrupt prob-

abilistic transitions into unambiguous “pure” states. Nick suggests that we

can notice these two kinds of processes in our own minds.

• The continuous evolution of superposed states corresponds to

the transcendent sensation of being merged with the world, or,

putting it less portentously, to the everyday activity of being

alert without consciously thinking much of anything. In this

mode you aren’t deliberately watching or evaluating your

thoughts.

• The abrupt transition from superposed state to pure state can

be seen as the act of adopting a specific opinion or plan. Each

type of question or measurement of mental state enforces a

choice among the question’s own implicit set of possible

answers. Even beginning to consider a question initiates a

delimiting process.

The superposed states of quantum mechanics don’t fit in with classical

physics, but, at an internal psychological level, superposed mental states are

something we’re familiar with.

Note that computer scientists do have ways to model vagueness. For

instance, neural nets provide outputs that can take on values intermediate

between the definite yes-no values of one or zero. The notion of a continuous

range of truth values is also studied as “fuzzy logic.”

But the blended, overlaid, superposed states of quantum mechanics really

aren’t captured by intermediate truth values. The physicist Erwin

Schrödinger once remarked that there’s a difference between a blurred pho-

tograph of a mountain and a crisp photo of a cloud. Being blurry is like

having an intermediate truth value, and a cloud is like being in a superposed

state that’s a blend of several pure states.

Let’s go back to the notion of coherence I discussed in section 2.6: How

Robots Get High. Recall that a coherent system is one that independently

evolves through a deterministic sequence of superposed states. And a deco-

herent system can become entangled with another system, such as a meas-

uring device, that may even force it into a pure classical state. If we think of
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the mind’s two modes as the coherent and the decoherent mode, then it

seems as if being asked a question moves a person from coherence toward

decoherence. As I already mentioned, this usage is a little counterintuitive, in

that the more someone talks about their opinions, the less quantum-

mechanically coherent they become. But I’ve grown used to this terminology.

Indeed, as a kind of extended thought experiment, I had the villains in my

recent epic novel Frek and the Elixir decohere their victims by interrogation.

Jayney leaned over Frek, her plastic dragon face bent into a parody

of a motherly smile. She had fangs. She bit his neck and drew some-

thing out of him, leaving numbness in its place.

A hundred bland doughy faces seemed to bloom around him,

pressing forward, staring, asking questions—all at the same time.

Willy-nilly, Frek was unable to do anything but answer.

“How old are you? Are you happy? What’s your name? Do you

miss home? How tall are you? Are you frightened?”

With each response, Frek became a bit less himself and more of a

statistic. The questions were flattening him out. On and on they came.

“Rate your feelings about the following on a scale from one to five,

ranging from dislike very much to like very much . . .

“Rate your perceived frequency of the following classes of events

on a scale from one to five, ranging from almost never to extremely

often . . .

“Specify your agreement with the following statements on a scale

from one to five, ranging from disagree strongly to agree very much . . .”

The questions came at him thick and fast. In a few minutes, every

spark of Frek’s own true self had been sapped away. All he felt now

was a faint ache all through his bones, like the pain from a bad

tooth.

Frek was a rag doll, an automaton, a thing. He contained no mys-

teries. He was fully decoherent.101

Isn’t that, really, a bit how it feels when someone starts firing questions at

you? It’s unpleasant when someone substitutes interrogation for the natural

flow of conversation. And it’s still more unpleasant when the grilling is for
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some mercenary cause. You have every reason to discard or ignore the

surveys with which institutions pester you. (But please don’t use this rea-

soning as an excuse not to vote!)

Getting back to my main line of thought, let’s see how Nick Herbert’s

notion of two kinds of mental processes fits in with the dialectic triad I laid

down at the start of CHAPTER ONE: Computation Everywhere. This time I’ll list

two possible kinds of synthesis between the lifebox and the soul. These will

be the “gnarliness” synthesis that I’m primarily arguing for, and an alternate

quantum mind synthesis based on Nick Herbert’s ideas.

• Thesis (Lifebox): Our theoretical knowledge of computational

universality and our practical experience with neural nets and

genetic algorithms suggests that any clearly described human

behavior can eventually be emulated by a deterministic com-

putation.

• Antithesis (Soul): Upon introspection we feel there is a residue

that isn’t captured by any scientific system; we feel ourselves

to be quite unlike machines. This is the sense of having a

soul.

• Gnarliness Synthesis (Seashell): If you’re a complex class-four

computation, you don’t feel like you’re predictable, even

though in fact you are a fully deterministic process. Compu-

tational systems can generate beautiful and unexpected pat-

terns. A complex computation could perfectly well become

conscious and feel itself to have a soul.

• Quantum Mind Synthesis: The soul can be given a scientific

meaning as one’s immediate perception of one’s coherent

uncollapsed wave function, particularly as it is entangled with

the uncollapsed universal wave function of the cosmos.

Let’s say a bit more about the quantum mind idea. How is it that the

human brain could function in the two kinds of modes? Is there something

specific about the human brain that allows us to couple our coherent

superposed-state experiences with an ability to collapse down into discrete,

pure states congenial to a PC?
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The physicist Roger Penrose and the psychologist Stuart Hameroff point out

that biological cells such as neurons include networks of very fine structures

called microtubules. They suggest that the microtubles might somehow serve as

a locus for quantum computations, and that it might be physically true that the

brain at times is working in parallel mixed states. Most scientists dismiss this

notion, citing problems with keeping a mixed quantum state for any appreciable

length of time in a body-temperature assemblage like a brain. But there are

methods of quantum error correction that might possibly make it possible for

elements of the brain to be in coherent states for appreciable lengths of time.102

Whether or not Penrose’s somewhat unpopular ideas pan out, they’re at

least an illustration of how a brain might include some truly quantum

mechanical kinds of computation. Quoting the same essay by Nick Herbert:

Looking inside, I do not feel like “software,” whatever that might

mean, but indeed like a shimmering (wavelike?) center of ambiguous

potentia (possibilities?) around which more solid perceptions and

ideas are continually congealing (quantum jumps?). This rough

match of internal feeling with external description could be utterly

deceptive but it at least shows that the quantum model of mind can

successfully confront the introspective evidence in a way that no

other mind models even attempt.

Even were our brains to exhibit large-scale quantum behavior, there’s no

need to be human chauvinists. The quantum mind synthesis of the lifebox

and the soul doesn’t rule out the possibility that machines or biocomputing

devices could yet be equivalent to us. For any physical object is, after all, sub-

ject to quantum mechanics. Certain kinds of devices could well remain

coherent and have uncollapsed wave functions for protracted periods of time.

As it so happens, building such devices is precisely what many quantum

computing researchers are trying to do. My sense of Nick Herbert’s somewhat

visionary ideas is that he is trying to imagine how quantum computation

would feel from the inside—and discovering in the process that it’s something

we do all the time.

In the fall of 2002, I was thinking about coherence a lot, largely in terms of

the many-universes interpretation of quantum mechanics. I would occasionally

The Lifebox, the Seashell, and the Soul

306



reach the point where I was able to turn off my forever-talking inner narra-

tion and feel as if I had spread out into a quantum mechanical union with

the world. One memorable December afternoon in Paris, I felt like I’d merged

with the smoke from a smokestack. Here’s how I described it in my journal.

I keep working on this new mental exercise of becoming coherent, of

being in a superposed state, of existing in multiple parallel uni-

verses, and that feels very good. Walking in the Latin Quarter,

looking at some smoke from a chimney against the sky, not naming

it, just seeing it, letting its motions move within my mind, I realize

I’m no different than a computer screen showing a two-dimensional

cellular automaton, with the smoke like a touch-cursor dragged

across my brain. I am entangled with the smoke. I am coherent, but

my coherence includes the smoke, I have joined the system, merged

it into me. Like the old koan, Q: I see a flag is blowing in wind: is the

flag moving or is the wind moving? A: My mind is moving. Finally I

get it, a nice moment of aha, a satori in Paris.

One final point. The distinction between two kinds of quantum mechan-

ical processes rests on the standard Copenhagen interpretation of quantum

mechanics. In section 2.5: What Is Reality? I discussed John Cramer’s trans-

actional interpretation of quantum mechanics, under which events really

are determined and the superposed states are more in the nature of an illu-

sion. The price Cramer pays for his model is in stipulating that the future

influences the past or, putting it in a less time-bound fashion, his spacetime

is an undivided whole, filled with patterns of synchronistic symmetries

between the past and the future.

The notion of past and future being in harmony is strange to the usual

view of physics, but it’s the daily bread of writers. If the first line and the

second line of a poem both end in “oo,” does the first “oo” cause the second,

or does the second “oo” cause the first? Neither, of course. Rhyming line end-

ings are part of the poem’s pattern as a whole. When a hero’s death by fire is

prefigured by a candle flame in a movie’s opening scene, the chain of causa-

tion really leads neither forward nor backward but—sideways, through para-

time to the germ of the plot in the mind of the screenwriter.
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For a universal automatist, the win in Cramer’s view is that it becomes

possible to regard spacetime as resulting from a deterministic computation

oriented along the second dimension of time that I call paratime. But do we

then lose Nick Herbert’s rather attractive metaphor of the quantum mind?

Not entirely. We can still keep a notion of higher consciousness. But now,

rather than regarding it as being the experience of a superposed state, we

might instead view it as an experience of the world as a timeless whole, or

perhaps as an experience of the world’s higher causation along the axis of

paratime.

Words, words, words. I just stepped outside to take a break. The air is cool

and fresh. I started early today, and the sun is still low. Dewdrops sparkle on

the blades of grass, each drop holding its own idiosyncratic image of the

world. I get my camera and take a picture (figure 107).

Beyond words.

In this chapter I’ve been describing how to view the mind as a deterministic

computation. But at the end of the analysis, I still feel that something’s missing,

some breath of human life.
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Although I mentioned at the start of this chapter that the Egyptians

thought of the heart as being of high importance, I’ve gone ahead and spent

the whole chapter talking about the brain.

So now, finally, here’s some heart to balance things out.

Twenty years ago, on my thirty-ninth birthday, my beautiful wife, Sylvia,

wrote a lovely and lovable poem urging me to set aside my endless philoso-

phizing and pay attention to her.

It’s your birthday!

Let down your proofs—

Count my numbers,

Process my words,

Weigh my mass,

And square my root!

Feel my fractals,

Join my space—

C’mon, baby,

Let’s tessellate!

Would a robot ever write a poem like that? Well, maybe . . . someday. But

not anytime soon. It’s important not to confuse philosophical dreams with the

actual world we live in right now. Turn off the computer and give your partner

a kiss. This means you, Rudy.
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THOUGHT EXPERIMENT FIVE: THE KIND RAIN

Linda Nguyen stood under the bell of

her transparent plastic umbrella,

watching her two kids playing in the

falling rain, each of them with a see-

through umbrella, too. First-grader

Marco and little Chavella in their

yellow rubber boots. The winter rains

had started two weeks ago, and

hadn’t let up for a single day. The

nearby creek was filled to its banks,

and Linda wanted to be sure to keep

her kids away from it.

Marco was splashing the driveway

puddles and Chavella was getting

ready to try. Linda smiled, feeling

the two extra cups of coffee she’d

had this morning. Her worries had

been ruling her of late; it was time to

push them away.

She was a Web programmer

marooned in a rundown cottage on

the fringes of Silicon Valley. She’d

been unemployed for seven months.

The rent was overdue, also the utili-

ties and the phone and the credit

cards. Last week her husband Juan

had left her for a gym-rat hottie he’d

met at the health club. And her car’s

battery was dead. There had to be an

upside.

The worn gravel driveway had two

ruts in it, making a pair of twenty-

foot puddles. The raindrops pocked

the clear water. The barrage of dents

sent out circular ripples, criss-

crossing to make a wobbly fish-scale

pattern.

“I love rain!” whooped Marco,

marching with his knees high,

sending big waves down the long

strip of water.

“Puddle!” exclaimed Chavella, at

Linda’s side. She smiled up at her

mother, poised herself, stamped a

little splash, and nearly fell over.

Linda noticed how the impact of

each drop sent up a fine spray of

minidroplets. When the minidroplets

fell back to the puddle, some of them

merged right in, but a few bounced

across the surface a few times first.

The stubborn ones. It would take a

supercomputer to simulate this

puddle in real time—maybe even all

the computers in the world. Espe-

cially if you included the air currents

pushing the raindrops this way and

that. Computable or not, it kept

happening.

Linda was glad to be noticing the

details of the rain in the puddle. It

bumped her out of her depressed

mood. When she was depressed, the

world seemed as simple as a newscast



or a mall. It was good to be outside,

away from the TV and the computer.

The natural world was so high band-

width.

She swept her foot through the

puddle, kicking up a long splash.

Her quick eyes picked out a partic-

ular blob of water in midair; she saw

its jiggly surface getting zapped by a

lucky raindrop—then watched the

tiny impact send ripple rings across

the curved three-dimensional shape.

Great how she could keep up with

this. She was faster than all the

world’s computers!

Linda kicked another splash and

saw every single drop’s dance. It

almost felt like the water was talking

to her. Coffee and rain.

“Puddle bombs!” shouted Marco,

running toward his mother and his

sister, sending up great explosive

splashes as he came.

“No!” shrieked Chavella, clutching

Linda’s hand.

But of course Marco did a giant

two-footed jump and splashed down

right next to them, sending Chavella

into tears of fury.

“Wet!” she cried. “Bad!”

“Don’t do that again,” Linda told

Marco sternly. “Or we’re all going

back inside.”

She led Chavella down the

driveway toward the tilted shack that

was their garage. With the owners

waiting to sell the land off to devel-

opers, nothing got fixed. The house

was a scraper. The dead headlights of

Linda’s old car stared blankly from

the garage door. She’d been putting

off replacing the battery—expecting

Juan to do it for her. Was he really

gone for good?

It was dry in the garage, the rain

loud on the roof. Linda folded her

umbrella and used her sleeve to

wipe Chavella’s eyes and nose. While

Chavella stood in the garage door

scolding Marco, Linda peered out

the garage’s dirty rear window. Right

behind the garage was the roaring

creek that snaked through the pas-

ture. It was deep enough to sweep a

child away.

As if in a dream, the instant she

had this thought, she saw Marco go

racing by the window, headed right

toward the stream with his head

down, roaring at the top of his lungs,

deep into his nutty hyper mode.

As Linda raced out of the garage

door, she heard a shriek and a

splash. And when she reached the

banks of the brown, surging creek,

Marco was gone.

“Help!” she cried, the rain falling

into her mouth.

And then the miracle happened. A

squall of wind swept down the



creek—drawing a distinct arrow in

the surface. The arrow pointed twenty

yards to Linda’s left, and at the tip of

the arrow the rain was etching a

moving circle into the stream’s tur-

bulent waters.

Not stopping to think about it,

Linda ran after the circle with all her

might. Once she was out ahead of it,

she knelt by the bank. The circle

drifted her way, its edges clearly

marked by the purposeful rain.

Linda thrust her hand into the

brown water at the circle’s center

and caught Marco by the hand.

Minutes later they were in the

house, Marco coughing and pale

with cold, but none the worse for

wear. Linda carried him into the

bathroom and set him into a tub of

hot water. Chavella insisted on get-

ting in the tub, too. She liked baths.

The kids sat there, Marco sub-

dued, Chavella playing with her

rubber duck.

“Thank you,” Linda said, although

she wasn’t sure to whom. “But I still

need a job.”

Looking up, she noticed rain run-

ning down the window above the

tub. As if hearing her, the rivulets

wavered to form a series of particular

shapes—letters. Was she going crazy?

Don’t fight it. She wrote the letters

down. It was a Web address. And at

that address, Linda found herself a

job—maintaining an interactive Web

site for the National Weather Service.





C H A P T E R F I V E

The Human Hive

MOST OF MY PERSONALITY CONSISTS of attitudes and ideas that I learned

directly from other humans—or from human-made books, movies, record

albums, TV shows, and the like. All the artifacts that surround me were

designed and assembled by humans as well. Without human society, I’d be

an inarticulate naked ape.

If you raise a snail in isolation and set him loose in a snailless garden, per-

haps his life won’t be so different from the lives of those more fortunate snails

who rub shells with hundreds of their fellows. But if you raise an ant in iso-

lation and set her loose in an antless forest, she will surely die. Ants aren’t

equipped to live on their own.

Humans are more like the swarming ants than like the autonomous

snails who carry their houses on their backs. Yes, I can go backpacking

alone in the wilderness, but my camping equipment comes from human fac-

tories, my food supplies were grown and packaged by humans, and I

learned my forest survival skills by talking with humans and by studying

human books and maps.

Not only does the presence of other people affect an individual person’s

computations, but a society as a whole can also be said to compute, using

its members as networked parallel processors.

As in the earlier chapters, we’ll work our way up from the lower to the

higher levels of computation. This chapter breaks into five sections.



• 5.1: Hive Minds. People’s motions and emotions play off those

of their peers, leading to emergent group behaviors. Your

brain is an individual node of society’s hive mind. The hive

mind is in some sense conscious, but it is a mind quite unlike

any individual person’s.

• 5.2: Language and Telepathy. Language is the primary com-

munication medium linking society’s members. Speech

encodes mental states, which in turn represent the world at

various levels of abstraction. It’s interesting to look at lan-

guage as a kind of network itself, in that a word is viewed as

having links to the other words you associate with it. This net-

work obeys a certain kind of statistical pattern known as an

inverse power law.

• 5.3: Commercial and Gnarly Aesthetics. Society has a group

memory that’s based both on oral transmission of knowledge

and on information-dense artifacts such as books, paintings,

buildings, movies, Web pages, and computer programs. I’ll

discuss why it is that inverse power laws also characterize the

popularity of our cultural information artifacts. Inverse power

laws mean that only a few authors and artists can earn a

living, and that a handful of familiar chain stores soak up the

lion’s share of the retail business. Nevertheless, nothing stays

on top forever; I’ll discuss how this fact relates to what com-

puter scientists call self-organized criticality. At the end of the

section I explore literary aesthetics in terms of gnarl.

• 5.4: Power and Money. In government and in the marketplace,

powerful forces are forever trying to turn society into a control-

lable class two computation. But no regime lasts forever, and

no corporations are immortal. The unpredictability of society’s

class-four computation acts as a perennial force for revolution.

• 5.5. The Past and Future History of Gnarl. First point: The his-

tory of the world isn’t only about presidents, wars, and kings.

Society’s computation consists of all its members’ actions,

and an historian does well to focus on art, science, tech-

nology, and popular culture. Second point: Looked at in a
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certain way, the history of technology is a history of

mankind’s increasing mastery of various forms of computa-

tion. I include a table listing a possible future sequence of

computation-related inventions.

5.1: Hive Minds

People are the most unpredictable, rewarding, and dangerous entities that

one encounters. Each of us is exquisitely sensitive to our peers, continually

tracking their motions and moods. You react to others; they react to you—

and to one another. The result is a parallel computation.

Let’s start with motion. In section 4.2: The Network Within, I mentioned

Braitenberg vehicles as an example of reflex-driven agents that react to

objects in the environment by approaching or avoiding them. Specific reflexes

may be tuned to the types of objects encountered, the relative distance and

direction of the objects, and so on. If an agent obeys but one simple reflex,

and if it’s in a world with but one other object, then its motions will either

halt or repeat themselves. That is, it will perform a dull class one or class two

computation. But if the agent has several competing reflexes and several

objects to react to, then its motion can become chaotic and exhibit class-

three behavior.

The situation becomes especially interesting when, instead of merely

reacting to fixed features of the environment, the agents react to one

another—for here class four behavior becomes common. Craig Reynolds was

one of the first computer scientists to investigate this kind of collective

motion, publishing a groundbreaking paper about how to simulate flocking

groups of animals: herds of cattle, schools of fish, swarms of gnats, and

flocks of birds.103 (See figure 8 and figure 108.)

I need to caution that when I speak of flocking motions, I’m not talking

about those special cases when a group of migrating ducks or geese forms a

V-pattern in the wake of a leader. I’m talking about looser, more democratic

groupings—think of pigeons circling a city square, a band of sparrows in a

hedge, or a gang of seagulls going after a beachgoer’s picnic. From time to

time a single bird’s action can decisively affect the whole flock, but normally

the motions emerge from the interactions of the birds’ computations.
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To celebrate flocking, I’ll quote some lines from John Updike’s poem, “The

Great Scarf of Birds,”104 describing a flock of starlings lifting off from a golf

course.

And as

I watched, one bird,

prompted by accident or will to lead,

ceased resting; and, lifting in a casual billow,

the flock ascended as a lady’s scarf,

transparent, of gray, might be twitched

by one corner, drawn upward and then,

decided against, negligently tossed toward a chair:

the southward cloud withdrew into the air.

Reynolds’s generic term for his simulated flocking agents was boids. His

idea was to have each boid obey three rules, the first rule involving speed,

and the other rules involving the direction of motion.

• Don’t bump. Avoid bumping other boids as follows: Slow down

if you’re in danger of ramming into a boid in front of you;

speed up if a boid is about to bump you from behind; and oth-

erwise settle back toward your standard speed.

• Copy. Adjust your heading so as to move parallel to your

neighbors.

• Hide. Head toward the center of the flock.

Note that there is often a conflict between the copying and the hiding rules;

the flocking algorithm resolves this by averaging the effects of the three rules,

for instance by turning toward a direction that’s halfway between a

neighbor’s heading and the direction toward the center of the flock. The

average doesn’t necessarily have to be even-handed; some boids might give a

bit more weight to hiding, whereas others might lean more toward copying a

neighbor. The boids will also have a certain amount of inertia; this means

they’ll turn somewhat gradually rather than abruptly.

When programming a simulation of boids, you actually assign each boid
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some real-number parameters that control how it averages the bump-avoiding,

copying and hiding forces. And, as the program develops, you’ll encounter

more decisions to make. These might include: the boid’s standard speed; the

distances and angles of vision that characterize “in front of” and “behind”;

the rate at which the boid can change its speed; whether the boid looks at

only one or possibly two nearest neighbors in its copy force; and how to

weight the various flock members when computing an average center posi-

tion (one gets more realistic-looking motions if the closer boids are taken

more strongly into account). You learn a lot about a phenomenon when you

try to code up a simulation. God is in the details.

In creating a flocking simulation, the bottom line is to produce a display

that looks interesting: organized but not predictable, chaotic but not random.

As the hair-metal vocalist David Lee Roth is said to have remarked, “It’s not

what you do, it’s how good you look doin’ it.” When we simulate a flock, we’re

hoping to see a class four computation.

As it turns out, the Reynolds flocking rules are quite robust. Class four

flocking is something that moving agents like to do.

Rather than locking themselves into one monolithic flock, the boids

usually form several clusters that swoop around in a pleasing fashion,

sometimes merging with other clusters, sometimes breaking into sub-

clusters, and with individual boids maneuvering from cluster to cluster

when they approach. Every now and then the whole flock joins together,

but when a boundary or obstacle appears, the flock splits into clusters.

Some parameter settings produce tight, intense swarming, while other

settings provoke languid wheeling. But for most settings, the flocking is

class four. The restless grouping, splitting, and regrouping is reminiscent

of the play of gliders seen in cellular automata such as Wolfram’s Rule

110 or Brian Silverman’s Brain rule.

The Reynolds algorithm can be enhanced in various ways. We can, for

instance, factor in forces to avoid the boundaries of the world (like the way

fish avoid an aquarium’s walls). Or we might work with two flocks and have

one flock hunting the members of the other flock, as shown in figure 108.

In recent years Reynolds has been studying generalized steering behaviors—

where a steering behavior is any method that an agent uses to compute its

instantaneous direction and speed of motion. Given the example of flocking,
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we can expect that the more interesting steering behaviors arise when agents

must continually update their motions in reaction to other moving agents.

One of Reynolds’s latest programs simulates pedestrians moving in opposite

directions on a shared sidewalk without bumping into each other; another

simulates soccer players.

It’s interesting to think of steering behaviors while mingling with people in a

public place. One the one hand, you notice people’s individual behaviors; on

the other hand you can observe the emergent computation embodied in the

group’s motions.

Of course people are much more sophisticated agents than simple boids

who plug a few simple parameters into three or four basic laws. But yet there

are certain very basic rules that we nearly always obey. A primary social

motion rule is to avoid physical contact with strangers; secondary rules are

to head toward interesting or attractive objects, to keep an extra distance

from unfamiliar or menacing individuals, and to stay close to one’s family and

friends.

As in other computations, we can distinguish four kinds of processes when

groups of people move.
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In these pictures, the boids leave trails; one flock leaves darker trails, the other leaves
slightly lighter trails. The dark boids are hunting the light ones, and the light ones are
running away. The individual boids’ success at their tasks is measured as numerical
scores, which the flocks use as a fitness measure for evolving their members’ parame-
ters toward higher-scoring settings. One emergent pattern in this simulation is that
pairs of boids will get into a double helix motion, circling each other as they move along,
leaving trails like the twisted pair in the rightmost image.105



A crowd of people taking their seats in a concert hall or in an airplane

carries out a class one computation, in that the result is a fixed state with

everyone seated. Of course if we look closer, we’ll see a gnarly ongoing group

computation involving the sharing of the seats’ elbow rests, not to mention

plenty of face-rubbing and hair-tossing. Given that the individuals are them-

selves carrying out class four computations, the fine-scale motions of a crowd

are never class one. But for now we’re focusing on the large-scale motions.

Children playing ring-around-the-rosy are in a periodic class two motion.

Less gifted dancers move in repetitive class two patterns as well—part of being

a good dancer is having the ability to layer extra variations upon the basic

rhythm. As an example of a class two dancer, I recall a stodgy acquaintance

in college. In dancing the then-popular twist, he looked as if he were following

verbatim the commonly repeated instructions: “Twist your feet as if you’re

crushing cigarette butts, and move your arms as if you’re toweling your back-

side.” Doing just that and nothing more meant class two motion. People

moving in an orderly queue are another example of a class two motion, but of

course people hardly ever stay orderly for long. They edge forward and try to

get ahead of each other, pause to quarrel, circle around, and so on.

Once pedestrians break out of a queue and move freely, their motions

become class three or class four. How to distinguish the two cases? Following

Wolfram, we’d expect class three motions to be like random jostling, whereas

class four motions ought to have clusters of individuals spontaneously

forming and dissolving, with certain clusters seeking out new paths—the

clusters again acting a bit like CA gliders.

A crowd of shoppers entering a store, for instance, moves like a class three

gas. The people-particles disperse through the aisles, with the proviso that

certain zones are more attractive than others.

As examples of class four pedestrian motion, think of a hundred thousand

rock fans finding their way across outdoor terrain toward a stage, of an army

entering a conquered city, of commuters, or of a mob hounding a celebrity.

These crowds flow like fluids, sending out bands of scouts that, if they

progress successfully, are followed by streams of more people.

It’s worth noting that joining a crowd provides a visceral pleasure. We like

to flock. There’s something very soothing about the sound of many human

voices in peaceful conversation. This is a large part of the appeal of public
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spaces like city squares—these are especially pleasant when the voices aren’t

drowned out by the din of motor vehicles or, God forbid, leaf blowers.

One reason we like to flock is surely that, as the fish and birds know,

there’s safety in numbers. Over the years I’ve participated in various political

marches and rallies, and it’s always reassuring to be a member of a mass of

like-minded people.

We flock for other reasons as well. Some crowds, such as conventions,

seminars, or discussion groups are based upon an affinity of interests. By

meeting together, people can pool their data and enjoy the pleasure of devel-

oping their ideas by conversing about them.

Another reason for flocking is of course reproduction, with the tightest

flock of all being, for many of us, our family. One of the striking things about

being in a family is that you keep coming across the same few people all the

time. No matter how far I travel, when I go to bed, I’m very likely to encounter

this one particular woman named Sylvia. What are the odds of that? Nearly

every year three young people turn up at our house around Christmastime,

apparently the same ones who were there the years before. An incredible

string of coincidences! It’s as if we’re attached to each other by invisible

cords. If something important happens to any of us, it’s a safe bet that some

of the others will quickly appear.

Speaking of family members, let’s turn from motion to emotion. As well as

noticing the people around us, we often try to model their internal states so as to

predict what they might do next. We’re also very prone to imagining what others

think of us. You might say that a group of people is like a basket of reflective

glass Christmas balls, each ball holding images of the others, and with second-,

third-, and higher-order images nested within the regressing reflections.

It’s a bit uncanny how quickly we read each others’ feelings from slight clues

of body language, facial expression, and tone of voice. When people converse,

their whole emotional makeup comes into play. The resulting interactions are

distinctly different from anything a single person would produce on his or her

own. When you interact with others, a higher-order process sets in, generating

feelings and actions on its own. What you say, feel, and do become outputs of

the flock’s parallel computation. Part of the computation happens in your own

head, but part of it is outside you. In one of his novels, Vladimir Nabokov
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speaks of a lovers’ conversation as being like an operatic duet, a musical

exchange in which the actual sense of the words plays but a small part.

One purpose of human flocking is to facilitate conversations, and partici-

pating in a lively chat gives most humans a sense of satisfaction. We’re social

beings. But of course not all conversations are equally satisfying—we need

only think of the four computational classes to see why.

If you talk to someone who insists on always returning to one and the

same point, then the conversation has a predictable class one quality. Most

of us have met monomaniacs who can speak only of their health, or of the

misdeeds of the current political administration, or of some third party with

whom they’re in love.

A class two conversation, rather than being limited to one single idea, con-

tinually circles through a fixed sequence of thoughts. These loops can be

toxic. The psychiatrist R. D. Laing published some wonderfully lacerating

descriptions of class two interactions in his book Knots.106 I’ll quote from

three of the knots.

JILL I’m upset you are upset

JACK I’m not upset

JILL I’m upset that you’re not upset that I’m upset you’re upset

JACK I’m upset that you’re upset that I’m not upset that you’re
upset that I’m upset, when I’m not

we have to help him realize that,

the fact that he does not think there is anything

the matter with him

is one of the things that is

the matter with him

Jill feels guilty

that Jack feels guilty

that Jill feels guilty

that Jack feels guilty

An example of a class three conversation would be the pleasantly drifting

flow of talk around a dinner table. Even if some class one monomaniacs or
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class two bickerers are in the company, the presence of a few additional

inputs can break things up and unloose the intellectual play.

What a bring-down it is when a bore manages to steer a class-three con-

versation back to some pet obsession. The computation collapses to a class

one point attractor. Part of the gentle art of conversation is to jolt the flow

away from point attractors or feedback loops without stirring up hard feel-

ings. Often a single subversive or diversionary comment will suffice.

I see a class four conversation as having more structure and more of a sus-

tained tone—a classical paradigm would be one of Plato’s dialogues. An

intense conversation on some topic of great mutual interest becomes class

four when new and unexpected ideas start occurring. Of course some mutu-

ally absorbing exchanges are simply class two loops around comfortable

tracks. But in class four conversations we find ourselves saying things we

didn’t quite know we knew—the new insights being catalyzed by the interac-

tion with another person’s mind.

Back in high school in Louisville, I had a memorable math teacher named

Brother Emeric. He sometimes joked that he talked to himself a lot, as it was

the only way he could have an intelligent conversation. But his real joy was

in talking to his classes. Teaching becomes class four to the extent that the

teacher reacts to the students: to facial expressions of interest or boredom,

to questions and comments, to in-class presentations, or to homework and

tests. Brother Emeric wasn’t big on having students speak up in class. He

disliked me in particular; he thought I was a wise guy. But at least we had

some kind of interaction going.

It’s an interesting exercise to let go of the ego a bit, and think about the

vast parallel computation that the conversations around us perform. You

have the opportunity to stop identifying with your limited body, and to share

in the networked computation of the group mind.

In science-fiction tales we occasionally encounter the concept of a hive

mind. But few succeed in properly imagining it. At the end of the third

Matrix movie, for instance, an agglomeration of sentient machines forms a

big face that talks in a robotic voice. The visual effect is pleasing, but as a

presentation of a hive mind, the big talking face is doubly bogus. The first

level of bogosity is that the Matrix creators have fallen back upon Hollywood’s
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default personification of an individual computer mind as a face on the wall

that speaks in flat tones, eschews contractions, and is utterly lacking in

humor. The second level of bogosity is the implicit assumption that the hive

mind of a group of machines might just as well be represented by the same

kind of big talking face that is used to represent the mind of an individual

machine.

Let’s try to get some intuition about hive minds by thinking about the

experts: bees and ants. Each member insect operates according to simple

reflex behaviors, reacting to the world and to signals from the other insects.

Group behaviors emerge: Wax honeycombs are filled with honey; kitchens are

located and pillaged.

When a bee queen leaves the nest, a swarm forms around her, making a

large moving object something like a great, buzzing slug that a first-time

observer can mistake for a bizarre animal. This amorphous and reactive

being emerges from the hive’s dynamics—but certainly it isn’t shaped like a

bee, and it doesn’t act like a bee. It’s something different.

I’ll repeat the point: A hive’s emergent self doesn’t resemble an individual

hive member. Even an ant queen is but a part of a whole—the queen doesn’t

forage, doesn’t build tunnels, doesn’t combat invaders.

Let’s turn now to the human hive in which we live. What is it like?

Well—it’s not like a person. Of course some of our more self-aggrandizing

rulers have described themselves as physically embodying the soul of their

kingdom. Louis XIV famously said, “L’état, c’est moi”: the state is me. Politi-

cians often speak of their nation’s values as being identical to their own

values. But they’re wrong. No individual member represents a hive.

As a way of trying to a grasp the human hive mind, let’s hark back to

Damasio’s notion of core consciousness and see to what extent a human

society can be thought of as conscious. I’ll go over the steps listed in section

4.4: “I Am.”

• Immersion. A society is active in the world, reacting to events:

invasions and disasters, discoveries and inventions, supplies

and demands. If a house catches fire, the firefighters appear.

If enough people in a town want cell phones, a cell phone

service is put into place.
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• Seeing objects. A society distinguishes among separate objects

in the world and has a sense of itself as a whole. Society can

see individual buildings, cars, and people. On a larger scale,

society sees interest groups and even other nations. Society

reacts to different events and objects in different ways. Some

activities are encouraged as being good for society, while those

deemed bad for society are suppressed.

• Movie-in-the-brain. The stories presented by a society’s media

can be regarded as the society’s image of the world. In this

context, we can think of a society’s collective communication

and information resources as the society’s brain. One diffi-

culty here is that a society has many conflicting movies-in-

the-brain. The street-level word of mouth about the daily

news can be rather different than what one reads in the

paper. But there is, after all, a certain commonality—everyone

agrees on a large number of factual occurrences. How various

individuals feel about the facts is another story.

• Proto-self. Society has clear representations of itself that

include images of itself as a whole, images of current events,

and images of society’s reactions. This is what news analysis,

op-ed stories, and TV punditry are all about. When people

speak of the state of the nation or the national mood, they’re

talking about the hive mind’s proto-self.

• Feelings. Society continually enhances its movie-in-the-brain

by forming opinions and evaluations of how current events

are affecting the social proto-self. Public opinion polls can be

thought of as ways of discovering and articulating society’s

feelings. Elections and legislation are also about the feelings

of the body politic. When special interests labor to promote a

notion that society is fed up with this or eager for that, they’re

trying to manipulate the hive’s feelings. Sometimes a con-

sensus emerges, but often the nation remains perennially

conflicted on an issue—one has only to think of abortion,

taxes, or the environment.

• Core consciousness. As I understand Damasio, he says that

core consciousness is the ongoing process of forming feelings
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about how an always small but ever-changing group of events

affects the proto-self. Core consciousness highlights those

particular events, which accounts for society’s current focus

of attention. This sounds very much like the news cycle in

action, or, at the street level, like neighborhood gossip.

• Empathy. A society has empathy to the extent that it

enhances its images of other societies with representations of

the other societies’ feelings.

So it seems as if the United States, for instance, is conscious, if not highly

empathetic. One might wonder, however, if a nation has a single or perhaps

multiple core consciousnesses. For a society has a number of coherent

groups within itself—call them subhives. Examples would be ethnic groups,

cities, and professions—and of course things can be subdivided further than

that. Hives within hives.

A little thought indicates that many subhives seem to satisfy the Damasio

steps listed above. The mathematical community, for instance, views events

in terms of whether or not they’re good for mathematics and mathematicians,

focuses on their own idiosyncratic stories, and shares certain feelings.

When we lump everyone together into a national hive, we have the problem

that the members of the hive not only focus on different events, but have rad-

ically different feelings about the events they do notice in common. But to the

extent that a large number of individuals share in, or are at least aware of,

common national opinions and hot topics, the nation really does have a

single core consciousness.

The increasing reach and bandwidth of our communications Web has two

countervailing effects. On the one hand, more communication seems to make

for a national group consciousness that becomes ever more pronounced.

With TV screens and advertising everywhere, it becomes increasingly difficult

to avoid knowing what the nation is thinking about. On the other hand,

thanks to the Web, individuals can set up their own small media empires,

sparking the formation of cohesive subhives.

The diversity of opinions found in individuals and in subhives does means

that the national hive mind is conflicted about certain issues. Now, it’s true

that individual people can also be deeply ambivalent—for example, do you

love your father or do you hate him? But, really, no one person can contain
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opinions as furiously divergent as are found in our national discourse. As a

parallel entity, the hive mind easily entertains opposing thoughts much more

readily than can an individual mind. But this is okay—remember that the

hive mind need not, even in form, resemble an individual mind.

Sometimes the internal strife can be such that a hive mind becomes dead-

locked, unable to act. Of course failing to act is a strategy in its own right,

and if the body politic is sufficiently divided, inaction can be society’s best

course. It’s also worth mentioning here that there really are some individuals

who are so deeply torn by internal conflicting drives that they become inef-

fectual and unable to accomplish anything.

The issue of multiplicity comes into starker relief when we look at the planet

as a whole. Different nations have very different consciousnesses—primarily

because they have different proto-selves. Japanese care about how events

affect Japan; Mexicans care about Mexico. Despite eco-activists’ best efforts at

planetary consciousness-raising, most people still don’t think very much

about how things affect Earth as a whole.

Just as the forces of communication make national consciousnesses more

coherent, communication seems likely to enhance the global hive’s con-

sciousness—this is Marshall McLuhan’s vision of a global village. But we

have no guarantee that the global hive will be ecologically sensitive: Think of

monoculture, McDonaldsization, and consumer nations clear-cutting Third

World forests. But perhaps as more individuals identify more deeply with the

global hive, they’ll influence the global mind to be less rapacious.

In practice it’s not easy to affect a hive. Indeed, most individuals feel them-

selves to have very little influence on the feelings and focus of a national or a

global hive mind. Although obscure individuals do sometimes step forward to

cause major changes, the laws of probability suggest that a citizen’s chances

of having great impact are terribly small.

Some people find this galling. It’s my impression that people over fifty are

particularly prone to vexation over their lack of influence upon the national

hive mind. Perhaps there’s some atavistic memory of becoming a revered

tribal elder at a certain age? Or a fear that, if not revered, an elder is likely to

be fed to the wolves?

I myself have to fight off my dismay at seeing the mass media obsessing
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over fears and lies—particularly when I sense that my hive’s feelings are

being manipulated by powerful individuals who don’t have society’s best

interests at heart.

Yes, I’ve had some slight effect upon my hive by voting in elections, by dis-

cussing my opinions with people, by raising children, by teaching classes,

and by publishing books. I should be satisfied with this, but at times I’m not.

I find it particularly discouraging when my hive mind’s computation veers

toward class-one obsession or class two repetition. How welcome it is when

some oddball manages to throw the media off their stride, and introduces

class three or class four unpredictability to the national mind.

Suppose that at some point you do find society’s hive mind unacceptably

hysterical and debased. What can you do about it? If you become obsessively

passionate about reforming the hive’s mind, the likely outcome is that you’ll

become a bitter, frustrated bore—and a class one conversationalist.

An extreme cure for weariness of the hive mind is to emigrate. It’s striking

how utterly different another nation’s hive mind can be. Days or even weeks

can go by without a single evening news story about American politics! Dif-

ferent hives think about different proto-selves. How many stories about Bel-

gium or Tonga do you see on American TV?

As I write this section, I happen to be visiting relatives in Europe for several

weeks. I always feel both relieved and diminished when I’m removed from my

native hive mind. Even when I’ve occasionally lived in Europe for longer

stretches of time, I never fully understand what’s going on there. But by now

I’m cosmopolitan enough to blend in and have fun. An émigré is like one of

those specialized myrmecophilous or ant-loving insects that manages to live in

an anthill without being an ant. Myrmecophiles can be parasites, symbiotes,

or ant-pets. There is a certain small beetle, for instance, that is kept and fed by

the ants simply because the ants enjoy licking the tasty waxy secretions of the

beetle’s antennae. “Tell us another one of your crazy stories about America!”

Emigrating is difficult, alienating, and, in some sense, an admission of

defeat. A less drastic way to escape the emotional disturbance of being part

of an out-of-control hive might be to redefine your notion of subset of society

you belong to. You can emigrate internally—not to another hive, but to a

subhive. The idea is simply to put less emotional involvement into the

national hive mind and more into some smaller grouping. Consider your
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family and friends, your professional associates, or groups of people who

enjoy the same things that you do. Without actually leaving the country, you

can effectively leave the big hive.

As we used to say in the sixties:

What if they gave a war and nobody came?

I remarked earlier that older people tend to get especially agitated about

the doings of the national hive mind. Could it be that, as they lose their con-

nections to work, family, and cultural life, older people tend to lose their iden-

tification with more congenial subhives? Maybe they need to stop thinking

about the news and get out of the house more.

In any case, that’s enough about the news. After all, our social hive mind

involves a lot more than that. Consider. You speak a language. You live in a

house that people built. You’ve learned certain skills and crafts from other

people. You’ve found a way to make a living. The lights and the toilet work.

You’re reading a somewhat entertaining book. All products of the hive.

Recently I was visiting my daughter Georgia in New York City (figure 109).

What a hive, the streets lined with human-made cars and buildings. I paused

at one point, taking it in. Men tearing out and retrofitting apartments. Wires

running across the street bringing power. A garbage truck picking up trash.

A police car cruising by. Stores displaying books and summer dresses.

The Lifebox, the Seashell, and the Soul

330

Figure 109: The Queensboro Bridge

That’s Manhattan in the lower right corner.



Sometimes we think of cities as blights upon the planet. But the cities are

our hive dwellings, as surely as the papery nests of wasps. We are at no point

separate from nature; and at no point is the individual separate from the hive.

Language, culture, and technology are the honey in the hive, and I’ll say

more about these topics in the sections to come.

Before moving on, there’s one more hive-related issue that I want to raise. Is

there any chance of the Internet “waking up” and developing an autonomous

hive mind of its own?

The Web is indeed a network of class four computational devices. And cer-

tainly our machines intercommunicate and affect one another’s behavior. On

the bright side, we have e-mail, software downloads, automatic upgrades,

photo sharing, and Java applets. On the dark side, we have ever broader epi-

demics of worms and viruses.

The linkedness of computers is coming to be an essential part of their

nature. I can accomplish good work off-line, but if I’m traveling and I can’t

manage to scrounge up a Net hookup, my laptop begins to feel as feeble as

an isolated ant.

In short, the basics are in place: The Internet contains complicated nodes

that interact with one another. But I do see some barriers to the emergence

of a Web-wide hive mind.

First of all, our computers are far from being able to freely interact with

one another. Security systems and most owners’ common sense place strict

limits on what goes in and out of our machines. This makes it hard for the

nodes of the Internet to engage in spontaneous flocking styles of behavior.

Second, and more significant, the Internet seems to lack a clear-cut movie-

in-the-brain analogous to our society’s national news. At the low level, indi-

vidual computers aren’t in any real sense aware of what’s happening across

the whole network, and at the high level, there doesn’t seem to be any one

emergent Net-wide phenomenon that acts as a movie-in-the-brain.

But wait. How about a Web search engine or Web portal or message board

such as the currently popular Google, Yahoo!, or Slashdot. Might these serve

as Internet versions of movies-in-the-brain? Well, maybe, in a way. But it’s

really the human machine-users (and only some of them) who are interested

in these sites. The actual computers that make up our network don’t

the human hive

331



presently care about, say, Google—although our cosseted desktop machines

are slowly beginning to automatically emulate our never-ending labor of

finding patches and drivers to keep them in repair.

From the machines’ point of view, a better model of a movie-in-the-brain

might be a so-called DNS server, which connects Web-site names with their

identifying “IP” code numbers. Another machine-level movie-in-the-brain

might be found in the online devices that figure out the best paths for infor-

mation packets to take. Also consider Google page-rank.

And what about a proto-self? Does the Web have something that serves as

a self-image? Not really. Something like a routing-path map is just too juice-

less to be the kind of thing we have in mind. Perhaps something like the Net

server that maintains a list of the identities of traffic-clogging spammer

machines is a bit like a proto-self, or like a feeling.

But it’s all still very rudimentary. Nevertheless, we dream of the Web

waking up. Conceivably there could someday be a computer virus that served

a higher purpose of awakening a gnarly unifying computation across the

Web. It might arise by accident. Or it might evolve. It’s like the classic science-

fiction scenario where some scientists build a worldwide computer network

and ask it, “Is there a God?” The machine answers, “Now there is!”

In Hollywood versions of this scenario, the newly empowered global com-

putation usually sets to work kicking humanity’s butt. But why would any

Internet hive mind ever act like that? What would it have to gain?

After all, computers already dominate Earth. There’s really nothing to over-

throw, no power to seize. Our machines are the cells the planetary computer

is made up of. And we devote considerable energy to building and main-

taining these machines. We’re already their freakin’ servants.

Computers wanting to kill humanity would make no more sense than, say,

your brain telling the rest of your body, “All right, I’m going to kill all of you

skin and muscle and bone and organ cells so that I can reign supreme!” Or,

even crazier, your thoughts telling your brain, “All right, I’m getting rid of all

you lazy brain cells!”

This said, it is true that we try to encourage some parts of our body at the

expense of others. We want more muscle and brain, less fat and tumors.

Might the planetary Web mind decide to selectively eliminate certain elements?

Indirectly this already happens. Web pages that use flawed or outdated code
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become obsolete and unvisited. Spammers get their accounts canceled, not

because of anything they stand for, but because they’re bad for the efficiency

of the Web. But more radical sanctions are science-fictionally conceivable. I’m

thinking of implacable Web-run robots descending upon a trailer park of

spammers—but wait, they have the wrong address—they’re at my door! Help!

5.2: Language and Telepathy

Language begins when social creatures actively communicate information to

their fellows. A bee returning to the hive from a flower field does a waggle

dance to tell the others what direction to fly in. An ant secretes pheromones

to tell other ants that she’s recently encountered an intruder. We humans

share information by grimacing, gesturing, and making noises with our

mouths.

Our languages have evolved both to describe the world around us and to

represent the thought patterns in our minds. “What are you thinking?” “Well,

let me tell you.” In an essay on language, Jorge Luis Borges quotes a relevant

passage from G. K. Chesterton.

Man knows that there are in the soul tints more bewildering, more

numberless, and more nameless than the colors of an autumn

forest; . . . Yet he seriously believes that these things can every one

of them, in all their tones and semi-tones, in all their blends and

unions, be accurately represented by an arbitrary system of grunts

and squeals. He believes that an ordinary civilized stockbroker can

really produce out of his own inside noises which denote all the mys-

teries of memory and all the agonies of desire.107

My optimistic opinion is that, given time, willingness, and a sympathetic

listener, Chesterton’s stockbroker really can communicate the tints and

semitones of his (or her) soul. It’s a matter of piling on detail, using analo-

gies, and enhancing the words with the play of the voice. To ensure the trans-

mission, the listener reflects back summaries of the message, so that the

speaker can emend or amplify the explication as required. By the way, com-

puter networks do something similar, with receiving nodes sending back
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requests for retransmission of packets of information lost on their way from

the sending nodes.

Speaking of computers, it will be useful to describe a brief example that

brings into relief a point about how language works. Suppose that a machine

called, say, Eggpop has carried out a time-consuming computation to pro-

duce a high-resolution graphical image of the Mandelbrot set fractal. We can

think of this image as being akin to an idea in Eggpop’s mind. Now if Eggpop

wants to communicate this image to another machine, there are three pos-

sible messages Eggpop might send.

• Language. A description of the algorithm and the parameters

used to create the image.

• Representational art. A file containing a pixel-by-pixel repre-

sentation of the image.

• Telepathy. A link pointing to the combined algorithm and

image in Eggpop’s own memory.

Language is an all-purpose construction kit that a speaker uses to model

mental states. In interpreting these language constructs, a listener builds a

brain state similar to the speaker’s.

Representational art uses a very different approach: An idea is rendered by

images, sounds, sculpture, or the like. In many cases a picture is worth a

thousand words—and then some. But certainly there are times where a few

well-chosen words have deeper impact than a detailed image. In these cases,

the words manage to trigger powerful, preexisting thought modes. I might

also mention that visual art can be nonrepresentational, spare, allusive—like

a higher form of language.

Telepathy is the human analogy to machines communicating by giving one

another hyperlinks (and access permissions) to locations in their own minds.

Telepathy doesn’t have to be magic. Conceivably we might someday come up

with something like a brain-wave-based cell phone. In section 4.6: The Mind

Recipe I mentioned my notion for such a device, to be called an uvvy. Per-

haps with an uvvy you could reach out and sensually touch another person’s

thought patterns rather than having to build your own copies of their

thoughts based upon verbal descriptions.
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In this vein, I can imagine a future in which people converse solely by

direct links into each others’ minds. Language might become an outmoded

social art—like handwriting or ballroom dancing! But I doubt it. I think lan-

guage is so deeply congenial to us that we’d no sooner abandon it than we’d

give up sex.

Although I use “telepathy” for the notion of having direct links to another

person’s thoughts, if telepathy is just a matter of having someone at a dis-

tance know what you’re thinking, then language already is a form of telepathy

and a person walking down the street with a cell phone is essentially in tele-

pathic contact with a friend.

I compare language to telepathy to point out how powerful language is. In

the intimate conversations that you have with a lover, spouse, or close friend,

language feels as effortless as singing or dancing. The ideas flow and the

minds merge. In this empathetic exchange, each of you develops a clear sense

of your partner’s proto-self and core consciousness.

One imperfect feature of human language is that our rate of information

exchange is limited to very low rates. Yes, you can send a multimegabyte

book manuscript by e-mail in a matter of seconds, but the human listener at

the other end will take hours or even days to read it. We’re stuck with low

bounds on both the speed at which we can listen to someone talk and on the

speed at which we can read with full comprehension.

The problem of finding time and patience to process other people’s outputs

is an obstacle to wider-ranging empathy. Many power struggles in human

societies center around determining whose voices get heard. To be heard is

to be understood and, to some extent, to be sympathized with.

To be a great artist is to have the ability to compress your lifebox down to

an appetizing and digestible snack that people readily wolf down. And then

your information blooms inside them.

