
Software Engineering and Computer Games

We work with leading authors to develop the
strongest educational materials in Computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoneduc.com

Software Engineering
and Computer Games

Rudy Rucker
San Jose, California State University

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoneduc.com

First published 2003

© Rudy Rucker 2003

The right of Rudy Rucker to be identified as author of this work has been asserted
by him in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P 0LP.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Pearson Education has made every attempt to supply trademark
information about manufacturers and their products mentioned in this book. A list of the
trademark designations and their owners appears on page xxiii.

ISBN 0201 767910

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Rucker, Rudy v. B. (Rudy von Bitter), 1946–

Software engineering and computer games / Rudy Rucker.
p. cm.

Includes bibliographical references and index.
ISBN 0-201-76791-0 (alk. paper)
1. Software engineering. 2. Computer games—Programming. I. Title.

QA76.758 .R83 2002
005.1—dc21 2002074649

10 9 8 7 6 5 4 3 2 1
07 06 05 04 03

Typeset in 9/12pt Stone Serif by 35
Printed in Great Britain by Henry Ling Ltd., at the Dorset Press, Dorchester, Dorset

Brief contents

Introduction xxvii

Part I Software Engineering and Computer Games 1

Chapter 1 Projects and games 3
Chapter 2 Basics of software engineering 25
Chapter 3 The Pop Framework 57
Chapter 4 Object-oriented software engineering 86
Chapter 5 Software design patterns 109
Chapter 6 Animation 129
Chapter 7 Simulating physics 146
Chapter 8 Critters 164
Chapter 9 Sprites 198
Chapter 10 Games 219
Chapter 11 Collisions 241
Chapter 12 Listeners 253
Chapter 13 Shooters and bullets 265
Chapter 14 2D shooting games 278
Chapter 15 3D shooting games 294
Chapter 16 Sports games 303
Chapter 17 Selection games 310
Chapter 18 Interesting worlds 319
Chapter 19 More ideas for games 331

Part II Software Engineering and Computer Games Reference 353

Chapter 20 Using Microsoft Visual Studio 355
Chapter 21 Tools for software engineering 386
Chapter 22 Topics in C++ 411
Chapter 23 Programming Windows with MFC 439
Chapter 24 2D and 3D graphics 475
Chapter 25 Windows graphics 485
Chapter 26 OpenGL graphics 504
Chapter 27 Menus and toolbars 509
Chapter 28 Mouse, cursors, and keyboard 517
Chapter 29 Serialization 536

Chapter 30 Sound 556
Chapter 31 Bitmaps 564

Appendix A The Windows keycodes 569
Appendix B The Pop help file 572
Appendix C Summary of the controls for Visual Studio 596

Index 599

Brief contentsvi

Contents

Foreword xxi
Abbreviations xxiv
Acknowledgements xxv
Introduction xxvii

Part I Software Engineering and Computer Games 1
Overview 1

Chapter 1 Projects and games 3

1.1 Features of a successful program 3
Concept 4
Interface 5
Documentation 6
Stability 7

1.2 Game design 7
A fresh look at the dimensionality of games 8
The intelligence of games 15
Requirements for playable games 15

1.3 The Pop Framework 18
1.4 Your project 22

Review questions 23
Exercises 24

Chapter 2 Basics of software engineering 25

2.1 The Constraint Triangle 25
2.2 Requirements and specifications 27

Requirements 27
UML diagrams 28
Use case diagrams 29
Requirements gathering 30
The specification sketch 31

2.3 The software engineering process 32
Schedule 33
Design 35
Project documents 35

2.4 The software lifecycle 36
Requirements gathering 39
Architecture 40
Specification N 40
Alpha N program 41
Alpha N User’s Guide 42
Final design and feature freeze 42
Beta N program and Beta N User’s Guide 43
Testing Beta N 43
Debugging Beta N 44
Final version and product ship 45
The development spiral 45