Recall my discussion in section 4.5: The Lifebox of the “twinking” process,

by which a devoted reader can set up a kind of mental model of an author.

Books are a form of time travel—the author’s mind goes forward in time, the

reader’s mind goes backward.

“Language is a virus,” William Burroughs used to say. I had a chance to

meet him at the Naropa Institute in Boulder, Colorado, in 1982, and I asked

him about the notion that a properly written book might act as a disease that
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infects other people with the author’s personality and turns them into the

author. “That’s why they call us the immortals,” he replied.108

How is it that language is so effective at conveying our mental states? The

close match between language patterns and thought patterns is no accident.

Indeed, most linguists feel that our brains and our languages have evolved in

tandem so that, on the one hand, language is tailored to express the struc-

tures and behaviors of the brain, and, on the other hand, human brains are

adapted to generating and processing our kinds of speech and writing. It

seems possible that, even if you were raised in isolation, you’d think in pat-

terns resembling sentences with nouns and verbs, adjectives and adverbs.

But, lacking social input, your thoughts probably wouldn’t be interesting.109

Incorporeal though language is, it’s like a symbiotic organism that’s co-

evolved with humanity. Like a race of CA gliders passed on from brain to

brain.

When I’m in a foreign country, making conversation in my hosts’ language,

I often think of a game of lotto that my children had. The game consisted of

a hundred pairs of glossy square cards, each card blank on one side, and

with a color photo of some object on the other side (as in figure 110). Clum-

sily talking a foreign language is like having a pocketful of the Lotto squares

and handing them to someone one by one. “Tomorrow rain look museum eat

cafeteria. Tomorrow sun swim eat you bring fire I bring sausage.”

Some of the first words a

child learns are names for

simple body sensations. Cold,

wet, hungry, tired. Names for

things outside the body are

needed as well. Mommy, hand,

water, bed, sun. Simple verbs

join the vocabulary soon after.

See, stand, walk, cry. And then,

more or less spontaneously, the

child begins making sentences.

The brain’s built-in language

generator is kicking into gear.
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It’s worth noting that, even without being used for communication, the

human language generator carries out class four computations. That is, if I

had been raised in isolation to be an inarticulate naked ape, my patterns of

vocalization would nevertheless be varied and unpredictable.

This not-so-obvious fact was unearthed by the logician Emil Post. Post was

able to show that even in the very simplest kinds of language-generating sys-

tems, it’s computationally unfeasible to determine if a given string of symbols

is something that the system might eventually “say.”

Post framed his analysis in terms of what he called tag systems. A tag

system consists of a fixed set of language tokens, a few initial strings of

tokens, and some rules for converting existing strings into new strings. Just

for fun, let’s think in terms of scat singing. Say that your language tokens

consist of three sounds: Be, Bop, and Lu. And you can string these together

to make utterances like BeBeBopLu, BopBopBop, and so on.

To make a Post style tag system, we define a notion of a “tagged” string by

some rules like these:

• Start. BeBopLu and LuBe are tagged strings.

• Simplify. If any tagged string has any occurrence of the same

syllable twice in a row, you can remove the pair. That is, you

can remove BeBe, LuLu, or BopBop.

• Concatenate. You can stick together any two tagged strings to

get a new, longer tagged string.

As an example of these rules in action, consider the following derivation

sequence:

Concatenate the start strings to get BeBopLuLuBe.

Simplify to get BeBopBe.

Concatenate two earlier strings to get BeBopBeBeBopLu.

Simplify to get BeBopBopLu.

Simplify to get BeLu.

Concatenate two earlier strings to get BeLuBeBopLu.

Concatenate two earlier strings to get BeLuBeBopLuBeBopBe.

Et cetera . . .
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Can one ever derive the string LuBeBop?110

Simplifying makes strings shorter, and concatenating makes strings

longer. This means that the derivation of a string might alternate between

runs of adding tokens and removing tokens, only arriving at the target string

after a large number of steps.

For those familiar with the process of mathematical proof, this may sound

familiar. In mathematics, one very often has to go all around Robin Hood’s barn

to end up with a proof of some very concise fact. For instance, it would take a

very fat book of mathematics to fully describe Andrew Wiles’s twentieth-century

proof of the simple conjecture that Pierre de Fermat wrote in the margin of a

book in the seventeenth century, known as Fermat’s Last Theorem.

In the 1930s, Alan Turing established that in mathematics we have no uni-

versally applicable algorithm for making a straight up-or-down decision as to

whether a given sentence will eventually be proved. Looked at in a certain

way, mathematics is a type of tag system, and, following on Turing’s proof,

Emil Post showed that for many very simple tag systems, there can be no

algorithm for deciding if a given arbitrary string will be tagged by the system.

He termed this the “unsolvability of the tag problem.”

This means that even the simplest tag systems may lack “grammar

checkers” that can be applied to decide quickly if a string is produced or

“tagged.” In general, the only way to decide if a string is tagged is to examine

increasingly long chains of rule-based derivations to see if one of them leads

to the string in question. If the answer is to be “no,” then the search for a der-

ivation may never terminate.

The reason I bring up Post’s work is that, as well as being like mathemat-

ical proof, tag systems are like systems for generating linguistic utterances.

The unsolvability of the tag problem tells us that the process of language gen-

eration is an inherently unpredictable class-four computation. Even if you

knew the detailed workings of a person’s language generator, there would be

no quick way to decide if a given string is or is not something that the person

might ever say.

A related issue regarding formal languages is that given a program written

in a high-level computer language like C++ or Java, there’s no simple way to

decide whether the program has bugs in it. Ultimately, the only sure-fire

approach is to run the program, test it for a while, and see what happens.
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And even if the program runs for quite some time without crashing, it may

yet crash later on.

But all this is dry theory. Language takes on its real significance when it’s

shared among the members of a society. A communicating hive is greater

than the sum of its parts.

This is especially clear with ant colonies. So far as I know, no experimenter

has ever taught an individual ant anything, not even a solution to the sim-

plest Y-maze. So how does an ant colony think? By communication. As the

ants react to one another’s signals, group behaviors emerge.

A particularly interesting feature of ant communication is that, as well as

sending pheromones out into the air, ants lay down trails of scent. The trail

markings persist for several minutes, influencing other ants over a period of

time. One might say that ants invented writing!

As an author, I’m particularly interested in the way a writer has an ongoing

conversation with the manuscript. Writing out ideas makes them clearer; as

I revise my manuscript I’m revising my brain patterns. This is one reason

that keeping (and revising) a written journal has a certain therapeutic value.

By revising what I say I think, I revise what I do think.

Certainly a conversation with another person is more unpredictable, but,

for good or ill, conversations with others have a tendency to drift away from

the particular points that one happens to be currently obsessed with. When

I’m writing instead of conversing, I don’t have to fight against being steered

into dead ends. I can push in a given direction for as long as I like.

But a writer wants to be read. You can’t get too introspective and convo-

luted. You need to periodically step back and try to simulate the reactions of

different kinds of people who might peruse your work. Learning to balance

singleness of purpose with broad appeal is part of the craft.

Language is wonderfully slippery and multivalued. Most words and

phrases suggest several different meanings. Half-seen allusions cluster

around the primary meaning like a halo around a streetlight, like the fuzzed

overtones to an electric guitar chord, like the aromas above a plate of hot

food. Part of being a colorful speaker or writer is having the gift of choosing

words whose subsidiary meanings complement, contrast with, or comment

upon the primary meaning.
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Language has a branching quality, with each word suggesting a number of

others. Indeed, you can think of words as the nodes in a network. Imagine a

drawing with a node for each word and with a link between any two words

that you associate with each other, as indicated in figure 111.

The result is a network in which we have nodes with differing number of

links: a few nodes with very many links, a small number of nodes with many

links, a lot of nodes with a medium number of links, and very many nodes

with only a few links.

Suppose we call the number of links per word the word’s linkiness. Is there

a typical linkiness value for a randomly chosen word? Yes, we could compute

an average linkiness over all the words, but I’m going to argue that there’s a

sense in which this average isn’t a really good representation of the linkiness

quality of words.
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Figure 111: Word Associations



In many kinds of phenomena, like height or intelligence, we expect the

measured values to lie on a bell curve, with a probability hump at some most

likely value. The value beneath the hump of a bell curve is sometimes called

the scale of the distribution.

But are other kinds of phenomena that don’t bunch themselves around a

central value in bell curve distribution. Cities’ population sizes, individuals’

wealth, popularities of books, and the linkiness of words all have distribu-

tions quite different from the bell curve. These, and many other naturally

occurring phenomena, tend to fit along a distribution that’s called scale-free.

As illustrated in figure 112, a scale-free distribution arises when we have

objects with a property that ranges over the full gamut of possible values,

with no one likeliest value such as we find at the hump of a bell curve.
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Figure 112: A Bell Curve and a Scale-Free Distribution

Suppose that we are measuring some quality of objects, and suppose that we count
how many objects N can be found at each quality level L. In effect we’re making what
statisticians call a histogram, a graph that represents the probability of finding each
possible level of L. Also suppose that there are no objects with negative L. We show a
bell curve distribution centered around some expected value, with the part of the bell
curve over the negative L-axis chopped off. The other curve is a scale-free distribution,
which has the general form 1/LD for some power D. These scale-free curves are also
called inverse power laws.



As well as lacking a typical central value, a scale-free distribution has a

more gradual rate of decline in the probabilities of values further out along

the L-axis. In a bell curve, the drop-off is exponential, meaning that as you

move away from the bell curve’s center, the probabilities drop off exceedingly

fast. Scale-free distributions have what statisticians call fat tails, meaning

that extreme kinds of events can in fact occasionally happen.

A distribution is said to be scale-free if it obeys a histogram-style inverse

power law, that is, there is some constant number c and some power D such

that the following equation holds, at least approximately, through most of the

range of L levels that we consider.111

N = c/L D

Okay, so now I want to discuss the likelihood that the associational links

between words make up a scale-free network.

To test this notion, the computer hacker extraordinaire John Walker

recently helped me run a little computer experiment to quantify the word-

linkiness distribution. Rather than wrestling with the vague notion of which

words suggest which other words, we took an electronic dictionary file and

decreed that any two words are linked if either of the words appears in the dic-

tionary definition of the other word. The dictionary has some 130,600 words.

Then if a word has L links, L will be some number between one and 130,600,

and we can think of L as characterizing the “linkiness level” of the word.

A word like of will have a high linkiness, something well in excess of three

thousand, as it appears in so many definitions. On the other hand, if, say, your

dictionary’s full definition of prolix happens to be just “verbose,” and if “prolix”

appears in no other word’s definition, then “prolix” would have a linkiness of one.

So Walker computed the linkiness level L of every word in the dictionary,

and for each level he counted how many words N of that kind there were. N

can in principle range between the smallest and largest possible number of

words, that is between zero and 130,600. And we found that for most words

N is indeed equal to a constant divided by L raised to some power D. The law

we came up with has this form.112

N = 1,000,000/L 2.4
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Figure 113 shows how our data points fit our specifically tweaked inverse

power law.
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Figure 113: Inverse Power Law Distribution for Word Linkiness

Two graphs of the same data. Walker scanned a GNU edition of Webster’s 1913 Revised Unabridged
Dictionary, found at www.ibiblio.org. We defined two words to be linked if either appears in the defi-
nition of the other. Walker created a histogram table of data pairs (L, N) recording the number of words
N having a given number of links L, with L from 1 to 149—he didn’t work out to larger link numbers as
here the data gets spotty. The horizontal axis represents the number of links L that a given word has.
The vertical axis represents the number of words N corresponding to the linkiness level L. The left ends
of the graphs correspond to the many words that have very low linkiness, and the tails at the right ends
of the graphs correspond to the words with increasingly high linkiness. The second plot is in the “log
log” format, in which the horizontal and vertical axes are scaled as the logarithms of the quantities
being graphed. This widely used trick has the effect of making power laws look like straight lines. 



Why does the linkiness of words obey an inverse power law distribution?

One suggestion is that the more highly linked a word is, the likelier it is to

appear in new words’ definitions, and that this “rich-get-richer” principle will

in fact lead to the kind of distribution we observe.

I take this suggestion from the physicist Albert-László Barabási.113

Barabási observed that Internet linkiness has a scale-free distribution.

Specifically, in his data analysis, he defined a Web site’s linkiness level L to

be the number of other sites that link to the given website. And he found that

the number of sites N having a given linkiness level L can be matched to an

inverse power law, that is, N is proportional to one over L raised to an expo-

nent close to 2.1. Barabási theorizes that a rich-get-richer principle explains

the distribution, and to test his hypothesis he ran a simulation of a rich-get-

richer network that grows as follows:

• Keep adding new nodes.

• Each new node is linked to one of the existing nodes, which we

call the target node. The target node is picked by a weighted

randomizer that skews the choice so that the more links a

node already has, the likelier it is to be picked as a target.

Does the rich-get-richer mechanism account for the linkiness distribution

of words and the linkiness distribution of Web pages? Not as it stands;

Barabási’s simulation gives inverse power laws with exponent 3, while it is

exponents of, respectively, 2.4 and 2.1 that we’d like to see for the word and

Web page data. But there is some chance that by refining and complicating

the simulation, a rich-get-richer explanation can be made to work.

In other contexts the rich-get-richer explanation is known as the principle

of least effort. Relative to word linkiness, the idea is that, in creating a new

word, it’s easiest to relate it to words that already have a lot of other words

related to them. “What shall we talk about?” “Let’s talk about sex.”

Some of the earliest examples of society’s inverse power law distributions

were found in the 1940s by George Kingsley Zipf, author of a famous book

called Human Behavior and the Principle of Least Effort. Writing about this

volume, Benoit Mandelbrot says, “I know of very few books . . . in which so

many flashes of genius, projected in so many directions, are lost in so thick

a gangue of wild notions and extravagance.”114
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Zipf’s best-known observation is called Zipf’s Law. This is the statistical

fact that the frequency with which a given word is used in most documents

is roughly proportional to the reciprocal of the word’s popularity rank. Thus,

the second most popular word is used half as much as the most popular

word, the tenth most popular word is used a tenth as much as the most pop-

ular word, and so on.

More precisely, suppose we take some text and count the occurrences of

each word in the text. By dividing a word’s number of occurrences by the total

number of words in the text, we can get a frequency for each word. Thus “the”

might have a frequency of 0.1, meaning that every tenth word is “the,” and a

rare word like “prolix” might have a frequency like 0.00003, meaning that it

occurs, on the average, three times in every hundred thousand words of text.

Now rank the words from the most popular to the least popular, for each

word recording its popularity rank R and the frequency level of the word,

which we’ll call L. Zipf’s Law has the following form, where a is a constant on

the order of 0.1, and the exponent d is on the order of 1.

L = a/Rd

That is, Zipf’s Law is an inverse power law with the approximate form

L = 0.1/R. I call this a rank-style power law.

As a test, John Walker created a Zipf’s Law graph of the word frequencies

in the final draft of this very book, The Lifebox, the Seashell, and the Soul .115

My book’s word frequency distribution (figure 114) is more like L = 0.06/R 0.8,

which isn’t all that close a match to Zipf’s Law, L = 0.1/R. Does that mean

I should rewrite my book? No, it means, rather, that the exact values of the

constants found in word frequency distributions vary from text to text. In

particular, the fact that my Zipf’s Law exponent is 0.8 rather than 1.0

means that my low-ranking words have slightly higher frequencies than

might usually be expected. And this would indicate, I think, that I’m using

a fairly large vocabulary. Perhaps with a little work one could tease out

some kind of class two, class three, or class four categorization of texts

based on the exponents they yield for Zipf’s Law.
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5.3: Commercial and Gnarly Aesthetics

We communicate by conversing and writing notes, but there are higher-level

communications as well. I’m thinking of cultural artifacts: paintings, novels,

architecture, sculpture, movies, music, Web sites, computer games, virtual

realities, scientific papers, textbooks, inventions, recipes, designs, advertise-

ments, TV shows—really any kind of object or information structure that

bears the stamp of human creativity.

People create for all kinds of reasons—or for no specific reason at all.

Human creative expression can arise as spontaneously as the blooming of a

flower. But at some point, many creative people begin wishing they could
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Figure 114: Zipf’s Law for The Lifebox, The Seashell, and the Soul

The horizontal axis shows the popularity rank R of each word. Thus, word #1 is “the,”
with 8,599 occurrences, and word #146 is “also,” with 134 occurrences. The vertical
access plots the number of occurrences K of a given word. The best fit for the observed
graph seems to be K = 8600 / R0.8. If we convert this to a formula for the distribution
of the word probabilities L, we get L = 0.06/R0.8.



reach a wider audience and get more money for their work. It sometimes

seems as if, among themselves, writers and artists talk about money more

than they talk about aesthetics. But, for serenity’s sake, it’s useful to develop

a sense of acceptance and realism regarding the level of success that one

actually has.

I’m going to examine the issue of society’s rewards for creativity from three

angles. First, I’ll discuss the empirical fact that society’s rewards for creativity

are distributed according to an inverse power law distribution. Second, I’ll

describe some CAs that produce inverse power law effects. And third, I’ll dis-

cuss the possibility that there might be some absolute artistic standards

relating to gnarly class four computations, tying these ideas to the writing of

novels.

So now to my first point: the inverse power law distribution of rewards. For

purposes of discussion, let’s suppose that four of the canonical Beat writers

suddenly come back to life and each of them writes a new book. And let’s also

suppose that the book advances offered for these four new works are as follows:

Author Book advance

Jack Kerouac $1,000,000

Allen Ginsberg $100,000

William Burroughs $10,000

Gregory Corso $1,000

Now keep in mind that any given page by Corso has a chance of being very

nearly as good as a page of Kerouac’s. So how is it conceivable that Gregory’s

rewards could be a thousand times less than Jack’s? If you polled a sampling

of readers as to how much they enjoy various authors, Burroughs’s reader-

satisfaction index might well be only a point or two below Ginsberg’s. So why

is it possible that Bill’s rewards would be ten times less than Alan’s?

In a similar vein, how is that a talented software engineer may earn a

$100,000 a year, whereas the company’s chief executive officer earns $100

million? Does the CEO really contribute a thousand times as much as the

programmer?

The same kinds of skewed distributions can be found in the opening

weekend grosses of movies, in the prices paid for artists’ works, in the
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number of hits that Web pages get, and in the audience shares for TV shows.

Why do the top ranks do so well and the bottom ranks so poorly?

You might imagine that if you perform 90 percent as well as someone else,

you’d get 90 percent as much money. But that’s not how it works. The galling

fact is that society distributes most of its rewards according to inverse power

law distributions.

Rather than looking at histogram-style power laws, let’s begin with rank-

style power laws. Rank is a natural concept because in many social arenas

we can find a way of ranking the competitors according to how strongly

society appreciates them. And we usually find that the numerical measure of

success will obey a rank-style inverse power law in which reward is equal to

some constant c divided by the rank raised to some power D, a law resem-

bling the Zipf Law that we just discussed in section 5.3.14

Reward = c/RankD

To understand this way of parceling out rewards, think in terms of opti-

mization. Suppose that society wants to encourage very many books that are

precisely of the kinds that it likes the most, and to discourage those works

that vary from the current ideal. In this case it makes a kind of sense to mas-

sively reward the best-selling authors, while portioning out much smaller

amounts to the scribes not in the mainstream. “Those screwballs will write

anyway; why waste money on them!”

The four resurrected Beats won’t be the only writers in the marketplace, and

they’ll have widely spaced popularity ranks. We might make sense of their

advances by supposing that book advances obey a law in which the advance is

one million divided by the author’s popularity rank, as indicated in table 14.117
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Table 14: Book Advance = 1,000,000/Popularity Rank

Author Book advance Popularity rank

Jack Kerouac $1,000,000 1

Allen Ginsberg $100,000 10

William Burroughs $10,000 100

Gregory Corso $1,000 1,000



Disgruntled writers sometimes fantasize about a utopian marketplace in

which the naturally arising inverse power law distribution would be forcibly

replaced by a linear distribution, that is, a payment schedule that lies along

a smoothly sloping line instead of along a violently swooping curve. Figure

115 shows some variations on a linear distribution, based on the assumption

that the gross amount that society is going to hand out to authors is fixed.
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Figure 115: Different Distributions of Book Advances

The curve shows the inverse power law Advance = $1,000,000/Rank. The double light-
ning bolt indicates where I had to leave out six or seven miles of paper so as to fit in
the point marking where the most popular writer gets $1 million. Despite this big spike,
the total area under the curve between one and one thousand is only about $6 million,
which represents the total in book advances that society hands out to the top thousand
writers. The two straight lines show a couple of options for how a central committee
might allocate $6 million to a thousand writers in a “more equitable” fashion. The hor-
izontal line depicts the possibility of giving each writer a flat $6,000, regardless of pop-
ularity. And the sloping line shows the option where the most popular writer gets
$l0,000 and the thousandth most popular writer gets $2,000.



A first problem with a linear distribution of rewards is that the reward

curve becomes uniformly flat and low. If the rewards for best sellers aren’t

much bigger than those for flops, then maybe creators aren’t going to try so

hard to achieve greater popularity. A low-paid writer might argue that popu-

larity isn’t everything, and that society would do better to level things out.

But shaving off the peak doesn’t really produce dramatic enough gains at the

bottom to compensate for the loss of incentive. The only real gain in leveling

things out might be that the less successful writers become less consumed

by envy and have more peace of mind. But it may well be that artists are more

creative when they’re bitter and unhappy!

A second problem with the linear distribution is that it’s arbitrary. The

existing inverse power law distributions evolve on their own from the parallel

computations of a society of competing publishers and authors. In order to

have a linear distribution, some governing group would have to price-fix the

distribution. But centralized economic plans are often skewed toward special

considerations that may be inimical to the behaviors society is trying to

reward. I’m thinking of cronyism and graft, of incompetence and prejudice.

Another flaw in centralized economic plans is that, in their desire to please

their constituents, the planners may make irrational decisions. A legislature

might, for instance, stipulate that the thousand most popular writers will be

paid on a linear scale ranging from $200,000 for #1 down to $100,000 for

#1,000—and leave the problem of finding the necessary $150 million for a

future generation to solve, perhaps by eliminating book advances entirely.

Legislatures do things like that all the time.

A third problem with a linear distribution is that it’s not extendable. At some

point a downward slanting line crosses the horizontal axis, so that as more

authors appear, the central committee needs to keep readjusting the pay

scale. An inverse power law curve has the virtue of asymptotically hugging the

horizontal axis. And the net expenditure will stay under control as long as we

have a rank-style inverse power law with the exponent greater than one.118

Inverse power laws are self-organizing and self-maintaining. For reasons that

aren’t entirely understood, they emerge spontaneously in a wide range of par-

allel computations.

Here’s a nice example of an emergent social power law that seems to have
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a nice computational model. Consider the population of cities. Statistical

studies show that, to a very close approximation, if N is the number of cities

of given population size level L, we have a histogram-style power law with

exponent 2, that is, N = c/L2, or the number of cities of a given size is pro-

portional to the reciprocal of the size squared. Why? This distribution is an

emergent property of a certain kind of interacting system.

To model how this distribution might emerge, consider a simple toy model of

population change that I’ll call the Zeldovich CA. We’ll use a two-dimensional

CA in which each cell holds a population count. We do two steps in the update.

• Diffusion. First average each cell’s population with the popu-

lations in its neighboring cells. This models the notion that

people spontaneously move around.

• Boom or bust. Then flip a coin for each cell. If the coin is

heads, double the cell’s population value; if the coin is tails,

set the cell’s population value to zero. This models the notion

that at any time, a given area can prosper or collapse.

Figure 116 shows a three-dimensional view of a Zeldovich CA simulation.119

So in the case of city populations, we can find a computational model that

seems to account for the empirically observed power law.

As I’ve been discussing, society shows a huge range of responses to cultural

artifacts. At this point I’d like to discuss some computational models of the

varying levels of success that that some cultural artifacts achieve.

When someone creates an artifact and makes it available, the effects

cascade out, and, let us say, a year later you might conduct a poll to estimate

what percentage of the population got the word—using this percentage

number to quantify the success. The sizes of the cascades range the full

gamut from tiny to enormous. By dint of having been hit by so many cultural

artifacts over the years, a society seems to be in a peculiar state in which an

input can have an effect of virtually any size at all.

In symbols, if we let L be a given size level of news recognition and let N be

the number of stories at level L, we expect there to be some constants c and

D and a histogram-style inverse power law of the form N = c/LD.

Note again that an inverse power law model of social impact is very dif-

ferent from, say, a model in which we think of raindrops falling into a pond.
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In the raindrop model, the sizes of raindrops have a bell curve distribution

centering around a certain average size. The effects of the raindrops in the

pond are circles of ripples that cluster around a mean amplitude. You never

see an enormous raindrop that all but empties the pond with a tidal wave.

But in society, there is no typical size of an event’s influence, and some

events sweep everything in their paths. Think of fads, crazes, manias.

Three human factors relate to the spread of a social artifact:

• Receptivity. A person may or may not be receptive to being

exposed to a new artifact. If you’re all whipped up over a ter-

rorism alert, you may fail to notice a news story about the

economy. If you’re into some new music you just got, you may

not care about any other music for a while.
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Figure 116: The Zeldovich CA Model of the Formation of Cities

I think of this as a cyberspace view of a place called Zeldovichgrad. It turns out to be
important when updating a cell to first average the cells with the neighbors and second
to flip the coin to decide whether to double the cell’s value or wipe it out. Otherwise the
rule doesn’t do the right thing. Another consideration is that we must enforce some lim-
ited maximum value for the cells; otherwise some numbers may run off toward infinity
and crash the program. Since we’re simulating a scale-free distribution, the values
occasionally will get as big as we allow them to. 



• Excitation. A receptive person exposed to an artifact may or

may not become excited. What makes people excited is, of

course, a difficult question.

• Recommendation. If a person is excited enough about an arti-

fact, the person tells others about it. The recommendations

hop about society. In CA models this corresponds to stimu-

lating your neighbors.

In section 4.3: Thoughts as Gliders and Scrolls, I discussed a Brian’s Brain

CA that serves as a model for neural firings. Could the Brain CA also serve

as a model for the spread of ideas in society? In Brain, we have states called

ready (receptive), firing (excited), and resting (nonreceptive), and the rule is

that if a ready cell has precisely two firing neighbors (recommendations), then

this cell, too, fires.

Perhaps our scrolling Zhabotinsky CAs are also relevant here, rules like

the Hodgepodge CA or the Meinhardt CA. An activator-inhibitor rule is a bit

like the spread of news. New stories activate people’s excitement; boredom

and fatigue inhibit them.

But something that I’m not sure we see in Brian’s Brain or the Zhabotinsky

scrolls are inverse power laws of the kind that empirically seem to describe

the spread of news. But as it happens, there are two particular CAs that are

known to obey power laws that serve as models for the spread of news. One

is called the forest fire model, the other the sandpile model.

The first CA was created by geographer Bruce Malamud and his colleagues

to model the spread of forest fires.120 A starting point for Malamud’s work

was the observed fact that, if L measures the number of acres taken in by a

given fire, and N measures the frequency of such fires, then we find that fires

obey histogram-style inverse power laws of the general form N = c/L1.3,

although the precise exponent varies according to the geographical region

being studied.

In his model, Malamud took a two-dimensional CA in which each cell is in

one of three states. In viewing this as a model of a forest fire, we can think of

these three states as representing live trees, burning trees, or dead trees. The

update rules are as follows:
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• Lightning. A live cell spontaneously changes to burning with a

certain very small probability.

• Spread of fire. A live cell also changes to a burning cell if at

least one of its neighbors is burning.

• Burning out. A burning cell changes to dead.

• New growth. A dead cell spontaneously changes to a live cell

with a small probability.

If the probabilities are properly tuned, the rule quickly settles down to a so-

called critical state in which the sizes of cascades obey a histogram-style

inverse power law. The size of a cascade here is the total number of cells that

pass through the burning state before that particular avalanche settles down.

In the critical state, Malamud CAs produce patterns very much like our old

friends the Zhabotinsky scrolls (figure 117). Now let’s look at another CA model

of how news about something spreads in society. The late physicist Per Bak had

a knack for coming up with extremely simple models providing deep insights

into complicated natural phenomena. One of his best-known models is a CA

known as the sandpile rule. The sandpile CA provides a nice example of a par-

allel system in which small effects can have exceedingly large consequences.
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Figure 117: The Forest Fire CA

This picture shows a version of Malamud’s forest fire CA. The dotted black lines are
moving fronts of burning cells, the gray cells are the live cells ready for excitation, and
the white cells are the dead cells. The CA behavior quickly settles in on the behavior
depicted, with the fire lines continually moving about in approximate Zhabotinsky
scrolls, with the burnt cells being randomly reset to live cells and with random lightning
strikes setting off fresh fronts of burning cells.



The inspiration for the sandpile model is to imagine dropping grains of

sand onto a tabletop from a point above the table’s center. For a while the

sand will simply accumulate, but eventually the table will be covered with so

much sand that when you add another grain, a greater or smaller avalanche

will ensue, with sand sliding across and perhaps off the edge of the table. At

some point the pile becomes tuned to critical state in which there’s no pre-

dicting how big the next avalanche will be.

Bak and his colleagues greatly simplified the intuitive notion of a sandpile

in order to get to their CA rule. To begin with, divide the tabletop into squares

to make a grid. And rather than letting the sand heap up ever so high, they

think of each cell as holding a tiny tower of at most three grains of sand.

When a cell becomes overloaded by having four or more grains of sand, it

gives up four grains, moving one grain to each of the cell’s immediate neigh-

bors, that is, one grain apiece to the east, north, west, and south.121

The resulting behavior is going to be less like a pyramid of sand with ava-

lanches sliding down it, and more like an irregular washboard with moving

wave fronts, or, more to the point, like a CA with moving gliders, as shown in

figure 118.

This is unrealistic physics, yes, but it makes for a simple computation—

and the point here is not to simulate real sandpiles, but rather to produce a

suggestive model of a situation in which small influences can have arbitrarily

large effects.

Once enough sand has been dropped, the sandpile enters a critical state

in which dropping an additional grain of sand produces results that obey

an inverse power law distribution. In order to measure the size of an ava-

lanche, we can adjust the simulation so that after you add a grain of sand,

no additional sand is added until all the resulting activity dies down. And

then you can measure the size of the avalanche by counting the number of

distinct cell sites whose values were changed before the system settled back

down. In Bak’s particular simulation, he and his collaborators found a his-

togram-style inverse power law relating the number of avalanches N to the

size level L.

N = c/L1.1
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Figure 118: Sandpile CA

The first and second pictures show views of the same simulation: a two-dimensional
view in which the cell values are represented by shades of gray, and a three-dimensional
view in which the cell values are represented as heights. The vantage point in the
second view is from a point above the right side of the lower edge of the first view. In
the first two pictures, the sandpile is being seeded by dropping sand grains onto a par-
ticular cell near the middle of the rectangle. About ten thousand grains have been
dropped in these pictures. The dark cells and tall peaks make up moving avalanches
or gliders of sand. When an avalanche of sand hits the edge, it often sends echo gliders
back toward the center, which are accumulating to make an “X and spiderweb” pattern.
The third picture shows a smaller sandpile world in which sand has been dropped at
random positions for quite a while, and in which the system has been allowed to settle
down. No cell has a value higher than three, and the cells along the edges have value
zero. Nothing is presently moving in the third sandpile world. It has organized itself into
a critical state. If you increase a randomly chosen cell’s value to four, the resulting ava-
lanche may propagate only for a few cells, or all the way across the little universe.



A significant thing about the sandpile simulation is that essentially any

random sequence of sand grains leads the model to the critical state. And

from then on, each time the sandpile settles back down from the most recent

avalanche, it’s still in the critical state. For this reason, Bak and his col-

leagues spoke of the sandpile model as being in a self-organized critical state.

I compare the definitions of the Brain, forest fire, and sandpile CA rules in

table 15.
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Brian’s Brain Forest fire Sandpile Spread of news Neuron activity

Resting Dead Below threshold Nonreceptive Resting

Ready Live Near threshold Receptive Ready

Firing Burning Beyond threshold Excited Firing

Table 15: CAs as Models of Excitation

We might use the Brain, forest fire, and sandpile rules to model the spread of aware-
ness about new cultural artifacts or to model the activity in a brain’s neurons. In all
cases, some type of activity is both exciting further activity and using up a resource that
promotes the activity. (The “threshold” in the sandpile model is four. That is, a cell with
less than four sand grains is stable and receptive, and as soon as the cell values goes
to four or higher, the cell “fires” and transfers one of its grains to each of four neighbors.)

Our purpose in bringing in the forest fire and sandpile rules was to try to

model the spread of news about cultural artifacts in a society—to keep the

language simple, let’s just suppose that we’re talking about the effects of

books. Here are some of the salient features of what these models suggest

about how a book’s fame spreads.

• The individual cells represent members of society, that is,

people.

• The external stimulations applied to the cells represent the

arrival of new books. That is, the books are modeled by the

strokes of lightning hitting the forest fire CA and by the grains

of sand dropping onto the sandpile CA.

• Presented with a book, a person may or may not become

excited about it, depending on whether the person is in a

receptive state.



• If people are excited about a book, they communicate the

excitement to their nearest neighbors.

• Immediately after being excited about a book, people enter a

state in which they are less receptive to a new book. In the

case of the forest fire model, individuals remain unreceptive

until some probabilistic transition takes place. In the case of

the sandpile model, it may be that a person needs to be stim-

ulated by several books in a row before becoming excited

enough to spread the news about a book.

• After being repeatedly seeded over a period of time, the models

enter a critical state in which the effects of additional seeds

obey a power law.

The last point is perhaps the most significant one. These models generate

inverse power law distributions because they’ve undergone a long-term

process that brings them into a critical state. It’s certainly reasonable to

suppose that our media-saturated society is in a critical state as well. Indi-

vidual people are in a range of states. Some are just short of needing a bit

more stimulation to become excited enough to tell others about something.

Some are broke, or tired, or apathetic, and for the present nothing can stim-

ulate them. Yet as the stimulation pours in, people regularly move from

nonreceptive to receptive states.

Although the forest fire and sandpile models have received a lot of

notice in the scientific press, they’re just cellular automata—and, at least

in terms of computation classes, perhaps not the most interesting possible

ones.122

The criticism one might level at these models is that, although the city,

sandpile, and forest fire CAs are known to generate inverse power law behav-

iors, each of them depends upon on probabilistic inputs to stay alive. The city

and forest fire CAs require calls to a randomizer at each cell’s update, and

the sandpile, although deterministic, dies out unless it is continually restim-

ulated by additional random input. The fact that, in isolation, the rules die

out means that they are class one computations. It would be nice to have a

rule that satisfies the following two conditions:
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• The rule is a class four cellular automaton, requiring no

external random seeding.

• Over time, the rule continues showing cascades, with the cas-

cade sizes obeying a power law.

I still haven’t found a perfect rule of this kind. One possibility might be to

make a forest fire model in which the random probabilistic transitions are

replaced by a slow, steady increment. Another candidate is the “boiling cubic

wave” rule that I already mentioned in section 4.3: Thoughts as Gliders and

Scrolls. This rule will run on as shown in figure 119 indefinitely, (Full disclo-

sure: I’m not actually sure the boiling wave rule has power law behavior, but

these recent images are so beautifully gnarly, I just had to stick them in.)

I started out this section by trying to gain some insight into why society

rewards different people in such different ways. Then I got into inverse power

laws and into CA simulations that generate power laws. But what’s the moral?
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Figure 119: Self-Generating Cascades in a Nonlinear Wave CA

Here we see a two-dimensional and three-dimensional view of the same continuous-valued CA
rule, called Boiling Cubic Wave. Each cell holds two variables. The first variable, displayed in
the pictures, might be called intensity. The intensity obeys a rule that simulates a nonlinear
cubic wave equation. The second variable is the nonlinearity of the wave equation at that given
cell location. With each update, each cell’s nonlinearity increases a bit, but when it gets so high
that the wave equation becomes unstable, it’s then reset to a minimum value. There are two
types of moving patterns in this rule: the smooth ripples of wave motion and the right-angled
shock fronts of high nonlinearity.



As an author, the lesson I draw from inverse power laws is that it’s okay if

my best efforts fail to knock the ball out of the park. There’s simply no pre-

dicting what’s going to catch on, or how big it’s going to be. Trying harder

isn’t going to change anything. Relax, do your work, and don’t expect too

much.

Along these lines, the science-fiction writer Marc Laidlaw and I once

dreamed of starting a literary movement to be called Freestyle. Our proposed

motto: Write like yourself, only more so.

Another aspect of being subject to socially determined power laws is that

maintaining even a modest level of success is just as hard as staying on the

top. Criticality means that things are boiling at every level. There’s no chance

of making things easier for yourself by taking lower-level jobs or sending your

outputs to lower-paying magazines. My rabble-rousing friend David Hunger-

ford likes to say, “The essence of capitalism is that the less they pay you, the

harder you have to work.” And the less a publisher pays, the worse they treat

you. So you can’t take the power law as an excuse to slack off.

Let’s turn to the question of aesthetics. What kinds of cultural artifacts are

likely to stimulate people enough to spread the news?

We might suppose that an artifact stimulates several nodes of a person’s neural

network, which produces a greater or lesser cascade of activity in the brain. Note

also that a person’s brain has different associational networks—science, political

news, entertainment, food, relationships, and so on. An artifact may set off cas-

cades in several of these networks at once. In terms of a sandpile model of brain

excitement, we might say that there are really several different colors of “sand.”

Note that until a given kind of artifact appears, it may not have been

obvious that brains could in fact be highly stimulated by it. “This book

scratches an itch I didn’t know I had.”

If an artifact manages to stimulate a large number of nodes in your neural

net right off the bat, that seems to give it a better chance of creating a large

amount of activity. Note, however, that stimulating a lot of nodes isn’t the

same as stimulating a few nodes a lot. If something’s boring, yelling about it

doesn’t make it more interesting.

I’m inclined to think that more complex, more compressed types of infor-

mation have a better chance of setting off more mental fireworks. Less isn’t

more—it’s less. A blank canvas isn’t going to fire up many brain cells, unless

it’s accompanied by an insanely great artistic statement.
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At the other end of the spectrum, amping up a message’s complexity can

go too far. There are, after all, cultural artifacts that are so recondite as to be

all but incomprehensible. This said, my feeling is that the sweet spot for cul-

tural artifacts lies just a step or two down from mind-breaking gibberish—in

the gnarly zone.

Since I spend a great deal of my time writing science-fiction novels, I’d like to

say a bit about how my studies of computational gnarl have affected my views

on literary aesthetics.

To simplify even more than before, we can say that Wolfram distinguishes

among three kinds of processes:

• Too cold. Processes that are utterly predictable. This may be

because they die out and become constant, or because they’re

repetitive in some way.

• Too hot. Processes that are completely random-looking.

• Gnarly. Processes that are structured in interesting ways but

nonetheless unpredictable.

Gnarliness lies between predictability and randomness. It’s an interface

phenomenon like organic life, poised between crystalline order and messy

deliquescence. Although the gnarl is a transitional zone, it’s not necessarily

narrow. I’m going to find it useful to distinguish between low gnarl and high

gnarl. Low gnarl is close to being periodic and predictable, whereas high gnarl

is closer to being fully random.

In order to present some ideas about how gnarl applies to literature in gen-

eral, and to science fiction in particular, table 16 summarizes how gnarliness

makes its way into literature in four areas: subject matter, plot, scientific

speculation, and social commentary. I’ll say a bit about the thinking that

went into each of the table’s four columns.

Subject matter and transrealism. Regarding the kinds of characters and situ-

ations that you can write about, my sense is that we have a four-fold spec-

trum of possible modes: simple genre writing with stock characters, mimetic

realism, the heightened kind of realism that I call transrealism, and full-on
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fabulation. Both realism and transrealism lie in the gnarly zone. Speaking

specifically in terms of subject matter, I’d be inclined to say that transrealism

is gnarlier, as it allows for more possibilities.

Where did I get the word “transrealism”? Early in my writing career, my

ever-gnomic friend Gregory Gibson said something like, “It would be great to

write science fiction and have it be about your everyday life.” I took that to

heart. The science fiction novels of Philip K. Dick were also an inspiration. I

seem to recall once reading a remark where someone referred to Dick’s novel

A Scanner Darkly as “transcendental autobiography.”

In 1983 I published an essay, “A Transrealist Manifesto,” in the Bulletin of

the Science Fiction Writers of America, number 82. Like any young artist’s

manifesto, mine was designed to announce that my style of doing things was

the One True Way—or at least a legitimate way of creating art. In my mani-

festo, I explained that transrealism is trans plus realism, a synthesis between

fantastic fabulation (trans) and closely observed character-driven fiction

(realism), and I advocated something like the following:
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Complexity Subject Matter Plot Scientific Speculation Social Commentary
Level

Predictable Derivative literature A plot modeled Received ideas of Humorless, unwitting
(too cold) modeled only on to a standard science, used with advocacy of the status

existing books formula no deep understanding quo. Sleep-walking

Low gnarl Realism, modeled Roman à clef, Pedagogic science, Comedy. Noticing that 
on the actual world a plot modeled emphasizing limits existing social trends

directly on rather than possibilities lead to absurdities
experience or
a news story

High gnarl Transrealism, in A plot obtained Thought experiments. Satire: forcibly 
which realism is by starting with Working out novel extrapolating 
enhanced by a real-life story consequences of wild social trends
transcendent and perturbing ideas
elements it

Random- Fabulation, fantasy, Surrealism, Irrational and Jape, parody, 
seeming or science fiction possibly based inconsistent; sophomoric humor
(too hot) of unreal worlds on dreams or anything goes, 

an external logic is abandoned
randomizer

Table 16: Gnarl in Literary Aesthetics



• Trans. Use the SF and fantasy tropes to express deep psychic

archetypes. Put in science-fictional events or technologies

that reflect deeper aspects of people and society. Manipulate

subtext.

• Realism. Possibly include a main character similar to yourself

and, in any case, base your characters on real people you

know, or on combinations of them. To this end, have your char-

acters be realistically neurotic—after all, there really aren’t any

normal well-adjusted people. Don’t glorify the main character

by making him or her unrealistically powerful, wise, or balanced.

And the flip side of that is to humanize the villains.

Many of my science-fiction novels have been transreal in this sense. And my

nonfiction tends to have a transreal quality as well—as you will have noticed

by now. My sense is that incorporating my personal experiences enhances the

appeal of even a book about the philosophy of computer science.

Plot and emergence. In the table’s second column, I present a four-fold divi-

sion of plot structures. At the low end of complexity, we have standardized

plots, at the high end, we have no large-scale plot at all, and in between we

have the gnarly somewhat unpredictable plots. These can be found in two

kinds of ways, either by mimicking reality precisely, or by fitting reality into

a classic monomythic kind of plot structure.

A characteristic feature of any complex process is that you can’t look at

what’s going on today and immediately deduce what will be happening in a

few weeks. It’s necessary to have the world run step-by-step through the

intervening ticks of time. Gnarly computations are unpredictable; they don’t

allow for shortcuts. Indeed, the last chapter of a novel with a gnarly plot is,

even in principle, unpredictable from the contents of the first chapter. You

have to write the whole novel in order to discover what happens in the last

chapter.

My experience is that, whether you write an outline or not, in practice, the

only way to discover the ending of a truly living book is to set yourself in

motion and think constantly about the novel for months or years, writing all

the while. The characters and tropes and social situations bounce off one
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another like eddies in a turbulent wakes, like gliders in a cellular automaton

simulation, like vines twisting around each other in a jungle. And only time

will tell just how the story ends. Gnarly plotting means there are no perfectly

predictive shortcuts.

Scientific speculation and thought experiments. Turning to the scientific ideas

that go into science fiction, we see the most interestingly gnarly works as,

once again, working out unpredictable consequences of simple-seeming

assumptions.

The reason why fictional thought experiments are so powerful is that, in

practice, it’s intractably difficult to visualize the side effects of new techno-

logical developments. Only if you place the new tech into a fleshed-out fic-

tional world and simulate the effects on reality can you get a clear image of

what might happen.

This relates, once again, to the notion of unpredictability. We can’t predict

in advance the outcomes of complex gnarly systems, although we can simu-

late (with great effort) their evolution step by step.

When it comes to futurology, only the most trivial changes to reality have

easily predictable consequences. If I want to imagine what our world will be

like one year after the arrival of, say, soft plastic robots, the only way to get

a realistic vision is to fictionally simulate society’s reactions during the inter-

vening year. Science fictional simulation is an excellent way to do futurology.

Social commentary and satire. One source of humor is when someone helps

us notice an incongruity or inconsistency in our supposedly smooth-running

society. We experience a release of tension when someone points out the

glitch to us. Something was off-kilter, and now we can see what it was. The

elephant in the living room has been named. The evil spirit has been

incanted.

The least aware kinds of literature take society entirely at face value,

numbly acquiescing in the myths and mores laid down by the powerful.

These forms are dead, too cold.

At the other extreme, we have the too hot forms of social commentary

where everything under the sun becomes questionable and a subject for

mockery. If everything’s a joke, then nothing matters.
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In the gnarly zone, we have fiction that extrapolates social conventions to

the point where the inherent contradictions become overt enough to provoke

the shock of recognition and the concomitant release of laughter. At the low

end of this gnarly zone, we have observational commentary on the order of

stand-up comedy. And at the higher end we get inspired satire.

5.4: Power and Money

When I’m working on my books, I often correspond with my computer

programmer–tycoon friend John Walker (figure 120). While I was working on

this chapter, he sent me an email containing the following remark about com-

putation and the social sciences:

One thing I find very fascinating about Wolfram’s A New Kind of Sci-

ence is the insight that computational equivalence provides regarding

the semi-soft sciences ranging from economics to sociology. It’s often

remarked that these would-be sciences suffer from “physics envy,”

which motivates their more mathematically literate practitioners to

write differential equations and build abstract models of the systems

they study. Which, of course, never work. Well, Wolfram explains pre-

cisely why this is. A social system like a market is performing a com-

putation whose complexity cannot be reduced, and which cannot be

simulated or abstracted by any model which is less complex than

itself. There, in a few words, thrown away almost in passing in NKS,

is the explanation for two hundred years of consistent dismal failure

of socialism and why all the theoreticians and politicians who seek

“the one best way” will never, ever find it.

Here’s another way to put it. An economy or market (the words

are interchangeable) is an inherently unpredictable computation.

Which strategy is more likely to produce an outcome which is better

for those who participate in it?

Distributed: Local decision-making by individual agents at the

transaction level, each attempting to optimize their own outcome

based on local, detailed information known only to them.
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Centralized: Top-level decision-making based on analysis of

aggregates which average out all the low-level detail, implemented

by compulsion of low-level participants.

I would observe that in around four billion years of massively par-

allel search, life on Earth has always ended up choosing the distrib-

uted option. My suspicion is that idealists become enamored with

the centralized option only because they imagine themselves to be

the ones who will make the decisions—as opposed to the Mafia types

who inevitably end up calling the shots when things tilt that way.

By way of unpacking John’s remark, let me remind you again of Wolfram’s

PCU.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

We’re interested here in social, economic, and political systems—viewed as

parallel computations. It seems very reasonable to assert that, even if individual

people were known to obey some very simple rules, the fact that there are so

many of us guarantees that society as a whole is carrying out gnarly class

four computations. Nothing ever settles down to a steady state, so we’re not

looking at class one computations. Events never quite repeat themselves, so

we’re not looking at class two computations. And, given how readily infor-

mation signals propagate through societies, it doesn’t seem as if we’re looking

at class three computations either. In other words, social computations are

generally class four.

There’s no reason to be surprised by this. Gnarliness often accompanies

parallelism. Think of flocking boids, or of CA rules like Brian’s Brain or the

Hodgepodge rule. In such cases, class four behavior emerges as soon as an

ensemble of agents are placed in communication with one another—even if

the agents’ individual behaviors are simple.

Given that social computations are gnarly, Wolfram’s Principle of Compu-

tational Unpredictability suggests that the behavior of these processes can’t

be predicted by computations that operate much faster than detailed simu-

lations would. In other words, there are no tidy, handy-dandy rubrics for
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predicting or controlling emergent social processes like elections, the stock

market, or consumer demand.

In a free economy, we have a huge parallel computation of different indi-

viduals and subhives trying to optimize their profit and comfort. We might

model this as a parallel computation in which each agent is performing a hill-

climbing algorithm, that is, each agent looks for the most profitable of the

immediately available options and takes that option. What makes this kind

of model somewhat unfeasible is that the “profitability landscape” is contin-

ually changing with the motions of the agents who are trying to scale the

peaks upon this same landscape. Unfeasible for a PC, that is. A living society

has no problem at all in carrying out a large parallel computation.

The good thing about a decentralized class four parallel computing system

is that it doesn’t get stuck in some bad, minimally satisfactory state. The

society’s members are all working their hardest to improve things—a bit like

a bunch of ants tugging on a twig. Each ant is driven by its own responses

to the surrounding cloud of communication pheromones. For a time, the ants

may work at cross-purposes, but, given that the class four computation isn’t
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Figure 120: John Walker

So far as I can tell, John invariably wears the same outfit, a short-sleeved white shirt
and black pants. Antarctica, Egypt, inside the Sun, at the Ascot Races, fixing a car, in
the Antland of Fnoor—always with the white shirt and pants. He says it simplifies his
life by pruning the choice tree. I took this picture when hiking with John near a spot
called Creux du Van in Switzerland.



stuck in a loop, they’ll eventually happen upon success. Like a jiggling key

that turns a lock. Compare this to the centrally planned Soviet economy,

which spent nearly seventy years stuck in a bad configuration, eternally

repeating the same class two cycle.

Speaking of inept governments, the one consolation is that any regime

eventually falls. No matter how dark a nation’s political times become, a

change always comes. A faction may think it rules a nation, but this is always

an illusion. The eternally self-renewing class four computation of human pol-

itics is impossible to thwart indefinitely. If the rulers’ only opposition had the

form of periodic class two or disorganized class three computations, they

might prevail indefinitely. But sooner or later humanity’s class four weaving

of signals wins out.

Relations between nations become particularly destructive when they enter

class-two loops. I’m thinking of, for instance, the endless sequence of tit-for-

tat reprisals that certain pairs of countries get into. Some loops of this nature

have lasted my entire adult life. In any given case, I’m confident that at some

point class four intelligence will win out and the long nightmare will end. But,

less optimistically, I also know that social phenomena tend to obey power

laws, which means that every now and then a transient episode of class two

behavior can last for a very long time indeed. It could be, for instance, that it

will take another whole century until peace comes to the Middle East.

It’s always discouraging to see our own leaders embroil us in a class two

policy. After the terrorist attacks of 9/11, for instance, one might have hoped

to see our nation do more than enter upon a class two tit-for-tat pattern of

attacks followed by counterattacks. But that’s not the way it worked out.

Sadly enough, the fact that politics is unpredictable allows for very poor

regimes as well as for very good ones. The one comfort in dark times is that

nothing in human society is eternal.123

No discussion of social computations can be complete without a mention

of the stock market. Here’s a case where John Walker’s observations hold

with a vengeance. Any number of technical analysts use the most sophisti-

cated mathematical pattern-recognition tools imaginable in hopes of pre-

dicting market trends. Yet, year after year, baskets of randomly picked stocks

seem to do about as well as the fund managers’ finest portfolios.

In A New Kind of Science, Wolfram presents a simple illustration of how a
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stock market might embody an unpredictable computation. His idea is to

imagine a market in which people buy and sell one particular stock. To moti-

vate this model, imagine that traders think along the following lines. If the

market is mixed, stock prices can go up, so buying is a good idea. But if the

other traders seem to be unanimously buying or selling, the market is in a

herd mode, in which case it’s best to sell.

• The market is represented as a one-dimensional CA, with

each cell standing for a trader.

• The cells can be in one of two states: “buy” or “sell,” with the

respective meanings that the corresponding trader is cur-

rently buying or selling the stock.

• A cell’s update rule ignores the cell’s current state and looks

only at the states of the cell’s two nearest neighbors, these

being the cell to the immediate left and the cell to the imme-

diate right.

• If a cell’s two neighbors are in different states from each other,

the cell enters the buy state. This represents the trader’s opti-

mistic reaction to a mixed market.

• If a cell’s two neighbors are in the same state as each other,

the cell enters the sell state. This represents the trader’s pes-

simistic reaction to a herd market.

• We track a global “stock price,” which we define as the

number of buying cells minus the number of selling cells.

Figure 120 shows the evolution of this CA, as seeded with a random

starting mixture of buyers and sellers.

Wolfram’s stock market CA is meant to be a realization of three of his

guiding principles for modeling.

• The model should embody a deterministic computation.

• The definition of the model should be utterly simple.

• The model should generate complex behavior for as long as

you let it run.
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People sometimes have trouble grasping just how hard it is to come up

with a model of this kind. The universal automatist is a bit like a magician

compelled to show an audience the secret workings of the tricks. “Oh, is that

all there is to it? Anyone could have thought of that.” In point of fact, thinking

up useful yet simple things is very hard.124

Another kind of objection to simple models comes from the tendency to

think that a model with a more complicated definition will be a better fit for

reality. But remember that whatever richness comes out of a model is the

result of class three or class four computation—which can occur in the very

simplest of systems.

As I mentioned in section 2.4: The Meaning of Gnarl, the realistic-seeming

unpredictability of some complex computational models is what we can also
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Figure 121: Wolfram’s Stock Market Model

The left panel shows a hundred traders interacting for a hundred updates. The traders
are arranged along a line, with successive states of the line shown with time running
down the page. The white cells represent traders who are buying the stock, and the
black cells show traders selling the stock. The right panel tracks the price of the stock,
calculated as the number of buying traders minus the number of selling traders.



call intrinsic randomness. A computation as elementary as the cellular

automaton Rule 30 can be as intrinsically random as a giant market-simulator

running on some investment’s firm in-house supercomputer. Wolfram

observes that it sometimes turns out that the interestingly random part of a

big model’s output is in fact the result of some incredibly simple subcompu-

tation nested within the whole.125

Let’s return now to the topic of inverse power laws. Although social

processes must remain unpredictable in their details, it seems that society’s

coupled computations tend to produce events whose sizes obey inverse power

law distributions. This means that, inevitably, very large cataclysms will peri-

odically occur. Society organizes itself into a critical state that the writer Mark

Buchanan refers to as “upheavable.”

Buchanan goes on to make some conclusions about the flow of history that

dovetail nicely with the notion of the four classes of computation. In the

quoted passage below, I’ve inserted class labels in brackets.

History could in principle be [class one] like the growth of a tree and

follow a simple progression toward a mature and stable endpoint,

as both Hegel and Karl Marx thought. In this case, wars and other

tumultuous social events should grow less and less frequent as

humanity approaches the stable society at the End of History. Or

history might be [class two] like the movement of the Moon around

the Earth, and be cyclic, as the historian Arnold Toynbee once sug-

gested. He saw the rise and fall of civilizations as a process destined

to repeat itself with regularity. Some economists believe they see

regular cycles in economic activity, and a few political scientists

suspect that such cycles drive a correspondingly regular rhythm in

the outbreak of wars. Of course, history might instead be [class

three] completely random, and present no perceptible patterns

whatsoever . . .

But this list is incomplete. . . . The [class four] critical state bridges

the conceptual gap between the regular and the random. The pattern

of change to which it leads through its rise of factions and wild fluc-

tuations is neither truly random nor easily predicted. . . . It does not

seem normal and lawlike for long periods of calm to be suddenly and
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sporadically shattered by cataclysm, and yet it is. This is, it seems,

the ubiquitous character of the world.126

Let me say a bit more about the relationship between critical states and

class-four computations. If we accept Wolfram’s PCE, then every class-three

or class-four computation is universal. This means that, depending upon the

input, such systems are capable of virtually any kind of behavior at all.

Let’s quantify this last remark and see if it leads to an inverse power law. On

the one hand, a given input may set a universally computing system into per-

petual activity, a seething that never settles down. On the other hand, an input

can cause a universally computing system to run for a greater or lesser period

of time and then switch into a target state after which no further changes of

interest occur. (As I mentioned in section 1.1: Universal Automatism, and will

discuss again in section 6.2: The Computational Zoo, we think in terms of

accessorizing our computing system U with an auxiliary target detector

IsUDone(Out), which decides when Out is to be regarded as a target state.)

Now suppose that we give the system a series of randomly chosen inputs,

and in each case we record how long the system runs before reaching a target

state, calling this the runtime for that input. In order to avoid endless waits,

we’ll decide upon some maximum length of time that we’ll wait, and we’ll

simply say that these longer-running computations have a runtime equal to

that maximum wait value.

Finally, suppose that we make a histogram showing the frequency N of the

different runtimes L that are observed for randomly chosen inputs. I conjec-

ture that a system of this kind will very commonly obey an inverse power law

of the form L = c/LD, where the c and D are constants that depend on the par-

ticular kind of universal computation that we’re dealing with.

In other words, I’m suggesting that, rather than being truly fundamental,

inverse power laws are a natural and expected side effect that appears in sys-

tems that are driven by universally computing class three or class four com-

putations.

Society’s unpredictability and its power laws result from the fact that

society’s computations are complex. And the computations are complex not

because of any intricate underlying rules, but simply because society is mas-

sively parallel. When run on a parallel system, the very simplest rules can
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generate all the gnarl you’d ever want to see. And I’m speculating that the

gnarl falls into inverse power law distributions precisely because class three

or class four rules generate such a diverse range of outcomes. Note that I’m

not saying that complex rules generate every possible outcome; I’m only

guessing that a typical complex rule will visit a cross-section of the state

space that is broad and varied enough to obey power-law statistics. It would

be nice if this were true, for then we’d finally have an explanation for why we

keep running into power laws.

I want to mention one last idea. From time to time a society seems to

undergo a sea change, a discontinuity, a revolution—think of the Renais-

sance, the Reformation, the Industrial Revolution, the sixties, or the coming

of the Web. In these rare cases it appears as if the underlying rules of the

system have changed.

I mentioned before that in chaos theory one studies systems whose behavior

explores a so-called strange attractor. This means that although the day-to-

day progress of the system may be fully unpredictable, there’s a limited range

of possible values that the system actually hits. In the interesting cases, these

possible values lie on a gnarly fractal shape in some higher-dimensional space

of possibilities—this shape is the strange attractor.

During any given historical period, a society has a kind of strange

attractor. A limited number of factions fight over power, a limited number of

social roles are available for the citizens, a limited range of ideas are in the

air. And then, suddenly, everything changes, and after the change there’s a

new set of options—society has moved to a new strange attractor. In terms of

a terminology I introduced in section 2.4: The Meaning of Gnarl, we might say

that society has experienced a chaotic bifurcation. Although there’s been no

change in the underlying rule for the computation, some parameter has

altered so that the range of currently possible behaviors has changed.

Society’s revolutionary bifurcations are infrequently occurring zigs and

zags generated by one and the same underlying and eternal class-four social

computation. The basic underlying computation involves such immutable

facts as the human drives to eat, find shelter, and live long enough to repro-

duce. From such humble rudiments doth history’s great tapestry emerge—

endlessly various, eternally the same.

the human hive
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5.5: The Past and Future History of Gnarl

By way of preparing to write this section, I reread some of Marshall

McLuhan’s work and was reminded of how really funny and off-the-wall he

could be. Presenting a traditional, logical argument wasn’t McLuhan’s bag.

He was much more prone to dart in and zap you with a wicked turn of

phrase. And he never seemed to worry about sounding silly.

In that spirit, and with much cribbing from the Master, I put together my

not-quite-serious table 17, presenting the history of human innovation as a

history of computation.

Although I’d always supposed McLuhan to be a cheerleader for progress, I

recently learned that the opposite was the case.

I am resolutely opposed to all innovation, all change, but I am deter-

mined to understand what’s happening. Because I don’t choose just

to sit and let the juggernaut roll over me. Many people seem to think

that if you talk about something recent, you’re in favor of it. The

exact opposite is true in my case. Anything I talk about is almost

certainly something I’m resolutely against. And it seems to me the

best way to oppose it is to understand it. And then you know where

to turn off the buttons.127

Although I appreciate the spirit of McLuhan’s remark, I don’t fully agree

with it. Do note that when he speaks of “turning off the buttons” he’s not

talking about changing society. That’s pretty much hopeless. Society’s class-

four changes don’t have buttons that we can control. If something bothers

you, the best you can hope for is to change how you react to it—and turning

off your own buttons is one approach.

Turning off my own buttons vis-à-vis a social change involves trying to

ignore it. That is, in fact, my strategy for handling the mind manipulation of

TV. I watch the tube very sparingly, generally limiting myself to commercial-

free channels, and above all avoiding the so-called news.

But instead of turning off, I can open my heart and accept change. For

many years, I kept blogging and digital cameras at arm’s length, but finally I

let them into my life and I’m glad. In the past I looked down at digital pho-

tographers, at their tendency to be staring at their device’s tiny screen
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Innovation Viewed as a computation

Speech Moving from gestures to speech gives people a 
higher bandwidth channel for communicating their
thoughts. Society becomes able to perform more
complicated computations.

Hunting and fishing Knowing where to look for game means mentally
simulating animal behavior, that is, it means 
emulating a computation. Using bait means
influencing an animal’s computation by applying
the proper inputs.

Agriculture Knowing that seeds compute plants involves insight
into the process of wetware computation. Plowing is
a form of soil randomization. Irrigation is a way to
program the analog flow of water. Crop rotation is
an algorithm to optimize yields.

Animal husbandry Caring for animals requires insight into their 
computational homeostasis. Selecting optimal 
individuals for further breeding is genetic engineering
on the hoof.

Wheel Wheeled carts allow long-range gliderlike transfer of
embodied information, making society’s computation
more complex.

Law A legal code is a program for social interactions.
Enforcing the code produces high-level determinism
that makes the system easier to manipulate.

Surveying Surveys allow a society to determine simple 
address codes for physical locations. Space
becomes digital.

Calendar Noting the solar system’s cycles marks coordinates
in time. Time becomes digital.

Sailing Sailors learn to simulate and tweak the analog
computation of airflow effects. Course planning
involves higher-level simulation.

Pottery The clay and the brushed-on glazes are the input,
the kiln is the computer, the pot is the output.

Brewing and fermentation The vat is a biocomputer, sensitive to the input
variables of malt, sugar, and yeast. Over time, the
best yeast strains are sought out by tasting and
comparing; this is hill-climbing in a gustatory 
fitness landscape.
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Innovation Viewed as a computation

Spinning and weaving The yarn is computed from the fibers. Weaving 
digitizes a surface into warp-woof coordinates. The
loom is the first programmable mechanical computer.

Mining, smelting, and metallurgy Mining is a form of data retrieval. The blast furnace
transforms ore inputs into slag and metal outputs.
Metallurgy and chemistry concern the computational
rules by which matter transforms itself.

Writing Writing translates speech into a format portable
across space and time. A written text promotes
long-distance information exchange and long-term
memory storage.

The alphabet Using a limited number of symbols digitizes writing.
Use of the alphabet also simplifies the algorithm for
writing. The democratization of writing allows
people to write things they wouldn’t be allowed 
to say.

Printing press The type letters act as primitive symbols that are
assembled into a kind of program—which prints a
page. Printing multiple copies of a text enhances
class-four communication.

Books The book amasses large amounts of text into 
portable form. The book is the precursor of the
hard drive.

Universities A university provides a node where adults can
exchange very large amounts of information. Given
that the students go out and affect the society as a
whole, the university is in some sense a central
processing unit for the social hive mind, drawing
together and processing society’s thoughts.

Water wheel and windmill These devices convert chaotic fluid motions into
regular periodic form. The excess information is
returned to the fluid as turbulence.

Gunpowder Bullets are high-speed gliders. Shooting someone
allows an individual to do a remote erase. Reckless,
catastrophic killing enhances interest in long-term
information storage.

Machine tools By creating precise mechanical tools for making
machines, we model the biological process of self-
reproduction. The machines come alive and begin 
evolving toward greater complexity.

Clocks A finer-scale calendar, a zoom into the time dimen-
sion. Clocks use class two systems of gears that do



the human hive

377

Innovation Viewed as a computation

Clocks (continued) the same thing over and over. Clocks are a tabletop
model of determinism.

Steam engine The steam engine is an artificially alive device that
eats coal and transforms it into motion. The chaos
of fire is converted into the reliable class two 
oscillation of the pistons.

Locomotive When placed upon wheels, the steam engine
becomes an autonomous glider. The country-to-city
diffusion rate is changed, which in turn alters the
Zhabotinsky scrolls of population movement.

Internal combustion engine The internal combustion engine is an evolutionary 
advance above the steam engine, and an early 
example of compressing the size of computational 
hardware.

Factory assembly line The factory represents a computing system that 
codifies the procedures of a given craft. The possi-
bility of mass production allows us to view physical
objects as information, as abstract procedures to
be implemented as many times as we please. 
Three-dimensional objects can now be reproduced
and disseminated as readily as books. Mass-
produced devices become plug-ins for the 
computations embodied in people’s homes.

Movies A temporal sequence is modeled by a series of 
discrete frames. Movies are an early form of virtual
reality.

Automobile The personal vehicle allows individuals to control 
transportation. A formerly centralized technology is
now in the hands of the people. Meetings and 
markets can be freely arranged, making the 
economy’s computation more class four.

Electrical generators and motors Electricity collapses the length of society’s 
computation cycles. The system clock speeds up.
Electrical lights disrupt the cycle of day and night;
computation becomes continuous. There is now 
less of a border between the media and the human 
nervous system. People begin to view themselves as 
components plugged into the hive mind.

Telegraph Writing is transmitted as a digital binary code. 
Society begins to grow its electrical network.

Telephone Unlike the telegraph, the telephone is a peer-to-
peer medium—you can make a phone call from 
your home without having to deal with a telegrapher.
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Innovation Viewed as a computation

Telephone People are free to exchange “unimportant” 
(continued) information, that is, to talk about their moods and 

emotions, thus in fact exchanging a much higher-
level kind of information than before.

Plastics By designing new materials, chemists begin to 
program brute matter. Deformable and moldable, 
plastics can take on arbitrarily computed shapes. 
Objects are now programmable.

Radio While books broadcast digitized thoughts, radio 
broadcasts analog emotion. The hive mind gains 
power, as listeners form real-time virtual crowds.

Airplane When riding in a plane, one can look out the 
window and see a landscape as an undivided 
whole, gaining a notion of a nation as a unit. With 
familiarity, people stop looking, and air travel 
becomes a hyperlink, a teleportation device. In the 
United States, the “flyover” states become invisible 
to the cultural powers, promoting a schism in the 
hive mind.

Television Since moving objects are important, our eyes have 
evolved to stare at flickering things; therefore, we 
find TV hypnotic. Watching TV is work; our minds 
labor to fill in the missing parts of the virtual 
reality. Society gains a stronger hive mind than 
ever before. But at the same time, the hive mind is 
debased by ever more centralized and less gnarly 
control.

Atomic power The physicists complete the chemists’ work, and 
even atoms become programmable. We see the 
most fundamental units of matter as information to
be manipulated.

Computers Billed as the universal machine, the electronic
computer is brittle and hard to use. The digitization 
of essentially everything begins, in most cases 
degrading and corrupting the information.

E-mail E-mail spreads the workplace into the home. The 
upside is that you don’t have to commute, the 
downside is that you can’t leave the office. E-mail is 
addictive, and people become ever more plugged in. 
Yet e-mail provides an alternate to the centralized 
news network, and many smaller hive minds take 
form.
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Innovation Viewed as a computation

The Web The hive mind expands its consciousness. And at 
the same time the subhives’ minds gain further 
definition. The Web page does for publication what 
the automobile did for transport—the gatekeepers 
lose importance. The Web becomes the ultimate 
global information resource, the universal database.
Social computation becomes nearly frictionless; 
people can effortlessly interact at a distance.

Biotechnology Biologists begin to program life. Society tries to
apply legal codes to life, with unpleasant and 
confusing results. Real biological life continues 
anyway, still managing to avoid control.

Cell phones A tight, personal, peer-to-peer medium that 
approaches telepathy. As people coordinate 
activities in real time, short-lived spontaneous 
minihive minds emerge.

Wireless gizmos The pocket-size phone-browser-digicam-organizer-
notepad. These overfeatured products are in some
sense like small pets, requiring that their keepers 
spend substantial effort in tending and programming 
them. The point is no longer to make things easier 
for the owner, but to give the owner a hobby. These 
gizmos are artificially alive and parasitic

Table 17: History of Technology as a History of Computation

instead of looking directly at the world around them. But now I find that

having a camera in my pocket means that I look at the world harder and more

deeply. And I can reach new friends and enhance my own understanding by

posting the images on my blog. If I can use a technology in a creative way, I

feel like it hasn’t got the better of me. But sometimes this is an illusion.

The issue of PCs is a particularly vexing one for me. In his later life,

McLuhan recast his adage, “The medium is the message,” as “Ignore the

figure and watch the ground”—meaning that the best way to understand the

effects of a new technology is to look at how it changes its surroundings.

Thus, in the case of computers, rather than talking about what computers

do or what computation means, we might look at how they change people’s

behavior. It’s not a pretty picture.
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I think of the toll my machine has taken on my wrists and my back. I think

of the never-ending hardware and software upgrades—as The Lifebox, the

Seashell, and the Soul has grown larger and more heavily illustrated, I’ve had

to upgrade everything about my system just to stay afloat—and, of course,

each upgrade ushers in fresh incompatibilities and unhappy days squan-

dered in battle with obscure bugs. I think of lost opportunities for conversa-

tion with my family and friends, with me sitting hypnotized at my keyboard.

Even when I mean to take a break in a coffee shop, often as not I bring my

laptop and sit isolated behind my portable screen. Although I wonder how it

would be to live in a world where my time was my own, I’m hooked on the

power and expressiveness of my PC.

But that’s enough frowny-face fretting over my accelerating dehumanization!L
Let’s see what fresh wonders the future might bring!J
Table 18 lists computation-related inventions that might show up over the

next two thousand years or so. The table is adapted from the Y2K work of

futurology that I unwisely saddled with the title Saucer Wisdom.128
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Future technology Description

Piezoplastic Plastic whose colors and shape are dynamically
controlled by electronic inputs. Usable as a soft, 
floppy computer display that you can stuff in your 
pocket like a handkerchief.

Lifeboxes Interactive data base simulacra of people. A 
combined blog and video diary with a search engine
that’s able to answer questions.

Limpware engineering We’ll learn how to program piezoplastic like silicon 
chips. The whole computer can become soft and 
floppy as a banana slug.

Dragonfly cameras Insect-size flying cameras, individually owned (or 
rented) so people can see whatever they want. The 
whole world becomes accessible on the Web.

Radiotelepathy It becomes possible to electromagnetically send 
thoughts from brain to brain. The use of lifebox 
databases for individual “contexts” makes this 
possible.

The uvvy The ultimate wireless device, the piezoplastic uvvy 
sits on your neck and gives you Web, e-mail, 
phone, and direct thought access.

Recording dreams A side effect of the uvvy. There’s a culture craze for 
dreams; society becomes more surreal. If you sleep 
with your uvvy on, you can record your dreams. 
People can arrange to share dreams. A significant 
downside is that the flow can go the other way, 
with dreams now containing commercials trickling 
in over the uvvy.

Knife plants, house trees Genetically engineered plants begin producing 
consumer goods, for instance, knives. A largish 
specialized seed can grow you a house. Machines 
as we know them go away. In every instance, it’s 
cheaper to grow a living device. Think of houseflies—
all they need in order to replicate is water and 
garbage. Now suppose that the flies are doing 
something useful for you like acting as dragonfly 
cameras, or picking bits of trash from your floor. 

Pet construction kit People can program their own pet characteristics.
Pet dinosaurs are very popular. Animals are now 
fully programmable.

“Aug dog” People bioengineer their bodies. These changes are 
called augmentations; thus the popular term for a 
body changers is “aug dog.” The body becomes
more virtual, less real.
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Future technology Description

Archipelago people You can have several disconnected hands or eyes
that move about independently from your 
main body; you stay in touch using uvvies. “I seem 
to be a network.”

Mermen, mermaids Bioengineered people move into new niches under
the sea.

Programmable clones You can speed-grow an adult clone of yourself in a 
tank and program its brain with the contents of 
your lifebox file, creating a person very much like 
yourself. Given the class-four nature of your 
computation and the differing initial conditions, 
the clone wouldn’t be identical to you, but its 
behavior will be exploring the same strange 
attractor.

Femtotechnology It becomes possible to transmute neutrons into 
protons and vice versa, allowing us to change the 
atomic makeup of matter. A device called the alla 
can, for instance, turn dirt into air. The age of direct 
matter control arrives and we can change anything 
into anything. Matter is now fully programmable by 
the average person.

Space migration People use allas to live in asteroids, turning their 
stone interiors into dirt and air.

3ox A new technology for identically copying existing 
objects. Living bodies can be 3oxed as well. The 
process works around the quantum-mechanical 
“no-cloning” theorem.

Ooies Uvvies become bioengineered internal organs, 
called ooies, so that people are constantly in 
contact. Society truly becomes a hive.

Colony people Some individuals 3ox or clone hundreds of copies 
of themselves, with the copies connected via ooies.
It’s a new kind of human mind.

Spacebug people Still more advanced bioengineering allows people to 
live in the hard vacuum of outer space and to 
propel themselves like rockets.

Teleportation Insight into fundamental physics gives people the 
ability to jump to arbitrarily distant space locations.

People free to move in higher Travel to the other worlds beyond our space and
dimensions time.

Table 18: Milestones in an Imagined Future History

We might suppose that the dates run from about 2050 to 4050.



THOUGHT EXPERIMENT SIX: HELLO INFINITY

Jake Wasser was adding a column of

penciled-in numbers on his prelimi-

nary tax form. Sure he could be

doing this on a computer, but he

enjoyed the mental exercise. Tax

season was his time of the year for

arithmetic.

Nine and three is two carry one.

Two take away five is seven borrow

one. If he hadn’t blown off calculus

and majored in history, maybe he

would have been a scientist like his

playful, bohemian wife Rosalie.

Instead he’d ended up a foot soldier

in a Wall Street law firm. It was a

grind, although it paid the rent.

When the tax numbers were all in

place, it was early afternoon. Jake

was free. Even though he’d known

he’d finish early, he’d taken a full

day off. He needed one. Recently

he’d had the feeling that life was

passing him by. Here he was forty-

two and he’d been working crazy

long weeks for going on twenty years

now. Kissing butt, laughing at jokes,

talking about politics and cars,

smoking cigars, eating heavy meals.

He and Rosalie had never gotten

around to having children.

He looked over the apartment,

with its polished wood everywhere.

The sight of their luxury flat never

failed to lift his mood. In some ways,

he and Rosalie had been very lucky.

He drifted toward the window that

faced Gramercy Park, passing the

heavy vase of flowers their Dominican

housekeeper had brought in. They

resembled heavy pink thistles—

proteus? The odor was sweet, spiral,

stimulating. It made him think of

numbers.

He stood by the window and

looked up Lexington Avenue, the

blocks receding into the misty April

rain. On a whim, he began counting

the windows in the buildings lining

the avenue—to his surprise he was

able to count them all. And then he

counted the bricks, as easily as

taking a breath. Although he

couldn’t have readily put the quan-

tity into words, he knew the exact

number of bricks in the buildings

outside, knew it as surely as he

knew the number of fingers on his

hands.

Leaning on the windowsill, he

went on counting, just to see how

high he could go. Whirl, whirl, whirl.

And then he was done. He’d counted

through all the numbers there are.

He caught his breath and glanced



around the quiet apartment. The

housekeeper was gone for the day.

What strange thoughts he was

having. He went into the kitchen

and drank a glass of water from the

sink. And then, once again, he

counted to infinity—the trick was to

visualize each number in half the

time of the number before. He could

do it, even though it didn’t seem

physically possible.

Gingerly he felt his balding pate

and the crisp curls at the back of his

head. Everything was as it should

be, all his parts in place. Should he

rush to the emergency room? That

would be a stupid way to spend his

free day. He glanced down at the

wood floor, counting the light and

dark bands of grain. And then he

counted to infinity again. He

grabbed an umbrella and left the

apartment in search of Rosalie.

Looking out the damp taxi’s

window on the ride uptown, he took

in every detail. People’s gestures,

their magnificent faces. Usually he

didn’t pay so much attention, feeling

he’d be overloaded if he let every-

thing in. But today he was like a

photo album with an endless supply

of fresh pages. A digital camera with

an inexhaustible memory card.

Calmly he absorbed the passing

pageant.

At Sixty-sixth Street the cab

turned and drove to the research

campus beside the East River. Jake

didn’t often visit Rosalie at work,

and the guard at the desk called her

on a speaker phone for permission.

“Jake?” she exclaimed in surprise.

“You’re here? I was just about to call

you.”

“Something’s happened to me,” he

said. “I want to see you.”

“Yes,” said Rosalie. “Let him in,

Dan.”

The building was old, with shiny

gray linoleum floors. Nothing to

count but the hallway doors. Ros-

alie’s short-cropped dark head

popped out of the last one. Her per-

sonal lab. She smiled and beckoned,

filled with some news of her own.

“You’ve gotta see my organic

microscope,” exclaimed Rosalie,

drawing him into her quarters. It

was just the two of them there.

“Wait,” interrupted Jake. “I

counted every brick on Lexington

Avenue. And then I counted to

infinity.”

“Every brick?” said Rosalie, not

taking him seriously. “Sounds like

you did the tax forms without a cal-

culator again.”

“I’m thinking things that are

physically impossible,” said Jake

solemnly. “Maybe I’m dying.”



“You look fine,” said Rosalie,

planting a kiss on his cheek. “It’s good

to see you out of that gray suit. The

news here is the opposite. My new

scope is real, but what it’s doing is

unthinkable.” She gestured at an

glowing, irregularly shaped display

screen. “I came up with this gnarly

idea for a new approach to microscopy,

and I had Nick in the genomics group

grow the biotech components for me. It

uses a kind of octopus skin for the dis-

play, so I call it a skinscope. It’s the

end, Jake. It zooms in—like forever. A

Zeno infinity in four seconds.

Patentable for sure.” She closed her

office door and lowered her voice. “We

need to talk intellectual property,

lawyer mine.”

“I’m tired of being a lawyer,” mur-

mured Jake, intoxicated by Rosalie’s

presence. With his new sensitivity,

he was hearing all the echoes and

overtones of their melding voices in

the little room, the endlessly detailed

fractals of the component frequen-

cies. How nice it would be to work

with Rosalie every day. Her face held

fourteen million shades of pink.

“Here we go,” said Rosalie, blithely

flicking a switch attached to the

skinscope.

The display’s skin flickered and

began bringing forth images of star-

tling clarity and hue, the first a

desultory paramecium poking

around for food. Jake thought of a

mustached paralegal picking

through depositions. The skinscope

shuddered and the zoom began.

They flew through the microbe’s

core, down past its twinkling genes

into a carbon atom. The atom’s

nucleus bloated up like the sun and

inside it danced a swarm of firefly

lights.

“This is inconceivable,” said Ros-

alie. “We’re already at the fem-

tometer level. And it’s only getting

started. It goes through all the deci-

mals, you dig.”

A firefly broke into spirals of

sparks, a spark unfolded into

knotted strings, a string opened into

tunnels of cartoon hearts, a heart

divulged a ring of golden keys, a key

crumbled into a swarm of butter-

flies. Each image lasted half as long

as the one before.

“It’s too fast to see now,” said Ros-

alie, but Jake stayed with the zoom,

riding the endless torrent of images.

“Infinity,” he said when it was

done. “I saw it all.”

“And to hell with quantum

mechanics,” mused Rosalie. “My

Jake. It’s a sign, both these things

happening to us today. The world is

using us to make something new.”

“But the skinscope patent will



belong to the labs,” said Jake. “I

remember the clause from your

contract.”

“What if I quit the lab?” said Rosalie.

“I’m tired of hearing about disease.”

“We could start a company,” 

said Jake. “Develop skinscope

applications.”

“We’ll use them like infinite com-

puters, Jake. A box to simulate every

possible option in a couple of sec-

onds. No round-off, no compromise,

all the details. You can be the chief

engineer.”

“Kind of late for a career change,”

said Jake.

“You can do it,” said Rosalie.

“You’ll teach our programmers to see

infinity. Teach me now. Show me

how you learned.”

“Okay,” said Jake, taking out his

pencil and jotting down some fig-

ures. “Add the first two lines and

subtract the third one . . .”



C H A P T E R S I X

Reality Upgrade

IN THIS CHAPTER, I’M FIRST going to explore the philosophical ramifications of

the hypotheses I’ve been discussing. And then I’m going to mention some

ways to open up one’s thought process a bit more. My ultimate goal is to find

ways to enhance our appreciation of the world around us.

In 6.1: Eight Ontologies, I’ll say a bit about the status of the central tenet

of universal automatism: Everything is a computation. Analyzing this claim

leads to a philosophical discussion about ontology: the study of what exists.

I’ll show that universal automatism is but one of eight possible views.

In 6.2: The Computational Zoo and 6.3: Faster and Smarter, I discuss Wol-

fram’s two key hypotheses about computations: his Principle of Computa-

tional Equivalence (PCE) and what I call his Principle of Computational

Unpredictability (PCU).

These two principles are conjectures about the kinds of computation that

actually occur in the natural world, that is, in physics, in biology, in our

minds, and in society. Rather than being logically provable theorems, the

principles have the status of being inductive empirical hypotheses about the

nature of the world.

My feeling is that the PCE needs to be cast into a substantially weaker

form, which I call the Natural Unsolvability Hypothesis (NUH). Rather than

being a statement about computational equivalence, the Natural Unsolv-

ability Hypothesis says that most naturally occurring complex computations

are unsolvable in a certain technical sense of the word. The PCU—which says



that complex natural computations are unpredictable—needs some careful

hedging as well.

In 6.4: Random Truth, I take up a third “un”: undecidability. I offer a quick

overview of the formalist notion of reducing science to a theory, and analyze

what our studies of computation tell us about human ability to prove things.

We obtain the somewhat surprising new result that, given any complex

naturally occurring process and any theory of science, there will be infinitely

many true facts about the process that science is unable to prove. Undecid-

ability is all around us.

Finally, in 6.5: The Answers, I tackle the big questions: What is reality,

what is the meaning of life, and how can I be happy?

If you read nothing else in this somewhat technical chapter, do be sure and

read The Answers. You can understand the answers perfectly well without

reading the questions. I’m a little embarrassed about how hard the middle of

this chapter is.

6.1: Eight Ontologies

It’s not too hard to find computer scientists who are willing to accept uni-

versal automatism: the claim that everything is a computation. Is this simply

a work-induced delusion, a kind of byte blindness? Is such a claim to be

taken any more seriously than, say, a sports announcer’s platitude that life

is a game, an impassioned composer’s rant that the cosmos is music, or a

raconteur’s smiling remark that the world is made of jokes?

Our culture’s recent mania for computers and all things digital is, after all,

a technological fad that won’t be around forever. In a hundred years, some

other new paradigm may obsess us.

In the Middle Ages, people thought of their bodies and minds as made up

of the four elements Earth, Air, Water, and Fire, in the form of Bile, Blood,

Phlegm, and Choler. Back at the dawn of the Industrial Age, it seemed inter-

esting to wonder if the universe might not be some kind of big loom or steam

engine. Half a century ago, in the Atomic Age, it was common to think of the

universe as being a “space” filled with “particles.” How quaint.

But maybe this time we’ve got it right. Could it be that everything is really

a computation? One of the goals of The Lifebox, the Seashell, and the Soul has
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been to show by means of many examples that universal automatism isn’t as

unrealistic as it initially sounds. And in this section I want to consider pre-

cisely what would be the alternate possibilities.

As I mentioned above, philosophers speak of ontology as the study of what

exists. By extension, any particular assertion about what kinds of things

exist is spoken of as an ontology. Thus universal automatism is the ontology

that says everything is a computation. I’m going to use a simple combinato-

rial argument to distinguish between universal automatism and seven alter-

native ontologies:

Suppose we think of the universe as a very large class of objects in action.

Some of these entities will be thoughts, some will be computations, some will

be physical processes. I’ll take these to have the following meanings.

• A thought is a mental process that some idealized person

might have.

• A computation is a process that obeys finitely describable rules.

• A physical process is a phenomenon that might take place in

the actual world we live in.

Suppose I write T, C, and P for, respectively, the class of all thoughts, the

class of all computations, and the class of all physical processes. These three

classes will overlap with one another to a greater or lesser extent, depending

upon what kinds of entities are in our universe—that is, depending upon our

ontology.

I’m going to suggest that the relationship should be drawn as in figure 122;

computations are both thoughts and physical processes. Why?

Look again at the definition given a few paragraphs above. A computation

is a process that obeys finitely describable rules. This definition harks back

to section 1.1: Universal Automatism. As I mentioned before, if a process

strictly obeys rules, then it is also deterministic. There are two other implicit

aspects of my definition to remark upon. First of all, when I say “process” I

am thinking of a physical process that could exist in our world. And second,

when I say “finitely describable” I mean humanly thinkable.

Regarding the first point, note that all of the computations we’ve discussed

thus far have been embodied in some physical form or other: personal computer,
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physics experiment, organism, mental process, or society. A computation is a

process that some physical system could in principle carry out. So in this sense,

a computation is a physical process. The class C is a subclass of the class P.

Regarding the second point, the fact that we speak of a computation as

having a rule really means that there is some possibly very long explanation

of the computation that a person should in principle be able to understand.

As we’re doing philosophy here, we aren’t going to worry about the fact that

many computations are in fact unfeasible for a normal-sized human brain.

The essential point is that a computation must have a rule that is, at least in

an idealized sense, amenable to human logical understanding. And in this

sense, a computation is a possible thought. The class C is a subclass of the

class T.

It’s this overlap that gives the notion of computation its power and signif-

icance. Computations are interesting precisely because they are phenomena

where mind and matter overlap. Computations are, if you will, ideas made

flesh. In set-theoretic notation, C � T ∩ P.

Here’s a one-paragraph review of the notation involved. In general “A � B”

stands for “A is a subclass B” or “every member of A is a member of B.” “T ∩
P” stands for “the intersection of T and P ” or “the class of all entities that are

in both T and in P.” And we’re using the ~ symbol as a set-theoretic difference,

Figure 122: 
C � T ∩ P, or, Computations Are Thoughts and Physical Processes

Depending upon which of eight possible ontologies we adopt, the zones with the dots
may or may not be empty. The left dot represents a region we call T ~ P, the center dot
then corresponds to (T ∩ P) ~ C, and the right dot to P ~ T. In set-theoretic usage, the ~
symbol is like a minus or difference symbol, and the intersection symbol ∩ is used to
describe the overlapping region of two sets.



or minus symbol, so that “A ~ B ” means “the class of all entities that are in

A but not in B.” End of notation review.

I drew figure 122 in the most general possible fashion so as to be consis-

tent with the basic observations that C is a subclass of T, and C is a subclass

of P. The three black dots in my figure indicate regions that might or might

not be empty, depending on which ontology we subscribe to. From left to

right, the regions are.

• T ~ P. Thoughts that aren’t possible physical processes.

• (T ∩ P ) ~ C. Thinkable physical processes that aren’t compu-

tations.

• P ~ T. Physical processes that aren’t thinkable.

Note that universal automatism says every thought and every physical

process is a computation—and this implies that T = C and P = C, so T = P as

well, and all three of the dotted regions are in fact empty in the universe-

automatism ontology: the T, C, and P ovals coincide at the other extreme from

universal automatism is a “principle of plenitude,” which says that our uni-

verse is as richly populated as it could possibly be. In this ontology, you’d

expect to find objects in all three of the dotted zones.

A priori, there are in fact eight possible states of affairs regarding which of

the dotted zones are or are not empty: two times two times two possibilities.

Distinguo.

In figures 123 and 124, I tabulate the eight ontologies, numbering them

from one to eight. The first four ontologies are what we might call “natural”

in the sense that here are no entities in T ~ P, that is, no thoughts that are

not representable as physical processes. In the latter four “supernatural”

ontologies, we do allow for thoughts that are not physically representable.

In the figures, I’ve said a few words about each ontology, and where pos-

sible I’ve mentioned the names of some thinkers whose worldviews seem to

match the ontology in question. I use the symbols 0 and 1 to indicate the

absence or the presence of elements in the three “dot zones.”129

•  • •
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Description 0 or 1 for absence or Picture
presence of elements in 
the three “dot zones”
T ~ P,

(T ∩ P) ~ C,
P ~ T

1. Universal automatism. 0 0 0
Every object or thought 
is a computation.
[Stephen Wolfram, 
Edward Fredkin, Alan Turing]

2. Mechanism. 0 0 1
We think like digital
machines, and the rich
continuous world of physics
lies beyound us.

3. Physical antimechanism. 0 1 0
Thanks to being continuous
physical beings, our
behavior is richer than that
of digital machines.
[Roger Penrose, 
Nick Herbert.]

4. Common sense. 0 1 1
Our minds can do more 
than machines, and some 
entities do more than our 
minds. That is, not every 
possible thought is a 
computation, and not 
every physical process is 
thinkable.

Figure 123: The “Natural” First Four Ontologies

In these four ontologies, there are no entities in T ~ P, that is, all thoughts are repre-
sentable as physical processes.
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Description 0 or 1 for absence or Picture
presence of elements in 
the three “dot zones”
T ~ P,

(T ∩ P) ~ C,
P ~ T

5. Supernaturalism 1 0 0
Although physics is a digital 
computation, the mind has
supernatural powers lying 
beyond physics. [New ager.]

6. Computationalism. 1 0 1
Every thinkable physical
process is a computation. But
there are both non-thinkable
things and non-physical 
thoughts.

7. Idealism. 1 1 0
Some physical processes lie
beyond computation, and the
supernatural mind exceeds
even physics. [Kurt Gödel.]

8. Plenitude. 1 1 1
Every possible kind of object 
exists!

Figure 124: The “Supernatural” Second Four Ontologies

In each of the latter four ontologies, we have objects in T ~ P, that is, some thoughts are
not realizable as physical processes.
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I have to admit that, once we see universal automatism as only one of eight

options, it doesn’t seem quite so compelling.

Which ontology do I personally believe in? My general sense of the universe

is that, although we can find wonderfully broad laws, the details of things are

always even more complicated than our most outlandish expectations. I’ll

stick with universal automatism for now, but I’m tempted by plenitude, the

ontology in which we have all three kinds of oddball entities.

• Thoughts that aren’t physical processes. These might be infi-

nite thoughts that can’t fit into the physical world, or super-

natural effects wholly outside physics.

• Unthinkable physical processes. The very essence of quantum

mechanics seems to be that it’s in some sense unthinkable.

Maybe this gets a lot worse as we dig even deeper down.

Maybe there are arcane, eldritch aspects of reality the very

sight of which would break a human mind.

• Thinkable physical processes that don’t correspond to anything

that we’d call a computation. Perhaps there’s some perfectly

reasonable physical processes that really are fundamentally

nondeterministic and thus not at all like our notion of compu-

tation. Indeed, should quantum mechanics get the last word,

its fundamentally random processes would have this quality.

But plain universal automatism remains attractive, and in any case,

there’s much of interest in Wolfram’s conjectures about computation. That’s

what we’re going to talk about next.

6.2: The Computational Zoo

In this section I want first to look at some of the kinds of computation that

are known to exist, second to explain why Wolfram’s Principle of Computa-

tional Equivalence probably isn’t true, and third to discuss a weakened form

of the PCE that will in fact be strong enough to draw some interesting con-

clusions. In section 6.3: The Faster and Smarter, I’ll tackle the quite different

Principle of Computational Unpredictability. And in section 6.4: Random

Truth I’ll see what our discussions tell us about logical provability.
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At this point, I need to unpack some of our computer science ideas a bit

more thoroughly than before—which means there’s going to be dirty laundry

all over the place! So be warned that these three sections are more technical

than the rest of the book. Feel free to skim through them lightly, or even to

skip big clumps of pages at a time. In fact, if this is your first time through,

go straight to section 6.5: The Answers.

Anyone still here? Okay, let’s begin by recalling some of the basic notions

about a computation. First of all, I think of a computation P as a determin-

istic process, and if I initialize P with some state In, then P will carry out a

process that I call P(In). Note that I’m not thinking of P(In) as being any one

particular value, that is, I’m not thinking of P as being a function that simply

gives you a value. I’m thinking of P(In) as a process that goes on and on

through time t. The fact that the process is deterministic means that at any

future time t, the system’s state Out depends only on In and t. So we can, if

we like, think of P as a function of two variables, with P(In, t) = Out.

• Definition. P(In) produces state Out means there is some time t

such that P(In, t) = Out. That is, if we start P in state In, there will

eventually be a time at which P enters state Out.

Many kinds of computations have the property that they can reach a final

state and simply stop or freeze at this final state. If P(In) produces a state Out

and then remains in this state for good, we sometimes say that P(In) returns

Out. I indicate the distinction between producing Out and returning Out in

figure 125.130

As I briefly mentioned in section 1.1: Universal Automatism, the notion of

reaching a final state is so essential to our conception of computation that I

generalize it to the notion of a target state. Many natural computations never

reach a fixed final state. But even for these lively computations I’d like to have

a notion of reaching a target state.

So, once again, I define a so-called target detector for P to be a simple

helper computation IsPDone that has two special states we call True and

False (figure 126). To avoid adding extra complication, I require that IsPDone

be completely unproblematic in the sense that if you feed it a test value S,

IsPDone(S) quickly returns True or False.
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We can use target detectors to define a generalized notion of halting.

• Definition. Given a computation P and a target detector IsPDone,

we say that P(In) halts relative to IsPDone if the computation P(In)

produces a state Out such that IsPDone(Out) is True. Otherwise,

we say that P(In) doesn’t halt relative to IsPDone.

Figure 125: Producing or Returning an Output

In these pictures we think of time as a continuous series of instants along the horizontal
axis. And we view our computing system’s state as being a height above the horizontal
axis. We represent a computation by picking an initial point In on the vertical axis and
drawing the sequence of states that results.

Figure 126: Target Detector



By the way, I occasionally talk about halting without having mentioned

any specific target detector. In these cases, you can assume that I’m using a

default target detector that we might as well call IsPFrozen. IsPFrozen(Out)

returns True or False according to whether the computation P stops changing

after it produces Out.

Note that in the more general cases where IsPDone draws some subtler

distinction than the simple IsPFrozen, the word halt is slightly misleading.

For a real-world computation doesn’t necessarily cease to change when it

reaches a state Out such that IsPDone(Out) is True.

To take a very simple example, if you add two numbers on a pocket calcu-

lator, the calculator doesn’t freeze up and become unusable once it displays

the sum. It remains responsive to further inputs. It’s only “halted” in the

sense that it satisfies the IsPDone condition of displaying an answer that isn’t

currently changing.

Now that we have a generalized notion of halting, let’s discuss the some-

what surprising consequences of making the distinction between halting and

nonhalting computations.

In many situations we value computations that halt—because they give us

a definite answer in the form of the first target state they produce. Suppose

you feed a set of equations into some computer algebra software like Mathe-

matica or Maple, and that you ask the software to solve the equations. What

you want is for the resulting computation to halt in the sense of displaying

an answer on the screen. If the computation fails to halt, you sit there end-

lessly looking at a little Wait icon—with the computation busy with some

unsuccessful search for an answer, or knotted into a repetitive loop.

In other situations, we aren’t interested in seeing a computation reach any

particular state. When we simulate, say, the life of some artificially alive crea-

ture, or the evolution of a species, we aren’t necessarily aiming toward a spe-

cific kind of result, and still less do we want to see a fixed state or periodic

behavior. When I explore the world of two-dimensional cellular automata, I’m

usually looking for rules and inputs where the screen keeps churning and

doesn’t die down.

The distinction between halting and not halting leads to Turing’s cele-

brated halting problem.

Suppose we have a computation P and a target detector IsPDone. Is there
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a general method to decide if P(In) halts relative to IsPDone? As we’ll soon see,

the answer is often no!

Figure 127 shows what happens if we try to distinguish the halting and

nonhalting cases simply by running the computation P.

Identifying the nonhalting cases presents a problem because it takes for-

ever to wait to see if something never halts. To solve this problem we would

want to find a way to short-circuit the endless searches through the nontar-

geted outputs. That is, we’d like to have an endless search detector compu-

tation PFailsToHalt. By this I mean the following:

Given a computation P and a target detector IsPDone, we say the com-

putation PFailsToHalt is an endless search detector for P relative to IsPDone

if PFailsToHalt(In) returns True precisely for those cases in which P(In)

doesn’t halt.

And if the computation P and IsPDone have an endless search detector,

we’ll say that P has a solvable halting problem relative to IsPDone.

Figure 127: An Unsuccessful Solution to a Halting Problem

Our boxed device includes a copy of P and IsPDone. An input In goes to P. IsPDone
watches P’s ensuing series of Out states. A button-pusher watches the states of IsP-
Done. If the button-pusher sees True, it turns on the Yes lamp. But if P(In) doesn’t halt
relative to IsPDone, there’s no mechanism to see that the No lamp gets turned on.
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• Definition. The computation P has a solvable halting problem relative

to IsPDone if there is an endless search detector for P with IsPDone.

Otherwise we say that P has an unsolvable halting problem relative

to IsPDone.

Figure 128 illustrates how we can use an endless search detector to dis-

tinguish the halting and nonhalting inputs for P relative to IsPDone.
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Figure 128: A Solvable Halting Problem

Our boxed device includes a copy of P and an endless search detector PFailsToHalt. An
input In is copied and fed to both P and to PFailsToHalt. We time-share the computa-
tion, first running P for a second, then running PFailsToHalt for a second, and so on.
IsPDone watches P’s Out states. A first button-pusher watches the states of IsPDone. If
the first button-pusher sees True, it turns on the Yes button. A second button-pusher
watches the states of PFailsToHalt. If the second button-pusher sees True, it turns on
the No lamp.
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The halting problem was introduced by Alan Turing in his classic 1936

paper, “On Computable Numbers, with an Application to the Entscheidungs-

problem.” In this paper, Turing made three great advances.

• He characterized the notion of a possible computation as a

process that can be carried out by a Turing machine.

• He showed how to construct a universal computation capable

of emulating any other computation.

• He proved that any universal computation has an unsolvable

halting problem.

In order to appreciate these results, we’ll need the definitions of emulation

and of universality that I introduced in section 1.4: Analytical Engines.

• Definition of Emulation. Big emulates Small if there is an emulation

code emulatesmall such that for any states In and Out,

Small(In) returns Out if and only if

Big(emulatesmall, In) returns Out.

• Definition. A computation is universal if it can emulate any other

computation.

Turing’s main result is, once again:

• Turing’s Theorem. If U is a universal computation, then U has an

unsolvable halting problem.

(The particular target detector IsUDone used in Turing’s proof is the default

detector IsUFrozen. IsUFrozen(Out) is True precisely if the computation stops

changing after it enters the state Out. But, as I prove in the Technical

Appendix, if U is a universal computation and IsUDone is any nontrivial target

detector, the halting problem for U relative to IsUDone is also unsolvable.)

Turing’s Theorem is a primary reason why Wolfram’s Principle of Compu-

tational Equivalence might be of use. Taken together with Turing’s Theorem,

the PCE proposes that most complex natural processes have unsolvable
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halting problems—in the sense that there will be no way to detect in advance

those inputs that produce certain kinds of endless search behavior.

Before going into details about the PCE, let’s delve a bit more deeply into

what mathematical logicians have unearthed about the zoo of possible com-

putations.

Mathematical logicians speak of computations’ sophistication in terms of

“degrees of unsovability.” This notion is defined in terms of emulation.

• Definition. If two computations can emulate each other, then they

have the same degree of unsolvability. We say that P has a smaller

degree of unsolvability than Q if Q can emulate P, but P can’t emu-

late Q.

We sometimes want to think of a degree of unsolvability itself as having an

existence by itself, like a specialized number of some kind. Formally, mathe-

maticians do this by saying that the degree of unsolvability corresponding to

a computation P is the collection P of all computations having the same

degree of unsolvability as P.
Suppose that R is some very simple computation that is everywhere

defined—to be specific, suppose that, given any input In, the computation

R(In) simply stays in the In state forever. Any computation at all can emulate

R, but we don’t expect that the do-nothing R can emulate all the other com-

putations. For this reason, we say that R represents a minimal degree of

unsolvability. This degree can be called R, for “recursive”—a versatile word,

one of whose meanings is “having a solvable halting problem.”

Now suppose that U is a universal computation. Since U can emulate any

computation at all, U represents a maximal degree of unsolvability. This

degree can be called U for “universal.”

The particular do-nothing computation R halts for every input, so its

halting problem is readily solvable by letting RFailsToHalt(In) return False for

every possible input. And, by Turing’s Theorem, we know that if U is a uni-

versal computation, there is no UFailsToHalt(In) computation that will cor-

rectly detect the inputs for which U fails to halt. Putting these two facts

together with a bit of mathematical argumentation, we can conclude that R

has a smaller degree of unsolvability than U. That is, U can emulate R, but R
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can’t emulate U. Putting it a bit differently, the degree R is less than the

degree U.
In 1940, the logician Emil Post posed Post’s problem: are there any inter-

mediate degrees of unsolvability, that is, any degrees lying between R and U?

Another way to put it would be the following.

• Post’s problem. Is there a computation M such that M has an

unsolvable halting problem, but M is not universal?