2.5 Managing your project 47
Tracking the builds 47
Commenting your code 49

2.6 Working in teams 49
Communication 49
Merging code 50
Team roles 50

2.7 Giving a presentation 52
PowerPoint 53
Software demo 53
Review questions 55
Exercises 56

Chapter 3 The Pop Framework 57

3.1 Object-oriented simulations 57
3.2 Running and testing the Pop program 58
3.3 The Pop source code 58

Project files 60
A component diagram for the build process 61

3.4 The essential Pop classes 62
3.5 UML class diagrams 65

Inheritance lines 66
Composition lines 67
Association lines with navigation 68

3.6 Using the Pop Framework 71
Extending the Pop Framework 71
The Game Stub classes 72
Review questions 75
Exercises 75

Contentsviii

Chapter 4 Object-oriented software engineering 86

4.1 OO is the way 86
4.2 Object-oriented analysis 89

Dive right in 90
Redraw many times 90
Keep each diagram simple 91
Step through use cases 91

4.3 Encapsulation, inheritance, and polymorphism 91
4.4 Composition and delegation 95
4.5 Principles for OO design 100
4.6 The code interface 103

Review questions 107
Exercises 107

Chapter 5 Software design patterns 109

5.1 Strategy 110
5.2 Template Method 111
5.3 Command 112
5.4 Composite 113
5.5 Singleton 114
5.6 Bridge 115
5.7 Document-View 117

Documents and views in Windows programs 118
The app, the doc, and the view in MFC 119
Documents and views in the Pop Framework 121
Controlling multiple documents and views 124
Review questions 126
Exercises 127

Chapter 6 Animation 129

6.1 The endless animation loop 129
Using the OnIdle method to call animateAllDocs 131

6.2 Processor-independent simulation speed 132
Measuring a timestep 134
Improving the animation speed 136

6.3 The animation cascade 139
Sequence diagram of the animation 139
The stepDoc method 140

6.4 Updating the views 141
Review questions 143
Exercises 143

Contents ix

Chapter 7 Simulating physics 146

7.1 Parallelism 147
7.2 The laws of motion 150
7.3 Force and acceleration 153
7.4 Implementing forces 154
7.5 Preserving your physics 159

Review questions 160
Exercises 160

Chapter 8 Critters 164

8.1 Kinds of critters 164
8.2 Overview of the critter class fields 165

Basic critter fields 165
The cCritter reference fields 170

8.3 Critter methods 173
The Update, Feelforce, and Feellistener methods 173
The Move method 175
The Draw method 177
The Animate method 177
Randomizing and mutation methods 178
The Die and Damage methods 178
The Collide method 179

8.4 Critter method overrides 179
8.5 The full cCritter prototype 179

cCritter initialization 195
Review questions 197
Exercises 197

Chapter 9 Sprites 198

9.1 Kinds of sprite 198
9.2 The cSprite class 199

The sprite Draw method 200
The Animate method 202

9.3 Polygons 203
Initializing and decorating a polygon 203
Polygons in 3D 205

9.4 Composite sprites 205
The cSpriteBubble 206
Polypolygons 207

9.5 The cSpriteIcon class 208
9.6 cSpriteLoop and cSpriteDirectional 211

Review questions 212
Exercises 212

Contentsx

Chapter 10 Games 219

10.1 The cGame class 219
10.2 The game’s timestep cycle 221
10.3 The virtual methods of cGame 223

The cGame constructor 224
Seeding the game 226
How the game adjusts itself 228
Initializing the view 229
Initializing the viewpoint critter 231
The status message 234
The randomSprite factory method 235

10.4 Arrays of critters: the cBiota class 236
Service requests: the Command pattern in action 239
Review questions 240
Exercises 240

Chapter 11 Collisions 241

11.1 The critter Collide method 241
11.2 Collision-handling 243

The N-squared problem 244
A collision-handling architecture 245
Collision priority 246
Array or list? An N-cubed issue 247

11.3 Colliding spheres 248
11.4 Colliding walls 250

Review questions 251
Exercises 251

Chapter 12 Listeners 253

12.1 How the critters listen to the user input 253
The cController utility class 253
The sequence from keypress to critter 254