Post’s problem was solved in the affirmative by Richard Friedberg and

Albert Muchnik, working independently in 1956. And further work by math-

ematical logicians such as Gerald Sacks has shown that the degrees of

unsolvability represent about as messy and unruly an ordering as one can

imagine.131 (See figure 129.)

• There are infinitely many distinct degrees of unsovability

between the minimal and the maximal degrees.

• The degrees of unsolvability are dense in the sense that

between any two degrees lies a third.

• The degrees of unsolvability don’t fall into a linear ordering, that

is, we can find P and Q such that neither can emulate the other.

Now let’s relate these mathematical discoveries to Wolfram’s PCE. I already

sketched a few of these ideas in section 1.2: A New Kind of Science, but let’s go

over them from the start. To being with, we have the PCE in Wolfram’s own words.

• Wolfram’s Principle of Computational Equivalence (PCE). Almost all

processes that are not obviously simple can be viewed as compu-

tations of equivalent sophistication.

I’ll now ring the PCE through four changes, hit a snag, formulate an alter-

nate form of the PCE, and then suggest a more plausible hypothesis that I’ll

call the Natural Unsolvability Hypothesis (NUH).

What kinds of computations are “obviously simple”? As I suggested in sec-

tion 1.2, it seems natural to say that the simple computations make up class
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one and class two, whereas the complex computations comprise class three

and class four. With this in mind, the PCE becomes:

(1) Almost all complex processes can be viewed as computations of equiva-

lent sophistication.

The notion that “almost all processes can be viewed as computations” is

the basic tenet of universal automatism, that is, everything is a computation.

Suppose we make that issue a separate battle and not blend it with the PCE.

In this case the PCE becomes:
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Figure 129: Degrees of Unsolvability

In this picture, R is a do-nothing computation, U is a universal computation, and M is a com-
putation with an unsolvability degree intermediate between R and U. The circle at the top
includes all of the universal computations—all of which in fact have the same degree of unsolv-
ability. The larger circle at the bottom includes the solvable or “recursive” computations, and
the smaller circle inside it includes the everywhere-defined computations. The dots stand for
some of the other possible computations, and the connecting lines indicate “smaller degree of
unsolvability” relationships. To keep the figure clear, I have not drawn all possible lines; in par-
ticular, since U is universal, I could draw “less than” lines running from each dot up to U, and
since R is of minimal degree, I could draw “less than” lines running from R up to each dot. The
messiness of the degree ordering is expressed by three facts: (a) There are infinitely many dis-
tinct degrees, meaning that endlessly more additional dots can be found within the middle
zone. (b) Since the degrees are in fact densely ordered, we can add a dot to the interior of any
of the “less than” lines connecting the pairs of computations. (c) Some computations have
degrees that bear no ordering relationship to each other, so there are pairs of dots between
which no line can be drawn.
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(2) Almost all complex computations are of equivalent sophistication.

What might Wolfram mean by saying that two computations are “of equiv-

alent sophistication”? Suppose we take this to mean that the computations

can emulate each other or that, using our new terminology, they have the

same degree of unsolvability. So now the PCE becomes:

(3) Almost all complex computations can emulate each other.

Now certainly Turing’s universal computation is class four and thus com-

plex. So, given that a computation that emulates a universal computation is

itself universal, the PCE becomes:

(4) Almost all complex computations are universal.

But the solution to Post’s problem suggests that this is very strongly false.

There are many computations that fail to have solvable halting problems and,

in addition, are not universal. And these intermediate-degree computations

are certainly not class one or class two computations. So it seems that the

mathematical logicians have proved:

(Snag) There are very many complex computations that are not universal.

The “almost all” in the PCE gives us some wiggle room, but at this point

we’d do well to back off even more. Suppose we weaken the range of applica-

tion of the PCE. Rather than saying it applies to “almost all” complex com-

putations, suppose we say it applies to “most naturally occurring” complex

computations. And this gives us an alternate formulation of the PCE.

• Alternate Form of Wolfram’s Principle of Computational Equiva-

lence (PCE). Most naturally occurring complex computations

are universal.

This statement is probably still too strong.132 Rather than insisting upon

it, we might consider what we really plan to use the PCE for. My feeling is that

the main use of the PCE is to draw the conclusion that many naturally occur-

ring computations embody unsolvable problems.

So I think what we really need is the following Natural Unsolvability

Hypothesis.133

• Natural Unsolvability Hypothesis (NUH). Most naturally occur-

ring complex computations have unsolvable halting problems

relative to some target detector.
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Think of a computation as an ongoing process, for example your life, or

society, or a plant growing, or the weather. Relative to a given computation,

we can formulate the notion of a target state as being some special status or

behavior that the computation might eventually reach. The halting problem in

this context is the problem of deciding whether a given input will eventually

send your computation into one of the target states. And a halting problem

is unsolvable if there’s no computation, algorithm, or rule of thumb to detect

which inputs won’t ever produce a target state.

The NUH says that if you have some naturally occurring computation

that isn’t class one or class two, then there will probably be some simply

computable notion of a target state that leads to an unsolvable halting

problem.

Getting more symbolic, the NUH says that for most naturally occurring

complex computations P, there will be a target detector algorithm IsPDone

such that there is no PFailsToHalt with the property that, for every input In,

PFailsToHalt(In) is True ↔
P(In) never produces a state Out such that IsPDone(Out).

Note that the PCE implies the NUH. For if most naturally occurring com-

plex computations are universal, it follows from Turing’s Theorem that they

also have unsolvable halting problems. Going in the other direction, the NUH

does not imply the PCE. The NUH claims only that certain computations have

unsolvable halting problems, and does not claim that these computations are

universal. The good thing about the NUH is that, unlike the PCE, the NUH

has no difficulties with the many nonuniversal computations that have

unsolvable halting problems. The NUH has a better chance of being true and

is easier to defend against those who doubt the validity of Wolfram’s analysis

of computation.

The downside of the NUH is that it’s a little hard to understand. Too math-

ematical. Like, the regular Godfather makes you an offer you can’t refuse; but

the mathematician Godfather makes you an offer you can’t understand.

Even though I myself did my doctoral thesis work in mathematical logic, I

still find it a bit hard to think about unsolvable halting problems. It’s like

there’s one too many negations in the definition. So I expect that the notion

is especially difficult for the layperson.
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A possible concern about the NUH is that perhaps it’s so weak a statement

that it’s trivially true. Recall that our current definition of a computation’s being

complex is that it be nonterminating, nonrepeating, and nonnested—where

“nested” means “having a regularly branching iterative form.” But it isn’t imme-

diately obvious (at least not to me) that any computation that’s complex in this

sense must have an associated unsolvable halting problem. So the NUH does

seem to be making an interesting assertion.

What I’d like to do now is to try to make the import of the NUH a bit clearer

by giving some examples.

To begin with, I’ll give some informal examples where the NUH might

apply; then I’ll discuss some more rigorous examples. Table 21 lists a variety

of real-world computations. In each row, I suggest a computation, a notion of

“target state,” and a relevant question that has the form of wanting to detect

initial states that fail to produce a target state.

Assuming that the NUH applies to these computations with these partic-

ular definitions of target state, we’re faced with unsolvability, which means

that none of the questions in the third column can be answered by finding a

simple way to detect which inputs will set off a process that never leads to

one of the target states.

Now let’s look at three formal examples of complex computations that are

likely to have unsolvable halting problems relative to a certain target state

detector. The unsolvable problems would be the following:

• It’s provably impossible to detect which programs will make

your computer hang or enter an endless loop.

• Assuming the NUH, it may be impossible to detect which

inputs to a cellular automaton will generate certain kinds of

desired target states, such as having an especially large glider

cross the world’s central cell.

• Assuming the NUH, it may be impossible to detect which

starting configurations will make a flocking simulation gen-

erate certain kinds of desired target states, such as having all

the simulated critters bunched in the center of the virtual

world.
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Regarding the computer example, think of the executable programs that I

run on my PC. Certain programs with certain data fall into endless searches

that perpetually hog most of the computer’s processing power and thereby

make the machine unusable. But, with other data, these programs reach a

satisfactory target state in which their usage of the machine drops to some

very minimal level. It would be nice to detect the bad program-and-data com-

binations in advance.
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Computation Target States Unsolvable halting problem

The motions of the Something rams Which possible adjustments to Earth’s
our solar system into Earth orbit can make us safe forever?

The evolution of our Extinction Which possible tweaks to our genetics
species as we spread might allow our race survive
from world to world indefinitely?

The growth and aging Developing cancer Which people will never get cancer?
of your body

Economics and finance Becoming wealthy Which people will never get rich?

Economics and finance Going broke Which people will never go broke?

Crime and punishment Going to jail Which kinds of careers allow a person
to avoid incarceration forever?

Writing a book It’s obviously Which projects are doomed from the
finished outset never to be finished?

Working to improve one’s Serenity, When is a person definitely on the
mental outlook tranquility, peace wrong path?

Finding a mate Knowing that this Who is doomed never to find true love?
is the one

Inventing something Eureka! Which research programs are utterly
hopeless?

Table 21 Unsolvable Halting Problems in Everyday Life

Each row lists a generalized kind of computation, a relevant notion of a target state,
and the probably unsolvable question of detecting which inputs lead to a computation
that never reaches a targeted state. We can think of the first column as being compu-
tations P, the second as representing target state detectors IsPDone, and the third as
representing questions that could be solved by computations of the form PFailsToHalt.
The import of the NUH is that these kinds of PFailsToHalt computations don’t exist.
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In other words, I’m thinking of my PC as a computation MyPC that I ini-

tialize with an In state consisting of a program and some data. In symbols I’ll

call this computation MyPC(In). At any given time t, there will be a unique state

Out of my PC such that MyPC(In, t) = Out. The IsMyPCDone(Out) target

detector will, produce, let us say, a True when the test program’s current

usage of the computer processing power has dropped to less than one percent.

Given the protean nature of a PC, we know that the MyPC computation is

universal. Therefore, by Turing’s Theorem, it has an unsolvable halting

problem, which means that there’s no endless search detector MyPCFailsTo-

Halt such that MyPCFailsToHalt (In) returns True precisely whenever the

program-and-input combination In is a bad apple that’ll send my machine

into endless thrashing.

In other words, there can never be an automated method for detecting bad

programs.

For the cellular automaton example, think of the rule known as Brian’s Brain

(see figure 130). We can speak of a computation Brain such that if In and Out

are cell patterns and t is a time span, Brain(In, t) = Out means that running

t steps of the Brain rule on In produces Out. For the sake of the purity of the

argument, we suppose that, as time goes by, we keep adding computational

resources so that the CA never has to hit a barrier or wrap around on

itself.134

Figure 130: The Brain Halting Problem
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Now let’s suppose that our IsBrainDone(Out) target detector is looking for

a connected glider of size over one hundred cells that touches one particular

cell called the center cell. IsBrainDone(Out) computes the value True if the

pattern Out contains such a glider, otherwise IsBrainDone(Out) computes

the value False.

Does Brain with this particular IsBrainDone have a solvable halting problem?

In this case, we almost don’t need the PCE. With a little effort, I think

someone could prove that Brian’s Brain is in fact a universal computation

and then extend the proof to show that Brain with the indicated IsBrainDone

does indeed have an unsolvable halting problem. Lacking such a proof, how-

ever, I can fall back on NUH and draw the same conclusion.

So I’m saying there’s no endless search detector computation BrainFails

ToHalt for Brain with IsBrainDone. That is, there is no BrainFailsToHalt such

that if  BrainFailsToHalt(In) is True, then Brain(In) will never produce an Out

pattern that contains a hundred-cell glider touching the center cell.

Lacking such a BrainFailsToHalt shortcut, all I can do is run the rule step-

by-step and watch what happens. If I’m fated never to see that hundred-cell

glider, I have no way of knowing when to stop waiting.

Finally, let’s look at the flocking simulation example (figure 131). Consider a

computation Flock such that if In is an input pattern, t is some period of

time, and Out is some other pattern, then Flock(In, t) = Out means that Flock

acting on the pattern In produces the pattern Out at time t.
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Figure 131: The Flock Halting Problem



Suppose that I want to decide which starting patterns will produce an

output state where all the boids are bunched up in a small area at the center

of the simulation world. In this situation, my IsFlockDone(Out) computation

will work by, let us say, summing up the distances of the boids from the

center, then entering the state True or False according to whether or not the

sum is less than 0.1.

If this particular pair of Flock and IsFlockDone computations have a solv-

able halting problem, then there is some FlockFailsToHalt computation that

will return True if the boids never bunch up.

Certainly Flock isn’t a simple computation; the boids fly along very gnarly

paths, and the computation is quite evidently class four. If we accept the full

PCE, we might boldly speculate that Flock is universal and that you can emu-

late any computation at all by setting up the boids in a certain way.

If we’re a bit more cautious, we might apply the NUH and conclude only that

the halting problem in question is unsolvable, meaning that we have no end-

less search detector FlockFailsToHalt for Flock with IsFlockDone. Flock-

FailsToHalt would tell me in a finite amount of time if the boids that begin in a

starting pattern In will fail to bunch up with the requisite degree of precision.

Lacking an endless search detector, all I can do is run the boid simulation

and watch to see if the boids ever do form that tight bunch in the center. And

I have no way of knowing how long I should wait. Even if, after a hundred

thousand updates, I still haven’t seen the boids cluster at the center, I must

still wonder if, when I wait a bit longer, maybe they’ll fall into formation.

Note that, so far as we know, the NUH could be wrong. There could be some com-

plex computations that do have solvable halting problems for every possible

target detector. But as one delves into these questions, it begins to seem as if, for

just about any class three or class four process we examine, there will indeed be

a way to view it as a computation for which there are endless searches, and for

which at least one target detector poses an unsolvable halting problem.

As one last illustration of the NUH, consider Wolfram’s wonderfully ele-

mentary example of a complex computation from arithmetic: powers of three.

That is, we look at the sequence that arises if we keep multiplying by three:

1, 3, 27, 81, 243, . . . As you can see from figure 132, what seems to be a

class three or class four pattern results.
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To me it seems likely that the question of whether an arbitrary bit pattern

In will ever be found as part of any row of this complex pattern is unsolvable.

Some patterns turn up early and often, and some patterns can be ruled out

for number-theoretic reasons. But there could well be a residue of patterns

that you can search for only by computing more and more rows—with no way

of knowing if you might be computing new rows forever. With a little finesse,

this potentially unsolvable problem can be viewed as a halting problem for a

powers-of-three computation with a particular target detector.135 My sense is

that there is no computation that can detect every In that will fail to appear

in any row of the powers of three.

Once again, the NUH says that every naturally occurring complex compu-

tation P will harbor an unsolvable halting problem relative to some everywhere-

defined target state detector IsPDone. Figure 133 illustrates the NUH.
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Figure 132: Arithmetic Is Gnarly

Each row of this image represents a successive power of three. The numbers are
“written out” in binary, with the black-and-white cells representing, respectively, ones
and zeros. Thus the top row is binary 1, the second row is binary 11, which is what we
normally call three, the third row is binary 1001, which is what we normally call nine,
and so on.
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I’m inclined to think that we may be able to drop the qualifier “naturally

occurring” from the NUH and get a stronger Unsovability Hypothesis (UH) as

illustrated. I think it’s in fact possible that all complex computations have

associated with them some unsolvable halting problem.

• Unsolvability Hypothesis(UH). All complex computations have

unsolvable halting problems relative to some target detector.

My reasoning is as follows. We’re using complex to mean class three or

class four, and simple to mean class one or class two. If P is a simple com-

putation, then for every input In, P(In) reaches a fixed state, enters a period-

ically repeating loop, or generates a series of nested repetitions. These

behaviors are essentially finite, and any questions about them you can pose

Figure 133: The NUH and the Unsolvability Hypothesis (UH)

In these two diagrams, I use the horizontal gray line to separate the solvable from the
unsolvable computations. The diagram on the left is the most general kind of situa-
tion one might have in which the NUH is true. The diagram on the left shows the sit-
uation if a stronger form of the NUH is true. The NUH says that for any naturally
occurring complex computation there will be at least one notion of target state such
that there’s no way to decide which inputs will cause the computation to produce one
of those target states. In the stronger UH form, we assert the unsolvability of all com-
plex computations.
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will have simple answers. Thus, we don’t expect simple computations to have

unsolvable halting problems. But if P is complex, then it’s in some sense

essentially infinite. And whenever infinity enters the picture, we expect to find

something that escapes finite description.136

6.3: Faster and Smarter

In this section I want to discuss the meaning and the plausibility of the

Principle of Computational Unpredictability (PCU). Figure 134 illustrates the

content of this principle.
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Figure 134: The PCU

In these two diagrams, I use the vertical gray lines to separate the predictable from the
unpredictable computations. The diagram on the left shows an incorrect estimate of the
relationship between complexity and predictability: We know that some complex com-
putations are in fact predictable (because they run much slower than necessary). The
diagram on the right shows the situation that I believe to be true. The PCU says that
any naturally occurring complex computation will be unpredictable. Although complex
predictable computations exist, the PCU claims that such computations are not found in
natural situations.
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• Principle of Computational Unpredictability (PCU). Most natu-

rally occurring complex computations are unpredictable.

In order to give a more detailed discussion of the PCU, I need to formulate

a more precise definition of unpredictability than I’ve given before. I’m going

to say that P is unpredictable if there isn’t any computation Q that emulates

P and runs exponentially faster. When I first discussed this notion in section 1.2:

A New Kind of Science, I finessed the question of speed and simply spoke of

a Q that runs “drastically faster” than P.

So now I’m going to need to explain what I mean by “runs exponentially

faster.” The study of computational speed makes up a large branch of theo-

retical computer science. And not without reason—the issue is also of great

practical significance.

Thanks to the eternal search for improved computational speed, the job of

being a software engineer never gets any easier. Even though the hardware

keeps getting faster, people’s expectations grow even more rapidly. One year,

users are excited about playing a two-dimensional Pac-Man game on their

cell phones—but a year later, they expect to see a three-dimensional racing

game on the cell phone display, and for the game to be networked so as to

allow for multiple players. Further down the line, users may be looking for

holograms, for brain-to-brain interfaces, for games that include artificially

intelligent simulations of all the personages currently in the day’s news—

there’s no end in sight. Programmers continually search for ways to make

their computations run faster.

Let me play the Devil’s advocate for a minute. Why should programs run

faster? What’s the big rush? What’s the point of making a boring process a

hundred times faster than before? It’ll just be a hundred times as boring. Do

you gain anything by receiving and deleting a thousand spam ads in the

same time that it used to take to process ten of them?

And when we turn to naturally occurring computations, speeding them up

also seems worse than useless. Suppose I view my life as a computation

called MyLife such that MyLife(Birth, 84 years) = Death. Do I really want to

double the speed of MyLife to get an “improved” FastMyLife such that Fast-

MyLife(Birth, 42 years) = Death? Physical time flows at its own rate and it’s
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best to accept this. When I start wishing things would happen faster, it

means I’m in a state of poor mental health.

But of course I recognize that there are practical situations where it really is

useful to find faster computational methods. In this section we’ll mainly be

talking about situations where you are running a computation Fast that emu-

lates some other computation Slow. If your superduper Fast is swifter than the

run-of-the-mill Slow, you may have an opportunity to gain something. I list a

few examples of these wished-for scenarios in table 20.
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The world’s slow computation Your fast mental  Your gain
shortcut computation

A partner’s mood swings You see what’s coming You mollify your partner 
before things turn ugly

Having a child with someone A (largely unconscious) You form a satisfactory 
assessment of your mutual family
compatibility

A rabbit’s escape path Foxy instincts about the You catch the rabbit
rabbits’ moves

Tacklers’ rush paths An experienced running You score a touchdown
back’s expectations

Ponderous bureaucratic Nimble lone-gun You outwit the 
deliberations decision-making establishment

Crowd motions in the Mentally simulating You check out quick
checkout lanes human behavior

Stock market behavior. Rules of thumb and You get rich
technical number-
crunching

Carrying out Using your deep insight, You’re the first to prove 
an exhaustive search subconscious illumination, the theorem
for the proof of a theorem and nonlinear speculations

Table 20: Uses of Prediction (Dept. of “You Wish”)

These are examples of situations where you might hope to use a fast mental computa-
tion to emulate some naturally occurring slow computation, thereby gaining something.
As we’ll be discussing in this section, in most cases the notion of the faster emulation
is just a dream and is not actually achievable. The appropriate answer to those who
think they can reliably make any of these predictions is: “You wish.”



Now think of a particular computation and suppose that you have a target

detector that signals if and when the task has reached a state where you

consider it to be done. Examples of how to reach a target state might be:

Simulate a certain amount of virtual time in an artificial world, find the solu-

tion to an equation, or bring the performance of a system up to some spec-

ified standard.

With this in mind, we define the runtime of a task as the amount of time it

takes until the computation reaches a targeted state. The runtime depends both

upon the computation P and upon the particular input In that you feed into it.

In comparing computational speeds, we find it useful to view runtime as a

function that maps input sizes into times. For a given input size N, runtime(N)

is the time that elapses until a targeted state will be found for a typical input

of size N.

How exactly do we measure the size of an input? In principle, an input

might have several sizes associated with it—such as the width and height of

a rectangle. But to keep things simple, we try to use a single number to

specify an input’s size. Examples of input sizes would be the following: the

number of symbols in an input string, the cell diameter of an input pattern

in a CA grid, the highest exponent used in a set of input equations, the

number of creatures placed into a simulation world, or the amount of virtual

time to be simulated in such a world. In the last example, the virtual targeted

simulation time need not match the computation time; it might take, for

instance, a year of computer time to calculate a second’s worth of virtual time

in a simulation of a chemical reaction involving millions of particles. It’s the

computation time that we associate with the runtime.

Note that we sometimes have a choice of which input size we view as the

variable N. If I’m simulating, let us say, cars in traffic, I could view the input

size as being either the number of cars that I’m simulating or the amount of

virtual time that I want to simulate. In the car example it’s actually more

useful to think of the number of cars as being the input size N. So I might say

that when I talk about the speed of a traffic simulation, I’m asking how much

computational runtime it takes to simulate, say, one virtual hour of traffic

involving N cars.

The speed of a computation is often measured in terms of how rapidly its run-

time grows as the input sizes go up, as suggested in figure 135 and table 21.137
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Rough bound on the runtime for Computational speed Speed class
inputs of size N

k•log(N) Log N time LOG

k•N Linear time LIN

k•N2 Quadratic time N2

k•N3 Cubic time N3

Any polynomial p(N) Polynomial time P

2(p(N)) for some polynomial p Exponential time EXP

2(2^(p(N))) for some polynomial p Double-exponential time EEXP

No describable bounding function Runtime unbounded Unsolvable

Figure 135: Growth Rates for Runtime as a Function of Input Size

Once N gets large enough, the various runtime functions are ordered as you’d expect.

Table 21: Some Computational Speed Classes

These are “rough” bounds in the sense that we don’t bother to mention the less impor-
tant terms of the bounding function. For instance, having an N 2 bound really means
that there are constants k, b, and c such that for sufficiently large N, the runtime on
any input of size N will be less than k•N 2 + b•N + c. Also recall that a “polynomial” in
N is any algebraic expression you can write as a sum of powers of N multiplied by real-
number coefficients.



Generally, if the runtime is any polynomial function of the input sizes, the

computation is viewed as feasible; otherwise the computation is unfeasible.

Thinking again of a traffic simulation, if the simulation requires quadratic

time, you can fairly comfortably handle a thousand cars, as it’s reasonable to

imagine performing a million computational steps for an update. But if the

simulation uses exponential time, you can forget about simulating a thousand

cars, because 21,000 is an insanely big number.

To clarify the ideas, let’s discuss the runtime speeds of six specific kinds

of computation, arranged in increasing order of difficulty.

• Pencil-and-paper calculation

• Cellular automata

• Simulated flocking

• Tuning a neural network

• Playing a board game like Go

• Performing universal computation

We begin by analyzing the runtime involved in pencil-and-paper calculation.

As I mentioned in section 1.3: Reckoning a Sum, it takes about a dozen steps

to reckon the sum:

275

+ 484

How we characterize the speed of this computation depends on how we

choose to describe the size N of the inputs.

If, on the one hand, I characterize the input size of the problem (275 + 484)

as being the maximum number of digits in the numbers, then the input size

would be N = 3. And in this case, addition with arithmetic is a linear time

computation, whereas counting by one takes exponential time relative to N.

If, on the other hand, I view the input size of the problem (275 + 484) as being

the size of the largest number involved, then the size would be N = 484. In this

case, performing the addition by using arithmetic is what’s called a logarithmic

time computation, whereas counting by ones uses linear time relative to N.138
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This distinction points out the importance of what we might call the “pre-

processing” or “translation” stage in which an input is put into a format

acceptable for a computation you’re testing. When we compare the run

speeds of totally different kinds of computations, we need to take into

account the runtime of any input translation computation that you use in

preparing an input to Slow for use by an emulating computation Fast.

Now let’s look at the runtime involved in producing the rows of a one-dimen-

sional cellular automaton. In particular, suppose I seed a one-dimensional CA

like Rule 45 with a pattern that is R cells across, and that I want to know what

the Nth row will look like. Let’s make two assumptions here. First, we reduce

our work by assuming that updating a line of identical cells is a trivial opera-

tion, so that I only need to compute the new values of cells that have an

actively changing cell in their neighborhood. Second, we increase our work by

assuming that there’s no limit to the width of our CA world. As illustrated in

figure 136, the update zone spreads out to either side of the seed zone. Com-

puting row N of a start pattern that’s R cells wide takes a time on the order of

R•N + N 2. Given that R is fixed for any particular computation, as we let N get

larger, the size of N 2 eventually swamps the size of R•N, so we simply call this

a quadratic time computation. That is, computing the future of a finite pattern

in a one-dimensional CA is quadratic in the number of rows to be computed. A

similar analysis shows that computing the future of a finite seed pattern in a

two-dimensional CA world is cubic in the number of updates requested. 139

As the next example of runtime, consider simulating the flocking behavior of

N boids for some fixed number of updates. At each update, we need for each

boid to consider its distance from every other boid. Each of the N boids needs

to know its distance from all of the other N boids, which makes for N•N or N 2

distance pairs to consider. So we say that running a boid simulation has

quadratic time relative to the number of boids.140

If we generalize a boid simulation to simulating the interactions of the

members of a society of N members, it’s easy to imagine models in which we

need to look at people’s interactions with other pairs of people—as when a

person might, let us say, tell person A something about person B depending

on the relationship between A and B. In this case, the simulation would
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become cubic time. And modeling still more complicated social interactions

could push the time up to higher and higher powers of N.

Now consider the runtime involved in trying to tune a neural network. We

want to adjust the connection weight values for a neural network with N links

between the neurons. The input is the untuned network, and the target state

condition is that the network should, let us say, recognize a hundred different

faces with an accuracy of some predetermined amount.

If I were to randomly test out weight values, I’d be embarking on an expo-

nential time computation. But if I instead use the back-propagation method

described earlier, it seems likely that the computation will usually converge

to good weight values in polynomial time.

Figure 136: 
A One-Dimensional CA’s Runtime Varies with Number of Rows Squared

This picture shows one-dimensional CA Rule 45, seeded with a ten-cell pattern
in the first row and updated through the fortieth row. Rule 45 is one of my
favorites because its white cells make cute animal cracker shapes like ele-
phants and giraffes. The rule has the slightly nasty property that a 000 neigh-
borhood updates to 111 and vice versa, leading to alternating stripes in the
blank zones. But those stripes can be filled in with essentially no computational
overhead. I’ve drawn lines to mark out the zones of real computation; two tri-
angles and a central rectangle. (I’ll ignore the fact that the rule grows more
slowly on the left so that, strictly speaking, I wouldn’t have needed to do a full
update computation for all the cells in the left triangle.) If we write R for the
width of the seed pattern and N for the number of rows, the rectangle holds N•R
cells and each triangle holds (N•N)/2 cells.
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Note, however, that the back-propagation method only works for certain types

of neural networks and for certain types of target state detectors. If a system is

chaotically sensitive to small changes in the connection weights, tuning the

network may turn out to be an exponential time problem after all.141

As our next example of computational runtime, consider the board game Go

(see figure 137). As you may know, Go is a game played on a square grid that

we can view as a matrix of N x N cells. Players alternate turns of marking a

grid cell with a white or a black stone. The goal is to surround regions of open

cells and to surround groups of your opponent’s stones—if you successfully

cut some stones off from access to open cells you capture them. The stan-

dard Go boards use N = 19, but the game is essentially the same—although

more complex—for any N. Now suppose that In is a given position of black

and white stones on an N by N Go board. The computation of deciding

whether black or white wins is likely to require exponential time in N. The

reason is that Go is sufficiently complex that in order to figure out how a

game might evolve, you have to look at essentially all of the possible board

positions, given that any cell can be in any of three states (blank, white, or

black) and that there are N•N cells; this makes for 3(N•N) possibilities—which

can also be written as 2(k•N•N) for a proper choice of k.

As it turns out, we don’t have to go to the mysterious East to find board games

that are likely to be exponentially hard. If you generalize our familiar game of

checkers to an N by N board, you also get a game such that, in all likelihood, it

takes exponential time to decide if a given position is a win for red or for black.142

As our final example of runtime, consider a universal computer U, and sup-

pose that U has a special target state called Halt. If I feed U an input In, the

computation U(In) results. Rather than defining runtime as a function of

input size N as in the other examples, it’s going to be useful here to think of

runtime as a function of input states In.

We’ll define U’s runtime function runtime(In) as follows. If the computa-

tion U(In) ever enters the Halt state, then we let runtime(In) be the compu-

tation time that it took to reach the Halt state. And in the cases where the

computation U(In) never produces the Halt state, we view runtime(In) as

undefined.
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Can we bound runtime(In) by some function expressed in terms of the size

N of the input? Suppose L is a simple, everywhere-defined computation map-

ping integers into integers.

• Definition. The function L bounds U’s runtime function means that

whenever In is an input of size N and runtime(In) is defined, then

runtime(In) < L(N).

• If there is an everywhere defined L that bounds U’s runtime func-

tion, we say that U is runtime bounded.

• Otherwise, we say U is runtime unbounded.

Figure 137: My Son Beating Me at Go

Rudy Jr. has been able to beat me at every known board game since he was five.
Computing if I will win from a given board position is easy: the answer’s always
No. But computing whether someone else in my position could possibly win is prob-
ably exponential in the size of the board.



As it turns out, logicians have proved a lemma to the effect that any

computation with an unsolvable halting problem is runtime unbounded.

(Mathematicians call a small, useful result a “lemma” because in Greek the

word means “I help.” The proof of the Unboundedness Lemma can be found

in the Technical Appendix.)

• Unboundedness Lemma. Any computation with an unsolvable

halting problem is runtime unbounded.

Recall from Turing’s Theorem that every universal computation has an

unsolvable halting problem. So the Unboundedness Lemma also tells us that

every universal computation is runtime unbounded.

The Unboundedness Lemma is a powerful result. Suppose L(N) is any

mathematical function that’s defined on all the integers—examples might be

N2, N100, 10N, 10(10^N), and so on. If P is a computation with an unsolvable

halting problem, then the Unboundedness Lemma tells us that L must fail to

bound P’s runtime. This means that there are going to be infinitely many

inputs In with for which P(In) does in fact reach a targeted halting state, but

not before more than L(N) steps have elapsed—with N as usual being the size

of In. The point is that when you start up P(In), you have absolutely no way

of knowing how long you may need to wait for the computation to halt.

Since the lemma holds for any computation with an unsolvable halting

problem relative to some target detector—and not just for universal compu-

tations—we can combine it with the NUH to get the following:

• Corollary to the NUH. Most naturally occurring complex computations

are runtime unbounded relative to some target detector algorithms.

This corollary tells us that there is no way to estimate how long you’ll need

to wait when you’re waiting for a naturally occurring system to do something

special—in the sense of producing a targeted output state. “Am I doing the

right things to write a best seller?” “Wait and see.”

So now we’ve learned a few things about computational runtime. Recall that I

got onto this topic because I wanted to delve into the notion of unpredictability
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that we used in the Principle of Computational Unpredictability: Most natu-

rally occurring complex computations are unpredictable.

• Definition. A computation is predictable if there is another compu-

tation that emulates it and is exponentially faster. Otherwise it’s

unpredictable.

In order to make the definition clear, I need to say a bit about what I

mean by emulation and by exponentially faster. For purposes of this dis-

cussion, let’s use the names Slow and Fast for the two computations. And

to simplify things, let’s assume that Fast and Slow use the same kinds of

inputs and that they both share the same notion of a target state. In this

simplified situation,

• Fast emulates Slow means that for any input state In and any

target state Out, Slow(In) produces Out if and only if Fast(In) pro-

duces Out as well.

Suppose that we indeed have a situation where Fast emulates Slow. And

suppose that Slow(In) and Fast(In) both produce the target state Out. In this

case we let slowtime be the time that Slow(In) takes to reach Out; and we let

fasttime be the time that Fast(In) takes to reach Out.

• Fast is faster than Slow means that fasttime = slowtime whenever

fasttime and slowtime are as just described. And if we can always

assert that 10fasttime < slowtime, we say that Fast is exponentionally

faster than Slow.143

I illustrate the notion of faster computation in figure 138.

In searching for a definition of unpredictability, my first instinct was to look

at those computations P that run at maximal speed in the sense that no Q that

emulates P is faster than P. That is, P operates at maximal speed if no other

computation can do the same things as P, faster than P. But it turns out that

this notion seems not to apply to many of the computations we are studying—

in particular, no computations performed by PCs are of maximal speed.
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Why not?

The problem is that any PC computation can be sped up by a linear factor.

This can be done by improving your hardware in two different ways.

• Using a faster processor.

• Adding memory so as to be able to use larger lookup tables.

Regarding faster processors—that’s what Moore’s Law is all about. Any PC

computation can be made faster by running it on a newer, faster machine.

The notion of lookup tables is subtler. Let’s return once again to the

example of using arithmetic to do an addition. How is it that you write 5 + 4

= 9 in a single computational step? Why don’t you need to count on your fin-

gers? It’s because you learned the simple sums by heart in elementary

school. You learned a lookup table.

Any digital computation can be sped up with lookup tables. Imagine a case

where you want a computation that can return the value of some gnarly

reality upgrade

Figure 138: Faster Computation

The Fast computation can do in fasttime what the Slow computation does in slowtime.
In this figure I’ve depicted the more general case in which the two computations might
possibly use different sets of states. For this reason, I’ve included two translation func-
tions, indicating that In is translated into In*, and Out* is reverse translated into Out.
To fairly compare the relative speed of two functions, we take the translation overhead
into account. So what we’d really want for our “Fast is faster than Slow” condition is
translationtime + fasttime + revtranslationtime < slowtime. In honest comparisons
where you aren’t trying to sneak a lot of computation into the translation steps, the
translation times are linear functions of the sizes of the states being translated.
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mathematical function f for all the values of i between one and one million.

One way to do it would be to code up an algorithm for f and turn it into a

computation Slow such that given input i, the computation Slow(i ) applies

the algorithm to i and halts when it’s crunched out an answer. But what I

could do instead would be to precompute all of the values f (1), f (2), . . .,

f (1,000,000) and store all these numbers in a multimegabyte lookup table

called, let us say, TableMillion. And now I can create a computation FastMillion

which has TableMillion built right into its code. FastMillion calculates f (i) in

just a few steps: look up the value of f (i ) in TableMillion and halt! FastMillion

will be faster than Slow, at least for inputs up to one million.

As a sidelight, note that, thinking in terms of how much space the source

code might occupy on your hard drive, FastMillion is going to be a larger pro-

gram than Slow, for the data in that big TableMillion lookup table is going to

be part of FastMillion’s code.

Is FastMillion maximally fast? Well, no, for FastMillion only has that

lookup table for the first million possible inputs. If I plan to evaluate f (i )

for i ranging up to a billion, then I could make a still faster computation

FastBillion that uses a billion-row TableBillion.

At first it might seem that once I go out to i values above a billion, the com-

putations Slow, FastMillion, and FastBillion would all be on an equal footing.

But, with their characteristic cunning, programmers can find ways to create

lookup tables that will be useful all the way down the line—akin to the way

that your times table for the numbers zero to nine helps you in multiplying

arbitrarily large numbers. If the lookup tables are cleverly designed, FastMillion

can be faster than Slow for all inputs i.144

As an elementary example of using a lookup table to make a program run

faster for every input, let’s consider a one-dimensional CA like the Rule 45

that I illustrated in the last section.

Suppose that, rather than updating the cells one at a time, I choose to

update blocks of, say, six cells at once. Because each cell needs to see its left

and right neighbors, in order to update a given block of six cells, I actually

need to look at eight cells: my stretch of six cells plus one more cell on the

left and one more on the right. So, in order to be able to update six cells at

once, I construct a lookup table with two columns: the 256 possible eight-cell
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blocks are listed in the left column, and the properly updated version of the

corresponding central six cells is listed in the right column.

And now I can update a row of, say, twenty-four cells by grabbing off four

overlapping eight-cell neighborhoods as shown in figure 139. Twenty-four

single-cell update steps are replaced by four six-cell update steps. The net

effect is a linear speedup.

Although the notion of using a lookup table sounds like a software issue, it’s

really a matter of hardware. Whether or not a PC can use a large lookup table

comes down to how much rapidly accessible memory the machine has. As

John Walker used to say, “If you’ve got the memory, baby, I’ve got the time.”145

Summing up, any known PC computation can be run faster by using two

kinds of hardware improvements: faster processors and more memory.

Note, however, that although the souped-up machine will be faster than the

old machine, it won’t be exponentially faster. We’ll have fasttime < slowtime,

but fasttime isn’t going to be so tiny that 10fasttime < slowtime. [Or, putting

it in terms a mathematician would be more likely to use, we won’t have

fasttime < log(slowtime).]

Given that so many computations will in fact allow for a linear speedup but

not for an exponential speedup, I choose to define unpredictable as being a

weak-enough concept to apply to these kinds of computations.

• Definition. P is unpredictable if and only if there is no Q that emu-

lates P and is exponentially faster than P. Otherwise P is predictable.

And I use strongly unpredictable to characterize those computations that

don’t allow for any kind of speedup at all.
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Figure 139: Updating a One-Dimensional CA in Chunks

Assume the cells at the extreme ends stay fixed in the blank state. The picture shows
how to update the inner cells in four chunks. You look at the cells under a curved arch
to update the cells under the corresponding pointed arch.
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• Definition. P is strongly unpredictable if and only if there is no Q

that emulates P and is faster than P.

Note that none of the computations performed by your desktop computer

is strongly unpredictable, for, as we just discussed, they all allow for linear

speedups. But it may be that in the natural world some strongly unpre-

dictable computations can be found. figure 140 illustrates the fact that being

unpredictable is a weaker notion than being strongly unpredictable.

As I discuss in the Technical Appendix, we’re not really interested in trying

to make the predictable-unpredictable distinction for simple computations—

for these computations all exhibit unsurprising behavior that can easily be

described in advance. The predictable-unpredictable distinction is primarily

of interest only for complex computations.

Here are two quick examples where a version of a slow computation is

predictable by an exponentially faster version.

• Computing the Nth power of 3, that is, P(N) = 3N. The slow way

is to start with a single tally mark on a piece of scratch paper

Figure 140: Predictability, Unpredictability, and Strong Unpredictability

The predictable computations allow for exponential speedups and the unpredictable
ones don’t. Within the unpredictable computations, the strongly unpredictable ones
don’t allow for any speedup at all.



and manually triple the number of marks on the paper N

times. It’s exponentially faster to compute P(N) by using arith-

metic and positional digit notation. So the slow computation

is predictable. Knowing how to do the fast computation

involves knowing about arithmetic.

• Computing the location P(N) of an idealized frictionless moving

body after N seconds. The slow way is to carry out a simula-

tion consisting of a long chain of tiny time steps. It’s expo-

nentially faster to compute P(N) by using an algebraic

formula. So the slow computation is predictable. Knowing

how to do the fast computation involves knowing calculus and

Newton’s laws to get the formula, and knowing algebra and

arithmetic to apply the formula.

Note that in both of these examples, a computation is predicted by another

computation that’s based on more advanced modes of thought. As I men-

tioned above, our ability to achieve linear speedups with improved hardware

implies that PC programs aren’t strongly unpredictable. But, setting aside

any doubts about the PCU, we expect that the complex computer programs

in daily use are unpredictable in the weaker sense of not allowing for an

exponential speedup.146 After all, programs are improved to have a good level

of speed before being marketed.

And I’m inclined to agree with the PCU’s claim that most naturally occur-

ring computations are unpredictable—in the sense that they can’t be col-

lapsed by an exponentially faster emulation. But there is a slight, nagging

possibility that some future conceptual advance might render many of our

computations predictable after all. I’ll return to this point later.

I have a sense that my new terms predictable, unpredictable, and strongly

unpredictable may still feel a bit slippery for some readers, so let me review

their definitions one more time.

• Predictable. A computation is predictable if there’s a way to

speed it up exponentially.

• Unpredictable. A computation is unpredictable if there’s no

way to speed it up exponentially.
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• Strongly unpredictable. A computation is strongly unpredictable

if there’s no way to speed it up at all, not even by a linear

factor.

And now let’s look at how these concepts apply to computations drawn

from the four higher levels of reality: physics, biology, the mind, and society.

Physics. Physics is famous for laying down concise laws describing the behavior

of nature. So we might expect most physical processes to be predictable. In

point of fact, this isn’t true.

A classic example of a physics prediction is the orbital motions of objects

under the influence of one another’s gravitational fields. Predictable? Well,

no. As I mentioned in section 2.3: Chaos in a Bouncing Ball, if more than two

bodies are involved, we are faced with an essentially chaotic three-body

problem. Yes, we can make exponentially fast algebraic predictions for quite

a long period of time, but eventually the multiple interactions of the bodies

throw off any formulaic laws—and we’re thrown back upon step-by-step

emulation as the possible means of prediction; and this breaks the exponen-

tial speedup. The emulation of a large number of orbital years will require a

computation time that’s some linear function of the number of years, and

that’s as good as you can do. Therefore many-body orbital computation is

unpredictable. Is the computation strongly unpredictable as well? At first

glance, it seems like we ought to be able to run a step-by-step emulation very

fast and thus get a linear speedup, destroying strong unpredictability. But I

don’t think this is actually the case. The problem? No emulation is perfect.

My sense is that most complex physical processes are strongly unpre-

dictable in the sense that they represent computations that can’t be run any

faster at all. Think of surf hitting a rock and shooting a plume into the air.

Those incredibly intricate little bumps and wiggles in the foam—no way will

anyone ever be able to produce a detailed, accurate, long-term emulation of

a wave by any means short of making a physical copy of the wave.

When Gaia gets gnarly, there’s no improving on her speed. Pour milk in your

coffee, build a fire, watch a cloud, notice the air’s motions when made visible

by smoke or fog—these are strongly unpredictable computations one and all.

At the level of basic physics we have no power to speed up the hardware.
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If a leaf trembles in the breeze, there’s no way to make the fluttering go faster

than its natural rate. If you increase the velocity of the wind, you’ll be looking

at an essentially different computation, for at different wind speeds, the leaf’s

behavior inhabits differently shaped chaotic attractors.

Yes, if I had a movie of the fluttering leaf, I could play the movie at double

speed—but that doesn’t seem to be something we can do with events that

aren’t yet in the past. Speaking science fictionally, it’s fun to imagine a

speedup ray that makes processes run faster. And maybe a slowdown ray to

do the opposite. But in reality, I don’t see this happening. The fluttering leaf

is strongly unpredictable; if you want to find out what it’ll do next, all you can

do is watch and wait.

But—couldn’t an exceedingly powerful PC simulate the leaf motions faster

than they happen? Well, here we run into the problem of sensitive depend-

ence upon initial conditions—such as the leaf’s geometry and the air cur-

rent’s precise velocity. Given the rate at which chaotic computations diverge,

and given the expected computational richness of chaotic motion, it’s highly

unlikely that we could simulate a fluttering leaf with enough accuracy to

match the real leaf for more than a fraction of a second.

The problem is partly that physical systems seem analog rather than dig-

ital. The impossibility of getting a precise digitized measurement of a phys-

ical state not only frustrates our ability to emulate physics on a souped-up

PC; it also blocks our ability to “hash” physical states into code numbers to

be used as indices into lookup tables.

But what if physics were fundamentally a digital computation, perhaps like

a giant CA, or perhaps something a bit more like a theorem-proving machine.

A digital physics is logically possible—indeed, there’s some movement in this

direction not only among hard-core universal automatists but also on the part

of physicists.

A digital physics admits the logical possibility of getting a precise digital

copy of the wave or the windblown leaf, and of using a faster processor and

a big lookup table to make a physical computation run faster than it does in

the real world.

The problem here is: What kind of hardware runs my high-speed reality

emulation? An alternate universe? Or perhaps there’s a Cosmic Fry’s Elec-

tronics that sells upgraded versions of our standard-issue reality engine?
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Well, never mind about how the reality upgrade is to be accomplished. Let’s

just suppose that it’s possible. Then what? Well, then physics is no longer

strongly unpredictable. But—and this is a key point—it would still be unpre-

dictable.

Why? Because, insofar as we believe in the Principle of Computational

Unpredictability, there are no exponentially fast shortcuts for predicting the

outcome of a naturally occurring complex computation.147

Biology. Let’s focus on the issue of morphogenesis, that is, let’s think about

how an egg or a seed grows into an animal or a plant. To be quite definite,

let’s think about a fertilized human ovum that grows through the fetal stages

to become a baby. Would it be possible to predict the baby’s appearance?

Certainly we have some limited types of prediction tests regarding, for

instance, the baby’s sex and lack of birth defects. But what about predicting

the pattern of pores on the baby’s nose, the locations and curls of the baby’s

individual hairs, or the detailed network connections of the baby’s brain?

Even identical twins are different, if you take a magnifying glass to them.

As I discussed in section 3.2: The Morphogenesis of a Brindle Cow, the

processes that grow a baby are complex parallel computations unlikely to allow

for an exponential speedup. So fetal growth is in this sense unpredictable.

Is the growth of an organism strongly unpredictable? In my Ware novels, I

play with the science-fictional notions of rapidly tank-growing a clone of a

person’s adult body, and of somehow copying the same person’s “software”

onto the fresh tank-grown clone. The result: a new person who looks, thinks,

and acts just like the original person.148

But just because I can imagine a linear speedup of fetal growth, that

doesn’t mean it’s really possible. The problem is that the growth of an

organism is a physical process and most complex physical processes are

likely to be strongly unpredictable.

If cell differentiation is driven by a CA-like reaction-diffusion rule, for

instance, the rule is going to be highly sensitive to how rapidly the relevant

morphogen molecules diffuse past the cells’ membranes and through the

amniotic fluid. And when we’re talking about something like molecular diffu-

sion rates, we’re talking about basic physical processes that tend to be defi-

nitely pegged to their own particular rates of change.
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In other words, if you tried to speed-grow a fetus, you’d be likely to end

up with something that looked more like a stork or a cabbage leaf than like

a baby.

So my guess is that biological processes are not only unpredictable but

strongly unpredictable. The only way they could allow for linear speedups

would be if, once again, we could find some kind of reality upgrade to make

the underlying physics go faster.

One cautionary note. Everything dies, so there’s a sense in which all bio-

logical processes are simple class one computations. For most inputs In and

most times t, an organism’s output state P (In, t) is “Sorry, I’m dead now.”

Bummer.

I guess we need to say that we’re only comparing the computational run

speeds of events that occur before an organism’s demise. Putting it differ-

ently, I’m analyzing the computational power of idealized biological systems

that could in principle live for an indefinitely long time.

The mind. Due to the computational complexity of our brains’ neural net-

works, it seems clear that our mental processes are unpredictable. Indeed,

given that your thoughts emerge from physically based biological processes,

your stream of consciousness is in all likelihood strongly unpredictable.

We sometimes have the illusion of speeding up our mental computations

for short periods of time by chemical means. This is the appeal of the stimu-

lants, ranging from caffeine to crack cocaine to conotoxins (the hallucino-

genic venom of the CA-decorated cone shell snail). As mankind’s

biotechnological skills advance, various other kinds of brain speedups may

emerge, perhaps electrical as well as chemical. But it’s not clear if any of

these speedups can produce an accelerated emulation of what the brain

would actually have been doing had it been left alone. So in that sense, the

brain’s normal behavior isn’t being successfully predicted. As a practical

matter, artificially induced brain speedup is often accompanied by a

decreased ability to focus on a specific task. Our painstakingly evolved neu-

rons aren’t meant to be supercharged.

Much more to the point is the manner in which education and life expe-

rience teach us to draw conclusions faster. To some extent this is a matter

of learning to group similar situations, to map an ensemble of situations
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to a single compact abstraction, and to use the abstraction as a bookmark

that selects a response from a neural lookup table. As we grow older, our

lookup tables grow and our responses become linearly faster and more

stereotyped. The speed increase is the good news; the bad news is the loss

of flexibility. “Eh?”

Even more dramatic than the accumulation of experience are the quite

rare occasions when we attain an insight that sheds light upon large areas of

our mental experience. These dramatic cases represent exponential rather

than linear speedups.

If I say that exponential mental speedups occur, does this mean that the

flow of thought is predictable after all? No. I have two reasons for saying that

the occasional exponential speedup doesn’t render the stream of thought pre-

dictable.

The first has to do with self-reference. Your mind is in fact the only “hard-

ware” with enough information to try to run a computation that predicts the

actions of your mind. And your thoughts are what we might call self-modi-

fying code. You reach some partial kind of enlightenment, your mental land-

scape changes, you begin thinking faster. But this new, faster thought mode

is once again unpredictable by you. It’s like you can never manage to stand

upon your own shoulders.

The second reason why I don’t think the possibility of enlightenment

makes my mind predictable is that my mental life is so multifarious.

Speeding up one level doesn’t mean speeding up all levels. Even if I become

able to understand certain special kinds of situations in an exponentially

faster way, this doesn’t imply that I will ever be able to emulate, say, my emo-

tional states and my fleeting fancies any faster than they arise.

Sometimes, when bored and unhappy, I begin to feel that my brain states

are in fact predictable. “Same old, same old.” I see the same faces and think

the same dull thoughts. But, if I can muster enough alertness, I see that the

details of my thoughts are a bit different each day.

The clouds in the sky are never precisely the same, and my thoughts don’t

precisely repeat either. Even when—at a coarse scale—I feel my homeostatic

processes to be locked into a class-two repetition, the details are truly class four.

Becoming aware of this is, I would say, a source of liberation. See the gnarl!

As in the biological case, I could say that because I’m going to die, my
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whole lifetime’s stream of consciousness could be collapsed into a single very

large lookup table containing my state of mind for each moment of my life—

assuming that mental states could somehow be finitely recorded. Does this

mean that my thoughts were predictable after all?

Certainly that’s not my intended meaning of predictability. After all, that

giant lookup table did require a big computational investment. My simple for-

malized definition of predictability doesn’t fully capture this subtlety. Possibly

future writers on these topics will find a better and more intricate formula-

tion of predictability. I am, after all, only an early geek philosopher.

An alternate way to avoid the trap of finitude is to say that an analysis

of my mind’s predictability should be carried out as if I were to live forever.

This isn’t as unrealistic as it sounds. Suppose that my mind Ru could in

fact be represented by an neural-net-equipped digital lifebox model

RuLifebox. Being pure software, RuLifebox is then immortal, in that there’s

no upper bound to how long a time it can be run. So then it’s not a simple

or predictable computation.

Society. Most of the things I said about an individual mind hold for a society’s

hive mind. And the mortality issue that plagues biological and mental com-

putations is perhaps not so applicable to a society because, at least in prin-

ciple, it seems a society need never die. Societies evolve into other societies

rather than dying. Barring a huge extinction catastrophe, our history could

go on forever—with humanity leaving Earth for the stars, and perhaps even

making it past whatever cosmic cataclysms our universe as a whole may be

in for.

In the discussion of the mind, I mentioned that certain kinds of insight can

in fact make a mind run exponentially faster. Relative to the hive mind, I’d

say that exponential speedups have arisen at several of the stages in the

human history of technology.

The development of a common language, for instance, allows all the mem-

bers of a society to think faster. The speedup seems more than merely linear,

as entirely new kinds of cooperation become possible. And the introduction

of writing, of the printing press, of telephones, and of the Web—each of these

has brought about a large and possibly exponential speedup in the compu-

tation rate of the hive mind as well. My sense is that the introduction of
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language and the successive communication enhancements have sped up

the hive mind’s activities to the same degree that using numbers speeds up

the process of arithmetic.

How about the predictability of some specific social computations? The

classic example would be the daily Dow stock market index. Think of “Dow”

as an ongoing computation that spits out a specific number every day. Given

the intense effort and utter lack of success on the part of technical market

analysts, it seems that Dow is strongly unpredictable and cannot be sped up

by even a few minutes.

As a side issue, the Dow computation is also unsolvable in the sense that

there will be no way to compute correct answers to target-detecting questions

of the type “Will such and such a pattern of ups and downs ever occur?” We

might also wonder if Dow is universal, although it’s far from obvious how one

might actually use it to emulate other kinds of computations.

In the preceding discussion—and, for that matter, throughout this book—

I’ve repeatedly insisted that naturally occurring complex processes are

unpredictable. This is, once again, not a provable fact, but an hypothesis.

• Principle of Computational Unpredictability (PCU). Most natu-

rally occurring complex computations are unpredictable.

Note that the PCU asserts that only naturally occurring computations won’t

be predictable. The only support for the PCU is empirical, that is, the PCU

seems to be true for all the naturally occurring complex computations that

Wolfram and others have looked at. But, once again, the PCU remains only a

conjecture.

The restriction to naturally occurring computations is important for, as I’ll

now explain, there are artificially slowed-down complex computations that

allow for exponential speedups.

Given any PC computation P, we can think of a slow, predictable compu-

tation DumbP that does the same thing as P. The idea is to have DumbP

waste a lot of time. One way to do this is to have DumbP have a region of

“scratch paper” memory that starts out with one mark in it. DumbP acts just

like P, except that, after each step of P that it emulates, DumbP goes off to
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the side and wastes time by doubling the number of marks in the scratch

paper memory. If P takes n steps to do something, then DumbP will take on

the order of 2n steps—thanks to all that doubling. This means that P runs

exponentially faster than DumbP. So DumbP is predictable.

Note that DumbP has some bogus time-wasting code in its program. So we

might suppose that if a program P has minimal length, then P is likely to be

unpredictable. Certainly there are many programs of minimal length. But as

we saw in our discussion of lookup tables, it’s often the case that longer pro-

grams will run faster than smaller programs.

Human intellectual history teaches us that there can be speedup methods

much subtler than eliminating waste or using lookup tables. Think once

again of the invention of language and writing, of positional notation and

arithmetic, of calculus and Newton’s laws. Truly epochal advances bring

exponential speedups in their wake.

The PCU is very much a case-by-case empirical hypothesis, and, given any

complex computation, we’re haunted by the faint possibility that there might

be a subtler or more intricate computation that is in fact exponentially

faster.149

Now I’ll sum up sections 6.2: The Computational Zoo and the present sec-

tion 6.3 Faster and Smarter with a map that shows what I believe to be the

layout of the computational zoo (see figure 141). Keep in mind that the Nat-

ural Unsolvability Hypothesis says that naturally occurring complex compu-

tations are unsolvable, whereas the Principle of Computational Equivalence

says that naturally occurring complex computations are unpredictable. These

principles are logically independent, so in my map the principles make dis-

tinctions along perpendicular axes.

The diagram reflects my opinion that the NUH and the PCU are true for

naturally occurring complex computations—such as complex personal

computer applications, the dynamics of physical systems, the growth of

organisms, the processes of the human mind, and the workings of human

society.

The most interesting part of my map is the “downtown” region that I

labeled “Naturally Occurring.” In figure 142, I zoom in to map the downtown

region of the computational zoo, indicating some of the landmark computa-

tions we’ve discussed.
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In figure 142, I have the PC computations (which really include the digital

CAs) on the left, as these all allow for linear speedups. CA Rule 110 is known

to be universal; and it’s my conjecture that Rule 30 will prove to have some

unsolvable halting problems but fail to be fully universal. I regard most of the

more naturalistic computations as being both universal and strongly unpre-

dictable, which means, once again, that they can emulate any possible com-

putation and that they don’t allow for any kind of speedup at all. These

include, from top to bottom, the flow of a society’s culture, an individual

person’s stream of thought, the development of a plant or animal from a seed

or fetus, the turbulent flow of any fluid such as the water in surf or the air

Figure 141: My Map of the Computational Zoo

The horizontal line separates the solvable from the unsolvable computations, as sug-
gested by the Natural Unsolvability Hypothesis (NUH). The first vertical line separates
the predictable from the unpredictable computations, as suggested by the Principle of
Computational Unpredictability (PCU). The second vertical line separates the unpre-
dictable from the strongly unpredictable computations.
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we breathe, the historical sequences generated by a society’s politics, and our

friend the fluttering leaf. It may be that I’m overoptimistic and that some of

these computations aren’t actually universal, but I would still expect all of

them to embody some kind of unsolvable halting problem. One example of a

nonuniversal naturally occurring computation might be the Dow index of the

stock market—simply because it may be too lacking in fine structure to be

universal.

One final, rebellious thought. It would be very interesting if the PCU were

totally wrong. I’m thinking of a situation where some beings vastly more intel-

ligent than us come up with higher-order concepts to produce gargantuan

computations that can run exponentially faster than all the computations

around us. These godlike yet finite minds would be capable of scanning
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Figure 142: Naturally Occurring Computations

The vertical line separates unpredictability from strong unpredictability, and the hori-
zontal line separates universality from mere unsolvability. The computations on the left
can be sped up by a linear factor, and those on the right can’t be sped up at all. The
computations on the top are universal (and thus unsolvable as well), whereas the com-
putations on the bottom are unsolvable but not universal.



today’s Earth and in a matter of seconds correctly predicting every single

detail of the twenty-four hours to come: your dreams tonight, the finest vor-

tices in the water flowing down your shower drain tomorrow morning, the

entire contents of tomorrow’s evening news.

In the tome you hold, I’ve laboriously assembled arguments why such

beings can’t exist. But, hey, maybe I’m wrong.

If you look at the intellectual history of the human race, you’ll notice that

there aren’t really all that many new ideas we’ve come up with. A lot of what

scientists and artists occupy themselves with is putting old wine in new bot-

tles. Maybe there’s a whole level of thought that simply hasn’t occurred to us

yet—a breakthrough as radical as calculus, as radical as positional arith-

metic notation, as radical as language.

But we do know this: Any deterministic processes capable of speeding up

our complex naturally occurring computations would be unlike anything

we’ve ever seen.150

6.4: Random Truth

The philosopher Gottfried Wilhelm Leibniz is perhaps best known for the

fierce controversy that arose between him and Sir Isaac Newton over the

invention of calculus. The S-like integral sign that we use to this day in

expressions like ∫f(x) dx is in fact a notation invented by Leibniz.

When Leibniz was a youth of nineteen, he wrote a paper called “De Arte

Combinatorica,” in which he tried to formulate a universal algebra for rea-

soning, in the hope that human thought might some day be reducible to

mathematical calculations, with symbols or characters standing for

thoughts.

But to return to the expression of thoughts by means of characters,

I thus think that controversies can never be resolved, nor sectarian

disputes be silenced, unless we renounce complicated chains of rea-

soning in favor of simple calculations, and vague terms of uncertain

meaning in favor of determinate characters.

In other words, it must be brought about that every fallacy

becomes nothing other than a calculating error, and every sophism
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expressed in this new type of notation becomes in fact nothing other

than a grammatical or linguistic error, easily proved to be such by

the very laws of this philosophical grammar.

Once this has been achieved, when controversies arise, there will be

no more need for a disputation between two philosophers than there

would be between two accountants. It would be enough for them to

pick up their pens and sit at their abacuses, and say to each other

(perhaps having summoned a mutual friend): “Let us calculate.”151

Let’s refer to this notion as Leibniz’s dream—the dream of finding a logical

system to decide all of the things that people might ever disagree about.

Could the dream ever work?

Even if the dream were theoretically possible (which it isn’t), as a practical

matter it wouldn’t work anyway. If a universal algebra for reasoning had

come into existence, would, for instance, Leibniz have been able to avoid his

big arguments with Newton? Fat chance. People don’t actually care all that

much about logic, not even Leibniz. We just pretend to like logic when it hap-

pens to be on our side—otherwise we’re, like, to hell with logic.

This said, there’s a powerful attraction to Leibniz’s dream. People like the

idea of finding an ultimate set of rules to decide everything. Physicists, for

instance, dream of a TOE—short for Theory of Everything. At a less exalted

level, newspapers and TV are filled with miracle diets—simple rules for regu-

lating your weight as easily as turning a knob on a radio. On the ethical front,

each religion has its own compact set of central teachings: Buddha’s Eight

Noble Truths, Moses’s Ten Commandments, the Hindu Rules of Dharma,

Christ’s Two Commandments, the Five Pillars of Islam, and so on. And books

meant to help their readers lead happier lives usually offer a simple list of

rules to follow. (Sneak preview: my list, which appears in section 6.5: The

Answers, contains six suggestions: turn off the machine, see the gnarl, feel

your body, release your mind, open your heart, be amazed.)

But, as I hinted above, achieving Leibniz’s dream is in fact logically impos-

sible. And I’m going to spend the rest of this section explaining why.

In order to truly refute Leibniz’s dream, we need to find a precise way to

formulate it. As it happens, formal versions of Leibniz’s dream were first

developed in the twentieth century.
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An early milestone occurred in 1910, when the philosophers Bertrand

Russell and Alfred North Whitehead published their monumental Principia

Mathematica, intended to provide a formal logical system that could account

for all of mathematics. And, as we’ll be discussing, hand in hand with the

notion of a formal system came an exact description of what is meant by a

logical proof.

There were some problems with the Russell-Whitehead system, but by

1920 the mathematician David Hilbert was confident enough to propose what

came to be known as Hilbert’s program:

• We will discover a complete formal system, capable of deciding

all the questions of mathematics.

• We will prove that this system is free of any possible contradiction.

As Hilbert put it, “The conviction of the solvability of every mathematical

problem is a powerful incentive to the worker. We hear within us the per-

petual call: There is the problem. Seek its solution. You can find it by pure

reason, for in mathematics there is no ignorabimus.” You’ve got to love a guy

who’s so scholarly that he can’t help but lapse into Latin. That last word

means, as you probably realize, “we will not know.”

For a decade, scientists could dream that Hilbert’s program might come

true. And meanwhile mathematics and much of physics were being recast as

formal systems. Scientific theories could now be viewed as deterministic

processes for determining the truth of theorems. Leibniz’s dream was nearly

at hand!

But then, in 1930, the logician Kurt Gödel proved there can never be a

formal system of the kind sought by Hilbert’s program. Every possible formal

system must always have some kind of hole in it. And then Turing came along

and made the situation even worse.

And now, thanks to my analysis of computation, I’ve found that, given any

formal system about science, that is, any candidate for Leibniz’s dream, there

are going to be lots of sentences about the natural world that are undecid-

able for that formal system—in the sense that the system can’t prove the

given sentence to be true and can’t prove it to be false.
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• Principle of Natural Undecidability. For most naturally occur-

ring complex processes and for any correct formal system for

science, there will be sentences about the process that are

undecidable by the given formal system.

It’ll take the rest of this section for me to explain how I arrived at this

claim. Let’s begin by defining what I mean by a formal system. A formal

system F can be characterized as having four components:

• A set of symbols

• A rule for recognizing which finite strings of symbols are

grammatical sentences

• A rule for deciding which sentences are to be regarded as the

axioms of the system

• Some inference rules for deducing sentences from other

sentences

We also put a finiteness condition on the rules F uses—the grammar rule,

the axiom rule, and the inference rules. These rules must be finitely describ-

able in the same sense that a computation is finitely describable. Indeed, we

can think of these rules as simple computations that halt on every input by

returning a True of a False.

Although a formal system can be thought of as a meaningless game with

symbols, in reality we create formal theories to encapsulate our knowledge of

the world. One gain in creating a formal system is that the rigorous process

of codifying the system can give us fresh insights into the domain we’re trying

to describe. In this context it’s often felt that the shorter and more compact

we can make a formal system, the better is the job that we’ve done.

Compactness can, however, be overdone—it’s perhaps even more impor-

tant that the formal system should have a pleasing aesthetic form. And even

more essential than compactness or beauty is that the formal system should

be able to prove a lot of things, and the shorter the proofs, the better.

Given that the main purpose of a formal system is to prove things, I should

now explain what I mean by a formal proof.

A proof of a sentence S from the formal system F is a sequence of sentences,

443
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with the last sentence of the sequence being the targeted sentence S. Each

preceding sentence must either be an axiom or be a sentence that is arrived

at by combining still earlier sentences according to the inference rules. If a

sentence is provable from F, we call it a theorem of F.
Combined with the notion of proof, a formal system becomes the source of a

potentially endless number of theorems. Aided by a formal system, we mentally

reach out into the unknown and produce facts about entirely new situations.

Now let’s think of a formal system as a computation. There are several

ways one might do this, but what’s going to be most useful here is to work

with a computation FProvable that captures the key aspect of a formal

system: It finds theorems. Our FProvable will try to detect—so far as pos-

sible—which strings of symbols are theorems of F. That is, for any proposed

provable sentence S, the computation FProvable(S) will carry out the following

computation.

• If S fails to be a grammatical sentence FProvable(S) returns

False.

• Otherwise FProvable starts mechanically generating proofs

from the formal system F in order of proof size, and if S

appears at the end of a proof, FProvable(S) returns True.

• If S is a grammatical sentence but no proof of S is ever found,

then FProvable(S) fails to halt.

As it turns out, if F is a powerful enough formal system to prove the basic

facts of arithmetic, then FProvable will be a universal computation. And then,

by Turing’s Theorem, FProvable has an unsolvable halting problem.152

As I mentioned in section 6.4: Faster and Smarter, if a computation has an

unsolvable halting problem, then there’s no way to put a bound on how long

a computation may actually take before it halts. In terms of the FProvable

computation, this means that even very short theorems can have unbeliev-

ably long proofs.

Fermat’s Last Theorem is a famous example of a short theorem with a long

proof. Sometime around 1630, the French mathematician Pierre de Fermat

wrote the following conjecture in the margin of a book: “There are no whole

nonzero numbers x, y, z, and n such that n is greater than 2 and xn + yn = zn.”
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Some 360 years later, in 1994, the Princeton mathematician Andrew Wiles

succeeded in proving the theorem. His paper on the subject spans 108 pages

in an advanced mathematical journal—and in order to flesh out the details,

one would have to add tens of thousands of pages of introductory, interme-

diate, and advanced material.153 Yes, FProvable(Fermat’s Last Theorem) halts,

but it has a very long runtime.

Let’s come back to Leibniz’s dream. Suppose we could formulate some won-

derfully rich and inclusive formal system F that includes mathematics, physics,

biology, human psychology, and even the laws of human society. And then, just

as Leibniz said, whenever we’re asked if some statement S about the world were

true, we’d set the computation FProvable(S ) in motion, and the computation

would eventually return True—provided that S is provable as well as true.

One cloud on the horizon is that, as I just mentioned, the fact that FProv-

able has an unsolvable halting problem means we might have to wait a really

long time for True to pop out. And if S isn’t provable, then FProvable(S) is

going to run forever. And, again due to the unsolvability of the halting

problem, there’s no endless search detector FProvableNeverHalts that we

might use to filter out the unprovable sentences S.

Hmm. Let’s delve deeper.

To begin with, we’re going to need another definition.

There’s this nice feature about logic, which is that our formal systems have

a negation operator ~. If S is a sentence, ~S means “not S.” That is, S is false

if and only if ~S is true.

Using this notion of negation, we can formulate the notion of consistency.

• Definition. F is consistent if and only if there is no sentence S such

that F proves S and F proves ~S.

According to the usual rules of logic, if a theory proves even one contra-

diction, then it will go ahead and prove everything possible. So an inconsis-

tent theory is useless for distinguishing between true and false statements

about the world. We can reasonably suppose that our proposed Leibniz’s-

dream-type theory F is consistent.

Now on with the delving. Let’s see what happens if we try to beat the
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unsolvability of the halting problem by setting up a computation for

answering the question “Is S provable?” (figure 143).

Since F is consistent, we won’t ever have the embarrassing situation of

turning on both lights. But there’s another unpleasant possibility that might

arise. What if neither S nor ~S is provable from F In? this case, neither of the

little lights ever gets turned on.

Well, as it turns out, the neither-nor case does happen. A lot! The reason

has to do with—the unsovability of the halting problem for FProvable.

In order to dig still further, we need yet another definition.

• Definition. If F is a formal system and S is a particular statement

such that F proves neither S nor ~S, we say S is undecidable for F.

Figure 143: Is S provable? Let Us Calculate!

This device is designed to return a Yes or No answer to the question “Is S provable?”
To simplify the diagram, we assume that we already know that S is a grammatical sen-
tence in the language of F. Given such an input S, my device starts working on two com-
putations, FProvable(~S) and FProvable(S). The two button-pushers watch for one of the
computations to halt in the state True.



447

In their optimism, the early mathematical logicians such as David Hilbert

hoped to find a formal system F such that the undecidable and inconsistent

cases would never arise. As I mentioned earlier, Hilbert’s program proposed

finding a provably consistent formal system F that could decide all mathe-

matical questions. But Hilbert’s hopes were in vain. For according to the fol-

lowing theorem, (which I’ll prove in the Technical Appendix) any formal

system designed along the lines of Leibniz’s dream or Hilbert’s program will

leave infinitely many sentences undecidable.

• Undecidability Corollary to Turing’s Theorem. If F is a consis-

tent formal system as powerful as arithmetic, then there are

infinitely many sentences that are undecidable for F.

Actually, as I mentioned earlier, it was Kurt Gödel who first proved the

existence of undecidable sentences. He found a sentence G that in some

sense says, “I am not provable by F.” And then Turing improved on the

result.154

What are Turing’s undecidable sentences like? Well, there are all kinds of

them, more than you can imagine. Indeed, there’s an enhanced version of the

Undecidability Corollary saying that the range of undecidable sentences

extends beyond any simple characterization that you might come up with.

A priori, we can see that there are four possible situations regarding the

behavior of the “Is S provable?” computation in figure 143 (see table 22).
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FProvable(~S) returns True FProvable(~S) doesn’t halt.

F Provable(S) returns True F proves both S and ~S, F proves S
meaning F is inconsistent

F Provable(S) doesn’t halt F proves ~S F proves neither S nor ~S,
meaning that S is 
undecidable for F

Table 22: Four Kinds of Provability and Unprovability

Given a formal system F and a sentence S, we can distinguish four cases: F is inconsistent,
S is provable, ~S is provable, or S is undecidable.



But, just to have something concrete to think about, it’s worth noting that

the very simplest undecidable sentences express a fact whose confirmation

would require an endless search. Search is the bugaboo of computation.

To be more specific, let’s use the variable G to stand for one of the simplest

kinds of undecidable sentences. We don’t necessarily need to get into having G

say something metamathematical about provability—as Gödel did for the very

first such result. Instead, a simple undecidable G sentence might be character-

ized in terms of some algebraic property g[n] that a number n might have. In the

simplest cases, we can say that G is equivalent to a sentence of the following form.

• For all n, g[n] isn’t true.

The expression g[n] can be thought of as being a simple algebraic formula.

A more compact way to express G is: “For all n, ~g[n]”. And it might be that

we have more than one variable involved, so that we have a sentence of the

form “For all m and n, ~g[m, n].”

I don’t know of any conveniently short one-variable formulas g[n] that pro-

duce an undecidable sentence G; all the ones I know of would involve rather

large numerical parameters. But it’s possible that the two-variable sentence

“For all m and n, m2 ≠ n5 + 6n + 3” may actually be undecidable.155

It’s interesting, though a bit dizzying, to compare and contrast two related

ways of talking about a sentence S. On the one hand, we can ask if S is true

or false in the real world of numbers, and we can ask if S or ~S happens to

be provable from F. In the case where the sentence is one of our G sentences

of the form “There is no n such that g[n],” only three of these possibilities can

occur, as indicated in figure 144.

Let’s say a bit about the three possibilities.

G is false, and ~G is provable. If a sentence G of the form “For all g, ~g[n]”

is false, then there actually will be a specific n such that g[n] holds in the

world of numbers, and F will be able to prove the instance g[n] simply by

checking the equation. Therefore, F will be able to prove ~G.

G is true, and G is provable. If a sentence G of the form “For all g, ~g[n]” is

true in the world of numbers, there really won’t be any n such that g[n]. Now

in some of these cases, there may be a clever proof of this general fact from

F. I call such a proof “clever” because it somehow has to prove in a finite
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number of symbols that g[n] is impossible for every n. Andrew Wiles’s proof

of Fermat’s Last Theorem is this type of proof. A simpler example would be

the proof of the irrationality of 2, which involves arguing that for no whole

numbers n and m do we have n2 = 2m2, because if n2 = 2m2 were true, you

could never finish canceling common factors of 2 from the two sides of the

equation. A general proof doesn’t get bogged down at looking at every possible

value of n and m. It has to use some kind of tricky reasoning to cover infi-

nitely many cases at once.

G is true, and G is not provable. In these cases, there is no clever proof. The

only way F could prove G would be to look at every possible number n and

show that g[n] isn’t true—but this would take forever. In a case like this it’s

almost as if G only happens to be true. At least as far as F can see, there’s no

overarching reason why g[n] is impossible for every n. It’s just that, as chance

would have it, in the real world there aren’t any such n. And thus G is unde-

cidable by F.
The computer scientist Gregory Chaitin suggests that in a case like the

third, we think of G as a random truth. It’s not true for any deep, theoretical

reason. It’s just something that turns out to be so.156
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Figure 144: Proof and Truth for a Simple G

The points in the big rectangle represent sentences of the form “There is no n such that
g[n]”, where g is some simple formula. And provability is relative to a consistent formal
system F. The unshaded zone contains sentences undecidable by F.
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So far I’ve been looking at undecidable sentences G of the form “There is no n

such that g[n],” but these aren’t really the best kinds of undecidable sentences

to think about. Because these G have the property that when they’re undecidable,

they’re also true! This is weird, and it tends to bother some people a lot.

But there’s no paradox here, no contradiction. All we’re seeing is the crum-

bling of Leibniz’s dream, the crash of Hilbert’s program. For any consistent

formal system F that’s as strong as arithmetic, there are going to be sentences

S that F will neither prove nor disprove. And some may well be true.

There’s an endless supply of undecidable sentences S beyond the simple

kinds of sentences G that I’ve been discussing. These more complex sentences

S don’t have the unsettling property of being in some sense so obviously true

that one feels puzzled about why F can’t prove them. It’s really these kinds of

sentences that Chaitin has in mind when he speaks of “random truths.”

Some initial examples of the next level of complexity might be “For each m

there is an n such that g[m, n]” or “There is an m such that for all n, g[m, n].”

And with sentences like this we can see the full range of possibilities

regarding truth and provability (see figure 145).

In the real world, either S or ~S will be true, regardless of F’s inability to

prove either one of them. And if they’re unprovable, then they’re random

truths, brute facts that hold for no particular reason.

So far, my examples of random truths have been sentences about natural

numbers. But maybe you don’t care about numbers that much. That’s fine,

but I can still zap you. Because, if we accept the NUH, and we assume that

any natural process can be regarded as a computation, then we can apply

our undecidability corollary to any complex natural process!

I arrive at this conclusion as follows. First of all, we have the following lemma:

• Unsolvability and Undecidability Lemma. If P is a computation

with an unsolvable halting problem, and F is a correct formal

theory, then there will be infinitely many sentences about P that

are undecidable for F.

In this lemma, by the way, I’m using the phrase “correct formal theory”

to mean a formal theory that doesn’t prove things that are false. The idea

behind the proof of the lemma is that there have to be lots of sentences
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about P undecidable for F, for otherwise F could solve P’s unsolvable halting

problem. I’ll say a bit more about this in the Technical Appendix.

And now we get to the payoff. If we assume either Wolfram’s PCE or our

weaker NUH, then most naturally occurring complex processes will have an

unsolvable halting problem. If we combine this with the Unsolvability and

Undecidability Lemma, we get the following:

• Principle of Natural Undecidability. For most naturally occurring

complex processes, and any consistent correct formal system for

science, there will be sentences about the process that are unde-

cidable by the given formal system.

What makes the Principle of Natural Undecidability especially attractive is

that the undecidable sentences are not just about arithmetic. They’re about

the behavior of actual real world processes.

No matter how thoroughly you try and figure the world out, there are infi-

nitely many things you can’t prove. Table 23 lists some examples of poten-

tially undecidable sentences.

Figure 145: Proof and Truth for Arbitrary Sentences

The points in the big rectangle represent arbitrary sentences for a formal theory F. The
unshaded zone contains sentences undecidable by F. These are what we might call
random truths.
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It often happens in the history of science that some oddball new category

is discovered—such as undecidable sentences about the natural world. At

first nobody’s sure if any phenomena of this kind exist, but then there’s some

kind of logical argument why these oddball things have to occur. And then,

as time goes on, more and more of the curious entities are discovered until

finally they’re perceived to be quite run-of-the-mill.157

Undecidability is everywhere, and random truth abounds.

6.5: The Answers

In closing, I’ll offer some answers to three of the big questions that I’ve been

circling around.

• What is reality?

• What is the meaning of life?

• How can I be happy?

Nobody will ever manage to bounce a golf ball a thousand times in a row off a putter
head.

There are an endless number of planets in our universe.

There are an endless number of planets with people indistinguishable from you.

No human will ever be born with six functioning arms.

No cow’s spots will ever spell out your first name in big puffy letters.

Every year with a big birth-rate increase is followed by a big war.

The left wing will dominate American politics more often than the right wing does.

Mankind will evolve into higher forms of life.

The majority of times that you move to a different line in a supermarket, the new line 
goes slower than one of the lines you didn’t pick.

New races of intelligent beings will emerge over and over for the rest of time.

The time of our cosmos extends forever.

Table 23: Undecidability Is Everywhere
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What is reality? An answer to this question often has the following format:

“Everything is__________.”

This specific style of answer is what philosophers call a monism, that is, an

assertion that there is one single kind of substance that underlies all of the

world’s diverse phenomena. You might alternatively believe in, say, two dif-

ferent kinds of substances and be advocating a form of dualism, perhaps

opting for matter and mind. For that matter, you can be a pluralist and say

that reality is made up of all sorts of fundamentally different kinds of

processes and entities.

I’ve always had a predilection for monisms, and over the years I’ve tried out

lots of different ways to fill in the blank. I present some of my proposed answers

in the motley table 24. In each row I have the key word for the answer, some

aspects of what I take this answer to mean, some remarks about my experi-

ences with this answer, and my approximate age when this answer first

became of interest to me. I never actually abandon any of my answers, by the

way, it’s as if they’re layered on top of each other, or as if they’re a race of arti-

ficially alive “meme” creatures nested in my brain. I do recognize that one or

another of my suggested “answers” may appear too paltry or specialized to be

a basis for an entire ontology of the universe. But, hey, I get enthusiastic

about things.

reality upgrade

Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Family Childhood before In some ways my parents are still 0
differentiation. Memories, with me; my father in my heartbeat, 
talk, sharing, learning my mother in the rhythm of my breath.
how to behave, learning
language.

Society Rules, strangers. School. I’m a heavily pecked 8
The pecking order. low-ranking chicken in the fourth 

through ninth grades. It’s as if, for 
those years, “The Ugly Duckling” was 
the story of my life.

Self Thoughts, reflections, Autumn, dusk, waiting for my mom 9
desires, fears, plans, to pick me up at school, playing with 
simulations, fantasies. the other boys. It’s like suddenly I 

wake up. A chaotic bifurcation. I 
have a moment of feeling my future 
self looking back at this moment.
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Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

God The God of religion, My father becomes an Episcopal priest. 12
the pantheist God as I try to take church seriously, but 
Cosmos, God as the specific dogmas seem too odd. 
philosophical Absolute, “You’ve got to be kidding.” Over the 
God as mystical One, years, I have a couple of visions of 
the spiritual God the One, and eventually, in an effort 
as all-pervasive universal to change my habits, I become willing 
force. “The light is to ask something for guidance and help. 
everywhere.” It seems to work.

Science Sense of wonder, Random stories in anthologies in 13
fiction goofs and eyeball the Louisville Free Public Library. 

kicks, transformation Then Heinlein, Sheckley, Dick, 
of mundane reality. Lovecraft. I begin writing my own 

science fiction when I’m thirty. 
Writers I enjoy later on include 
Gibson, Sterling, Shirley, 
Laidlaw, Di Filippo, Doctorow, 
and Stross.

Nature The web of life. I go to boarding school in the 13
And even the inanimate Black Forest for a year when I’m 
things are as interesting twelve; it makes a deep impression. 
as if they were alive. And I love walking in the pastures 
Wind, water, fire. near my home in Louisville. I’m 

fascinated by a particular stream, 
and when I see it iced over 
one winter, I imagine the moving 
bubbles beneath the ice are a model 
for fragments of the One that split 
off for a time to act as individual souls.

Literature Tales. Sketching Joyce. Kerouac. Burroughs. Pynchon. 18
characters. Capturing Borges. Poe. I get to be part of the 
perceptions and cyberpunk school of science-fiction 
internal monologue. writers, then hone my own transreal 
Personae as masks style of literature. I become interested 
the author dons. in the patterns of literature, which 
Hoaxes. Presenting a leads me to Joseph Campbell’s The Hero 
sensibility. with a Thousand Faces, which serves as 

a blueprint for my epic novel, Frek and 
the Elixir.

Science Explanations via laws In high school I begin reading Scientific 18
about unseen primitive American and popular science books. 
entities: atoms, heat, I don’t learn much in college; I can’t 
magnetism, genes. integrate it into my then-paramount 

focus on trying out the Beat lifestyle. 
But I always love the texture of 
science, the odd deductions, the 
curious phraseology.
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Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Sex Pure pleasure. At some level, everything really is 20
Sensuality. about sex. As Jorge Luis Borges wrote 
Skin as sense organ. in an essay, “The Sect of the Phoenix,” 
A way to turn off that appears in his book Labyrinths: 
rational thought. “The Secret is sacred but is always 

somewhat ridiculous; its performance 
is furtive and even clandestine and the 
adept do not speak of it. There are no 
decent words to name it, but it is 
understood that all words name it or, 
rather, inevitably allude to it.”

Marriage Companionship, My wife is my oldest continuous friend, 21
love, sharing, and my best connection to my youth. 
communication at a She was there.
near telepathic level.

Music Beats, chords, Bo Diddley, Flatt and Scruggs, 21
embodied logic, the Beatles, Zappa, the Stones, 
emotional color. the Ramones, Rancid, NOFX, 

Muddy Waters and the endless 
boogie of the blues.

Politics Power. War. I permanently lose faith in our 22
Fear, greed, hatred. government when they try to send me

to die in Vietnam. And it hasn’t gotten
any better. Politics is a steady drain 
on psychic energy and mental equilibrium. 
I perpetually struggle not to get sucked in.

Math The bare forms Grad school: my breakthrough 22
of thought. A comes when I teach calculus and 
universal language finally understand it. My survey 
of science. Gnarly, of math, Mind Tools, and my 
weird shapes and anthology of others’ math stories, 
counterexamples. The Mathenauts.

Children Passing on information. It’s a blessing to have children. 23
DNA + nurture + Their faces and voices, their 
teach + love. cuddliness, the fascination of 

seeing them grow.

Logic Rules of deduction Studying mathematical logic. I 24
applied to axioms. meet a few times with Kurt Gödel 

in Princeton, the ultimate guru 
of my life. “The a priori is very 
powerful.”

Mysticism Three central Most of my friends are uneasy 24
teachings of about mysticism, but I find it to 
mysticism: “All is be uncluttered and in some sense 
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Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Mysticism One, the One is obviously true. Some favorite works: 24
(continued) unknowable, the Aldous Huxley, The Perennial Philosophy;

One is right here.” Baba Ram Dass, Be Here Now;
D. T. Suzuki, The Field of Zen; Rudolf
Otto, Mysticism East and West;
and the exhilarating section 6 
of Ludwig Wittgenstein, Tractatus 
logico-philosophicus: “There are, 
indeed, things that cannot be put 
into words. They make themselves 
manifest. They are what is mystical.”

Teaching Passing on memes. Altruistic social good. You get to learn 26
Watered-down parenting. on the job and there are good work 

hours. A lecture is an evanescent 
form of performance art. The downside
is academic politics. I don’t manage 
to get tenure until I’m fifty.

Space Higher dimensions. I fall in love with Edwin Abbott’s 28
Matter as curved space. Flatland. His character A Square 
Time as a kind of space, becomes a lifelong imaginary friend. 
leading to the spacetime I began lecturing on higher dimensions 
of Einstein and in my first teaching job, under the 
Minkowski. Parallel aegis of a Foundations of Geometry 
worlds as sheets of course. My first published book is 
spacetime. about the fourth dimension, a few 

years later I write another: The Fourth 
Dimension. My novel Spaceland is 
a gnarly Y2K homage to Flatland.

Infinity Infinite sets make up My Ph.D. thesis is on set theory. 30
the forms of reality. I like finding infinity in mathematics
The endless malleability as it seems like the start of an 
of infinite sets can model exact mysticism and theology. 
objects, thoughts, I publish Infinity and the Mind.
and even the divine.

The body Jogging, cross-country I dig the runner’s high. The rhythm 32
skiing, cycling, of the skier. The rushing flow of the 
backpacking, yoga. downhill bicyclist. I love how empty 
The different forms the woods are when I backpack; 
of exercise turn attention nature is always out there, doing 
from thought loops to her thing. Yoga wrings out the pains 
the muscles, the breath, that dwell in my back from my years 
and the body’s motions. of hunching over the computer; 

yoga makes breathing into a 
sensual pleasure.
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Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Publishing Teaching without Writing is congenial for me. I’m better 34
personal contact; on paper than face-to-face. 
information transmission The Lifebox, The Seashell, and The Soul
freed of space and time. is my twenty-sixth published book. 

It’s a constant unrelenting struggle 
to get in print.

Fractals Infinitely detailed I can hardly contain my delight when 38
self-similar patterns. I encounter the Mandelbrot set at 
Fractals synthesize the Austin pad of my cyberpunk 
infinity and space. pal Bruce Sterling, who’s using an 
And they’re deeply Amiga and a program written by 
gnarly. Charles Platt, another science-fiction 

writer. It’s a new paradise. Until 
fractals and CAs, I’d never wanted 
to touch a computer. But then I 
wanted one—an interactive 
“microscope” for exploring this 
new land.

Cellular Simple locally-based I visit Toffoli and Wolfram at their 39
Automata rules that act in parallel, institutions to write a magazine 

the same rule article about CAs. I’m converted on 
everywhere. Gnarly the spot. I get a job teaching 
patterns and behaviors computer science in San Jose. 
emerging. Colliding I get hold of Toffoli’s CAM-6 
streams of gliders as accelerator board and begin writing 
the paradigm for CAs. John Walker hires me to work 
class four computation. with him at Autodesk, programming 

Rudy Rucker’s CA Lab package. 
I switch to continuous-valued 
CAs and create the CAPOW 
package with my students at 
San Jose State University.

Artificial life Autonomous agents Starting in 1980, I imagine simulated 42
that don’t need robotic evolution in my Ware novels. 
synchronization. Eventually the information evolves 
Interacting simulations. away from the robot hardware to soft 
Improve DNA-like plastic moldie limpware and then to 
genomes by fitness- the “freeware” of intergalactic wave 
proportional signals. I’m thrilled to be part of the 
reproduction. early Artificial Life conferences in 
The fitter a-life Los Alamos and Santa Fe. I publish 
critters tend to be an Artificial Life Lab software package 
the gnarlier ones. with the Waite Group, at which time 

I’m into Turing-machine ants, which 
leads to my novel The Hacker and 
the Ants.
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Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Chaos Deterministic yet Chaos is a key part of the 1980s 42
unpredictable processes California computer scene. A  
wander around upon remark in James Gleick’s  
a characteristic best-selling Chaos teaches me to  
attractor. Gnarly see chaos in the motions of objects  
processes have in nature, e.g., swaying branches  
fractal strange and fluttering leaves. I help program 
attractors. A process James Gleick’s Chaos the Software, 
can bifurcate, that is, a retail product for Autodesk.  
hop to a new attractor. Auto desk’s stock drops and I’m 

back to teaching.

Love Opening my heart. The universe loves itself. I have a 46
vision of this, hiking in Yosemite 
with my son. Love is practical in any 
situation: Nothing else really works. 
Lines to this effect in the classic of 
hippie philosophy: Thaddeus Golas, 
The Lazy Man’s Guide to Enlightenment.
“Go beyond reason to love: it is safe. 
It is the only safety.”

Virtual reality A computer graphical The short-lived cyberspace craze. 47
simulation of reality. My new friends at Mondo 2000 view 

cyberspace as a drug. I help them 
edit an anthology called Mondo 2000: 
A User’s Guide to the New Edge. We 
make the cover of Time magazine.

Compassion Be kind, if only for I always wanted to find enlightenment 50
selfish reasons: and it had never once crossed my 
It helps you stay mind that the quest might have 50
serene. something to do with trying to be 

a kinder person. I formulate an 
addition to my three central teachings 
of mysticism: “The One will help you 
if you ask.”

The Web Emergent global The Web isn’t like television because 52
mind. The Library you can do it yourself. You’re a chef 
of Babel. The universal instead of a force-fed goose. 
encyclopedia. I love the way that blogging lets 

everyone publish their memoirs. I 
dream of creating a huge online lifebox 
compendium of all my books and 
journals.

Painting Blending colors and I learn to paint so I can write As 53
forms to please the Above, So Below: A Novel of Peter 
eye. Ideas made Bruegel. The medium is wonderfully 
visible. nondeterministic and analog.
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Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Software Learning to see software Designing software is like doing 54
engineering patterns, designing mathematical logic, but it’s a 

classes to hold data logic that lives and does things on 
and methods, object- its own. I’d always wanted to be 
oriented programming, an experimental scientist. Software 
debugging and refining engineering is exceedingly difficult 
code. to teach. I tell my students, “The only 

way to learn programming is to make 
every possible mistake. All I can do is 
show you how to make mistakes 
faster.” My officemate Jon Pearce 
teaches me about software patterns, 
comparing them to literary archetypes.

Mind Merging with reality. I lecture on the philosophy of 55
To be quantum- computer science in Leuven, focusing 
mechanically coherent on the mind for days at a time. I have 
is to not have specific satori in Paris. Any mental process 
opinions. To adopt one we can explicitly describe can be 
position or another is simulated by a computer. But we know 
to be decoherent. we are more than a computer program. 
Wave with it. The missing ingredient is of necessity 

not logically describable. Nick Herbert’s
“Quantum Tantra” paper suggests 
using quantum coherence for the 
nonlogical element.

Computer Games bring all the I follow the evolution from Pac-Man 56
Games interesting aspects of to the virtual reality games of the 

computers together: present. I teach a course on game 
software engineering, design for at San Jose State University 
graphics, artificial for about ten years and write a book, 
intelligence, artificial Software Engineering and Computer 
life, chaos, story, art, Games. I don’t actually play many 
sound. A great games once my son graduates from
new art form is high school. Programming them is the
on the point of part I like. The metagame.
being born.

Computation CAs, fractals, chaos, The meanings of Wolfram’s A New 58
software engineering, Kind of Science continue to reverberate. 
virtual reality, artificial I come to see the study of computation 
life, computer games, as the ultimate and most fundamental 
simulations, biotechnology, form of science, even more fundamental 
Social dynamics—all than mathematics. I write The Lifebox, 
rolled into one. the Seashell, and the Soul.



Answer Aspects of this answer Experiences with this answer in my life, 
and my approximate age when it first took
hold in me

Pluralism All the answers at As a young man, I read William James’s 59
once. Farewell to book A Pluralistic Universe, in which 
monism. Why should he brings out the point that monism 
the world be simple? could well be wrong. And, now, after 
To fully engage with spending a couple of years writing about 
reality you need to everything being a computation, I’ve had
involve your physical enough with monistic reductionism. I’m 
body, your emotions, longing to write a novel again.
and the whole of 
your mind.
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Table 24: Rudy’s Answers

As you might suspect at this point, I don’t always think universal automatism

is the whole answer. I don’t always believe that everything is a computation.

I had a moment of disbelief while finishing the first draft of this chapter in

September 2004. I went camping in Big Sur with my wife, Sylvia; it was a hot

day, and I had the chance to stand in the cool clear flow of the Big Sur River,

up to my neck in a big pool that accumulates right before the river flows

across a sand bar into the Pacific (see figure 146). Standing there, I closed

my eyes to savor the sensation of water and air. My arms were weightless at

my sides, my knees were slightly bent, I was at perfect equilibrium. Each

time I exhaled, my breath would ripple the water, and reflections of the noon

sun would flicker on my eyelids. Exquisite—and, no, I wasn’t high; I haven’t

been high since I was fifty.

I was all there, fully conscious, immersed in the river. And I became power-

fully aware of a commonsense fact that most readers will have known all along.

“This isn’t a computation. This is water.”

Mind you, I don’t think it’s a waste of time expending energy in trying to

believe universal automatism. It’s not that universal automatism is really

wrong. It’s more that, at sometimes, it becomes too cumbersome a way to try

to think of things. Like any scientific monism.

Monism is a bully. Why pretend that reality is any less rich than you know

it to be? I’m drawn to pluralism.

If I had to pick only a handful of my answers, I’d still include computation—



for I really do think Wolfram is onto something. But I’d want to include mys-

ticism, love, and the body. And water. And the reflections in my brass desk

lamp. And crows. And . . .

Once you move past monism, the next logical stopping point is the most

comprehensive possible pluralism. 

• Reality is endlessly diverse.

But wait. Did I just say that I don’t believe everything’s a computation? I’m

abandoning one the main points that I seem to have been arguing for

throughout this lengthy tome? Come on, Rudy!
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Figure 146: 
Pool at the Mouth of the Big Sur River
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Well, when I first drafted this section in September 2004, I was a little fed

up with thinking about computation. But I don’t want to pull back too far

from universal automatism. Even though it’s wearisome to continually view

the world as being made of computations, this particular monism could really

be true. By now it’s March 2005, and, having celebrated my retirement with

a pleasant dive vacation in Micronesia, I’m more inclined to give universal

automatism more credence. There was in fact one specific moment when I

came back into the fold; I described it in my journal notes for the trip to

Micronesia (see the photos in figure 147.)

Figure 147: Snapshots from Micronesia

Left to right and top to bottom: a rock island near Palau, kayaking along the edge of a rock
island, a soft coral whose shape is a disk with a fractally folded edge, Zhabotinsky-scroll
hard coral.



•  •  •

Yesterday I went on a kayak tour in the rock islands of Palau. It was

one of the best days of my life.

Our guides were three Palauans: Jake, Ding, and Rayna. They

were great: wild lively locals, talking rapid-fire Palauan to each other

all day. Jake was the very image of the old-style Micronesian chief,

although later I found out he’d gone to college, started a career as

an accountant, and had thrown that over to be a tour guide.

There were five of us tourists. The guides loaded five single-seat

hard kayaks on a boat and motored out to our starting point. For the

rest of the day, we kayaked in stages: we’d get to a location and the

motor boat would be waiting there, we’d tie our kayaks to the boat,

go snorkeling, climb up the ladder to the motor boat, replenish our

supplies, and then remount our kayaks. Jake had six waypoints for

us: a hidden underwater tunnel leading to a tree-lined lagoon filled

with giant clams, a sunken ship from the 1930s, a little point where

he speared a fish, a large lagoon with a beach where we had lunch,

an underwater tunnel leading to a cave filled with blue light coming

up from the water, and an arch connecting two bays with soft corals

growing on the sandy bottom of the arch.

Coming into the lagoon for lunch I felt quite weightless; the water

was so clear and unrippled, and the sand below it so white. It was

as if my kayak were gliding through empty space. And quiet, quiet,

quiet all around. Not a whisper of wind in the trees, only the gentle

lapping of the waves, the occasional calls of birds and, of course, the

sporadic whooping of the Palauans. I had such a wave of joy, wading

around that lagoon, and a profound sense of gratefulness, both to

the world for being so beautiful and to God for letting me reach this

spot. I had another wave of these feelings a bit later when we were

kayaking through a maze of small islands in shallow water, bays

that no motor boat could reach. Peaceful, peaceful. Eden. The world

as it truly is meant to be. I’m glad I lived long enough to get here.

High in the air above one of these sunny backwaters, I see a large

dark—bird? It’s the size of an eagle, and, no, it’s a fruit bat, the sun

reality upgrade

463



shining through the membranes of its wings. The islands look like

green clouds come to earth; mirroring their fluffy white brethren above.

In the last snorkel spot there are lovely pale blue and pink soft

corals, branching alveolar broccolis on the sandy bottom of the

archway connecting two bays. Fractals, in short. Swimming through

the arch, I encounter a shoal of maybe ten thousand tiny tropical

fish, like the fish you’d see in someone’s home aquarium, little

zebras or tetras. With my snorkel on, I marvel at their schooling

motions, their bodies moving in a unison like iron filings in a field,

their ropes and scarves of density emerging from the parallel com-

putation of their individual anxieties. The turbulent water currents

compute, as do the clouds in the sky, the cellular automaton reaction-

diffusion patterns on the mantles of the giant clams, the

Zhabotinsky scrolls of the shelf corals, the gnarly roots of plants on

the land.

And I’m thinking that maybe, yes, maybe after all everything is a

computation. Universal automatism gives me a point of view from

which I can make sense of all these diverse forms I’m seeing here.

Maybe I was wrong to want to“take it all back” in September. But

what about my thoughts, can I see those as computations, too? Well,

why can’t they just be fractal broccoli, flocking algorithms, class four

turbulence, cellular automaton scrolls. I ascribe higher significance

to them, but why make so much of them. Are my thoughts really so

vastly different from the life forms all around me in these lagoons?

Why not relax and merge. All is One.

And if I find it useful to understand the One’s workings in terms

of computation, don’t think that this reduces the lagoon to a

buzzing beige box. The lagoon is not reduced, the lagoon is com-

puting just as it is. “Computing” is simply a way to speak of the

dance of natural law.

Speaking of dance, when we got back to the dive shop, Jake and

Rayna were kidding around with this cute young California woman

who’s just moved to Palau and is supporting herself by working at

the shop. Jake and Rayna start dancing and chanting, crouched,

facing each other, their hands shaking in their air, slapping their
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thighs, vital and joyous, mythic archetypes, gnarly computations

like me.

So, okay, I’ll go for the universal-automatist answer to “What is reality?”

• Reality is made of gnarly computations.

Now to the next question. What is the meaning of life?

One appeal of monistic philosophies is that if we can reduce reality to one

substance, there’s some hope of finding a rule of behavior for that substance,

and that rule may suggest a meaning for the world.

Let’s see how this works if we believe in universal automatism. If I say that

everything is a computation, I’m saying that everything is a deterministic

process. And that means that reality is a weave of logical if-then statements,

with each phenomenon linked to a cause. As an extreme example of universal

automatism, Wolfram suggests that if we trace the world’s computations all the

way back, there may be some underlying supercomputation that generates not

only the entire cosmos but also the underlying fabric of space and time. But

then, of course, we’d have to ask why that particular supercomputation exists.

This leads to the so-called superultimate why question: “Why is there any-

thing?” The question is inherently unanswerable, for no proposed solution

can be enough. Given that the superultimate why question is impossible to

answer, it’s in some sense meaningless—but such a criticism doesn’t remove

the question’s sting.

The great science writer Martin Gardner makes the point very clearly.

Even if quantum mechanics becomes “explained” as part of a deeper

theory—call it X—then we can ask “Why X?” There is no escape from

the superultimate questions: “Why is there something rather than

nothing, and why is the something structured the way it is?” As

Stephen Hawking recently put it, “Why does the universe go to all

the bother of existing?” The question obviously can never be

answered, yet it is not emotionally meaningless. Meditating on it can

induce what William James called an “ontological wonder-sickness.”

Jean-Paul Sartre called it “nausea.” 158
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The point here is that even if Wolfram were right, it doesn’t seem as if

knowing the world to be the result of some supercomputation would be of

much use to us. We still wouldn’t know where the supercomputation came

from. And—perhaps even more important, we still wouldn’t know what it’s for.

And that, after all, is really what we’re after when we ask about the

meaning of life. It’s not so much the cause that’s puzzles us as the purpose.

Does a person’s life have a purpose?

Well, our studies of universal automatism do suggest one line of thought.

Computationally rich class four behaviors are in an objective sense more

interesting than those that die out, repeat, or have no discernible structure.

So a universal automatist might say that the meaning and purpose of a

human life is to produce gnarly class four computation.

Note that the notion of gnarly computation as the meaning of life fits in

with the more humanistic worldviews.

The human artifacts we admire are computationally rich. An empty canvas

is class one. Hack artwork is class two copying of existing artifacts. Ugly

scuzz is class three. Great art is class four: gnarly.

The nobler emotions are computationally rich as well. Murderous rage

forces some victim’s computation into class one termination. Hatred throws

the hater into a class two loop. Too needy a desire to please puts a person at

the mercy of capricious class three inputs. Compassion is an ever-evolving

class four process.

Get the picture?

• The meaning of life is beauty and love.

One last question. How can I be happy?