12.2 The listeners 255
12.3 Shooting with the listeners 260
12.4 Viewer listeners 261
12.5 How a listener initializes its owner critter 263

Review questions 263
Exercises 263

Chapter 13 Shooters and bullets 265

13.1 High-level design for cCritterArmed and cCritterBullet 265
13.2 The cCritterArmed 266
13.3 The cCritterBullet 268

Contents xi

13.4 damage and draw 271
13.5 Armed players and armed robots 273
13.6 The two-way cCritterArmed/cCritterBullet association 275

Review questions 276
Exercises 277

Chapter 14 2D shooting games 278

14.1 The Spacewar game 278
Specification 278
Design 280
The Spacewar code 282

14.2 The 2D Game Stub 286
14.3 The Worms game 287

Exercises 289

Chapter 15 3D shooting games 294

15.1 The Defender3D specification and design 294
Specification 294
Design 295

15.2 The Defender3D code 296
cGameDefender3D 296
cGameDefender3DPlayer 297
cGameDefender3DProp 299
Exercises 301

Chapter 16 Sports games 303

16.1 The Airhockey game 303
Specification 303
Design 304
The Airhockey code 305
The Robot opponent 306
Exercises 307

Chapter 17 Selection games 310

17.1 PickNPop specification and design 310
Specification 310
Design 311

17.2 The PickNPop implementation 312
Making the score come out even 313
The world rectangles 315
Converting a critter 315

17.3 Other selection games 316
Exercises 317

Contentsxii

Chapter 18 Interesting worlds 319

18.1 The Ballworld side-scroller game 319
Specification 319
Design 320

18.2 Games with walls 321
18.3 Sniffing a trail 323

Exercises 325

Chapter 19 More ideas for games 331

19.1 Commercial games 331
Emulators 331
Game consoles 332
Online games 332

19.2 The Pop Framework games hall of fame 332
Fall, 1999 333
Spring, 2000 335
Fall, 2000 338
Spring, 2001 342
Fall, 2001 342
Spring, 2002 348

Part II Software Engineering and Computer
Games Reference 353
Overview 353

Chapter 20 Using Microsoft Visual Studio 355

20.1 Navigating with Windows Explorer 355
Opening Windows Explorer 355
Viewing and opening directories and files 355
Copying directories and files 356
Avoiding a Visual Studio gotcha 357

20.2 Which version? 357
Which compiler? 358
Visual Studio versions 358
Microsoft Foundation Classes 359
Dealing with change 359
Visual Studio, Version 6 versus Visual Studio.NET,

Version 7 360
20.3 The Visual Studio user interface 361

Appearance of the interface for Visual Studio.NET,
Version 7.0 361

[Appearance of the interface for Visual Studio,
Version 6.0] 362

Contents xiii

Toolbars 363
Exploring the project files 363
Output window messages 364

20.4 The Visual Studio help files 365
20.5 Correcting compiler and linker errors 366
20.6 Release and Debug builds 367
20.7 Use MFC in static library or use MFC in shared DLL? 369
20.8 Cleanup 372
20.9 Building blocks of a complete program 374

Project files: *.sln and *.vcproj [*.dsw and
*.dsp (Version 6.0)] 375

Source code files: *.cpp and *.c 375
Header files: *.h 376
A note on precompiled header files 378
Object code files: *.obj 379
Static library files: *.lib 380
Executable files: *.exe, and dynamic link

library files: *.dll 381
Resource description files: *.rc and compiled

resource files *.res 382
Help files 383

20.10 Profiling with Visual Studio, Version 6 383
Exercises 384

Chapter 21 Tools for software engineering 386

21.1 File names and directory structure 386
Build directories 386
WinZip files 388

21.2 Using the Visual Studio debugger 389
Finding the problem after a crash 390
Breakpoints 391
TRACE statements 392
Finding memory leaks 392
Testing 393
Coding defensively 394