I’ll offer a bouquet of six answers—one for each of the six levels of reality

we discussed. After long and complex mental computation, I’ve compressed

the answers to a couple of words apiece. A to-do list.

• Turn off the machine. Universal automatism teaches us that

there’s a common ground upon which to compare nature to

PCs. But this doesn’t mean that that PCs are as good as

reality. Far from it. On the common ground, we can readily
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see that the natural world is incalculably more powerful and

interesting than the odd flickering boxes we’re wedded to in

the Y2K era. I try not to let them run my life.

• See the gnarl. The air is a gnarly ocean; the leaves dance on

the trees. I’ve always enjoyed watching clouds and water; and

now I realize that the computations they’re carrying out are

fully as complex as anything in any book I might read. Each

flickering shadow is a reminder of the world’s unsolvable and

unpredictable richness.

• Feel your body. There’s always something interesting to feel in

this wonderful meat computation that I’m privileged to

inhabit. It’s fun sometimes to think of my body as being very

large—like an immense starship that I’m inside. I can focus on

the inputs from all the different parts. Meanwhile my breath

and heartbeat are gently chaotic. As a heavy computer user, I

need to remember not spend more time upgrading my

machine than I do in exercising my bod.

• Release your thoughts. Underneath the wanting and worrying

is the great river of thought. I don’t control much of the

world, and things rarely turn out as I predict, so why waste

my time in focusing on fears, desires, and expectations? And

why invest all my energy in logic which, as we now know,

only goes so far? Released from the class two channels of

attachment, I can watch my mind like fireworks above a

wavy sea.

• Open your heart. People are the most interesting and beautiful

entities I’ll ever see. Society isn’t about the news and the

leaders. It’s about the people I run into every day. Recently I

saw a show of photographs by Diane Arbus. Diane must have

been such a character. She had a way of getting to the essen-

tial humanity of her subjects—ordinary people lovingly

depicted and made fully human in all individuality. They

always seem to be as interested in Diane as she is in them.

People sense when you look at them with utter interest and

compassion; they look back and smile.
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• Be amazed. Our studies of computation teach us that none

of our theories will ever get very far. Not everything can be

explained, nor even expressed in words. We’re fully immersed

in the incomprehensible. Life is a mystery; it’s good to savor

this.

Lest this list seem preachy, let’s say the advice is actually aimed at me. I

need it. I forget the simplest things.

And I’m glad to see these slogans emerge from my book’s long and gnarly

chain of reasoning. They’re a nice place to end up.

One last thought: perhaps our universe is perfect.
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Technical Appendix

IN THE FIRST PART OF this appendix, I bring together the various definitions

given in the main text and, where necessary, make them a bit more precise.

In the second part, I prove a couple of results relating to Turing’s Theorem.

Most of the mathematical material here can be found in books on recursion

theory, that branch of mathematical logic that studies ways to formalize the

notion of computation. Two very good books covering this material in terms

of computation are Martin Davis’s Computability and Unsolvability (New York:

Dover Books, 1982) and Marvin Minsky’s Computation: Finite and Infinite

Machines (New York: Prentice Hall, 1967). Two more advanced books on

recursion theory are Hartley Rogers’s Theory of Recursive Functions and Effec-

tive Computability (Cambridge, Mass: MIT Press, 1987) and Piergiorgio

Odifreddi’s Classical Recursion Theory (Amsterdam: North-Holland, 1989).

I’ve chosen to present this material in a somewhat nonstandard style of my

own devising, both to make it more self-contained and to make it fit in better

with my book.

A.1: Rudiments of Recursion Theory

Let’s start by repeating my basic definition of a computation.

• Definition. A computation is a process that obeys finitely describable

rules.



The computation is thought of as embedded in linear time. The states of

the computation can be treated as either inputs or outputs, with earlier

states being inputs relative to the later states, and the later states being out-

puts relative to the earlier states.

Since we think of the computation’s input states and output states as

being drawn from the same set of states, this means that when we want to

input something like a number into a computation, we’re really setting the

computation into an initial state that both represents the number in some

simple fashion and sets the computation into a start-up condition.

Now I’ll make some more refined definitions. Following standard logical

practice I’ll write “iff” as shorthand for “if and only if.” In practice, if a defini-

tion has the form “A iff B,” where A is some newly defined phrase and B is

some kind of condition, then the intent of the definition is this: “from now on,

when I say ‘A,’ that’s an abbreviation for condition B.” Another context in

which logicians use “iff” is when A and B are conditions whose meaning is

independently clear. In such a situation, “A iff B” means “A and B are equiv-

alent conditions” or “A implies B and B implies A.”

In the following, we’ll suppose that P is a computation (that is, a deter-

ministic system) and that In and Out are two of the system’s possible states.

We’ll use t to stand for the time variable. To be quite general we’ll view t as a

real number.

• Definition. P(In, t) = Out iff the following is true. If you initialize the

computation P to be in state In and then let it run for a time

interval of length t, you will find the computation to be in state

Out.

Note that the output state Out is completely determined by the rules for P,

the input In, and the amount of elapsed time t.

In order to formulate a definition of “feasibility,” it will be useful to have a

specific time value T, which is the length of time that we consider it feasible

to wait for an output. For an individual human, T would certainly be less

than a hundred years and, in practice, our T standard tends to be measured

in days or hours. For interactive robotic-style applications, T may in fact be

measured in seconds. In casual conversation, we often speak of feasibility
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when we really mean T-feasibility, with T being some implicitly agreed upon

maximum time.

• Definition. The computation P (In ,t) = Out is T-feasible if t is less

than T.

We’re sometimes interested in expressing the fact that a computation

starting with a given state eventually reaches some other state, whether or

not the computation continues changing after reaching the targeted state.

• Definition. P (In) produces state Out iff there is some t such that 

P (In, t) = Out.

Sometimes we’re more interested in reaching some certain targeted kind of

output than we are interested in a computation’s ongoing passage through

various states. One notion is simply that P stops changing. Since P is deter-

ministic, it must in fact begin repeating itself if it enters the same state two

times in row. We define a helper computation IsPFrozen(Out), which detects

outputs after which P ceases to change.

• Definition. If P is a computation, the default target detector

IsPFrozen is a computation defined as having two outputs, True

and False, and is computed as follows:

IsPFrozen(Out) enters and remains in the state True iff 

P (Out, 1) = Out.

Otherwise IsPFrozen(Out) enters and remains in the state False.

I’m using P(Out,1) to express the notion of the “next state after Out.” If time

is continuous rather than discrete, P(Out,1) isn’t really the next state after

Out, but really any state after Out is good enough for the definition. I avoid

speaking about the P(Out, t) computation remaining in the same state for “all

t > 0,” as this would open up the unnecessary possibility of an endless

search.

We’re often interested in trying to find a way to determine which inputs will

produce a unique output.
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• Definition. Consider a computation P. We say P halts on input In iff

there is an output Out such that

P(In) produces Out, and

IsPFrozen(Out) produces True.

We can express this important case in any of the following ways:

P (In) halts at Out, or P(In) = Out, or P (In) returns Out.

Note that I am introducing a bit of ambiguity in my notation here. On the

one hand, I think of P(In) as being a process, but, on the other hand, if P(In)

halts at Out, I’m allowed to write P (In) = Out. Perhaps in this latter case I

should really write P(In) = IsPFrozenOut.

Note the distinction between the weaker P (In) produces Out and the

stronger P (In) returns Out. If P (In) returns Out, it’s also true that P(In) pro-

duces Out, but not vice versa, for a P can easily start from In, pass through

Out, and continue changing its state, possibly without ever reaching a state

Out such that IsPFrozen(Out). There are many computations P and inputs In

that P(In) will fail to halt; imagine, for example, a computation that simply

keeps adding on ones forever.

• Definition. The computation P is everywhere defined iff 

P halts on each input.

I think being everywhere defined is really what we have in mind when we

speak of a computation as being in class one. These are the computations

that always run down and stop.

In talking about naturally arising computations, we’ll be interested in more

general conceptions of halting, which leads us to introduce the notion of a

target detector.

• Definition. If P is a computation, then the auxiliary computation

IsPDone with special states False and True is a target detector for

P iff IsPDone(Out) returns a False or a True for any possible state

Out of P. IsPDone, in other words, is everywhere defined. We call a

target detector nontrivial if it’s not constant, that is, it doesn’t

always return True or always return False.
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If we don’t specify an IsPDone target detector, we will assume we’re using

the default IsPFrozen target detector, which returns True if any further

updates would leave the system in the same state.

We can relativize the notions of halting and being everywhere defined for

specific IsPDone target detectors.

• Definition. Consider a computation P with the target detector

IsPDone. We say P with IsPDone halts on input In iff there is an

output Out such that

P(In) produces Out, and

IsPDone(Out) produces True.

In this case we can also say that P (In) halts at Out relative to 

IsPDone, and if Out is the first such output, we can write 

P (In) = IsPDoneOut.

• Definition. The computation P with the target detector IsPDone is

everywhere defined relative to IsPDone iff P with IsPDone halts on

each of its inputs.

For the next definitions, let P and Q be computations, with their own sets

of states, and define a translation between the two sets of states as follows.

• Definition. The computation ptoq is a translation from P to Q iff

• (i) ptoq is everywhere defined, and

• (ii) ptoq takes P’s states as inputs, and it always halts at states of

Q, and

• (iii) if a1 and a2 are different states of P, then ptoq (a1) is different

from ptoq(a2).

In other words, the computation ptoq translates from P to Q iff the com-

putation ptoq embodies a one-to-one everywhere defined function from states

of P into states of Q.

In the case where the possible states of P and Q make up the set of all inte-

gers, what I’m calling a translation is exactly the same thing as what recur-

sion theorists call a one-to-one total recursive function. In this case, the
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translation is reversible, in the sense that you can use the computation ptoq

to define a translation ptoq from Q to P.

Now we can define the important notion of emulation. This definition has

vexed me more than any other in this book. The reason is that I use emula-

tion to define two rather disparate notions: universality and unpredictability.

A universal computation emulates every other computation, and a (strongly)

unpredictable complex computation reaches its target states faster than any

computation that emulates it.

Which notion of emulation I use isn’t that problematic for formulating the

notion of universality. Generally a computation that’s universal relative to

one notion of emulation will be universal relative to another. But the details

of the definition of emulation become crucial when we want to formulate a

notion of Big being faster than Small in the sense that Big produces the same

answers as Small, but faster.

In the main text, I gave this definition of emulation.

• Definition of emulation. Big emulates Small if there is an emulation 

code emulatesmall such that for any states In and Out,

Small(In) returns Out if and only if

Big(emulatesmall, In) returns Out.

We can state this definition in a more general way by allowing for the pos-

sibility that Big and Small use different languages by providing a helper

translation computation smalltobig.

As defined above, a translation computation is quite simple and unprob-

lematic; if S is any possible state, smalltobig(S ) will return an answer after a

finite amount of time, and if two states are different, their translations are

different as well.

If I use a translation, I don’t need to mention the emulation code because

I might as well suppose that smalltobig(In) translation works by firstly trans-

lating the In string into appropriate symbols for Big, and by secondly pre-

fixing the translated string with the emulatesmall code.

• Definition of emulation (second version). Big emulates Small if there

is a translation smalltobig such that for any states In and Out,
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Small(In) returns Out if and only if

Big(smalltobig(In)) returns smalltobig(Out).

In other words, Big emulates Small means that the compound computa-

tion Big(smalltobig(In)) returns the same outputs as smalltobig(Small(In)).

Actually, I think it would be better to explicitly introduce two translation

functions, one for each direction, and to explicitly require that Big have a

target state detector that in some sense emulates the behavior of Small’s

target state detector. Let’s assume that this third version is my “real” defini-

tion of emulation. I don’t state it this way in the main text, as I thought it

might look too complicated for the casual reader.

• Definition of emulation (third version). Big with the translation

smalltobig, the reverse translation bigtosmall, and the target state

detector IsBigDone emulates Small with target state detector 

IsSmallDone iff

for any In and Out, Small(In) = IsSmallDone Out iff

there is BigOut such that 

Big(smalltobig(In)) = IsBigDone BigOut 

and bigtosmall(BigOut) = Out.

Figure 148 illustrates this third notion of emulation.

If we like, we can define a shorthand symbol for emulation.

• Definition. If Big emulates Small, we write Small ≤e Big

I want to make six comments about my much-pondered definition of

emulation.

(1) In Turing machine and stored program examples of emulation, it’s

often the case that the emulation involves a specific emulation code. This

leads to the version I mentioned in the main text—which assumes that

you’re simply using the identity translation.
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(2) We might define a notion of simulation that is stronger than emulation.

• Definition. Big simulates Small iff Big with smalltobig emulates

Small and for any states In and Out,

Small(In) produces Out iff

Big(smalltobig(In)) produces smalltobig(Out).

Simulation is not what we are looking for when we want to find a compu-

tation Big that returns the same outputs of Small, but much faster. If Small

wastes a lot of time, we’d prefer that the faster Big skip over some of Small’s

behavior. We only require that Big produce translations of those desirable

outputs of Small that satisfy the target state detector IsSmallDone.

(3) As well as using emulation to compare the speed of computations, we use

it to define the notion of universality. Here we almost feel that a universal com-

putation should not only emulate, but also simulate any other computation.

But it turns out that if U can emulate any computation, it can in some

sense simulate any computation as well.
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For suppose P is a computation and U is universal. Suppose that I define a

computation PTimed that takes state and time pairs as inputs. And the

behavior of PTimed(<In, t>) is to compute the state P(In, t) and halt. Now since

U emulates PTimed, U is able to tell you all of the states that P(In) goes through,

and this would seem to be as useful as having U explicitly simulate P.

(4) Suppose we are working with digital computations Small and Big whose

states are integers, and which use integral time steps. In this case the what-

produces-what information about computation Small can be encoded as the set

of pairs <In, Out> such that for some t, Small(In) returns Out. And, using a

standard encoding, the pair <In, Out> can be thought of as a single integer

InOut. So we can use the set Small* of all such integers to answer any question

of the form, “Does Small(In) return Out?” Suppose we form a similar set Big* for

the computation Big. My definition of emulation can now be recast as follows.

• Definition of emulation (version for integer states). Big emulates

Small iff there is a translation f such that n lies in Small* 

iff f (n) lies in Big*.

In recursion theory, this notion of emulation is called one-one reducibility; in

symbols this is written Small ≤1 Big. There’s a related notion called many-one

reducibility, or Small ≤m Big, in which we allow the translation function to be

many-to-one instead of one-to-one.

We might possibly use a many-to-one translation to formulate a concept of

weak emulation. Weak emulation would be relevant to a situation where, for

instance, I’m modeling a detailed analog physical process with lower-resolu-

tion floating point computer numbers. Here, several physically distinct states

would map into a single computer state. But, as we know from chaos theory,

this kind of emulation tends not to faithfully reproduce outputs, so the notion

of weak emulation would seem to be of limited use.

(5) The notion of “emulation” most commonly used in recursion theory is

called Turing reducibility. To formulate this notion we need to first define an

oracle OBig for a computation Big. The oracle OBig is the function such that

OBig(In) = Out if Big halts at Out, and OBig(In) = False if In happens to be a

value for which Big never halts. And then we say that Small is Turing reducible
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to Big iff Big can be defined as a computation that’s allowed to use OBig as a

helper computation, and we express this in symbols as Small ≤T Big.

For a universal automatist, Turing reducibility is a fantastical study of

things that don’t really exist. For, given that we don’t expect an oracle OBig

to be a computation in the first place, a universal automatist doesn’t expect

OBig to exist at all, so why would they care about what you could do if you

had it? The issue is that if, like most interesting computations, Big doesn’t

have a solvable halting problem, then OBig can’t be a computation because

it solves Big’s halting problem. So, for a universal automatist, Small ≤T Big

becomes in most cases an “if wishes were horses, then beggars would ride,”

kind of statement in which we spin conclusions from a counterfactual

antecedent. Of course if we take off the perhaps overly strict blinders of uni-

versal automatism, Turing reducibility becomes a beautiful theory of great

interest, not unlike the Cantorian theory of infinite sets.

So that’s it for my discussion of emulation. Onward.

I’ll often be interested in how long a computation takes. For any computa-

tion P, we can define a related computation Runtime_P (In, Out) that searches

for the lowest value (if any) of t for which the computation P (In, t) = Out.

• Definition. For each computation P, define a function Runtime_P

that takes pairs of states as inputs and returns time values.

Runtime_P (In, Out) is the least value of t such that 

P (In, t) = Out, if there is such At, and otherwise Runtime_P (In, Out)

is undefined.

If one computation emulates another, we can compare their speed. Recall

that Big emulates Small means that Big(smalltobig(In)) returns the same out-

puts as smalltobig(Small(In)).

We can define a special kind of special runtime for the emulation computation.

• Definition. Suppose Big emulates Small using the translation

smalltobig. Also suppose that Small(In) produces Out. Define the

emulation runtime Runtime_BigSmallEmulation(In, Out) to be

Runtime_Big(smalltobig(In), smalltobig(Out)).
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• Definition. If Big emulates Small, Big is faster than Small iff for all 

but a finite number of pairs In and Out,

Runtime_BigSmallEmulation(In, Out) < Runtime_Small(In, Out).

We’re primarily interested in situations where a computation Big is radi-

cally faster than P. For a computer scientist, if s and t are runtimes, “s is rad-

ically smaller than t ” often means that s is so much smaller than t that even

10s is smaller than t as well. A different way to express this is to say that

s < log(t ), where log(t ) is defined as the power p such that 10p = t. For a typical

integer N, log(N ) is approximately the number of digits that it takes to write

N out in decimal notation.

• Definition. If Big emulates Small, Big is exponentially faster than

Small iff for all but a finite number of pairs In and Out,

Runtime_BigSmallEmulation(In, Out) < log(Runtime_Small(In, Out)).

My initial idea was to say that P is predictable iff there is a Q that’s expo-

nentially faster than Q. But if I only define unpredictable to mean “not sus-

ceptible to being sped up,” I have a problem. When a constant or repetitive

computation is described as concisely as possible, we have a rule that no

longer allows for any speedup, exponential or otherwise. Consider, for

instance, the computation ZeroHalt that immediately halts in the state 0 no

matter what input you give it. ZeroHalt is a class one computation that’s cer-

tainly “predictable” in the colloquial sense of the word, but it’s not the case

that any other computation can emulate ZeroHalt any faster. ZeroHalt is

already minimal.

This why I’ll rule out the class one and class two computations in my

formal definition of an “unpredictable” computation.

• Definition. P is predictable iff either of these conditions holds:

(a) There is a Q that is exponentially faster than P, or

(b) P is simple (in the sense of being class one or class two).

• Definition. P is unpredictable, iff P is not predictable.

• Definition. P is strongly unpredictable iff P is not predictable and

there is no Q that is faster than P.
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In A New Kind of Science and in his earlier papers, Stephen Wolfram

describes notions of being “computationally reducible,” and “computationally

irreducible” which are meant, I believe, to have the same intended meaning

as my “predictable” and “unpredictable.” Wolfram doesn’t quite make clear in

A New Kind of Science that it is indeed exponential speed increases that he

has in mind. But in conversation with me in 2003, he agreed that this was

his intention, as it’s easy to get linear speedups of PC computations simply

by using more states.

The reason I prefer not to employ Wolfram’s usage is that, for someone

familiar with recursion theory, the phrase “computationally irreducible” looks

odd. This is because in recursion theory we commonly say “P is reducible to

Q” to mean something like “Q emulates P,” for some notion of emulation. And

given that universal computations can emulate any computation at all, any

P is reducible to any of the many universal computations U, so in the recur-

sion-theoretic sense there aren’t any irreducible computations. I also like

using “unpredictable” as this sounds more intuitively understandable than

“irreducible.” This said, I have to admit that perhaps Wolfram’s use of “irre-

ducible” does a better job of capturing the essence of the notion, that is, of

being a computation that can’t be crushed down and made exponentially

more efficient.

A.2: Turing’s Theorem

• Definition. U is a universal computation iff for every computation P,

U emulates P.

• Turing’s construction. There is a universal computation U.

For many P and IsPDone pairs, it’s hard to decide for an arbitrary input In

if P(In) will halt. Suppose, for instance, that the inputs code up mathematical

theorems, and that P(In) systematically looks for a proof Out of In, with P(In)

halting at Out meaning that Out is indeed a proof of In. If In is some obscure

or difficult question about mathematics, it may be impossible to decide if the

computation P (In) is ever going to halt.

• Definition. The computation P has a solvable halting problem iff

there is a computation PFailsToHalt that takes the same inputs as
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P and has a special output state True such that for every input In,

PFailsToHalt(In) = True iff P(In) doesn’t halt. If P does not have a

solvable halting problem, we say P’s halting problem is unsolvable.

So if P has a solvable halting problem, this means there is a computation

PFailsToHalt that detects the inputs for which P won’t halt. We speak of

PFailsToHalt as an endless search detector for P.

Turing showed how to construct a universal computation in his 1936

paper, “On Computable Numbers, with an Application to the Entscheidungs-

problem,” which also contains his main result:

• Turing’s Theorem. If U is a universal computation, then U’s halting

problem is unsolvable.

Once again think of a Turing machine M as a computing head coupled

to an endless one-dimensional tape divided into cells with symbols on it

chosen from some finite alphabet. The head can be in any of some finite

number of internal states. We assume there is one distinguished state

that we call the “halted” state. At each update, the head reads the symbol

in the tape cell corresponding to its current location, and then, on the

basis of this symbol and the head’s current state, the head writes a

symbol into the cell, moves one cell to the left or right, and changes its

internal state. If the head enters the halted state, no further updates take

place.

In the section A.1 of this Appendix, we spoke of inputs and outputs as

states of the machine, but when it comes to a Turing machine, we do better

to think of the inputs and outputs as states of the machine’s tape.

If M is a Turing machine and In is a string, we speak of M(In) as the com-

putation that results from starting M out on a tape containing the string In.

It may be that the computation halts, leaving a string Out on the tape that

we call the output. In this case we can write M(In) = Out. It may also be that

the computation M(In) never halts. A Turing machine may, for instance, fail

to halt on a given input In because it embarks upon an endless, and unsuc-

cessful, search for an integer satisfying some desired condition relative to the

input In. For typical Turing machines there will in fact be infinitely many

input values for which M fails to halt.

technical Appendix

481



A Turing machine is specified by a program E consisting of quintuples

specifying how the machine maps possible pairs of <Internal State, Read

Symbol> into triples of <Write Symbol, Move Direction, New Internal State>.

We can think of E as being coded up as an integer e, and we can speak of our

machine M as being the machine Me with code e.

I mentioned before that Turing constructs a universal Turing machine.

Here’s a bit more about how it’s made. In this discussion, assume that we

have a standard method of “parsing” a string into a pair of strings; the

parsing process might involve, for instance, a one-to-one function that maps

the set of all integers into the set of all pairs of integers.

• Turing’s construction. Turing describes a Universal Turing

Machine, called UTM for short. UTM codes up the behavior of

all the Me. For an input string k, we think of UTM(k) as begin-

ning its computation by parsing the string k into a pair of

strings (e, a), where e is a program code followed by an input

code a. If the input string isn’t properly formed, then the

parsing fails and the machine simply halts. We will often write

“UTM(e, a)” instead of “UTM(k) for the k that encodes the pro-

gram-input pair (e, a).” In saying UTM is universal, we mean

that for each program code e and each input a, UTM(e, a) will

emulate the computation Me(a). That is, if Me(a) halts and

leaves string b on the tape, then UTM(e, a) also halts and

leaves string b on the tape. And if Me(a) doesn’t halt, then

UTM(e, a) doesn’t halt either.

Note that, depending upon how we set up our coding process and how we

implement the details of the simulation, there are any number of different

universal Turing machines. We’ll assume that UTM is a specific example of a

universal Turing machine, and to make our proofs a bit simpler, we’ll think

of the k, e, and a inputs as actually being integers.

It’s interesting to note that we get into an infinite regress if we let u be the

program code for UTM and try to compute UTM(u, u). Sometimes regresses

are pernicious, but here it simply means the computation UTM(u, u) never

halts, as in this case the UTM is beginning to simulate itself beginning to
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simulate itself beginning to simulate itself beginning . . . and never gets any-

thing done.

Now let’s sketch a proof of Turing’s Theorem.

We’ll use what mathematicians call a proof by contradiction. According to

classical logic, if D is a statement, then either D or the negation ~D has to be

true. If ~D is impossible, then I can conclude that D must be true.

So now let UTM be a universal Turing machine. I want to prove that UTM

does not have a solvable halting problem. To do this, I’ll assume that UTM

does have a solvable halting problem, and deduce a contradiction, thus

showing that “UTM has a solvable halting problem” is impossible.

Suppose we have a computation UTMFailsToHalt solving UTM’s halting

problem, that is, UTMFailsToHalt(k) returns True iff UTM(k) fails to halt. We

can safely assume that UTMFailsToHalt is modeled as a Turing machine. So

now we can construct an impossible “antidiagonal” machine A such that

(1) A(a) = UTM(a, a) + 1 at the inputs where UTM(a, a) halts, and

(2) A(a) = 0 for the (nonhalting) inputs where UTMFailsToHalt(a, a)

returns True.

Since we can constructively define A from UTM and UTMFailsToHalt, A

is itself a Turing machine with a program code a such that A = Ma. What

makes A an “antidiagonal” machine is that A’s behavior differs from that

of each Turing machine Me on the input e. But this quickly leads to a con-

tradiction, since now A must differ from itself on input a. That is, A(a) =

Ma(a) = UTM(a, a), by the definition of the UTM. But, by the definition of

A, if UTM(a, a) is defined, then A(a) = UTM(a, a) + 1, and if UTM(a, a) fails

to halt, then A(a) = 0. So in either case A differs from itself at input a,

which is a contradiction. Therefore the UTM didn’t have a solvable halting

problem after all.

Note that this proof suggests a possible construction that we can in fact

carry out for UTM. We can always define a K(a) = UTM(a, a) + 1, and let K(a)

fail to halt when UTM(a, a) fails to halt. If K has program code k, the compu-

tation K(k) simply fails to halt, and there’s no contradiction. You can only get

a contradiction in the counterfactual case where you have UTMFailsToHalt to

tell you that a UTM(a, a) fails to halt.
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Now I’ll state and prove a stronger version of Turing’s Theorem.

• Turing’s Theorem (variation 2). If U is a universal computation and

IsUDone is a nontrivial target detector, then U has an unsolvable

halting problem relative to IsUDone.

The proof of this is much the same as the proof of the normal Turing’s

Theorem.

The only difference is in how I define the antidiagonal computation A. If

IsUDone is a nontrivial target detector, this means that there are states good

and bad such that IsUDone(good) returns True and IsUDone(bad) returns

False. I define A so that it halts at either good or bad according to the fol-

lowing rules.

(1) A(a) = bad if UTM(a, a) produces some string b such that

IsUDone(b) returns True.

(2) A(a) = good if UTMFailsToHalt(a, a) returns True.

As in the previous proof, we find the string a such that Ma = A. So then

A(a) = Ma(a) = UTM(a, a), by the definition of the UTM. But, by the definition

of A, if UTM(a, a) halts relative to IsUDone, then A(a) is the nonhalted state

bad, and if UTM(a, a) fails to halt, then A(a) halts at good. So in either case

A differs from itself at input a, which is a contradiction.

There are other variations on Turing’s Theorem. For example, if U is uni-

versal, the following halting problem is unsolvable: Decide for a given pair

<In, Out> whether U(In) produces Out. Indeed, just about any general

problem you might pose involving endless searches will be unsolvable for the

universal computation U; this remark is made precise in a statement called

Rice’s Theorem, which I won’t go into here.

Now suppose that P is a computation with an unsolvable halting problem.

It turns out that in this case we can also say something about the runtimes

of the computations that P does perform: They’re unpredictably large.

• Definition. If P is a computation and L is an everywhere-defined 

computation, we say that L runtime bounds P if and only if
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for all but some finite number of inputs In

if Runtime_P(In) is defined, then Runtime_P(In) < L(In).

In reading this definition, recall that Runtime_P(In) is only defined for

those inputs for which P(In) halts.

• Definition. A computation P is runtime bounded if there is an every-

where defined L which runtime bounds P. Otherwise, P is runtime

unbounded.

As I discussed in section 6.3: Faster and Smarter, when you have a run-

time-unbounded computation P, you really have no way of knowing how long

you may need to wait for a given computation P(In) to halt—there is no bound

you can precompute on the basis of the size of the input In.

So are there any of these troublesome runtime-unbounded computations?

Yes; this follows from the Unboundedness Lemma, which I’ll now prove.

• Unboundedness Lemma. If P has an unsolvable halting

problem, then P is runtime unbounded.

We prove the Unboundedness Lemma by what mathematicians call the

method of contraposition. That is, if you want to prove that some statement

of the form “if D, then E,” it suffices to prove “if ~E, then ~D.” So we’ll prove

that if P is runtime bounded, then P has a solvable halting problem.

The proof of the lemma hinges on the fact that if the everywhere-defined

computation L runtime bounds P, then we can use L to solve the halting

problem for P. Define a computation PFailsToHalt to solve the halting problem

for P as follows. For any In, compute PFailsToHalt(In) by computing P(In) for

time L(t). If the computation hasn’t halted by then, you known it will run forever,

so you can return True. So now PFailsToHalt(In) = True iff P(In) fails to halt.

Combining Turing’s Theorem and the Unboundedness Lemma, we can

reason that if U is universal, then U has an unsolvable halting problem, and

therefore U is runtime unbounded. We can also combine the Unboundedness

Lemma with the NUH to conclude what I might call the Corollary to the NUH,

that is, most naturally occurring complex computations are runtime

unbounded relative to some target detector algorithms.
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To end this section, let me discuss some of the results in section 6.4:

Random Truth. As this section was already fairly formal, I won’t bother

restating the definitions of formal theory, provability, consistency, and unde-

cidability. We say that a formal system is correct if it doesn’t prove false state-

ments. One key result we need is the following:

• Unsolvability and Undecidability Lemma. If P is a computation

with an unsolvable halting problem, and F is a correct formal

theory, then there will be infinitely many sentences about P

which are undecidable for F.

Proof sketch: Since P has an unsolvable halting problem, we have an infi-

nite set NonHalt of all In such that P(In) doesn’t halt. Since F is correct, if In

is in NonHalt, F won’t prove “P(In) halts.” But there also have to be an infinite

number of In in NonHalt such that F won’t prove “P(In) does not halt.” For

otherwise FProvable could be used to solve the halting problem for P. End of

proof sketch.

As I mentioned in footnote 152, Turing was able to show that if F is a con-

sistent formal system as powerful as arithmetic, then we can embed the

construction of Turing machines within the theory of F, so that FProvable

becomes a universal computation. By Turing’s Theorem, this tells us that

FProvable has an unsolvable halting problem. Combining this fact with the

Unsolvability and Undecidability Lemma gives us the following result, men-

tioned in section 6.4, with the proof already sketched in footnote 154.

• Undecidability Corollary to Turing’s Theorem. If F is a consis-

tent formal system as powerful as arithmetic, then there are

infinitely many sentences which are undecidable for F.

Finally, note that if we combine the NUH with the Unsolvability and Unde-

cidability Lemma, we get the following.

• Principle of Natural Undecidability. For most naturally occurring

complex processes, and any correct formal system for science,

there will be sentences about the process that are undecidable

by the given formal system.



Glossary

analog, digital. Traditionally, digital computers use bits and numbers,

whereas analog computers represent data as continuously varying quan-

tities such as lengths (as in the slide rule) or voltages. The distinction is

actually a bit hard to maintain, so now we just say that a computational

system is said to be digital if its states range over a small set of discrete

possibilities, and is said to be analog if it has a very large number of pos-

sible states.

attractor. The characteristic space and time patterns of processes. Four

kinds of attractors typically occur: points, curves, gnarly patterns, and

random-looking patterns. The interesting gnarly attractors are also

known as strange attractors.

bifurcation. A bifurcation occurs when a system begins ranging over a com-

pletely different zone of possibilities within the space of all possible phe-

nomena. The term bifurcation is a bit misleading, as a bifurcation doesn’t

necessarily have anything to do with something splitting into two. Bifur-

cation means nothing more than changing something about a system in

such a way as to make its behavior move to a different attractor.

Brian’s Brain. A cellular automaton rule using three different states: ready,

firing, and resting. This rule is known for its very lively and gnarly



activity, and can be regarded as a toy model of neuron stimulations in the

human brain. Named after Brian Silverman.

CA, cellular automaton. A parallel computation that’s carried out in a space

of cells. The cell space can be one-, two-, three- or higher-dimensional.

CAs are characterized by updating all their cells at once, by having the

same update rule for each cell, and by having each cell only accept input

from immediately neighboring cells.

chaos. A system is said to be chaotic if it a very slight change in the system’s

initial conditions very quickly produces easily visible changes in its

behavior. The behaviors of chaotic systems often generate spacetime pat-

terns that have fractal shapes, and which can be said to lie upon strange

attractors.

class one, two, three, and four. These classifications are applied to compu-

tations or to patterns or behaviors that might be produced by computa-

tions. A computation is classified according to which of the following

behaviors it shows. Class one: Enters a constant state. Class two: Outputs

a repetitive or nested pattern. Class three: Produces messy, random-

looking crud. Class four: Produces gnarly, nonrepeating, purposeful-

looking patterns.

complex. A complex computation is in class three or class four, that is, it

produces a messy, random-looking output or a gnarly, intricate output.

Note that some authors use complex to mean class four exclusively, but

we are not following this usage.

complexity. Complexity is used in various senses. In this book, we usually

speak of complexity as a measure of computational sophistication, with

the complexity scale increasing through the computation classes in the

order class one, class two, class three, and class four. Even though the

class four computations appear visually orderly in that we can distin-

guish moving glider patterns in them, they may be computationally more

complex. A quite different meaning of complexity has to do with emulation.
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A computation P is said to be as complex as Q if P is able to emulate the

behavior of Q. The computations that are the most complex in this sense

are the universal ones, which are also usually in class four and are thus

maximally complex in the first sense of the word.

computation. A computation is any process that obeys finitely describable rules.

Copenhagen interpretation. Quantum mechanics consists of a set of rules

that work very well at predicting the results of certain kinds of experi-

ments. There is disagreement about the best way to interpret these rules

in terms of some underlying reality. The popular Copenhagen interpreta-

tion says that systems evolve into overlapping superpositions of many dif-

ferent states, but that when you observe a system it somehow collapses

down into being in a pure and precise state.

critical state. Parallel-computing systems in physics and society often get

into critical states if they’re subjected to lots of inputs over a long period

of time. A system in a critical state is tuned to a point where an additional

input can cause any one of a very wide range of reactions. The sizes of

these reactions will be distributed according to a power law.

digital. See analog.

emulation. A computation Big is said to emulate another computation Small,

if Big is able to mimic the input-to-output behavior of Small. Generally

speaking, any personal computer can emulate any other personal com-

puter.

endless search detector. If I have a computation P and an input In, I set in

motion a computation P (In) that may or may not eventually reach a target

state. An endless search detector is a computation of the form PFailsTo-

Halt such that PFailsToHalt(In) is True if P (In) runs forever.

feasible. A computation with a given input is said to be feasible if it produces

a useful answer in a reasonable amount of time.
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finite-element model. A finite element model simulates a physical processes

by dividing space into small cells and measuring time in small ticks.

These models are closely related to cellular automata.

gnarly. A process or pattern is gnarly if it can be regarded as coming from a

class four computation. To be gnarly is to be non repeating, purposeful-

looking, and intricate. Examples in nature would be twisting tree roots,

large ocean waves, or weathered human faces.

intrinsically random. A computation is said to be intrinsically random if it

generates random-looking outputs, even in the absence of any additional

inputs. Wolframs CA Rule 30 is an example of such a computation.

irreducible. See unpredictable.

Life. The cellular automaton known as the Game of Life uses two cell states,

live and dead. Life is characterized by having a lot of activity that usually

dies out. With the proper initial conditions, however, a Life CA can simu-

late any given computation. Invented by John Conway.

many universes theory, multiverse. One can interpret quantum mechanics

to mean that there are many parallel universes—known as a multiverse—

and that until we perform a measurement on a system, we don’t know

which universe we and the system are actually in. Even though it may not

be strictly true, the notion of a multiverse is useful for understanding

quantum computation.

neuron, neural net. A biological neuron is a cell in a brain. Computer scien-

tists work with toy neurons that share some of the features of the brain

cell: they sum up their inputs to get a stimulation level, and if the level is

high enough, the neuron sends out a signal. Many artificially intelligent

programs work by constructing computer models from these toy neurons.

PCE, Principle of Computational Equivalence. Wolfram formulates this

principle as follows: Almost all processes that are not obviously simple

can be viewed as computations of equivalent sophistication.
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PCU, Principle of Computational Unpredictability. Although Wolfram

doesn’t explicitly formulate this principle, he argues for it. I express it as

follows: Most naturally occurring complex computations are unpredictable.

Planck length. This is the length 1.6 × 10-35 meters, a scale below which it’s

not clear if we can actually speak of continuous space. The existence of

this minimal size level suggests that ultimate reality may in fact have a

granular structure to it, akin to a CA.

power law. Suppose that I am looking at a variety of similar entities and

measuring a quality L of each entity. And now suppose that I count the

number N of entities that occur at each given quality level L. The distri-

bution is said to obey a histogram-style power law provided that N is pro-

portional to the reciprocal of L raised to some power. In rank-style power

laws, L is porportional to the reciprocal of R raised to some power where

R is the popularity of an entity. The two kinds of power law are equiva-

lent. Power laws occur very commonly in physical and social situations.

pseudorandom. A computation which generates reasonably random-looking

outputs is said to be pseudorandom. It’s not clear if any truly and

absolutely random processes exist. For if the world were to be an

immense deterministic computation of some kind, everything would have

a cause of some kind, and thus be only pseudorandom.

Rule 30, Rule 110. Wolfram uses a particular system for numbering the 256

simplest kinds of CA rules. Two of the most famous rules have the num-

bers 30 and 110. Rule 30 generates completely random-looking output

when started out with a single marked cell. Rule 110 produces wandering

gliders that bounce off each other. Rule 110 is known to be a universal

computation. These two rules are standard examples of, respectively,

class three and class four computations.

simple. A simple computation is in class one or class two, that is, it reaches

a fixed state and halts, it enters a periodic loop, or it produces an orderly

nested pattern.
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speedup. Any hardware or software improvement that is used to achieve a

computational task in a faster way. A linear speedup reduces the runtime

by some constant factor, whereas an exponential speedup reduces a run-

time to the logarithm of its value—that is, an exponential speedup

reduces a slowtime to a fasttime such that fasttime < log(slowtime), or, if

you don’t like logarithms, such that 10fasttime < slowtime. The classic

example of an exponential speedup is using positional arithmetic to do

addition instead of counting on your fingers.

target state detector. If P is a computation and In is an input, we say that

the process P(In) halts if it reaches some constant state Out. More gen-

erally, we can define a target state detector IsPDone, and instead of

requiring that P(In) reach a fixed state, we check to see if P(In) reaches a

state Out such that IsPDone(Out) is True.

transactional interpretation of quantum mechanics. In the transac-

tional interpretation of quantum mechanics we suppose that systems

do have definite nonsuperposed internal states even before we measure

them. In order to consistently maintain this view, it’s necessary to

accept that “effects” can send influences backward in time to affect

their “causes.” In this view the universe is something of a synchronistic

whole.

Turing’s Theorem. Alan Turing proved that if U is a universal computation,

then U has an unsolvable halting problem.

unpredictable, strongly unpredictable. A computation as unpredictable if

there is no way to exponentially speed it up by using a more efficient com-

putation. Wolfram uses the word “irreducible” for the same concept. A

computation is strongly unpredictable if it’s impossible to even achieve a

linear speedup of the computation.

undecidable. A sentence S is undecidable for a given formal system if the

system is unable to prove or to disprove S.
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universal computation. A computation is universal if it able to emulate every

other computation. Our familiar personal computers embody universal

computations, and many natural phenomena may be universal computa-

tions as well.

unsolvable halting problem. A computation P is said to have an unsolvable

halting problem if there is no way to decide which inputs In will send P

in to an endless nonhalting process. We can speak of unsolvability rela-

tive to a special target detector IsPDone, and unsolvability in this sense

means that there is no endless search detector PFailsToHalt such that

PFailsToHalt(In) returns True precisely when P(In) will never produce a

state Out such that IsPDone(Out) holds.

NUH, Natural Unsolvability Hypothesis. This hypothesis says: Most natu-

rally occurring complex computations have unsolvable halting problems

relative to some target detector. This hypothesis is weaker than Wolfram’s

PCE. The NUH also implies the Principle of Natural Undecidability: For

most naturally occurring complex processes, and any correct formal

system for science, there will be sentences about the process that are

undecidable by the given formal system.

Zhabotinsky scroll. Many cellular automata produce moving lima-bean-

shaped scrolls. These are called Zhabotinsky scrolls after the Soviet

physicist who, with his colleague Belousov, produced these scrolls in

chemical solutions. Zhabotinsky scrolls occur in many natural and social

contexts.
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Notes

The book’s Web site, www.rudyrucker.com/lifebox, has all the links mentioned

here in clickable form.

CHAPTER 1: COMPUTATION EVERYWHERE

1. Be warned that I’m introducing a new usage here. In legal parlance, automatism

is used to mean something done by the muscles without any conscious control—

a spasm, a reflex twitch, a convulsion, or perhaps even sleep-walking would be

examples of legal automatism. The surrealist artists used automatism to refer to

works created with as little conscious control as possible, with a view to unveiling

the workings of the subconscious by the mind—so-called automatic writing is an

example of surrealist automatism. Spiritualists use automatism to describe a

medium speaking under the control of a spirit. Philosophers have used automa-

tism to refer to any kind of dull, plodding behavior—in the early 1900s, Henri

Bergson often spoke of transcending automatism when discussing how the

human spirit should rise above the low mechanistic workings of matter.

But I want to use universal automatism to refer to the idea that everything in

the world is a kind of computation.

There actually is an existing philosophical word for a notion fairly closely

related to what I’m calling automatism. This would be computationalism, which is

the belief that the human mind can be modeled as a computation. Universal

automatism can be thought of as a generalization of computationalism. Universal

automatism says that not only is the human mind a kind of computation; every-

thing else is a computation as well. A pleasant thing about speaking of universal

automatism instead of about computationalism is that it frees me from some of



the baggage associated with the years-long and by now somewhat stale philo-

sophical debates about artificial intelligence.

Another reason I like using the phrase “universal automatism” is because of

its linguistic association with “cellular automata,” which are a kind of parallel

algorithm often used to illustrate the belief.

2. A philosophical quagmire beckons from the side of the road. Underlying the

notion of inputs and outputs is the assumption that our computing system is

embedded in linear time, with clear notions of earlier and later states. This might

not always be a safe assumption. If, for instance, one wants to argue that the

spacetime fabric of the universe is the result of a cosmic computation, it’s better

not to sneak the notion of time into the cosmic computation that’s supposed to

explain space and time. Stephen Wolfram, for instance, takes this into account

when he tries to describe a computational basis for the cosmos in chapter 9 of

his A New Kind of Science (Champaign, Ill.: Wolfram Media, 2002), pp. 433–546.

Another point is that if we seek to exorcise the demons of quantum mechanics

by viewing reality as a multiverse of branching time, then we need to remember

that if two states lie on different branches it may not make sense to say that one

is earlier or later than the other. But for now, yes, we will think of our computa-

tional systems as having a clear flow of time.

3. Given that P(In) is really thought of as a process rather than a function that

always returns a definite value, one might perhaps do better to write P[In] instead

of P(In), but my feeling was that using two kinds of brackets might make things

look more confusing.

4. Actually, there’s a way to achieve what’s called a polynomial speedup of Gosper’s

original calculation by using the 1995 discovery of the Bailey-Borwein-Plouffe for-

mula for extracting an arbitrary digit of pi (see http://mathworld.wolfram.com/

BBPFormula.html). But this formula hasn’t been proved to work; its predictions are

only “highly probable.” In any case, given that I define an unpredictable computation

to be one that doesn’t allow for an exponential speedup, we’re still safe in calling

Gosper’s computation of pi unpredictable, at least for now.

5. This formulation of the PCE is quoted from Wolfram, A New Kind of Science, pp.

716–17.

6. The following quote is from Wolfram, A New Kind of Science, p. 741. In my Tech-

nical Appendix, I give a formal definition of what we might call either computational

irreducibility or unpredictability: a computation P is unpredictable if there is no

computation FastP that emulates P and that runs exponentially faster than P.
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Although Wolfram gives the impression of believing the PCU to be provable, I

feel that he’s mistaken on this point—as I’ll discuss in chapter 6 and footnote 149.

The PCU is a conjecture about the types of naturally occurring computations that

one might expect to find.

7. The Vichniac vote rule is discussed in Tommaso Toffoli and Norman Margolus,

Cellular Automaton Machines (Cambridge, Mass.: MIT Press, 1987). The original

reference is Gérard Vichniac, “Simulating Physics with Cellular Automata,”

Physica 10D (1984): 96–115.

8. Let’s try to make precise the exact sense in which using digits is exponentially

faster than counting by one. If we stick to our estimate that adding a column of

two numbers takes ten steps, then adding two N-digit numbers with arithmetic

takes ShortT = 10•N steps. Suppose A is the smaller of the two numbers added.

If A has a N digits, this actually means that A = a •10N for some real number a

between 0.1 and 1. So adding the numbers by counting off the smaller number

by ones takes LongT = a •10N steps. LongT is exponentially larger than ShortT in

the sense that LongT is greater than 0.1•10(0.1•ShortT ). The two fixed factors of

0.1 are not considered to be a problem in this kind of size comparison; we’re

allowed to neglect linear factors as long as we say that LongT is “on the order

of ” 10ShortT.

9. Ada Augusta, Countess of Lovelace, “Notes on Menabrea’s Sketch of the Analytical

Engine,” reprinted in Philip and Emily Morrison, eds., Charles Babbage and His

Calculating Engines: Selected Writings by Charles Babbage and Others (New

York: Dover, 1961), p. 252.

10. William Gibson and Bruce Sterling, The Difference Engine (New York: Bantam

Books, 1991), pp. 136–137.
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annotations in Martin Davis, ed., The Undecidable, (New York: Raven, 1965). It’s

said that Turing’s definition of his machines was inspired by thinking about the

kinds of computations that bank clerks do.

13. As I discuss in chapter 6 and in the Technical Appendix, computations that
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have predictable halting behaviors are essentially simpler than those computa-

tions for that there’s no way to tell in advance if a given input will initiate a com-

putation that halts. Certainly it’s possible to conceive of very complicated kinds

of computations that always halt, but from a mathematician’s standpoint, any

rule that uniformly dies down to a constant state is class one. Gnarly computa-

tions need to be unpredictably immortal.

14. Rudy Rucker, The Hacker and the Ants, (New York: Avon Books, 1994), p. 8. The
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appeared from AK Peters of Wellesley, Mass.

20. More about Fredkin’s vision of the world as a CA can be on his Web site,

http://www.digitalphilosophy.org/. See also the sketch of Fredkin in Robert

Wright, Three Scientists and Their Gods, (New York: Random House, 1988).

21. Stephen Wolfram, “Computer Software in Science and Mathematics,” Scientific

American (September 1984): 188–203.

22. Rudy, Rucker, Wetware, (New York: Avon Books, 1988), p. 32.

23. The program was originally marketed as Rudy Rucker’s CA Lab: Rudy Rucker’s

Cellular Automata Laboratory (Sausalito, Calif.: Autodesk, 1989). When Walker

rewrote it as a Windows program, he renamed it CelLab to avoid a lawsuit from

a sober-sided company called Computer Associates, who seemed to feel they

“owned” the letters “CA.” CelLab is available for free download from the book’s

Web site, www.rudyrucker.com/lifebox/.
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24. The executable and source code for CAPOW are available for free download from

the book’s Web site. As I discuss at some length in the first section of chapter

two, although a program like CAPOW is only approximating continuous numbers

by means of digital approximations, the patterns that occur resemble those one

might see if the numbers were in fact infinitely precise and fully continuous.

25. The Hodgepodge rule is described in M. Gerhardt, H. Schuster, and J. J. Tyson, “A

Cellular Automaton Model of Excitable Media Including Curvature and Dispersion,”

Science 247 (1990): 1563–66. The RainZha rule first appears in Rudy Rucker, CA

Lab Manual (Sausalito: Autodesk, 1989). The Hodgepodge and RainZha rules are

based upon about thirty discrete states. These rules are both implemented in

CelLab. The RainZha rule is a variation of a three-state earliest scroll-producing CA

rule discovered by James Greenberg and Stuart Hastings in 1997; a good survey of

Greenberg-Hastings rules can be found online at David Griffeath’s “Primordial Soup

Kitchen” Web site on CAs, http://psoup.math.wisc.edu/java/jgh.html.

The Winfree rule stems from Arthur T. Winfree, “Rotating Chemical Reac-

tions,” Scientific American (June 1974): 82–95; in this rule, each cell holds two

continuous-valued real numbers, which we think of as the activator and the

inhibitor. The Meinhardt rule is also a continuous-valued activator-inhibitor

rule, found in Hans Meinhardt, The Algorithmic Beauty of Sea Shells (New York:

Springer-Verlag, 1995). These rules are implemented in my CAPOW package.

Further explanations of the rules in my figures can be found on my book’s Web

site, www.rudyrucker.com/lifebox/.

CHAPTER 2: OUR RICH WORLD

26. If desired, we can, however, implement a data type for “arbitrary precision

reals,” in which real numbers with any finite number of decimal places are

allowed. Mathematical software such as Maple and Mathematica support these

types. But the simple CA models I’ll discuss are in fact based on the float type.

27. In other words, yes, if you try to model a continuous-valued real number by

using a range of only ten or a hundred distinct values between zero and one, your

simulation will be chunky and inaccurate and unable to support smooth-looking

waves. But once you drop the granularity low enough to be using ten thousand

or a hundred thousand or a million discrete values between zero and one, the

behavior stabilizes and displays smooth wave–like behavior for hundreds of

thousands of generations. In the size ranges and runtimes I’ve played with, my

continuous-valued CAs already look the same as they would if we were really
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using an infinity of values. I have more on this point in my paper, “Continuous-

Valued Cellular Automata in Two Dimensions,” in David Griffeath and Chris

Moore, eds., New Constructions in Cellular Automata (New York: Oxford Univer-

sity Press, 2003), pp. 295–316.

28. Another point to make vis-à-vis relativity and computational models of the uni-

verse: If the universe really were to be the result of a digital computation, as Wol-

fram supposes it to be, this might put stricter constraints on cosmology than

those required simply by general relativity, and perhaps there could, after all, be

a consistent global notion of time.

29. The continuous-valued CA images in this book were all made with  the CAPOW soft-

ware. As I mentioned in chapter one, CAPOW is a Windows program that I developed

with my computer science students at San Jose State University in the late 1990s.

I’ve been tweaking and expanding the program ever since. The research was funded

by a grant from the Electric Power Research Institute (EPRI) of Palo Alto, California.

30. Stanislaw Ulam, in Collected Papers of Enrico Fermi, Vol. 2, (Chicago: University

of Chicago Press, 1965).

31. You might wonder why the spots in the cubic wave patterns are symmetric,

whereas the quadratic wave spots are not. This has to do with the fact that

cubing preserves the distinction between negative and positive numbers but

squaring does not. For more information, see Dan Ostrov and Rudy Rucker,

“Continuous-Valued Cellular Automata for Nonlinear Wave Equations,” Complex

Systems 10 (Fall 1997): 91–119. A project I’d like to see would be a surfing game

based on a CA simulating nonlinear waves.

32. James Gleick, Chaos: Making a New Science (New York: Viking, 1987), p. 262.

33. See Gerald Jay Sussman and Jack Wisdom, “Chaotic Evolution of the Solar

System,” Science 257 (July 3, 1992). Or see Jack Wisdom’s online pages about

this, http://geosys.mit.edu/~solar/text/short.html.

Despite the inevitable long-term onset of chaos, at this time our digital orrery

programs are quite highly developed, taking into account the mutual gravita-

tional effects of the planets and the asteroids. John Walker recently became

obsessed with finding out if and when there would ever be a time when, viewed

from Earth, both Venus and Mercury would ever appear to cross or “transit” our

Sun’s disk at the same time. After running a computation for about three months

he found that, yes, a double transit will occur on July 26 in the year 69163! See

http://www.fourmilab.ch/documents/canon_transits/.
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34. The computer scientist Gregory Chaitin has used a very similar counting argu-

ment to show that most integers n must be Chaitin-Kolmogorov incompressible

in the sense of n not being equal to Te(0) for any Turing program code e < n; see,

for instance, G. J. Chaitin, The Unknowable (New York: Springer-Verlag, 1999).

For more on Chaitin’s work, see footnote 156.

35. Later in the book I’ll define quite precisely what I mean by unpredictable. I do

need to acknowledge that although I’ll be using “pseudorandom” as a synonym

of “unpredictable,” cryptographers and theoretical computer scientists have

developed some rather more refined technical definitions for the concept of

pseudorandomness.

36. The name arose because, historically, chaoticians first investigated the attrac-

tors of the logistic map, whose strange attractors do in fact change by having

each point of the attractor split into two. There’s a well-known picture of the

logistic map’s family of attractors, arranged to form a sideways-branching tree,

with each attractor bifurcating to make the next one. Three good chaos refer-

ences are: the best-selling book by James Gleick, Chaos; the cartoon-illustrated

volume by Ralph Abraham and Chris Shaw, Dynamics: The Geometry of Behavior,

3rd ed. (Santa Cruz: Aerial Press, 2004); and the clear and profound paperback

by Edward Lorenz, The Essence of Chaos (Seattle: University of Washington

Press, 1993).

37. Richard Feynman, Robert Leighton, and Matthew Sands, The Feynman Lectures

on Physics (Addison-Wesley 1963), p. 37–11.

38. The computer scientist Scott Aaronson, who enjoys quantum mechanics a lot

more than I do, remarks that it would be better to say that quantum mechanics

is like the rising tide that submerges a sand castle, and that wanting to deny

quantum mechanics is as feckless as telling the tide not to rise. Maybe so. But,

hey, as long as we’re playing with images, how about this: When I try to explain

quantum mechanics, I feel like a frightened former landowner singing the praises

of a revolutionary regime that’s taken away his home, or like a one-legged man

trying to tap dance.

39. See Brian Greene, The Elegant Universe (New York: W. W. Norton, 1999) or Lee

Smolin, Three Roads to Quantum Gravity (New York: Basic Books, 2001).

40. See Fredkin’s Web site, http://www.digitalphilosophy.org/, and especially see

chapter nine of Stephen Wolfram’s A New Kind of Science. My impression is that Wol-

fram’s approach is several orders of magnitude more sophisticated than Fredkin’s.
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41. John Cramer, “The Transactional Interpretation of Quantum Mechanics,”

Reviews of Modern Physics 58 (July 1986): 647–88. The paper is online at

http://mist.npl.washington.edu/ti/.

42. Quoted in Rudy Rucker, The Fourth Dimension (Boston: Houghton Mifflin,

Boston 1984), p. 136.

43. See also Stephen Wolfram’s eye-opening discussion of CAs and reversibility in

A New Kind of Science, pp. 435–57.

44. My writing notes for As Above, So Below: A Novel of Peter Bruegel (New York: Tor

Books, 2003) can be found online at www.rudyrucker.com/bruegel.

45. Now, as I mentioned earlier, in some universes there can be synchronization

problems with breaking spacetime into tidy spacelike sheets—but maybe our

universe doesn’t happen to be a troublesome one. Or maybe (just maybe!) the

real picture is somewhat more complicated than what I’ve here proposed.

46. Let me say a bit more about how quantum mechanics treats wave functions as

the fundamental realities. Suppose, for instance, that you have a particle (such

as an electron) that can be located anywhere along the x-axis. A wave function

for this type of “one-dimensional single-particle system” has the form ψ(x), that

is, for each location x, ψ assigns a value. It’s traditional to use the Greek letter

psi, or ψ, for this purpose.

What makes ψ interesting is that the value of ψ(x) isn’t a simple real number. No,

it’s a pair of real numbers, which we dras as arrows pointing away from the x-axis.

The wave functions for a single particle system tend to wind around the axis

like vines around a beanpole. This is because the angle of the ψ(x) arrow varies

as well as the length of the arrow. In figure 149, the x-axis runs from left to right.

We’ve drawn the graph of our wave function as a ribbon, to make it easier to see.

Each point x has a unique corresponding “arrow-tip” point ψ(x) on the ribbon.
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Figure 149: A Random Wave Function



Roughly speaking, for any specific location x, the distance of the ψ(x) point from

the axis measures the likelihood of finding the particle to actually be at x. Thus

a particle that hasn’t yet decided between two possible positions might have a

wave function resembling figure 150.
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Figure 150: Wave Function for a Particle with Two Likely Positions

Having the ψ(x) graph twist around the axis serves two purposes. It allows wave

functions to cancel each other out, by having them be out of phase with each

other. In addition, it allows wave functions to encode a particle’s velocity. As it

happens, if the velocity of a particle is known to be some specific value, this

means that the wave function will resemble a smoothly coiling spring, as shown

in figure 151.

Figure 151: Wave Function with Precise Velocity



The uniform helix is a pure state for the velocity measurement. Since it’s the

same at every x location, it holds no position information at all. What’s a pure

state for a position measurement? It’s a somewhat unnatural kind of function; a

line that, rather than coiling around the x-axis, runs right along the axis and

then, at one particular position point, shoots up to a vastly tall vertical spike and

then drops immediately back to the axis. Since it doesn’t wrap around the x-axis,

it holds no velocity information at all. In practice, the wave functions for actually

existing particles combine these two features; they coil around the axis and they

have higher amplitudes at some points than at others.

The deterministic aspect of pure quantum mechanics hinges on the fact that

we have a simple rule for describing how a system’s wave function ψ(x) changes

with time. First of all, to think of the wave function as being dependent on time,

we write it as ψ(x, t). The evolution of the wave function over time is summarized

by a magically concise formula called Schrödinger’s wave equation.
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I’m not going to try and explain Schrödinger’s wave equation. Suffice it to say that

it provides a fully deterministic rule for the behavior of a quantum system—up

until such time as someone measures one of the system’s attributes.

By the way, one possible problem with this highly mathematical worldview is

that, after all, we don’t really have much reason to believe that the world does

support the existence of infinitely accurate real numbers such as are to be used

in the wave functions. Schrödinger’s intricate construction may turn out to be

simply an approximation or averaging-out of some discrete and digital underlying

reality such as, say, a couple of multidimensional CAs, such as the paired

Physics and Metaphysics rules that I illustrated in section 2.5: What Is Reality?

47. The jabberwocky oddity of this gate name reminds me of the title of Walter

Tevis’s story, “The Ifth of Oofth” (Galaxy, April 1957). As I recall, Tevis’s story is

about a guy who gets so bollixed up from time travel and hyperspace jumps that

“the Ifth of Oofth” actually sounds like a reasonable date to him.

48. This algorithm was discovered by Peter Shor in 1994. A detailed popular

account of it can be found in Julian Brown, The Quest for the Quantum Computer



(New York: Touchstone, 2000). In its hardback edition the book had the title

Minds, Machines, and the Multiverse.

49. David Deutsch, The Fabric of Reality: The Science of Parallel Universes—and Its

Implications (New York: Penguin, 1997). Deutsch has thought long and hard

about quantum computers; among other things, he proved the existence of a uni-

versal quantum computer, and he devised a thought experiment intended to

show that an artificially intelligent quantum computer could refute the idea that

consciousness necessarily involves collapsing the wave function. Deutsch’s

thought experiment is nicely presented in Appendix C of Julian Brown’s The

Quest for the Quantum Computer. See also my section 4.8: Quantum Soul, where

I discuss physicist Nick Herbert’s attempts to imagine our natural state of con-

sciousness as being that of an uncollapsed wave function.

50. Rudy Rucker, Wetware (New York: Avon Books, 1988), pp. 83–86. I wrote Wet-

ware in six weeks in Lynchburg, Virginia, of all places, in the spring of 1986,

right before moving to Silicon Valley. Oozer’s speech patterns are modeled on

those of Neal Cassady, as twinked in Jack Kerouac, Visions of Cody (New York:

McGraw-Hill, 1974).

CHAPTER 3: LIFE’S LOVELY GNARL

51. The quote is taken from a supposed interview with one Max Yukawa in Rudy

Rucker, R. U. Sirius, and Queen Mu, eds., Mondo 2000: A User’s Guide to the New

Edge (New York: HarperCollins, 1992). Actually Max Yukawa was a character in

my 1984 novel Wetware and the interview was a hoax. Although, to my eternal

pride, the august and geekly Jargon File (http://www.catb.org/~esr/jargon/) of

computer culture slang suggests that I coined the word wetware, I myself first saw

the word in Bruce Sterling’s novel Schizmatrix (New York: Arbor House, 1985), and

Bruce says he got it from somewhere else that he can’t remember.

52. Stuart Kauffman, At Home in the Universe (New York: Oxford University Press,

1995), p. 50. In the late 1960s Kauffman carried out some famous computer exper-

iments on what he came to call random Boolean networks. You can play with these

by using a Java applet by Torstein Reil found at http://users.ox.ac.uk/~quee0818/

complexity/complexity.html.

53. Georg Hegel, The Phenomenology of Mind (New York: Harper & Row, 1967), pp.

75–76.

54. The complete reference for Turing’s paper is Alan Turing, “The Chemical Basis
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of Morphogenesis,” Philosophical Transactions of the Royal Society of London 641

(1952) B237, 37–72. A good modern account of activator-inhibitor systems can

be found in Philip Ball, The Self-Made Tapestry: Pattern Formation in Nature (New

York: Oxford University Press, 1999).

55. The activator-inhibitor CA rules illustrated in this section are derived from work

by Hans Meinhardt, The Algorithmic Beauty of Sea Shells (New York: Springer

Verlag, 1995). Details about the rules I used for my images can be found on the

book’s Web page or in my paper, “Continuous-Valued Cellular Automata in Two

Dimensions,” in New Constructions in Cellular Automata.

56. This picture can be found in the online Turing archives at http://www.

turingarchive.org/viewer/?id=476&title=25. More links and information about

Turing’s work on morphogenesis can be found on a page at Jonathan Swinton’s

Web site, http://www.swintons.net/jonathan/Turing/turbox.htm.

57. Brian Goodwin, How the Leopard Changed Its Spots: The Evolution of Complexity

(Princeton, N.J.: Princeton University Press, 1994), pp. 168, 114.

58. Image made with Chaos program: Josh Gordon, Rudy Rucker, and John Walker,

James Gleick’s Chaos: The Software (Sausalito, Calif: Autodesk, 1990). At the

time we wrote this program, computers were so slow that we had to use all kinds

of odd tricks to make the program run fast enough.

59. Fuller’s phrase in context: “I live on Earth at present, and I don’t know what I

am. I know that I am not a category. I am not a thing—a noun. I seem to be a

verb, an evolutionary process—an integral function of the universe.” See R.

Buckminster Fuller, Jerome Agel, and Quentin Fiore, I Seem to Be a Verb (New

York: Bantam, 1970).

I take the fluttering leaf analogy fairly seriously. My sense is that a fluttering

leaf is not only as complex as the play of my emotions, but also as complex as

the combined mental processes of my mind. My friend John Walker disputes

this, arguing that real computational intelligence results not just from having

a class four process, but from also having a lot of rapidly accessible and stable

memory in which to store intermediate results; see his essay at

http://www.fourmilab.ch/documents/comp_mem_nat_life/. A fluttering leaf

only stores data within the subtleties of its motions, which doesn’t seem like

so accessible a form as being stored on a disk or in neurons. Walker feels that,

thanks to its neural storage, a human mind really is doing more than most

naturally occurring class four computations.
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Reasonable as this view seems, I don’t agree with it. I’m comfortable with

viewing the mind as simply one among many universal computations found in

the natural world. Yes, it’s not feasible to model my brain as a fluttering leaf, but

in principle the two computations are of the same power and sophistication. To

me, this kind of deflating view of oneself comes as a relief and a stress-reducer.

If I’m nothing more than a piece of dust dancing in the wind, what do I have to

worry about?

60. See Robert May’s popular essay, “The Best Possible Time to Be Alive,” in

Graham Farmelo, ed., It Must Be Beautiful: Great Equations of Modern Science

(London, UK: Granta Books, 2002).

61. Kunihiko Kaneko, “Pattern Dynamics in Spatiotemporal Chaos,” Physica 34D

(1989): 1–41 investigates CAs based on a single species with a population value.

See also Ralph Abraham, John Corliss, and John Dorband, “Order and Chaos in

the Toral Logistic Lattice,” International Journal of Bifurcations and Chaos 1(1)

(March, 1991): 227–34. I have more details on their rule on my book’s Web page,

www.rudyrucker.com/lifebox.

62. From “The General and Logical Theory of Automata,” 1948, reprinted in John

von Neumann, Collected Works, Vol. 5 (New York: Macmillan, 1963), p. 315. The

weird scenario described in this quote is reminiscent of a scene in Kurt Vonnegut

Jr.’s Sirens of Titan (New York: Dell, 1971) where an unhappy robot tears himself

apart and floats the pieces in a lake.

63. Christopher Langton, “Self-Reproduction in Cellular Automata,” Physica D 10

(1984): 135–44.

64. Wetware, pp. 32–33.

65. The canonical source for information about L-systems is the lovely illustrated

book, Przemyslaw Prusinkiewicz and Aristid Lindenmayer, The Algorithmic Beauty

of Plants (New York: Springer Verlag, 1990). The L-system flower sequence can

be found online at http://www.cpsc.ucalgary.ca/Research/bmv/vmm-deluxe/

Plates.html.

66. Rodney Brooks, Flesh and Machines: How Robots Will Change Us (New York:

Vintage Books, 2003), pp. 39–40.

67. Brooks, Flesh and Machines, pp. 184, 188.

68. Thomas Mann, Doctor Faustus (New York: Knopf, 1948), pp. 19–20.

69. The first book on genetic algorithms was John Holland, Adaptation in Natural

and Artificial Systems (Lansing, Mich: University of Michigan Press, 1975). I have
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drawn most of my information about the field from David Goldberg, Genetic Algo-

rithms in Search, Optimization and Machine Learning (New York: Addison-Wesley,

1989).

70. Povilaitis worked with me on my book Artificial Life Lab (Corte Madera, Calif.:

Waite Group Press, 1993). He also illustrated Rudy Rucker, The Fourth Dimen-

sion: Toward a Geometry of Higher Reality (Boston: Houghton Mifflin, 1984). See

http://www.oxxide.com/index_dp.htm for more art by David Povilaitis.

71. The theme of whether the fittest a-life creatures are likely to be complex and

gnarly is discussed in Chris Langton’s classic paper “Life at the Edge of Chaos”

in Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Ras-

mussen, eds., Artificial Life II (New York: Perseus Books, 1991).

72. I’m supposing that I’ll represent my real numbers by 32 bits each, as is cus-

tomary. In this case, twelve real numbers require 384 bits, which we’ll round up

to an even 400. 2400 = (210)40~(103)40 = 10120. If you prefer, you could simply

imagine an a-life creature based on a purely digital genome of 400 bits. Seth

Lloyd’s estimate appears in his paper, “Computational Capacity of the Universe,”

Physical Review Letters 88 (2002): online at http://arxiv.org/abs/quant-ph/

0110141. See also Seth Lloyd and Y. Jack Ng, “Black Hole Computers,” Scientific

American (November 2004), 53–61.

73. Actually, it’s not known if we really do achieve equally good search results if we

use a deterministic pseudorandomizer instead of some cosmically unpredictable

randomizer. The question is an open problem of theoretical computer science

called the P versus BPP problem, where P is Polynomial Time and BPP is

Bounded-Error Probabilistic Polynomial-Time. It’s suspected that P = BPP, in

which case replacing random numbers by pseudorandom numbers in an effi-

cient algorithm is, in fact, okay.

In the context of search algorithms, I should mention the so-called No Free

Lunch Theorems (NFL) proved by David Woldpert and William Macready. These

results show that if we average across all possible search problems, no search

algorithm is, on the whole, better than any other. The relevant papers can be

found online at http:/www.cs.uwyo.edu/~wspears/yin-yang.html. Reli-

giously motivated creationists have begun arguing that the NFL theorems

undermine the plausibility of Darwinian evolution. But the NFL results do

not contradict the observable fact that Nature’s genetic algorithms are in fact

well-tuned for searching the idiosyncratically structured space of DNA
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strings. And the NFL theorems don’t really come into play if, as I mentioned,

we are searching not for the best possible solution, but simply for a reasonably

good solution.

74. A classic a-life example of co-evolution is described in Danny Hillis, “Co-

evolving Parasites Improve Simulated Evolution as an Optimization Procedure”

in Langton, Taylor, Farmer, and Rasmussen, eds., Artificial Life II. This paper

describes an experiment in which a genetic algorithm was used to discover an

optimally fast algorithm for sorting lists of numbers. Hillis avoids getting stuck

at the tops of small hills by simultaneously evolving the test cases that are best

at demonstrating the nonfitness of proposed algorithms.

75. Rudy Rucker, The Hacker and the Ants, Release 2.0 (New York: Four Walls Eight

Windows, 2002), pp. 185–88.

76. The idea of using “genomes” that are programs in the LISP computer language

rather than strings of parameters was pioneered by John Koza, author of Genetic

Programming (Cambridge, Mass.: MIT Press, 1992). Koza argues that it is better

to be able to evolve actual computer programs instead of evolving bit-strings that

still must be interpreted by computer programs. The reason LISP is so suitable

for program evolution is that you can do crossover on LISP expressions by writing

them as “parse trees” and swapping a branch of one tree with a branch of

another tree. Nobody seems to be able to think of a way to do this for programs

in ordinary C—simply cutting two C programs in half and sewing the different

halves together won’t produce working programs.

Note that Karl Sims uses a Koza-style evolution of LISP programs in the Gala-

pagos demonstration shown in figure 75.

CHAPTER 4: ENJOYING YOUR MIND

77. See chapter eight of Rodolfo Llinás, I of the Vortex: From Neurons to Self (Cam-

bridge Mass.: MIT Press, 2001).

78. Valentino Braitenberg, Vehicles: Experiments in Synthetic Psychology (Cam-

bridge, Mass.: MIT Press, 1984). Braitenberg was at one time the director of the

Max Planck Institute for Biological Cybernetics in Tübingen, Germany.

79. See my book, Software Engineering and Computer Games (Harlow, UK: Addison-

Wesley, 2003), and the associated Web site, www.rudyrucker.com/computergames.

80. As a simple illustration of why continuous-valued computing units are richer

than bit-valued units, consider trying to represent a round disk by a coarse grid
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of tiles. If the tiles have to be black or white, you’ll see jagged edges. But if the

tiles can take on shades of gray, the jagged edges can be visually smoothed away.

As in the physics simulations, the real numbers used by a PC aren’t truly con-

tinuous; they’re digital models of continuous numbers. If, again, we represent a

real number by thirty-two bits, then we’re “only” allowing for four billion different

real numbers.

81. The face-recognition example that I discuss is taken from Tom M. Mitchell,

Machine Learning (Boston: WCB McGraw-Hill, 1997). See my Web page

www.cs.sjsu.edu/faculty/rucker/cs156.htm for links, source code, and details.

82. This slogan’s first appearance may be in John Hertz, Anders Krogh, and

Richard G. Palmer, Introduction to the Theory of Neural Computation (Redwood

City, Calif.: Addison-Wesley, 1991).

83. The Brian’s Brain illustration was made using a terrific Java Web applet called

MJCell. This rapid and powerful applet was written by the Polish programmer

Mirek Wojtowicz and can be viewed at Mirek’s site, http://www.mirekw.com/ca/

mjcell/mjcell.html.

84. I describe my original position in Infinity and the Mind (Princeton, N.J.:

Princeton University Press, 1982), p. 184. The scripture passage is Exodus 3:14.

The Hebrew word translated as “I AM” is “ ’hyh,” which might better be rendered

as “I will be.”

85. Antonio Damasio, The Feeling of What Happens (New York: Harcourt, New York

1999), pp. 170–71.

86. Legend has it that the Japanese programmer Itso Yamaguchi got his inspira-

tion for Pac-Man’s wonderfully simple circle-missing-a-sector icon from—a pizza.

This classic origin tale is mentioned as an aside in the wonderful novel by D. B.

Weiss, Lucky Wander Boy (New York: Plume Books, 2003). The book is about a

ne’er-do-well Angelino media worker who’s obsessed with an obscure arcade

game bearing the same name as the novel. Steven Poole, Trigger Happy (New

York: Arcade, 2000) is a good nonfiction history of computer games. For a tech-

nical treatment of game programming, see my book, Software Engineering and

Computer Games, or Andre La Mothe, Tricks of the Windows Game Programming

Gurus (New York: Sams, 2002.)

87. R. D. Laing, Knots (New York: Pantheon Books, 1970), p. 84.

88. Rudy Rucker, Software (New York: Ace Books, 1982), p. 36. In quantum infor-

mation theory there’s quite a different kind of discussion concerning whether it
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would be possible to precisely copy any physical system such as a brain. The so-

called no-cloning theorem indicates that you can’t precisely replicate a system’s

quantum state without destroying the system. If you had a quantum-state repli-

cator, you’d need to destroy a brain in order to get a quantum-precise copy of it.

This said, it’s quite possible that you could create a behaviorally identical copy

of a brain without having to actually copy all of the quantum states involved.

89. I first used the word in a short story, “Soft Death,” The Magazine of Fantasy and

Science Fiction (September 1986), 42–54. The main character’s last name

Leckesh is a near-anagram of the last name of my writer-idol Robert Sheckley.

90. Saucer Wisdom (New York: Tor Books, 1999), pp. 57–59.

91. Thomas Pynchon, Gravity’s Rainbow (New York: Viking Press, 1973), p. 516.

92. The American big-number-naming convention that I present here is sometimes

called the “short scale” and the less common European convention the “long scale.”

For full details, see the Wikipedia entry http://en.wikipedia.org/wiki/Long_scale.

93. See Hans Moravec, Robot: Mere Machine to Transcendent Mind (Oxford, Eng.:

Oxford University Press, 1999), p. 54, and Ray Kurzweil, The Age of Spiritual

Machines (New York: Penguin Books, 1999), p. 103.

94. See the classic works, Marvin Minsky, The Society of Mind (New York: Simon

and Schuster, 1985) and Douglas Hofstadter, Gödel, Escher, Bach: An Eternal

Golden Braid (New York: Basic Books, 1979).

95. A side remark on this third point. Suppose I write MR for the mind recipe algo-

rithm which I’m describing here. If the working of MR is completely deterministic,

then for any number of years n, there is a unique agent MR(n) that represents

the fittest agent produced by running MR for n years. Suppose that

MR(1,000,000) is an agent whose behavior is indistinguishable from that of a

human mind. And suppose as well that the complete and detailed specification

of the MR is humanly comprehensible. So then MR(1,00,000) is a concise and

comprehensible description of a human mind. Q.E.D.

To me this is an interesting result precisely because I used to think it was

false! That is, I used to believe that there could be no humanly comprehensible

description of a system equivalent to the human mind. But now I see that I was

wrong. For more on this point, see the “Preface to the 2005 Edition” in Rudy

Rucker, Infinity and the Mind (Princeton, N.J.: Princeton University Press, 2005).

I’m always happy when logic gets me to change my mind—if that never hap-

pened, there wouldn’t be much point in using logic! The a priori is very powerful.
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96. Suppose that a person’s thought system can be formalized as a system H. As I

discuss at greater length in footnote 102, Kurt Gödel’s Second Incompleteness

Theorem tells us that either (a) H is inconsistent or (b) H is consistent and H

cannot prove the sentence Con(H) expressing the consistency of H. So if a robot

R is in fact equivalent to H, then either (a) R is inconsistent or (b) R is consistent

and neither R nor H can prove Con(R). In either case, the person H has no way

of knowing in advance whether or not R may suddenly go berserk.

97. See Seth Lloyd and Y. Jack Ng, “Black Hole Computers,” Scientific American

(November 2004) 53–61.

98. Vinge’s talk “The Coming Technological Singularity: How to Survive in the Post-

Human Era” appeared in the Winter 1993 issue of the Whole Earth Review and

is also available online at http://www-rohan.sdsu.edu/faculty/vinge/misc/

singularity.html—or just Google for “Vinge Singularity.” Regarding the Singularity-

Rapture comparison I quote below, I first heard this phrase from Bruce Sterling,

who ascribes it to Cory Doctorow, who says he got it from Charlie Stross, who in

turn says he nicked it from Ken McLeod—cynical science-fiction writers one

and all.

99. See Stephen Wolfram, A New Kind of Science, p. 750. In my Technical Appendix

I explain why I prefer the word unpredictable to Wolfram’s irreducible. By the way,

some philosophers would remark that Wolfram isn’t the first person to have pro-

posed the “unpredictable determinism” solution to the problem of free will. But

certainly he’s done much to crystallize and clarify the argument.

100. Nick Herbert, “Holistic Physics, or, An Introduction to Quantum Tantra” from

Southern Cross Review, available online at www.southerncrossreview.org/16/

herbert.essay.htm. Also see his book, Elemental Mind: Human Consciousness and

the New Physics (New York: E. P. Dutton, 1993).

101. Rudy Rucker, Frek and the Elixir (New York: Tor Books, 2004), pp. 371–373.

See www.rudyrucker.com/frek for my writing notes on the book, including fur-

ther discussions of interrogations and decoherence.

102. Mentioning the physicist-author Roger Penrose brings up the issue of J.

Anthony Lucas’s classic argument that Gödel’s Second Incompleteness Theorem

rules out man-machine equivalence, an argument that Penrose revived and pop-

ularized in the 1990s. This fallacious argument is such a thoroughly dead horse

that I didn’t want to mention it in the main text. But I’ll give it another beating

here, lest one of my readers thinks I have no clear opinion on the subject. Do

The Lifebox, the Seashell, and the Soul

512



note that the Lucas-Penrose argument is a completely distinct issue from Pen-

rose-Hameroff speculation that the brain can act as a coherent quantum com-

puter. It’s to Penrose’s credit that he’s associated with multiple controversial

ideas!

Before continuing, I should explain the Gödel’s Second Incompleteness The-

orem is the result that if F is a consistent formal system as strong as arithmetic,

then F cannot prove the sentence Con (F). Con (F) is the sentence that expresses

the consistency of F by asserting that F will never prove, say, 0 = 1. If we think

of h as being the index of the Turing machine Mh, we can write Con (h) as short-

hand for Con(Mh).

The remainder of this note is directly quoted from “Preface to the 2005 Edi-

tion” in Rudy Rucker, Infinity and the Mind.

Suppose h is an integer that codes the program for a device Mh whose output is very

much like a person’s. Lucas and Penrose want to say that, (1) after hanging around

with Mh for a while, any reasonable person will feel like asserting Tr(h), a sentence

which says something like, “If I base a machine Mh on the algorithm coded by h I’ll

get a machine which only ouputs true sentences about mathematics.” And (2)

having perceived the truth of Tr(h), any reasonable person will also feel like

asserting Con(h), a sentence which says something like, “If I base a machine Mh on

the algorithm coded by h I’ll get a machine which never generates any mathemat-

ical contradictions.” But Gödel’s Second Incompleteness Theorem shows that Mh

can’t prove Con(h), so now it looks as if any reasonable person who hangs around

with a human-like Mh will soon know something that the machine itself can’t prove.

The philosopher Hilary Putnam formulated what remains the best counterargu-

ment in his 1960 essay, “Minds and Machines,” which has been reprinted in A. R.

Anderson, Minds and Machines, Prentice-Hall, 1964, pp. 43–59. (For Lucas’s

ripostes to such objections, see his genial if unconvincing essay, “A Paper Read to

the Turing Conference at Brighton on April 6th, 1990,” available online at

http://users.ox.ac.uk/~jrlucas/Godel/ brighton.html.)

Putnam’s point is simple. Even if you have seen Mh behaving sensibly for a period

of time, you still don’t have any firm basis for asserting either that Mh will always

say only true things about mathematics or that Mh will never fall into an inconsis-

tency. Now if you were to have a full understanding of how Mh operates, then per-

haps you could prove that Mh is consistent. But, in the case where h is the mind
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recipe, the operation of the eventual Mh is incomprehensibly intricate, and we will

never be in a position to legitimately claim to know the truth of the sentence Con(h)

which asserts that Mh is consistent. This is, indeed, the content of Gödel’s Second

Incompleteness Theorem. Rather than ruling out man-machine equivalence, the

theorem places limits on what we can know about machines equivalent to our-

selves.

And, really, this shouldn’t come as a surprise. You can share an office or a house

with a person P for fifteen years, growing confident in the belief that P is consistent,

and then one day, P begins saying and doing things that are completely insane. You

imagined that you knew Con(P) to be true, but this was never the case at all. The

only solid reason for asserting Con(P) would have been a systematic proof, but, given

that you and P were of equivalent sophistication, this kind of proof remained always

beyond your powers. All along, the very fact that Con(P) wasn’t provable contained

the possibility that it wasn’t true. Like it or not, that’s the zone we operate in when

relating to other intelligent beings.

CHAPTER 5: THE HUMAN HIVE

103. Craig Reynolds, “Flocks, herds, and schools: A distributed behavioral model,”

ACM SIGGRAPH Computer Graphics 21, no.4 (July 1987): 25–34. Available

online at www.red3d.com/cwr/papers/1987/boids.html.

104. John Updike, Verse (New York: Crest Books, 1965), p. 174. “The Great Scarf

of Birds” first appeared in Updike’s poetry collection, Telephone Poles (New York:

Knopf, 1963).

105. These pictures were made with my Boppers software, available from the book’s

Web site, www.rudyrucker.com/lifebox. Individual images can’t fully capture the

dynamic flocking effect; to see flocking in action, you might download Boppers,

or just go online to one of Craig Reynolds’s two terrific Web sites. Flocking applets

and a Java-driven tutorial on flocking and other kinds of steering behaviors can

be found at http://www.red3d.com/cwr/steer/. A second site has some C++ code

for steering behaviors and includes, for instance, a great simulation of pedes-

trians in motion, this is http://opensteer.sourceforge.net/. 

106. R. D. Laing, Knots (New York: Pantheon Books, 1970). The personal interac-

tion knots I quote here appear on, respectively, pages 21, 5, and 26. And the Zen-

like knot I quote from at the end of this section is from page 84.

107. The quote is from G. K. Chesterton’s admiring biography of a Victorian painter,
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G. F. Watts (London: Duckworth, 1904), p. 88. I originally found the quote in

Jorge Luis Borges, “The Analytical Language of John Wilkins,” in E. Monegal and

A. Reid, eds., Borges: A Reader (New York: Dutton, 1981), p. 143.

108. In the summer of 2004, I returned to Naropa to teach a writing workshop. While

there, I wrote a transreal science-fiction story about encountering a reborn clone of

William Burroughs; slated to appear as Rudy Rucker, “MS Found in a Minidrive,” in

Chris Conlon, ed., Poe’s Lighthouse (Forest Hill, Md.: Cemetery Dance Publications,

2005). Transrealism is, by the way, my term for somewhat autobiographical science

fiction; see www.rudyrucker.com/writing for more information.

109. The view of language generation as an innate human skill is generally associated

with Noam Chomsky, who simply called the brain’s language generator “the

black box.” A good recent popularization of ideas about innate language skills is

Steven Pinker, The Language Instinct (New York: HarperCollins, 1994).

110. I had hoped that this might be a difficult question to answer, but Scott

Aaronson e-mailed me a short proof that the answer is no. “Proof: Let’s make

the identification Be=1, Bop=2, Lu=3. Then the question is whether we can

derive 312 starting from 123 and 31, by concatenation and deletion of 11’s,

22’s, and 33’s. Observe that in any valid string, the sum of the numbers fol-

lowing any ‘2’ must be odd. For clearly 123 and 31 satisfy that property, and

the property is preserved under concatenation and deletion. But 312 fails the

property, which completes the proof.” Oh well. I’m sure that, with a bit more

effort than I’m willing to invest, one could find a simply stated and truly diffi-

cult tag problem. Let’s say that finding such a system is left as an exercise for

the reader. I’ll post the best answers I get on the book’s Web site,

www.rudyrucker.com/lifebox/.

111. Most people just say “power law,” but I find it useful to say “inverse power law”

most of the time as a reminder that I’m looking for laws like N = 1/L2 rather than

laws like N = L2. The denominator exponent D might simply be 1, but often it’s 2

or 3 or even a fractional quantity like 2.4. Don’t let the notion of fractional powers

freak you out. They represent a kind of interpolation. That is, if 32 is 9 and 33 is

27, we expect 32.4 to lie somewhere in between, and indeed, it’s about 14. If you

like, you can think of raising something to 2.4 power as first raising it to the

twenty-fourth power, and then taking the tenth root, since 2.4 is 24/10. But it’s

easier just to think of the operation as being something reasonable between

squaring and cubing.
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112. To make the formula a little cleaner, we might normalize both N and L to

range between zero and one by dividing each of them by 130,600. This yields

Nf = N/136,000 as the relative frequency of a type of word, and Lf = L/136,000

as the relative linkiness of a word. Substituting into our empirical result 

N = 1,000,000/L2.4, if we replace N by 136,000 Nf and replace L by 130,600 Lf,

do some arithmetic and round off, we get nf = 0.069/L f
2.4

113. Albert-László Barabási, Linked (New York: Plume, 2003). Barabási has made

a name for himself by his researches into the scale-free structures of the

Internet. One of his key papers on the topic is Albert-László Barabási and Réka

Albert, “Emergence of Scaling in Random Networks,” Science 286 (1999): 509–12.

Links to this and many more of Barabási’s papers can be found on his Web site

at http://www.nd.edu/~alb/public.html.

114. Zipf’s book reference is: George Kingsley Zipf, Human Behavior and the Prin-

ciple of Least Effort (Boston: Addison-Wesley, 1949). Mandelbrot’s comment

appears in his own extravagant work of genius: Benoit Mandelbrot, Fractals:

Form, Chance and Dimension (San Francisco: W. H. Freeman, 1977), pp. 272–73.

By the way, the Mandelbrotian word gangue, more commonly used in French,

refers to otherwise worthless material in which valuable ores or gems may be

found. It’s pronounced like “gang” in English.

I went to Mandelbrot’s house early in 2001, when I was involved in an abortive

project to try to make a large screen (IMAX) science movie featuring some huge,

prolonged zooms into the Mandelbrot set.

The movie, which was to be about fractals, had the working title Search for

Infinity, a title that was dictated by the producer, Jeff Kirsch, director of the San

Diego Space Center Museum. Jeff was (perhaps unwisely) committed to pre-

senting the film as being about infinity instead of being about fractals, as he felt

many more people would be interested in the former than the latter. And in a

mathematical sense, fractals are indeed infinite, in that you can zoom into them,

forever finding more levels of detail. It’s an infinity in the small, rather than an

infinity in the large.

The very talented filmmaker Ron Fricke (Koyaanisqatsi and Baraka) was com-

mitted to shooting the film, and I was going to write the script. Ron and Jeff were

also bent on including Arthur Clarke in the movie as a character. And Ron

wanted the movie to star a computer-brained space probe who was afraid to fly

off into the endless void of interstellar space. Jeff had scored a development grant
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for the project from the National Science Foundation (NSF) and we worked on

preparing a final proposal over a couple of years.

Taking all the story constraints into account, I put together ten or eleven suc-

cessively more refined treatments for a film script; for the final version, see

www.rudyrucker.com/writing/.

But, like so many films, the project was never realized. The sticking point was

that we failed to get a needed $1 million grant from the NSF. One reason I vis-

ited Mandelbrot was, in fact, to try to win his support in case the NSF were to

ask his opinion about the project, but Mandelbrot was unenthused about it, I

don’t know exactly why. One of his issues was that it was wrong to bill the film

as being about infinity, when in truth it was about fractals—I actually agreed

with him on this point, but this wasn’t something that I could get Jeff and Ron

to go along with.

By way of making my own book an extravagant gangue, I’m going to paste in

excerpts of my journal entry of January 14, 2001, regarding my meeting with

Benoit. I don’t think I’m going to find another place to publish this, and it’s inter-

esting and somewhat relevant, so what the heck.

Mandelbrot is waiting for me at the end of his driveway; he’s worried I might not find

the house as the address on the curb is covered by snow. A white-haired balding

man, stocky, somewhat diffident, he sees me, I wave, he doesn’t wave back, not sure

yet I’m the one he’s waiting for, when I’m closer he says, “Are you Rudy Rucker?”

We introduce ourselves, shake hands, I tell him I’m thrilled to meet him. In the

house his wife Adèle greets us, Mandelbrot disappears to take a pee, I suppose, then

we sit in a cold room with some armchairs. They don’t seem to really heat their

house. He sits on an odd modern chair with parts of it missing, a collection of black

corduroy hot dogs. He wears a jacket, a vest, a shirt, trousers with a paper clip

attached to the fly to make it easier to pull up and down. I guess he’s 75. Rather

rotund and, yes, a bit like the Mandelbrot set in his roundness and with the fuzz of

hairs on his pate.

He starts talking almost right away, an incredibly dense and rich flow of infor-

mation, a torrent. Fractal of course, as human conversation usually is, but of a

higher than usual dimension. It’s like talking to a superbeing, just as I’d hoped, like

being with a Martian, his conversation a wall-of-sound paisley info structure, the

twittering of the Great Scarab.
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His wife listens attentively as we talk and from time to time she reminds him to

tie up some loose thread.

He doesn’t seem overly vain—as I’d heard him described by some rivals. Certainly

he has good self-esteem, but I think it’s well earned and justified.

I repeatedly feel a great urge to go out and have a cigarette. The firehose-stream

of information in his strong French accent—I have to cock my ear and listen my

hardest to process it. I’m conscious of his wife watching me listen to him. I imagine

she’s judging how well I seem to listen, and when once I smirk as he says something

a bit self-aggrandizing, she catches my expression and I imagine her giving me a

black mark.

He isn’t clear exactly what Jeff is trying to do with the movie, how Jeff plans to

fund it, what his (Mandelbrot’s) role is supposed to be, etc. I explain it as best I can;

we don’t really expect Benoit to do much more than to say that he doesn’t find our

project totally absurd. He seems to want to exact some kind of concession; at the

end I have the feeling that he considers Jeff’s emphasis on “infinity” to be a deal-

breaker, to the extent that there might have been a deal.

I mention how much he’s affected my view of the world. Mention also that I’m as

excited to meet him as I was to meet Gödel. Mandelbrot says, “Oh, Gödel didn’t talk

much, I saw him at the Institute, I was von Neumann’s last student.” I rejoinder,

“Well, Gödel talked a lot when I saw him, I was working on something he was inter-

ested in,” and Benoit is impressed.

In the event, it’s not really like meeting Gödel because I’m not so young and

starry-eyed that I see Mandelbrot as a mythopoetic guru. Yet it is like meeting Gödel

in the sense that for these two special oasis hours midway in the long caravan of

my life I’m talking to someone whom I feel to be smarter than me. An ascended

master.

Since the meeting, I’ve been thinking some more about ways in which Mandel-

brot resembled the Mandelbrot set; it’s a conceit I’m bent on playing with. As I men-

tioned, he was rather round about the middle, even bulbous, and his clothes and

his head were indeed adorned with any number of fine hairs. He appeared and dis-

appeared from my view several times; he’d get up and leave the room and then

return. Perhaps each time it was a different bud of him that came back in!

A key point in perceiving his multibudded nature is that his wife in many ways

resembles him: accent, age, attire, knowledge about his work. She was in fact a

mini-Mandelbrot set hovering near the flank of the larger bud I was talking to. The

The Lifebox, the Seashell, and the Soul

518



two of them were connected, of course, by a tendril of love and attention, rather

hard to physically see.

At times I felt a bit of menace from Mandelbrot, as when he was repeatedly asking

that we not bill the movie as being about infinity. I felt some anxiety that he might

somehow do something against us if we didn’t accede. He has, one imagines, a wide

range of influences. What was going on here was that I was sensing the presence of

the stinger at the tip of the Mandelbrot set. A stinger so fine as to be all but invis-

ible, a stinger that, as he grew somewhat agitated, was twitching with rapid move-

ments that made it yet harder to see. But, nevertheless, I could feel its whizzing

passages through the air near me. Palpable menace.

115. A nice numerical example of Zipf’s Law can be found on a Web page by

computer scientist Jamie Callan of the University of Massachusetts, it’s URL,

http://web.archive.org/web/20001005120011/hobart.cs.umass.edu/~allan/cs6

46–f97/char_of_text.html. For the mother of all Zipf’s Law Web pages, see

Wentian Li’s site, http://linkage.rockefeller.edu/wli/zipf/.

In reading about inverse power laws, you may notice that there are different

types of power laws that people discuss. Our Zipf’s Law graph shows a rank style

power law that gives the quality level L of an object of rank R by a law of the

form L = c/RD. But our linkiness power law graph was a histogram style power

law giving the number of objects N of some quality level L by a law of the form

N = c/LD. And to make things worse there are so-called cumulative power laws

as well.

Although it’s not quite obvious, the different types of laws are closely related,

and we can, for example, convert our histogram-style word linkiness power law

from earlier in this section into a rank-style power law of the form L* = 0.12/R0.7.

Here L* is the normalized linkiness level of the Rth word, that is, the linkiness

number L divided by the total number of words available in the dictionary file.

Let me say a bit more about the confusing fact that different researchers

describe power laws in alternative ways. I’ll couch the discussion in terms of our

word linkiness study.

A histogram power law of has the form N ~ 1/LD, meaning in this case that the

number of words N that have a given linkiness L is proportional to an inverse

power of L.

A cumulative power law in this case would say that for any linkiness L, the
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number of words M having linkiness greater than or equal to L is M ~ 1/LE for

some exponent E.

A rank power law would say here that if we rank words from the most linked

to the least, and if R is a word’s rank order, then the linkiness L ~ 1/RE for some

exponent F.

These forms are in some way equivalent, although the numbers interrelate in

an odd way. The report by Lada A. Adamic, Zipf, Power-laws, and Pareto—A

Ranking Tutorial at http://www.hpl.hp.com/research/idl/papers/ranking/

ranking.html, describes how we can get from histogram to cumulative to rank

forms of the same law—and vice versa. (The names in Adamic’s title refer, respec-

tively, to the rank, histogram, and cumulative forms of power laws.)

Let’s go over how to get from a histogram law to a cumulative law to a rank

law in the case of the word linkiness example.

Histogram. I have N = c/LD. L is a linkiness level and N is the number of words

at that level. In my particular example, c is 1,000,000 and D is 2.4.

Cumulative. To get the number of words with linkiness greater than or equal

to some value L0, integrate c•L–D from L0 to infinity, integrating with respect to L.

At this point, we have to assume D > 1, as otherwise the integral will be infinite.

Integrating by taking the antiderivative, I get (c/(1 – D))•L(1–D) evaluated from L0

to ∞, which cooks down to (c/(D – 1))/L0
(D-1). So I can say that if M is the number

of words with linkiness greater than or equal to L, then

M = (c/(D – 1))/L (D –1).

In our particular example, this becomes M = 714,286/L1.4.

Rank. Suppose I rank words in order of linkiness as one, two, three, and so

on, with the most-linked word at one. Suppose a word w has rank R and linki-

ness L. Note that the words with lower rank numbers have linkiness better than

the word w, so in fact R is the same as the quantity M defined in the cumulative

form of the power law, M being the number of words with linkiness greater than

or equal to the linkiness L of word w. So I can write the cumulative form of the

power law as R = (c/(D – 1))/L (D –1). And now if I solve for L in terms of R, I get

L = (c/(D – 1))(1/(D –1))/R(1/(D –1) ).
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For our particular example, this becomes L = 15,182/R0.7.

If we had started with the normalized form of the power law histogram for our

linkiness experiment we would have gotten this rank law:

Nf = 0.12/R0.7.

This last form is not too wildly different from the normalized Zipf’s Law relating

word frequency Wf to word popularity rank R, that is, Wf = 0.1/R.

Might the linkiness rank result really be the same as Zipf’s Law? It could be

that when we measured the linkiness in terms of how many definitions a word

is likely to appear in, we were really just measuring the frequency of the word’s

appearance.

In closing, let me just mention a few more examples of the rank laws that his-

togram laws produce:

The histogram law N = c/L1.5 goes with the rank law L = 4c2/R2.

The histogram law N = c/L2, has a nice simple rank law L = c/R.

The histogram law N = c/L3 matches a rank law L = (0.5 c)0.5/R0.5.

Do note that this analysis won’t work if you start with a histogram law of

the form N = c/L, in which the denominator exponent D is one. For then

resulting rank-law denominator exponent 1/(D – 1) isn’t well defined.

116. Around 1900, the Italian economist Vilfredo Pareto offered an explanation of

why salaries in an organization might obey an inverse power law. A company is

arranged like a pyramid, with more people at each successively lower level, and

with the salaries at each level being smaller than the salaries at the level above.

If we take a simplified case where higher-level employees have two subordi-

nates, each earning half as much as them, we end up with a histogram-style

inverse power law, for if you look at the rows and number them with i starting at

zero, you see that the ith row has 2i people getting 1/2i as much as the boss. This

means that if N is the number of people with a given salary L, then N = 1/L.

In this binary employee tree case the rank law would be of the form L = 1/R.

We can’t use the logic of the previous note to derive this, but intuitively this rank

law is reasonable here because, taken together, the rows previous to the ith row

have a total of 2i –1 people in them. So the salary 1/2i for the ith row members

is at least approximately equal to the reciprocal of their rank.

I’m kind of into the math thing right now, so I’ll show how to get histogram
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and rank laws for the salaries in more general cases of organizational trees. Fun

with algebra! Give Sub subordinates to each employee above the bottom, and

suppose that each subordinate earns 1/Cut as much as his or her immediate

boss. If we generate the organizational chart down to i levels, again viewing level

zero as being the single supreme boss at the top, then the people at the ith level

will be getting a salary L of (1/Cut)i = (1/Cuti ) times the supreme boss’s salary.

And the number of people N at the ith level will be Subi. So if we make a his-

togram chart of the number of people at each salary level, we’ll be matching

salaries L = (1/Cuti ) to the numbers N = Subi. What I want to do now is to show

that this means we can find a number D such that N = 1/LD. It turns out that

letting D be (log Sub)/(log Cut) will do.

To understand this, note that in formal mathematical contexts like this, we

take log with respect to a certain number e, which is about 2.72, and the

meaning of the log is that y = log x iff ey = x. So, again, if we define D to be

(log Sub)/(log Cut), then CutD = e (log Cut)(log Sub)/(log Cut) = Sub. We can see that

D will work as the exponent for our power law via the following chain of identities.

N = Subi = 1/(1/Subi) = 1/(1/(CutD )i ) = 

1/(1/(Cuti )D ) = 1/((1/Cuti )D ) = 1/L D.

In the simple case we began with, Sub and Cut are both 2, so we end up with

D = 1. But if, for instance, each employee has ten underlings, each earning 70

percent as much as their boss, then Sub is 10 and 1/Cut is 7/10, so Cut is 10/7,

and D is about 6.5.

In his discussion of Zipf in Fractals, Mandelbrot argues that the Pareto style

of argument can also be used to give a rough justification for an N = 0.1/L2 his-

togram version of Zipf’s’ Law if we think of language as being made up of ran-

domly generated strings of letters. Using the logic of the previous note, this

histogram can be converted into the usual Zipf’s Law L = 0.1/R.

117. A nonwriter might wonder why I’m talking about advances instead of about

royalties. Strictly speaking, a book advance is supposed to be an approximation

to the expected royalties that a book might earn in the first couple of years. But

the actual amounts of royalties tend to be obscured in a fog of megacorporation

accounting legerdemain, and practicing writers think in terms of the advance as

being what they actually get for a book. Yes, once in a while a low-advance book

becomes a runaway a best seller and, more commonly, a high-advance book may

bomb, but the discrepancies are ironed out in the next round of advances. Few
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writers stop at one book. The advances serve as a kind of rolling average of past

royalties.

118. As some calculus students may recall, the area from one to infinity under the

curve 1/x is infinite, but the area under 1/xD for any D > 1 will be finite. If, for

instance, we take D to be 1.1, then the book advance formula becomes Advance

= $1,000,000/Rank(1.1), and the total outlay for no matter how many writers will

never exceed something on the order of $10 million.

119. This rule is credited to a 1987 paper by the Russian physicist Yakov Zeldovich.

A generalization of the rule appears in Damián Zanette and Susanna Manrubia,

“Role of Intermittency in Urban Development: A Model of Large-Scale City For-

mation,” Physical Review Letters 79 (July 21, 1997): 523–26, available online at

http://linkage.rockefeller.edu/wli/zipf/zanette97.pdf.

The paper has a formal proof that, if we let L be population, N be the number

of cities of a given population size, and R be the size rank of a city, then the

Zeldovich rule generates a distribution with a histogram power law of the form

N = c/L2, which corresponds to a perfect Zipf-style rank law of the form L = c/R.

120. B. Malamud, G. Morein, and D. Turcotte, “Forest Fires: An Example of Self-

Organized Critical Behavior,” Science 291 (1998): 1840–42. This doesn’t seem to

be available for free online, but there is a PowerPoint presentation at

http://eclectic.ss.uci.edu/~drwhite/Anthro179a/J-Doyle.ppt and a discussion

of the paper at http://www.ent-consulting.com/articles/automata.pdf. Also, to

see the Java applet showing the rule go to http://schuelaw.whitman.edu/

JavaApplets/ForestFireApplet/.