21.3 Windiff and merging code 395
Windiff 395
Merging 397
Revision control software 397

21.4 Counting lines of code 398
21.5 Help files without tears 400

Writing the User’s Guide 401
Which word-processor? 401
Making an effective help file 402
The two kinds of help 402

Contentsxiv

Creating and reading HTML help files 405
Creating and reading Windows help files 407
The mixed case: reading HTML help files with a

Version 6.0 build 408
Exercise 410

Chapter 22 Topics in C++++ 411

22.1 Classes, objects and constructors 411
22.2 Implicit arguments 413
22.3 Defining a new class 414
22.4 Destructors 415
22.5 The const function declaration 416
22.6 Pass by reference 418
22.7 Instance members and reference members 419
22.8 Parent and child class data 420
22.9 Parent and child constructors and destructors 421

22.10 Virtual methods 422
22.11 Polymorphism 424
22.12 Runtime class information 425
22.13 The scope resolution operator and global functions 426
22.14 Name-mangling 427
22.15 Preprocessor directives 428

The #include directive 428
The #define directive 428
#ifdef and related directives 428
The typedef convention 429

22.16 Resizable arrays 430
STL vector arrays 430
MCF CArray arrays 432

22.17 Real numbers 432
22.18 A randomizer module 433

Randomizing with the C library 434
The cRandomizer class 434
The static cRandomizer::RANDOMIZER object 437
Exercises 437

Chapter 23 Programming Windows with MFC 439

23.1 Some Windows data structures 439
The COLORREF type 439
The RECT structure 440

23.2 MFC utility classes 440
23.3 The MFC application framework 441
23.4 Naming conventions 443
23.5 MFC classes are shallow wrappers 444

Contents xv

23.6 Navigating app, doc, and view 447
Walking through the open documents 447

23.7 Levels of Windows 450
23.8 The MFC program flow 452

All you really need to know 453
The invisible WinMain function 453
InitInstance, Part 1: Initializing the CMainFrame 454
InitInstance, Part 2: Initializing the CDocument and CView 457
InitInstance, Part 3: Putting the Windows on the screen 458
The MFC run cycle 458
Messages and message handlers 459
Program termination 462

23.9 Adjusting the program appearance 463
The caption bar and the About dialog 463
The program icons 464
Tweaking the File dialog 464

23.10 The multiple document interface layouts 466
The MDI hierarchy 466
Automatic tiling and maximizing 467

23.11 Splitter views 469
Adding a dynamic splitter 470
Adding a static splitter 471

23.12 Portable classes 472
Exercises 473

Chapter 24 2D and 3D graphics 475

24.1 Vectors and matrices 475
24.2 The graphics pipeline 476
24.3 Matrices in graphics 478

Attitude 478
The view matrix 481

24.4 Graphics in the Pop Framework 482
The CPopView::OnDraw(CDC* pDC) 482

Chapter 25 Windows graphics 485

25.1 The Windows sandwich 485
25.2 A CDC is like a cranky six-legged ant 486
25.3 Persistent display 490

The OnDraw method 490
Bitmaps or display lists? 490

25.4 Converting real coordinates to pixel positions 492
25.5 A memory-based device context 494

The cMemoryDC class definition 495
Declaration and construction of a cMemoryDC 497

Contentsxvi

Writing to the cMemoryDC in OnDraw 499
Calling the OnDraw 501
Exercises 502

Chapter 26 OpenGL graphics 504

26.1 Linking to OpenGL 504
26.2 The OpenGL state machine 505
26.3 Generic OpenGL code 506
26.4 OpenGL code in Windows 506
26.5 OpenGL in the Pop Framework 507

Chapter 27 Menus and toolbars 509

27.1 Adding menu selections 509
Handling and updating menu selections 510

27.2 Toolbar buttons 513
27.3 Accelerator keys 514
27.4 Writing to the status bar 515

Exercises 516

Chapter 28 Mouse, cursors, and keyboard 517

28.1 Mouse messages 517
Processing a mouse message 517
Calling the OnDraw method 518

28.2 Cursor tools 519
Changing the cursor 519
Making a cursor in the Resource Editor 521
Getting a cursor resource 523
Using the cursor tools 525

28.3 The mouse wheel 528
28.4 Focus and autofocus 529
28.5 The keyboard 529

Exercises 533

Chapter 29 Serialization 536

29.1 Serialization summary 536
29.2 Serialization in the Pop Framework 537
29.3 Serialize, operator<<, and operator>> 538

The &* combination 542
29.4 Serializing an array of pointers 543

Serializing a CTypedPtrArray of CObject pointers 543
Serializing a CArray of CObject pointers by overloading

::SerializeElements 545
Serializing a pointer array the hard way 545

Contents xvii

29.5 Serializing pointers 546
Serializing pointer members 546
Serializing reference pointers 547

29.6 The cCritter serialize 548
29.7 Serializing child classes 550
29.8 Serializing a CRuntimeClass 551
29.9 Serializing the view and version 552

Exercise 555

Chapter 30 Sound 556

30.1 Adding sound to your program 556
Resource identifiers 559

30.2 Adding libraries to your project file 559
30.3 An application-wide mute variable 561

Exercises 562

Chapter 31 Bitmaps 564

31.1 Bitmaps 564
Bitmap resources 565

31.2 Using a background bitmap 565
31.3 Transparent bitmaps 566

Appendix A: The Windows keycodes 569

Appendix B: The Pop help file 572
About the Pop program 572
Updates per second 572
Overview 574
The Pop display 574
The games 575
Keyboard and mouse controls 575
Player motion controls 575
Player shooting controls 577
Standard view controls 578
View controls using Ride the Player 578
A hardware Windows bug in the Arrowkey Controls 579
Spacewar 579
Getting started with Spacewar 579
Spacewar details 580
More about shooting 582
Other things to try in Spacewar 582
PickNPop 583
Getting started with PickNPop 583

Contentsxviii

Tips on PickNPop 583
Airhockey 584
Defender3D 584
Ballworld 585
Dambuilder 585
Worms 586
2DStub 587
3DStub 587
The cursor tools 587
Shoot cursor (crosshairs icon) 588
Pick cursor (arrow icon) 588
Drag cursor (hand icon) 588
Pin cursor (pin icon) 589
Zap cursor (lightning bolt icon) 589
Replicate cursor (equals sign icon) 589
The menu controls 589
File popup 589
View popup 589
Game popup 590
Player popup 590
Window popup 590
Help popup 590
The toolbar controls 590
The status bar 591
Using the menu and toolbar controls 591
File menu controls 591
View menu controls 592
Game menu controls 592
Player menu controls 593
Window menu controls 594
Help menu controls 594
The motion smoothness dialog 594
Accelerator keys 595
Contact information 595

Appendix C: Summary of the controls for Visual Studio 596

Index 599

Contents xix

Foreword

Rudy Rucker. You may know him as a science fiction author, mathematician,
or technologist who dreams of worlds inhabited by living machines, two-
dimensional creatures, or numbers with names. Or, you may know him as the
guy giving you a test today in your Computer Science class! That’s where I
started . . .

It was some time in the mid 80’s that I first met Rudy, or back then Dr. Rucker.
I was a freshman attending San José State University, triple majoring in Math,
Computer Science, and Electrical Engineering. I had enrolled in an assembly
language class or something similar that he was teaching. I remember arguing
with Dr. Rucker about not getting full credit for a program I had written that
multiplied two numbers together really fast in 8-bit assembly language.
Dr. Rucker didn’t really look at the program closely and assumed I was wrong
since the technique I used was very subtle and very advanced, a standard trick
of a game programmer, but to the untrained eye it couldn’t possibly work . . .
So I went into his office and I convinced him to really look closely at it, and he
did. When he was complete with his analysis, he smiled and said something
like, ‘André you’re right’. From that point on, we spoke more frequently and I
told him about my development of video games. Rudy was very interested in
something that I too had a love for, which was artificial intelligence, emergent
behavior, and cellular automata, all of which began his obsession with ants and
little creepy crawling things that pervade all of his work (and mine).