In the description of the rule, I mention two transition probabilities. Typical

values for the probability of lightning setting a tree on fire is 0.000006, and

0.03 for the probability of a dead tree coming to life. These particular values lie

within a fairly large range that produces a critical state with inverse power law

behavior.

121. The original paper was by Per Bak, Chao Tang, and Kurt Wiesenfeld. Per Bak

wrote a popular and boldly titled book, How Nature Works: The Science of Self-

Organized Criticality (New York: Springer-Verlag, 1996). A very good recent pop-

ularization of the same ideas is Mark Buchanan, Ubiquity: The Science of History

. . . Or Why the World Is Simpler Than You Think (New York: Crown, 2000). If you

search the Web, you can find some online Java applets of the sandpile model; see

my book’s Web site, www.rudyrucker.com/lifebox/, for a sample link.
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To make the text definition of the rule a bit more precise:

In the sandpile CA, the cell states are integers ranging from zero to seven and

the update rule is as follows:

(i) If a cell’s value is greater than or equal to four, we subtract four from cell’s value, so

as to model a tumbling tower of sand.

(ii) For each of the cell’s four neighbors Nabe, if Nabe has a value greater than four, we

add one to the cell’s value, so as to model sand tumbling in from a neighbor.

(iii) If the cell is on the edge of the rectangular simulation world, we set its value to zero,

so as to represent the drop at the edge of the table.

122. In recent decades, scientists of every stripe have begun using the CA paradigm

for parallel computation, although they don’t always mention the phrase “cellular

automata.” For a survey of examples, see B. Chopard and M. Droz, Cellular

Automata Modeling of Physical Systems (Cambridge, UK: Cambridge University

Press, 1998).

A number of papers on power laws have a certain canonical form involving CAs.

(i) Observe that some quality level L can be measured for instances of some commonly

occurring phenomenon. Do a data analysis to find that the percentage N of phenomena

having level L obeys a histogram-style inverse power law of the form N = c/L D.

(ii) Create a (possibly continuous-valued) CA that simulates some aspect of the physical

social phenomenon. Find a quality L of the CA that seems to represent the quality L, and

perform a data analysis of some runs of your CA to produce a histogram-style power law

of the form N = b/L E.

(iii) If possible, carry out an analytic proof of why your CA has the precise constants b

and E in its power law. Suggest tweaks to your CA to bring b and E into closer accordance

with society’s observed c and D.

Not all the papers of this kind explicitly say that they’re using CAs. This may

be because, perhaps due to the psychedelic beauty of CAs, their popularity with

hackers, or the playfulness of many writings about the Game of Life, CAs have a

somewhat unrespectable aura. Or it could be because Wolfram’s somewhat con-

troversial and radical work is deeply intertwined with CAs. Or it could be because

it’s not so well known that CAs can in fact use real numbers as their state values.

Speaking as a fanatical cellular automatist, I think it’s high time that our pet

paradigm started getting its due! 

The writing-related remarks in the rest of this section appeared in my essay,

“Seek the Gnarl” in Journal of the Fantastic in the Arts 16.1 (Spring 2005).

The Lifebox, the Seashell, and the Soul

524



123. In connection with tit-for-tat strategies, I should mention that there are cer-

tain kinds of very simple situations where they work. A classic experiment by

Robert Axelrod explored a simulated world in which the agents carry out

repeated sequences of deals with each other. At each round, an agent has the

option of playing fair or of trying to cheat its partner. Axelrod ran a genetic algo-

rithm to evolve the fittest dealing strategy, and found that the most successful

strategy is for an agent to play fair or cheat in a given round according to

whether its partner played fair or cheated on the previous round. Although in

this particular world, such a tit-for-tat strategy works, this doesn’t mean that

the result generalizes to a political situation in which there are, after all, many

more than two possibilities. The philosopher Patrick Grim has done some very

interesting work running Axelrod-style rules on two-dimensional CA grids; see

Patrick Grim, Gary Mar, and Paul St. Denis, The Philosophical Computer:

Exploratory Essays in Philsophical Computer Modeling (Cambridge, Mass.: MIT

Press, 1998).

124. Indeed, thinking up a simple and unpredictable model of the stock market is

so hard that Wolfram’s model doesn’t quite fill the bill. The problem with Wol-

fram’s rule is that it’s equivalent to the elementary CA rule known as Rule 90,

which we illustrated in chapter 1. And Rule 90 is a predictable class two rule, for

each black cell in the initial row of a Rule 90 simulation sets off a recursive tree

pattern, and the pattern of the whole simulation can be obtained by layering the

individual tree patterns on top of one another. This means that if you know the

starting row of this rule with full accuracy, you can in fact predict the contents

of row N in a brief amount of time on the order of log(N). The messy class three

appearance of the rule is a kind of illusion; the pattern is really an overlay of a

bunch of very predictable patterns. My thanks to Wolfram’s assistant, Kovas

Boguta, for pointing this out. I’d be interested to hear from readers who think of

better models.

125. Stephen Wolfram remarks, in A New Kind of Science, pp. 367–368, that over

the years he’s often proposed very simple models for use in various fields. The

initial reaction is surprise and disbelief that so rudimentary a model could yield

anything interesting. Experts in the relevant field step in and make the model

more complicated. And then at some point it’s noticed that the bells and whis-

tles can be removed after all, and that the original lean model produced results

as good as the gussied-up version.

126. Buchanan, Ubiquity, pp. 231–33.
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127. I found the quote in Paul Benedetti and Nancy DeHart, eds., On McLuhan: For-

ward Through the Rearview Mirror (Toronto: Prentice-Hall Canada, 1997), p. 70.

This book is a collection of quotes from McLuhan and comments on him by his

peers. The quote in question was taken from a 1966 Canadian Broadcasting

Company TV interview called This Hour Has Seven Days.

The standard references are: Marshall McLuhan, Understanding Media: The

Extensions of Man (New York: McGraw-Hill, 1964) and Marshall McLuhan and

Quentin Fiore, The Medium Is the Massage (New York: Penguin Books, 1967). It’s

also illuminating to read the excellent biography, Philip Marchand, Marshall

McLuhan: The Medium and the Messenger (New York: Ticknor & Fields, 1989).

McLuhan didn’t even drive a car—he said he didn’t want to be a servomechanism

for a machine!

128. For my drawings of many of the inventions described here, see the Saucer

Wisdom Web site, www.saucerwisdom.com.

CHAPTER 6: REALITY UPGRADE

129. As a computer scientist, I would have preferred to number the eight options

from zero to seven, so that their numbers would match the binary patterns of the

1s and 0s in the three columns of figures 123 and 124.

Another point is that perhaps some things will be Other, that is, not inside T,

P, or C. If we wanted to take this possibility into account, we could have added a

fourth dark dot to Figure 122, the dot standing outside all the circles and repre-

senting the region ~(T ∪ P ), where ∪ is the set-theoretic union symbol. If we want

to take into account the possibility of there being things in this Other category,

our eight ontologies would split into sixteen.

A final remark is that I’d be interested in hearing from readers who have more

ideas about representative names to attach to the ontologies.

130. Now and then I get careless and express “P (In) returns Out” by writing

P (In) = Out, but really I shouldn’t do that, since I want to think of P (In) as

being a process rather than its final value. As I suggest in the Technical Appendix,

it would be better to write P (In) = IsP DoneOut.

In my pictures plotting a computation’s state as changing in time, the curves

are drawn as smoothly varying, but the more abrupt changes of state character-

istic of digital computations could be represented by lines with right-angled

stair-step jumps in them.
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131. See the books on recursion theory referenced at the beginning of the Technical

Appendix, and see Richard Shore, “Conjectures and Questions from Gerald

Sacks’s Degrees of Unsolvability,” Archive for Mathematical Logic 36 (1997):

233–53. The paper is available online at http://www.math.cornell.edu/~shore/

papers/pdf/sackstp3.pdf.

In point of fact, the Friedberg, Muchnik, and Sacks results regarding degrees

of unsolvability were proved for an ordering ≤T known as Turing reducibility

rather than the emulation degree comparison ≤e that I’m using here. As I dis-

cussed in the Technical Appendix, my ≤e is in fact equivalent to what recursion

theorists call one-one reducibility ≤. But for ≤ it’s also the case that pairs of

incomparable degrees exist, that the degrees are dense, and that there are infi-

nitely many degrees. This follows as a corollary to the Friedberg, Muchnik, and

Sacks results for ≤T because ≤ is a weaker notion than ≤T. And independent

proofs of some of the same facts about ≤ result from work by J. C. E. Dekker,

also in the 1950s. Dekker, my professor in a class on recursion theory at Rut-

gers, was a very formal man, pleasant and a good teacher.

132. When Wolfram formulated his PCE, he was well aware of the problem that

there are infinitely many degrees of unsolvability. Therefore he phrased his PCE

so that it has two loopholes. (See Stephen Wolfram, A New Kind of Science, pp. 734,

1130–31 for Wolfram’s discussion.)

The loopholes are to be found in, respectively, the very first and very last

phrases of the PCE, which I italicize here: Almost all processes that are not obvi-

ously simple can be viewed as computations of equivalent sophistication.

Regarding the first loophole, Wolfram is saying that complex nonuniversal

Turing machines “almost never” occur in natural contexts. This is an interesting

aspect of the PCE, in that it seems to say something about the kinds of processes

that actually occur in the real world.

Keep in mind that Wolfram’s work is empirical. Unlike physical experiments,

computer science experiments are exactly reproducible, and thus have a touch

of the mathematical or theoretical. But really his inspiration came from looking

at lots and lots of computations in action. And to reduce experimenter bias, he

made a point of conducting exhaustive surveys of various classes of rudimentary

computations such as Turing machines and CAs. Wolfram describes his research

as a process of exploring the computational universe.

To exploit the second loophole we might interpret “computations of equivalent
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sophistication” more broadly than “computations that can emulate each other.”

Wolfram feels that the processes by which logicians construct their intermediate-

degree computations always depend so essentially on the use of an underlying

universal computation that the constructed intermediate computations are in

some as-yet-to-be-defined sense “as sophisticated as” the universal computations.

Now, so far as I know, all the existing constructions of intermediate-degree

computations do use a universal computation somewhere in their proof. But it

seems capricious to conclude that therefore every intermediate-degree machine

in some way relies upon a construction involving a universal Turing machine.

Let me offer a historical analogy to make plausible the ubiquity of intermediate

degrees.

An algebraic number can be expressed as the solution to some polynomial

algebraic equation formulated in terms of whole numbers. The nonalgebraic

numbers are dubbed the transcendental numbers. For many years, the only

known transcendental numbers were of an artificial nature. But eventually

mathematicians proved that certain familiar numbers such as pi are transcen-

dental. By the same token, we may eventually recognize that some very familiar

kinds of computations have unsolvable halting problems, but are not universal.

I think it’s plausible that there may in fact be naturally occurring processes of

intermediate degree. It’s tempting to speculate that the one-dimensional CA Rule

30 itself is such a computation.

133. I considered calling this hypothesis the “Weak PCE” to emphasize its origin as

a weakening of Wolfram’s PCE. But since the conjecture’s actual content has

little connection with notions of equivalence, it seems more appropriate to call it

the Natural Unsolvability Hypothesis. But in any case, it’s definitely inspired by

the PCE.

Regarding the target state detector IsPDone, note that I require this to be a

computation that returns a True or a False for every input. That is, IsPDone is

what I term everywhere defined. This condition is necessary so as to rule out the

following target detector IsPDoneUniversal, which would serve to make any P

with an infinite number of distinct possible outputs unsolvable. Let U be some

universal Turing machine. Let IsPDoneUniversal(Out) return True if U(Out) halts,

and return False if U(Out) doesn’t halt. If P with IsPDoneUniversal were solvable,

U’s halting problem would be solvable, which would be a contradiction.

Note that I formulate the NUH in a fairly weak form, requiring only that each
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naturally occurring complex P have at least one everywhere defined target

detector computation IsPDone that yields an unsolvable halting problem. But for

many computations, unsolvability will hold for all nontrivial target detectors, as

I mention in the Technical Appendix.

134. Note that if I’m limited to a CA world of some finite size, say a thousand by a

thousand pixels, the patterns in a finite CA world must eventually run out of pos-

sibilities and begin repeating themselves. And this means that any halting

problem would in fact be solvable. The issue here is that a finite CA is really a

class-two computation, albeit one with a very long period.

In particular, in a thousand-by-thousand Brian’s Brain rule with its three dis-

tinguishable states per cell, there are only 3million patterns the board can display.

And if I just run the rule till it repeats itself, then I will know by then whether or not

a particular target state—such as the hundred-cell glider—is ever going to appear.

But waiting until the computational system runs out of possibilities isn’t the

kind of “prediction” that we have in mind. After all, 3million is an exceedingly large

and unfeasible number, whose decimal expression would be something like a one

with half a million zeros after it. When I say that I can’t find an oracle for Brian’s

Brain, I mean that there’s no quick and dirty computation that might tell me

within, let us say, a million or so steps whether or not a given pattern will or will

not ever appear when Brian’s Brain is started up on such and such a pattern in

a thousand-by-thousand world.

My point is that we do still think of Brian’s Brain as a class four computation,

even though it must repeat itself when run upon a finite grid. A class two com-

putation is meant to be one that quickly repeats itself, and which is unable to

take advantage of having more room to compute in. A class four computation, on

the other hand, only repeats itself after it has pretty much exhausted all the

available options of the computational environment where it’s being run.

It might be that in a future analysis, someone will find a nice way to work the

feasibility issue into the formulations of the computation classes and of related

conjectures such as the NUH.

135. Let K be the following computation: K(In) saves a copy of In and computes

powers 3t. I can think of the output of K(In, t) as a pair <Row, In> consisting of

the binary expression Row for 3t set down to the left of the binary expression for

In. And IsKDone(Out), that is, IsKDone(<Row, In>) checks if the pattern In

appears inside Row.
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I admit it seems just a little slippery of me not to be using just the plain

powers-of-three computation. I could avoid this slight awkwardness by for-

mulating the notion of target detector so that it takes two arguments, as in

IsPDone(In, Out).

136. Some might object to my bringing infinity into the discussion. The thing is, I’m

trying to introduce some mathematical rigor. And the distinction between finite

and infinite is absolute and clear, while distinctions between feasible and unfea-

sible are necessarily relativistic and vague. So rather than saying that a compu-

tation is complex if it’s unfeasible to find a repeating pattern in it, I prefer to say

that a computation is complex if it has no finite repeating blueprint at all. And

rather than talking about complex computations whose halting problems have

no feasible solution, I think it’s more useful to talk about complex computations

whose halting problems have no finite solution at all.

But, as I already mentioned in footnote 134, there may be some interesting

way to replace “infinite” by “unfeasible” in the definitions of the computation

classes and the formulation of the NUH.

Another point to make is that, if the UH really holds, then having an unsolvable

halting problem could in fact serve as the definition of a complex computation.

137. Theoretical computer scientists use the runtime measure as a criterion of what

they call computational complexity. In this context, they are using “complexity”

not in the Wolfram sense of “gnarliness” but rather in the sense of “difficulty.”

Computations can be compared not only according to how much runtime they

use, but also according to how much memory or scratch paper they require. Still

other distinctions can be introduced by allowing a computation to make guesses,

to consult oracles about other computations, to carry out statistical experiments,

and perhaps even to carry out quantum-mechanical measurements. Some four

or five hundred of these theoretical complexity classes have been named, and

you can find many of them listed on Scott Aaronson’s Web site, “The Complexity

Zoo,” http://www.complexityzoo.com.

Perhaps the most widely discussed complexity class is the one known as NP.

Let me quickly describe it here.

Suppose Test is a computation and that you have an input In of size N, a target

state Out, and a minimal time t such that Test(In, t) = Out. Now if t is a polyno-

mial function of N, then we say that Test is a polynomial time computation, a

member of the computational class called P. But suppose that t is instead
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comparable to 2N in size. In this case, we can say that Test is an exponential time

computation, a member of the computational class called EXP.

What about the computational class NP, whose the initials stand for nonde-

terministic polynomial time? A computation Test is said to be NP if there is a

polynomial time computation IsTestDone(In, Out) that can check in polynomial

time if Out is indeed a target output for the computation Test(In). The idea is that

in an NP computation we can limit the (probably) exponential search aspect of

the program to making guesses about the desired outputs, but checking if the

outputs are good is to be a polynomial time process.

The name “nondeterministic” for this class is an unfortunate choice of nomen-

clature. After all, in any useful sense of the word computation, a truly nondeter-

ministic computation wouldn’t be a computation at all. The so-called

nondeterministic computations are best thought of as deterministic computa-

tions that alternate between two stages: (search) generate a batch of possible

outputs, (check) check if any of these outputs is the correct one, (search) gen-

erate some more possible outputs, (check) check if any of these is the correct one,

and so on. Exhaustive search computations would be a far better name than non-

deterministic computations.

Although it’s widely believed that there are NP computations that aren’t in P,

nobody has been able to prove this. Many NP problems U are known to be NP-

complete in the sense that an oracle for U could be used to solve all the other NP

problems in polynomial time. A classic survey can be found in Michael Garey and

David Johnson, Computers and Intractability: A Guide to the Theory of NP-Com-

pleteness (San Francisco: W. H. Freeman, 1979).

138. The logarithm base ten of a number N is the power p such that 10p = N. A sim-

pler way to think of it is that log(N) is approximately the number of digits that it

takes to write N in our familiar decimal notation. As I discussed in footnote 8,

given that reckoning a sum with arithmetic involves only a few manipulations of

the digits, its evident that summing a pair of numbers of roughly the same size

N is going to be something like k •log(N) steps—where k is some constant factor.

Therefore we can call this a logarithmic time computation.

139. For sparsely spreading CAs like Conway’s Game of Life, one can drastically

improve on N-cubed performance. The trick here is to keep track of which cells

are active, and only to update cells that are adjacent to active cells. Given a Life

pattern of size M that doesn’t get much bigger over time, computing N updates of
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the pattern becomes linear in N ; although if the pattern grows by shooting out

gliders, the rate becomes quadratic in N. Further speed enhancements are

achieved by building a lookup table of recurring blocks of cells, so that, after a

bit, the program becomes able to do a single-step update of a recurring pattern

of, say, sixteen by sixteen cells—I discuss the lookup-table approach a bit fur-

ther on in the main text. To find state-of-the-art Game of Life simulators, Google

for xlife or Life32. For example, Life32 for Windows by Johan Bontes, can be

found at http://psoup.math.wisc.edu/Life32.html.

For practical purposes, we very often do limit the size of a CA world to some

maximum size R, either by clamping the border cells to zero, or by allowing the

CA patterns to “wrap around” from one edge to the other. In these cases, we do

well to think of there as being two input sizes: the world size R and the requested

number of updates N. It’s fairly evident that the runtime of computing N rows of

a one-dimensional CA of fixed size R will be on the order of R•N —you’re filling

in a space-time rectangle of R by N cells. Computing N updates of a two-dimen-

sional CA with fixed width N is on the order of R2•N. And computing N updates

of a three-dimensional CA with fixed width R is on the order of R3•N—which is

why we don’t see many large, fast three-dimensional CA simulations! A cubical

grid with a mere hundred cells per edge has a million cells inside it.

140. We can actually shave the number of distance computations down to N •(N – 1)/2,

for a boid doesn’t need to compute the distance to itself, and once you compute the

distance for one member of the pair of boids, the other member can use the same

distance number. But, in the rough-and-ready language of runtime estimation, this

is still said to be quadratic in N, or on the order of N2.

141. Let me explain why a random search would take exponential time. Suppose

we were to use coarse real numbers represented by sixteen bits each. So then

there would be 216 possible ways to choose one number. And choosing N real

numbers at random would be a matter of choosing N•16 bits, which can be done

2(16•N) ways.

Although I think it should be possible to prove the polynomial time conver-

gence of back propagation for the synapse weights to solve a given local set of

problems, I don’t recall having actually seen such a proof. Note also that con-

verging to good weights for the test cases isn’t the same as finding good weights

for all the other unsupervised examples that one might run across.

I have seen a paper showing that the exact convergence time is chaotically
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sensitive to the initial random weights that you start it in: John Kolen and

Jordan Pollack, “Back Propagation Is Sensitive to Initial Conditions,” Complex

Systems 4, no. 3 (1990) 269–80. Available online at Pollack’s site, http://demo.cs.

brandeis.edu/papers/bpsic.pdf.

142. See computer scientist David Eppstein’s Web site http://www.ics.uci.edu/

~eppstein/cgt/hard.html. The site summarizes some the known facts about the dif-

ficulty of various commonly played games, were they to be generalized to arbitrarily

large boards. The reason I hedge my statements about these games is because we

only know that these board-game problems are exponentially hard if there are com-

putations that can be done using a polynomial amount of memory but which require

an exponential amount of time. This assumption is called P ! = PSPACE.

143. We could also express the second definition in terms of logarithms, where we

let log(a)=b mean that 10b = a. With this notation, the definition becomes, “And

if we can always assert that fasttime < log(slowtime), we say that Fast is expo-

nentionally faster than Slow.” I have a more detailed treatment of this chapter’s

definitions in the Technical Appendix.

144. A more sophisticated technique is for a long-running program to construct

and store an ever-growing lookup table as it goes along. For this to work, the pro-

gram needs a so-called hashing method for indexing states by simple numerical

codes. And then, whenever the program has to laboriously update a state, it adds

an entry to the lookup table, with the new entry matching the hash code to the

updated state. The hacker demigod Bill Gosper at one time pushed this tech-

nique aggressively enough to create a “hash Life” scheme capable of computing

N updates of Life in log(N) runtime—at least for certain kinds of sparse and slowly

growing start patterns.

145. In today’s terminology, rapidly accessible memory takes the form of so-called

RAM chips.

Lookup tables lay at the heart of the CAM-6 hardware accelerator that Toffoli

and Margolus designed in the 1980s for speeding the Game of Life and other two-

dimensional CAs. I still remember the joyous faces of my new hacker friends

when I let them take the board out of my computer and fondle it. “It’s nothing

but memory chips!”

The CAM-6 functioned by representing a cell and its eight neighbors by sixteen

bits of information. Rather than doing some if-then-else kinds of analysis to figure

out the next state of the cell, the CAM-6 simply looked up the next state value in
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a 216 member lookup table. In other words, 64K of RAM. (In 1986 that was a lot.)

Once John Walker understood what was going on, he realized that we could

emulate the CAM-6 board on any PC by simply having the PC use its own RAM

for that 64K lookup table. And that led to our joint program, CA Lab, or celLab.

146. For purposes of philosophical discussion, I’m being rather strict here. That is,

I’m sounding as if linear speedups are so puny as not to be worth noticing. But,

in point of fact, linear speedups of our computer hardware repeatedly have been

responsible for what amount to phase transitions in what computers mean to us.

Four quick examples: (a) Simply being able to lay out text on your computer

screen as fast you can type is a luxury that only became available in the 1970s;

before that, word processors didn’t really exist. (b) The arrival of the IBM PC

made it possible to have desktop drafting software, something that totally

changed architecture and engineering. (c) In recent years, desktop computers

have become able to emulate virtual realities as fast as humans expect the world

to change, which has brought a whole new era of computer gaming that we’ve

only begun to explore. (d) In coming decades we can expect to see reliable real-

time speech recognition and convincing emulation of human facial features,

leading to another phase transition in how we interact with our machines.

147. Before leaving physics, I should mention one other type of computation in this

field. Physicists often predict various numerical constants, such as the mass of

a fixed volume of carbon, the wavelength of light from an excited hydrogen atom,

the viscosity of water, the resistance of a copper wire of a certain size, and so on.

In each case, they aren’t really predicting the outcome of one single experiment.

They are, rather, talking about a computation Average(N) that runs N copies of

an experiment and averages a certain measurement. And the claim is then that,

for large enough N, Average(N) becomes fixed. In other words, the prediction is

that a certain computation Average is class one. Being class one, Average is in

fact simple, so the whole issue of the predictability or unpredictability of complex

processes doesn’t come into play in an interesting way.

148. This notion was developed in my novels Software (New York: Ace Books,

1982) and Wetware (New York: Avon Books, 1988), and has since become

something of a staple in commercial science fiction. Software was under

option from 1990 to 2000 at Phoenix Pictures. Although a considerable

amount of preproduction work was done—including eleven unsuccessful

scripts—the option died. Right after Phoenix dropped my option, they released
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the Arnold Schwarzenegger movie The Sixth Day, which I believe to have

drawn inspiration from my work.

One of the central science-fiction conceits in The Sixth Day is the notion of

taping someone’s brain software and then loading that personality onto a tank-

grown clone of the person—exactly as I described in Wetware. And, for that

matter, in The Sixth Day, the software is copied to the new body by means of a

flash of light, as in Software.

Imitators are prone to saying that the ideas they appropriate are “in the air.”

But the notion of tank-growing a clone and loading it up with one’s brain soft-

ware was a totally original notion when I first wrote about it in the early 1980s.

It took me quite a long time to imagine this as a coherent scenario. The ideas

were not in the air at all. The very notion of software was rather unfamiliar, let

alone the notion of copying the software contents of a human brain.

The fact that the villain in The Sixth Day is called Drucker almost makes me

think that the script writers were driven by a Raskolnikov-like obsession to con-

fess their pilfering of my intellectual property. “Yes, I killed the old woman with

an axe! Yes, I stole Dr. Rucker’s ideas!” Drucker even wears small horn-rimmed

glasses like me—my physical appearance was well known at Phoenix due to the

occasional meetings I took there, on one occasion encountering the Terminator

himself.

Oh well. At least I did get a fair amount of money from Phoenix over those ten

years of option renewals. And, in the end, it was Governor Schwarzenegger who

came through with the golden handshake that made it reasonable for me to retire

from teaching in 2004. And now my book Freeware (New York: Avon Books,

1997) is under option to a different group, as is Master of Space and Time (New

York: Thunder’s Mouth Press, 2005). My life-computation may attain the movie

target-state yet.

149. In A New Kind of Science, Wolfram seems to suggest that the PCE implies

the PCU. He offers the following brief proof sketch of why a universal compu-

tation should be unpredictable (what he calls irreducible) in the sense that there

won’t be a computation that is exponentially more efficient than the universal

computation.

“Consider trying to outrun the evolution of a universal system. Since such a

system can emulate any system, it can in particular emulate any system that is

trying to outrun it. And from this it follows that nothing can systematically
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outrun the universal system. For any system that could would in effect also have

to be able to outrun itself” (A New Kind of Science, p. 742).

Wolfram’s idea seems to be that if we (thesis) have a predictor computation

that emulates our universal computation with faster runtime than that of actu-

ally running the universal computation, then (antithesis) having the universal

computation emulate the predictor should also be faster than the universal com-

putation, and then (synthesis) having the predictor emulate the universal com-

putation’s emulation of the predictor should be faster yet, and now we can use

the synthesis as a new thesis, and get a yet-faster computation, and so on for-

ever. But it would be impossible to have an endless sequence of smaller and

smaller runtimes. Therefore a universal computation can’t be predicted.

But if you think through some specific cases, we can see that this particular

argument doesn’t work. The descending chain will stop as soon as one crosses a

cost-benefit condition whereby the overhead of simulation cost swamps the gain

of the successive levels of simulation. Put differently, the antithetic step won’t

work very often.

To see why, think of the P and DumbP example mentioned in the main text,

and assume that both P and DumbP are universal. If, then, we let Wolfram’s uni-

versal computation U be the DumbP computation, it’s evident that U is both uni-

versal and subject to an exponential speedup.

Suppose we try to apply Wolfram’s argument to refute this. Our U (that is,

DumbP) can emulate the faster computation P. But since U (that is, DumbP) is

wired to carry out the wasteful tally doubling operation between each step, the

computation of U-emulating-P will still run slower than U, so the very first anti-

thetic step fails and we get no further in Wolfram’s proposed infinite regress.

150. Some might dream that quantum computation can break the bank of the PCU.

Why not split into exponentially many universes, run a simple computation in each

one, combine the answers, and achieve an exponential speedup? As a practical

matter, it’s not clear how good quantum computation can get, but suppose we’re

generous on this point and suppose that arbitrarily large ensembles can remain

coherent over long periods of time. The theoretical problem is that some results

suggest that the speedups we can gain from quantum computation may turn out

to be at best polynomial.

A more radical objection to the dream of quantum computation would be that

quantum mechanics may be fundamentally wrong.
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151. The quote is from Gottfried Leibniz in, C. I. Gerhardt, ed., Die philosophischen

Schriften von Gottfried Wilhelm Leibniz, (Vol. VII reprinted, Hildesheim: Georg

Olms Verlag, 1978), p. 200. The quote is translated by the British philosopher

George MacDonald Ross and can be found at http://www.philosophy.leeds.ac.uk/

GMR/hmp/texts/modern/leibniz/analysis/analysis.html.

152. Turing’s work showed that arithmetic is strong enough to emulate the running

of Turing machines. More specifically, he showed that for any F as strong as

arithmetic, we’ll have a systematic computational method for converting any

machine-input-output triple <M, In, Out> into a sentence m_in_out such that the

following three statements are equivalent: (a) M (In) produces Out; (b) F proves

m_in_out; and (c) FProvable(m_in_out) returns True.

This means that FProvable emulates M. Since we can do this for any machine

M, this means that FProvable is a universal computation, so Turing’s Theorem

applies, and FProvable has an unsolvable halting problem.

153. Andrew Wiles, “Modular Elliptic Curves and Fermat’s Last Theorem,” Annals

of Mathematics 141(3) (May 1995): 443–551; and Richard Taylor and Andrew

Wiles, “Ring Theoretic Properties of Certain Hecke Algebras,” in the same issue

of Annals of Mathematics. The second paper patches a hole in the first paper! A

lovely interview with Wiles appeared on the TV show Nova; the transcript can be

found at http://www.simonsingh.net/Andrew_Wiles_Interview.html.

154. Here’s a nutshell proof of the Undecidability Corollary to Turing’s Theorem:

Since F can model arithmetic, F is universal. Since F is universal, FProvable has

an unsolvable halting problem. Since FProvable has an unsolvable halting

problem, there is no endless search detector FProvableFailsToHalt such that

FProvableFailsToHalt(S) returns True precisely for those cases in which FProv-

able(S) doesn’t halt. But if every S were decidable by F, then FProvable(~S) could

be used as an endless search detector for FProvable(S). End of proof.

I have more details in the Technical Appendix.

Actually, it was the supreme logician Kurt Gödel who first proved, in 1930,

that undecidable sentences arise. We call a formal system F complete if for every

sentence S, F proves S or F proves ~S. Otherwise we say F is incomplete.

Gödel’s First Incompleteness Theorem. If  F is a consistent finitely given formal

system as powerful as arithmetic, then there is a specific sentence Gf which is

undecidable for F.

The proof of Gödel’s First Incompleteness Theorem hinges on showing how to
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construct a long and complex integer f that in some sense codes up the system

F. And using this code interger he then constructs an algebraic formula involving

a certain whole number parameter p, expressing the notion “P codes up a proof

from the system F.” These maneuvers are called metamathematics.

By using a clever diagonalization trick (which was in fact reused by Turing for

his proof of Turing’s Theorem), Gödel arranged it so that the meaning of Gf can

be viewed as having any of the three following forms: (a) There is no integer p

having the property of coding up a proof from F of sentence Gf ; (b) Gf is not a

theorem of F; (c) Gf does not appear among the sentences enumerated by the

Turing machine Mf.

And then he deduces that Gf is not a theorem of F and that ~Gf is not a the-

orem of F.

Mathematically, Gf says there is no integer solution to a certain large and gnarly

equation involving a polynomial, some exponentiation, and the humongous con-

stant interger that in some sense encodes a full description of the formal system F.

For further details of Gödel’s proof, see chapter four and excursion two in my

book Infinity and the Mind.

155. The simplest kinds of properties g that can be used for undecidability results

of the “There are no whole numbers n such that g[n]” are the so-called Diophan-

tine equations, which are polynomial equations with integer coefficients. Actually

we can generalize a bit, and look at sentences of the form “There are no whole

numbers n1, n2, . . . nk such that g [n1, n2, . . . nk ].”

In 1970, the mathematicians Julia Robinson, Martin Davis, and Yuri Matiya-

sevich showed that among the sentences undecidable for any formal theory we’ll

find an infinite number of Diophantine equations that don’t have any whole-

number solutions, but for which we can’t prove this fact.

The mathematician David Hilbert was involved in the background of this

problem as well, for at the International Congress of Mathematicians in 1900 he

proposed a list of what he considered to be really juicy problems. Hilbert’s Tenth

Problem was: Find an algorithm that determines if a given Diophantine equation

has a solution in whole numbers. Robinson, Davis, and Matiyasevich showed

that Hilbert’s Tenth Problem leads to an unsolvable halting problem—and

because of this we know that there have to be a lot of undecidable sentences

stating that a given Diophantine equation has no solutions.

Wolfram feels that, in fact, there should be some exceedingly simple Diophantine
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equations of this kind (see A New Kind of Science p. 790). Perhaps his simplest

example of a possibly undecidable formula based on a Diophantine equation is the

following, which I mention in the main text: “For all m and n, m2 ≠ n5 + 6n + 3.”

It may turn out that this statement is indeed true, so we will never have a

proof by example that any such m and n exist. But it may also be that the

nonexistence of such x and y will also be unprovable from existing mathematics,

so a search for a proof would last forever.

156. Suppose that two computations can emulate each other, and that we are

thinking of using one of them as a way to characterize some naturally occurring

process. Which of the two computations will we prefer?

My thrust in this book has been to focus on computations that have shorter

runtime. So if one computation is exponentially faster than the other, that’s the

one I prefer.

But what if one computation is only linearly faster than the other? In this case,

the choice isn’t so clear-cut. Why? Because if we keep looking for linearly faster

computations, we may be letting ourselves in for an endless regress.

This is because for many processes, there is no maximally fast computation

that emulates the process. As I discussed, any computation that can be emu-

lated as a digital PC program is subject to a linear speedup produced by using

faster processors and more RAM. These linear speedups stretch on until at some

point one encounters basic limitations due to physical laws.

Now, many commonly occurring complex physical processes are already oper-

ating at this limiting speed. But if we want to talk about the relative speed of

somewhat idealized PC programs, there’s no need to push on to the physical limit.

Two linearly comparable computations will end up at the same limit in any case.

Given two computations whose run speed differs only by a linear factor, might

there be some criterion other than speed for selecting one or the other? Yes.

Given two computations of linearly comparable speed, we might want to select

the computation whose description size is smaller. A program with a smaller

description is more concise and perhaps easier to talk about.

Before we can take this discussion any further, we have to assume that we

have some simple, everywhere defined procedure for computing the size of a

computation. In the domain of Turing machines or PC programs, a computation

P can be thought of as a digital program, so it’s easy to define a function size(P )

to be simply the number of symbols in the program representing P.
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When, for instance, you install a new executable program on your PC, the

installer program checks if you have enough memory on your hard disk to hold

all the bytes of the program. And once the new program is installed, you can use

one of your desktop exploring tools to find the exact number of bytes that it uses.

This number is what I mean by size(P ).

But when we look at physical, biological, mental, and social computations P,

we’re often dealing with computations that aren’t expressed in any specific

formal symbolism. These computations exist, and we may know more or less how

they work, but, since they don’t have to be run in the fiddling environment of a

PC, these natural computations aren’t fully expressed by a formal program.

One possibility (which admittedly has problems) might be to define the size of

a computation to be the number of words it takes one person to tell another person

how the computation works. What about the fact that physical computations can

intimately involve physical quantities such as masses, field strengths, membrane

permeabilities, reactivity, temperature, dendrite thickness, and the weather? Well,

we can treat all of those things as additional inputs. The computation itself is just

some rules describing how a system with all of those inputs will evolve over time.

And its description is the number of words it takes to explain it.

The computer scientist Gregory Chaitin has studied the notion of computation

size for many years. He uses the word elegant to describe computations of min-

imal size.

• Definition. A computation is elegant if there is no computation of smaller

size that emulates it.

Chaitin argues that in science we are looking for elegant theories. We prefer a

crisp, concise theory to a long, rambling one. The shorter theories are less likely

to include extraneous junk. A computation that, for instance, generates a big

lookup table from a few simple rules seems like a better explanation than a com-

putation that just has the big lookup table hard-coded right in.

But, as a practical matter, extreme compression can make a description

incomprehensible. And it can often be the case that there is no short helper pro-

gram for generating a particular lookup table. And don’t forget that there will be

cases where a large program runs exponentially faster than the shorter one.

In 1965 Chaitin proved a curious theorem about elegance. Although informal
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counting arguments indicate there will be infinitely many elegant computations,

any given theory is limited in its ability to prove that specific computations are

elegant.

• Chaitin’s Theorem. If F is a consistent finitely given formal system

as powerful as arithmetic, then there will be a number cF such

that F is unable to prove that any specific program of size greater

than cF is elegant.

Quite briefly, the idea behind the proof of Chaitin’s Theorem is that we find a cer-

tain cF related to the size of F and assume the theorem to be false. Then we define

a program BerryF as: “The smallest program of size greater than cF which F can

prove to be elegant.” The phrase in quotes can be used to describe within F a pro-

gram smaller than BerryF that emulates BerryF —contradicting the assumption

that F proves BerryF to be elegant. Therefore Chaitin’s Theorem must be true.

You can find more details in my book Mind Tools: The Five Levels of Mathemat-

ical Reality (Boston: Houghton Mifflin, 1988), in G. J. Chaitin, The Unknowable

(New York: Springer-Verlag, 1999), or in one of the numerous papers on Chaitin’s

home page, http://www.cs.auckland.ac.nz/CDMTCS/chaitin/.

Chaitin’s Theorem tells that, unless we keep adopting stronger and stronger

theories of mathematics, beyond some size level it becomes impossible to prove

that computations are elegant. But this doesn’t render the notion of elegance

useless. It’s still a reasonable criterion for selecting which of two computations

to view as “better.”

We can use simple counting arguments to show that in fact there must be ele-

gant programs of every size. But Chaitin’s Theorem shows that we can’t prove the

existence of these programs. Combining these two facts produces an endless

supply of undecidable sentences of the form “There is an elegant program larger

than N,” and Chaitin’s “random truths” are related to these sentences.

157. To illustrate how oddity spreads, I’ll present a sustained analogy between the

spread of undecidability and the rise of transcendental numbers in mathematics.

It was Brian Silverman who suggested the analogy to me.

History. 300 BC. The Greeks worked primarily with real numbers that can be

expressed either as the fraction of two whole numbers, or that can be obtained by

the process of taking square roots. By the time of the Renaissance, mathematicians
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had learned to work with roots of all kinds, that is, with the full class of algebraic

numbers—where an algebraic number can be expressed as the solution to some

polynomial algebraic equation formulated in terms of whole numbers. The non-

algebraic numbers were dubbed the transcendental numbers. And, for a time,

nobody was sure if any transcendental numbers existed.

Analogy. 1920. In David Hilbert’s time, it seemed possible that, at least in

mathematics, every problem could be decided on the basis of a reasonable formal

system. This was the inspiration for Hilbert’s program.

History. 1884. The first constructions of transcendental real numbers were car-

ried out by Joseph Liouville. Liouville’s numbers were, however, quite artificial, such

as the so-called Liouvillian number 0.1100010000000000000000010000 . . . ,

which has a one in the decimal positions n! and zero in all the other places. Someone

might readily say that a number like this is unlikely to occur in any real context.

(The term n! stands for “n factorial,” which is the product 1•2• . . . •n of all the inte-

gers from one to n.)

Analogy. 1930. Kurt Gödel proved the existence of some particular undecid-

able algebraic sentences. These sentences were somewhat unnatural. Relative to

a given formal system F, they had the form “This sentence is not provable from

F,” or the alternate form, “The contradiction 0 = 1 is not provable from the formal

system F.”

History. 1874. Georg Cantor developed his set theory and showed there are an

infinite number of transcendental numbers. Someone could say that Cantor’s

transcendental numbers aren’t numbers that would naturally occur, that they

are artificial, and that they depend in an essential way upon higher-order con-

cepts such as treating an infinite enumeration of reals as a completed object.

Analogy. 1936. Building on Gödel’s work, Alan Turing proved his theorem on

the unsolvability of the halting problem. He immediately derived the corollary

that there are infinitely many undecidable sentences of mathematics and that

these sentences came in quite arbitrary forms. Even so, the specific examples of

such sentences that he could give were still odd and somewhat self-referential,

like Gödel’s undecidable sentences.

History. 1873. Charles Hermite proved that the relatively nonartificial number

e is transcendental.

Analogy. 1965. On an entirely different front, Paul J. Cohen proved that an

important question about infinite sets called the continuum hypothesis is unde-
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cidable from the known axioms of mathematics. (Cohen’s proof built on an ear-

lier result proved by Kurt Gödel in 1946.) 1970. Back in the realm of unsolvable

halting problems, Julia Robinson, Martin Davis, and Yuri Matiyasevich showed

that, among the sentences undecidable for any formal theory, we’ll find an infi-

nite number of polynomial Diophantine equations that don’t have any whole-

number solutions, but for which we can’t prove this fact. This means that there

is a very large range of ordinary mathematical sentences that are undecidable.

History. 1882. Ferdinand von Lindemann proved that the garden-variety

number pi is transcendental.

Analogy. 2002. Wolfram pointed out that his PCE implies that undecidability

is all around us in the natural world. And, as I’ve discussed here, the NUH is

enough to draw the same conclusion!

158. Martin Gardner, “Science and the Unknowable,” Skeptical Inquirer (November–

December, 1998), available online at http://www.findarticles.com/p/articles/

mi_m2843/is_n6_v22/ai_21275519. See also the great essay, Paul Edwards,

“Why,” in The Encyclopedia of Philosophy (New York: Macmillan, 1967), Vol 8, pp.

296–302.

When I was in high school, I read a translation of Jean-Paul Sartre’s 1938

novel Nausea (New York: New Directions, 1959), and it had a tremendous effect

on me. Indeed, I loved Nausea so much that I inserted four quotes from it into

my transreal autobiographical science-fiction novel The Secret of Life (New York:

Bluejay Books, 1995).

Sartre’s novel concerns a young man named Roquentin who becomes over-

whelmed by the meaninglessness of existence. At the book’s high point (p. 181),

Roquentin is in a public garden and he’s staring at the gnarly trunk and roots of

a tree and he feels a kind of nausea at (as I would now put it) the complexity,

unpredictability, and unsolvability of the biocomputation. But then Roquentin

reaches a kind of enlightenment: “I got up and went out. Once at the gate, I

turned back. Then the garden smiled at me. I leaned against the gate and

watched it for a long time. The smile of the trees, of the laurel, meant something;

that was the real secret of existence.”
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Isabel Rucker (IR), mostly based on original drawings by Rudy

Rucker. Most of the computer graphics images were made by RR. All

other images are used with the permission of the credited owners.

The programs used by RR include the following:

Boppers, a public domain program, originally distributed with

Rudy Rucker’s Artificial Life Lab (Waite Group Press, Corte Madera
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CelLab, a public domain program, originally distributed with CA

Lab: Rudy Rucker’s Cellular Automata Laboratory (Autodesk Inc.,

Sausalito 1989).

CAPOW, a public domain program, distributed online by Rudy
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Silverman.

29. Local and Global Memory Access for Parallelism. IR.

30. 1D Heat CAs with Varying Rates of Diffusion. RR, using CAPOW.
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35. The Secret Machinery of the Universe. RR.

36. Von Karman Vortex Streets. (a) Maarten Rutgers, (b) NASA.

37. Water in a Stream. RR.
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41. Tree, Cloud, Mind, Mountain. RR.
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45. Evolving A Spacetime Across Paratime. IR.
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49. A Physics and a Metaphysics to Explain All of Spacetime. IR.

50. An Interferometer as a NOT Gate. IR.

51. Beamsplitters as Square-Root-of-NOT Gates. IR.

52. A Two-For-One Quantum Computation. IR.

53. A Computational Architecture for Quantum Mechanics. IR.

54. Junk DNA Cover. Painting by John Allemande for Isaac Asimov’s Science

Fiction Magazine, January, 2003. Image is copyright © 2002 Dell Maga-

zines. Used with permission.

55. A Spot on a Dog. RR.

56. Spots Generated by a Rule Using an Activator and an Inhibitor. RR, using

CAPOW.

57. Turing’s Cow Spots. University of SouthHampton and King’s College Cam-

bridge 2003.

58. Activator-Inhibitor Systems. RR, using CAPOW.

59. Scrolls Generated by Activator-Inhibitor Rules. RR, using CAPOW.

60. A Cone Shell Sitting on a CA Simulation of its Pattern. Hans Meinhardt.

61. Gnarl in Water and Wood. RR.

62. The Morphogenesis Architecture. IR.

63. The Computational Architecture of Homeostasis. IR.

64. A Pendulum and Two Magnets Simulating Three Conflicting Drives. RR,

using Chaos.
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65. From Generation to Generation. IR.

66. Time Sequences from the Logistic Map. IR.

67. Discrete Ecology Simulations May Produce Scrolls. RR, using CelLab.

68. Kaneko-Abraham-style Logistic Diffusion. RR, using CAPOW.

69. Continuous Ecological Simulations Can Produce Scrolls. RR, using CAPOW.

70. Langton’s Self-Reproducing Cellular Automaton Pattern. RR, using CelLab.

71. Aristid Lindenmayer Holding a Weed at the First Artificial Life Conference.

Kevin Kelly.

72. L System. IR.

73. Plant Forms based on L-systems. Przemyslaw Prusinkiewicz and James

Hanan.

74. Crossover. IR.

75. Karl Sim’s Galapagos Program Evolves Biomorphic Forms. Karl Sims.

76. A Smooth Fitness Landscape. IR.

77. Parallel Hill-Climbing. IR.

78. A Rugged Fitness Landscape. IR.

79. A Mind Connects Sensors to Effectors. IR.

80. A Toy Car That Straddles a Stripe. IR.

81. A Flagellate’s Swimming Reflexes. IR.



82. Gnarly Braitenberg Vehicles. Casey Reas.

83. Logic Gates for a Walker. IR.

84. A Brain Neuron. IR. Adapted from F. Crick and C. Asanuma, “Certain

Aspects of the anatomy and Physiology of the Cerebral Cortex,” in J. McClelland

and David Rumelhart, eds., Parallel Distributed Processing, Vol. 2. (Cambridge,

Mass: MIT Press,  1986), p. 337.

85. Brain Neurons Connnected to Sensors and Effectors. IR. 

86. The Neocortex, Divided into Upper, Middle and Deep Layers. IR.

87. A Simplified Diagram of the Neocortical Layers’ Throughput. IR.

88. Computer Neuron Models. IR.

89. A Neural Net to Recognize Smiles and Frowns. IR.

90. Generalized Face Recognizer. IR.

91. A CA Made of Neurons. IR.

92. A Glider in the Brian’s Brain Rule. IR.

93. The Brian’s Brain Cellular Automaton. RR, using MJCell by Mirek 

Wojtowicz.

94. More Cellular Automata Scroll Patterns. RR, using CAPOW.

95. Cellular Automaton Patterns Like a Mind with Thoughts and Obsessions.

RR, using CAPOW.

96. Another 3D CA with Scrolls. RR, using CA3D by Harry Fu.
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97. The Self, the World and the Self Experiencing at the World. IR.

98. Towards a Neurology of Consciousness. IR.

99. Consiousness and Empathy for Computer Game Creatures. IR.

100. Is This Dog Conscious? RR. 

101. Wheelie Willie Thinks of Infinity and of Nothing. RR. From Rudy Rucker,

Infinity and the Mind.

102. Grandchildren with a Lifebox. RR. From Rudy Rucker, Saucer Wisdom.

103. Moore’s Law Forever? RR.

104. Hans Moravec’s Plot of Brain Speed and Brain Size. Hans Moravec,

Robot: Mere Machine to Transcendent Mind (Oxford: University Press,

1999).

105. The Unpredictable China CA. RR, using CAPOW.

106. The Author with Nick Herbert at an April Fool’s Day Parade. RR.

107. Sparkling Dew. RR.

108. Two Flocks. RR, using Boppers.

109. The Queensboro Bridge. RR.

110. This is a Pear. RR.

111. Word Associations. IR.

112. A Bell Curve and a Scale Free Distribution. IR.
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113. Inverse Power Law Distribution for Word Linkiness. RR, using Mathematica.

114. Zipf’s Law for The Lifebox, The Seashell, and the Soul. John Walker.

115. Different Distributions of Book Advances. IR.

116. The Zeldovich CA Model of the Formation of Cities. RR, using CAPOW.

117. The Forest Fire CA. RR, using CAPOW.

118. Sandpile Cellular Automata. RR, using CAPOW.

119. Self-Generating Cascades in a Nonlinear Wave CA. RR, using CAPOW.

120. John Walker. RR.

121. Wolfram’s Stock Market Model. RR, using NKS Explorer.

122. Computations are Thoughts and Physical Processes. RR.

123. The “Natural” First Four Ontologies. RR.

124. The “Supernatural” Second Four Ontologies. RR.

125. Producing or Returning an Output. IR.

126. Target Detector. IR.

127. An Unsuccessful Solution to A Halting Problem. IR.

128. A Solvable Halting Problem. IR.

129. Degrees of Unsolvability. IR.

130. The Brain Halting Problem. IR.
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131. The Flocking Halting Problem. IR.

132. Arithmetic Is Gnarly. RR, using NKS Explorer.

133. The Natural Unsolvability Hypothesis NUH and the Unsolvability Hypothesis

UH. IR.

134. The PCU. IR. 

135. Growth Rates for Runtime as a Function of Input Size. IR.

136. A 1D CA’s Runtime Varies with Number of Rows Squared. RR, using NKS

Explorer.

137. My Son Beating Me at Go. RR.

138. Faster Computation. IR.

139. Updating a 1D CA In Chunks. IR.

140. Predictability, Unpredictability, and Strong Unpredictability. IR.

141. My Map of the Computational Zoo. IR.

142. Naturally Occurring Computations. IR.

143. Is S provable? Let us calculate! IR.

144. Proof and Truth for a Simple G. IR.

145. Proof and Truth for Arbitrary Sentences. IR.

146. Pool at the Mouth of the Big Sur River. RR.

147. Snapshopts from Micronesia. RR.
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148. Big Emulates Small, Using Different Languages. IR.

149. A Random Wave Function. RR, using Mathematica.

150. Wave Function for a Particle with Two Likely Positions. RR, using

Mathematica.

151. Wave Function with Precise Momentum. RR, using Mathematica.

The page-border images at the chapter heads were made by RR using

CAPOW. More details about the images are on the book’s Web site

www.rudyrucker.com/lifebox.
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