Back in those days we were all exploring new worlds – we didn’t have a
plan – just looking around and seeing what happened. Out of all the professors
I encountered, only two made an impression on me and Dr. Rucker was one of
them. Of course, his lectures always seemed to be a little from the ‘hip’, or
maybe a better word ‘organic’. I rarely took notes, I listened for the meaning
between the lines, the things he was thinking, but couldn’t really say in a class-
room setting. Crazy things like the possibility of living machines, computers
that have sex, anti-time, and many other concepts that could get you hanged
in these parts. In the end, I confirmed that there are other people that have the
same crazy ideas I do, and that was important.

Time passed, I graduated, and Rudy and I kept in touch. Every now and then
I would ask him something, or vice versa. I would read one of his sci-fi books
once in a while, his name would come up in conversations about William

Gibson’s work, or AI, and people couldn’t believe I knew him! They would ask
what he was like, and so forth. Rudy Rucker had a huge cult following based on
his sci-fi work which was really cool, and a part of his personality I never knew
about in detail.

But, the only thing I ever wondered was why he had never written a serious
technical book about computer science? Make no mistake, he is a brilliant
mathematician, but only now did he finally have time or the subject matter to
write a computer science book that really interested him. At least that’s what
I think.

In any case, Software Engineering and Computer Games is a very important
book: it’s the first time that anyone has even attempted to try and make heads
or tails of the software engineering paradigm as applied to the development
of video games. As far as I am concerned, this book should be a requirement
of anyone that wants to write games – period. Every game book I have ever
read, or written for that matter, explains techniques to develop games, graphics,
AI, networking, whatever, but no one ever really explains how to ‘software
engineer’ a game.

After reading Rudy’s book, I was really excited: all the techniques that I had
been using and developing over the years, he had put into a nice, complete
package for others to read and learn from. Additionally, he made a science of
game development. Game programmers are gods, that’s without a doubt, but
this book shows why! Rudy has step-by-step created a game programming
framework which he calls ‘Pop’ (I will let him tell you why) that allows you to
create 2D and 3D games without worrying about all the low level details. So
what, you might ask? Well, the point is that he shows the entire thought pro-
cess, and software engineering cycle of this framework, from UML diagrams to
implementation. This is something I guarantee even the guys that wrote HALO
didn’t do!

Point being, after reading this book you will be a better coder, software
engineer, and game programmer all in one. Not to mention that the book
is all inclusive. It covers object oriented programming, physics, 2D, 3D, C++
techniques, MFC (yuck!), and contains numerous complete projects to illustrate
various techniques.

But, here’s a secret . . . come close . . . read between the lines. In these pages
is a story, a story about something that today we are seeing the first baby steps
of – if you look carefully you will find it. So take advantage of this rare glimpse
of such a fascinating and brilliant personality as Rudy Rucker applied to this
very technical matter of game development and software engineering.

André LaMothe
Computer Scientist/Author

April 2002

Forewordxxii

Trademark Notice

The following designations are trademarks or registered trademarks of the organ-
izations whose names follow in brackets: 3D Studio Max (Autodesk, Inc.);
Ada95 (Kempe Software Capital Enterprises); Age of Empires, AppWizard,
DirectX, DirectX Sound, Internet Explorer, Microsoft C#, Microsoft Foundation
Classes, Microsoft Office, Microsoft PowerPoint, Microsoft Project, Microsoft
SourceSafe, Microsoft Visual Basic, Microsoft Visual Studio, Microsoft Windows,
Microsoft Word, Windows Explorer, Windiff, WordPad (Microsoft Corpora-
tion); APL (International Business Machines Corporated); Asteroids, Breakout,
Centipede, Missile Command, Pong (Atari, Inc.); Defender (Williams Electron-
ics, Inc.); Director, DreamWeaver, Flash, Shockwave (Macromedia, Inc.); Doom,
Quake (Id Software, Inc.); Fortran (Compaq); Galaga, Pac Man (Namco Ltd.);
Gauntlet (Midway Games West, Inc.); Half-Life, King’s Quest (Sierra On-Line,
Inc.); Java, Modula (Sun Microsystems, Inc.); KaZaA (Sharman Networks); Linux
(Linus Torvalds); MAME (The MAME Team); Mario, Nintendo GameBoy
(Nintendo of America, Inc.); MIDI (Midi Manufacturers Association, Inc.);
Napster (Napster, Inc.); Netscape (Netscape Communications Corporation);
Photoshop, PostScript (Adobe Systems, Inc.); Rubik’s Cube (Seven Towns
Limited); SimCity (Maxis Corporation); SmallTalk (Xerox Corporation); Space
Invaders (Taito America Corporation); StairMaster (StairMaster Sports/Medical
Products, Inc.); WinZip (WinZip Computing).

Foreword xxiii

Abbreviations

AFX Application Frameworks

API Appication Program Interface

CAD Computer Aided Design

GUI graphic user interface

GDI Graphics Device Interface

IDE Integrated Development Environment

MFC Microsoft Foundation Classes

MDI Multiple Document Interface

MAME Multiple Arcade Machine Emulator

OOP object-oriented programming

OOD object-oriented design

OOA object-oriented analysis

QA quality analysis

RAD requirements and design

RCS Revision Control Software

RTF rich text format

ROP raster operation

SDI Single Document Interface

SAD specification and design

UML Unified Modelling Language

Acknowledgements

Special thanks to those of my students whose games I mention in Chapter 19.
Student games marked with a ∗ appear on the book cover; the biggest cover image is from the 3D
Jewel Hunter game.

Fall, 1999 Scott Choi, N. Yen, J. C. Wang Body Defense
Paul Sumares, Jake Woodhams, Puneet Dhaliwal Brick Bugs
Vladi Sankin, Pasha Sadri, Vu Hwang Garden∗
Sue Wilner, Theresa Nguyen, Jean Schundler Grammar
Joe Bond, Keith Shum, Vinh Vu Lunatic
Minh, Sean, Norman Olympod
Supriya, Shimali, Raymond Paratrooper
Wei Zhang, Ramya Parasuram, Chris Feliton Safari
Kelvin Shum, Ken Shitamoto, Tam Minh Shepherd Boy

Spring, 2000 Bryan, Minh, Norman Airstrike
Harry Fu, Kerry Goodman, Rosanna Tse Amazing Mouse
Mark Anderson, Raymond Ochoa, Rina Desai BB Rampage
Bobby Tse, Douglas Andersen, Sarah Levantine Deer’s Revenge∗
Karissa Huang, Karen-Hoa Do, Kendra Ladeau Pixie Quest∗
Naheed Himmati, Smita Joshi, Sunita Gupta Treasure Hunt

Fall, 2000 Chi-Ping Chang, Wyley Dai, Chung Vong City Hunter
Michael Moore, David Dong, Karno Halim, Martina Mesic Climber
Allan Wong, Chetan Jhaveri, Tuan Vu Dash 2000
Sudhir Srikanth, Thu Nguyen, Jason Ngai Four Pieces of Fate
Wen Jin Mei, Stanley Chen, Myat Min LifeSaver
Hung Dinh, Nam Lam, Thanh Phan Pinball
Jeremy Dittrich, Gerry Girard, Nisha Ahluwalia Robonator
Gary Chin, Chi Chan, Uri Rayzberg Soccer

Spring, 2001 Marvin, Alex, Phuoc Alien Invaders
Jimmy Huang, Tony Xu, Duy Nguyen Footsball
Craig Clark, Cherry Yang, Jason Peng Labyrinth Roller
Lee Lacanlale, Andrew Nguyen, Kiminori Inagaki Lost Crown
Dipti Bhatt, Donna Portacio Triangle Stacker

Fall, 2001 Chi Chan, Wyley Dai, Madhuri Potu 3D Blaster
Giavinh Pham, Charlie Tran, Thuy Bui 3D Jewel Hunter∗∗
Randolph Schmidt, Jose Rivera, Bharat Joshi AntiVirus∗
Andy Wu, Sam Wu, Anthony Tu, Nhut Hyunh Bermuda
Don Bernal, Wallun Chan, Frank Chang Ghostcastle
Isabel Zhang, Karen Chow, Yisi Lau GoFishing
Lee Gong, Rich Prillinger, Joseph Cheng TequilaWorm

Spring, 2002 Kwok Wing Tang, Minh Dang, Thuy Nguyen 3D Bug
Chiao-Kai Yang, Raymond Chan, Doug Simmons 3D Rat Race
Jim Cheung, Nithin Reddy, Joko Sutomo JumpSport
Doug Uno, Kenny Moy, Haitham Halloum KillTime∗
Kenji Tan, Bao Mai, Rui Chen, Dung Luc Pop Rally
Darrian Hale, David Wong, Ken Pao Smart Cat∗

Introduction

In developing Software Engineering and Computer Games and its accompanying
software framework I had four broad goals.

• To teach a lively style of object-oriented software engineering.

• To show how to bring a complete program to the level of a commercial release.

• To provide a ‘game engine’ framework of linked classes for game development.

• To create programs that are interactive, rapidly executing, and visually
beautiful.

Software Engineering and Computer Games was originally developed for use as
the primary textbook in my undergraduate software engineering and graduate
software projects courses in the Department of Computer Science at San José
State University (SJSU for short). In these classes we cover the topics of software
engineering in the context of having student teams design and implement
computer games. Depending on the nature of the course, lesser or greater
emphasis can be placed on the student projects.

The book is also meant to be suitable for self-study. Readers are encouraged to
use the book to create their own games. Software Engineering and Computer Games
is specifically designed so as to allow would-be game developers to get their
own games running easily and rapidly.

In order to make it feasible for readers of this book to carry out a game project
without getting lost in endless details, I’ve created an open source C++ software
framework for developing computer games; this is the ‘Pop Framework,’ with
source code available for free download from the book’s website:

www.rudyrucker.com/computergames

As well as working as a software engineering text or as a self-study guide for
budding game-developers, Software Engineering and Computer Games can also serve
as the text for a course on computer games such as the Computer Game Design
and Programming one we have at SJSU. The idea of having university Computer
Science departments teach computer game programming is a fairly new idea.
Software Engineering and Computer Games should serve to show that a course of
this nature can be taught in a sound and academically respectable fashion.

Software Engineering and Computer Games uses the Windows platform. Why
Windows? Although the death of Windows is regularly predicted, it remains the
most popular operating system on personal computers. Windows is a strong,
mature platform for writing graphics-intensive and/or computation-intensive
programs to run on a desktop machine. By using Windows we get, essentially for
free, a lot of goodies that can otherwise be hard to implement: things like menus,
toolbars, cursor tools, resizable windows, multiple document interface, cutting
and pasting and file handling. Certainly the Java environment can implement
these features, but the process is somewhat easier with the Microsoft Visual
Studio development environment. And in terms of job-hunting, it’s very nice to
have a solid Windows computer game project of one’s own to demo.

As at most other universities, SJSU has no formal Windows programming
prerequisite for the software engineering or software projects courses; in fact
we’ve recently switched our introductory courses to Java. But it’s valuable to
study Windows programs in some upper-division courses so that the students
can gain experience with full-featured real-world desktop projects. Software
Engineering and Computer Games is designed so as to be self-contained, with no
prior knowledge of Windows programming required. A familiarity with C++ is
recommended, but we have a C++ review chapter for those starting with only a
knowledge of Java.

The book has two parts. Part I: Software Engineering and Computer Games is the
essential lecture material to be covered in the course, and Part II: Software
Engineering and Computer Games Reference contains detailed reference informa-
tion about topics essential to fully understanding Part I.

My procedure in using this book as a textbook is to lecture during the first
half of the course and during the second half of the course to help the students
spend the classroom time working on projects in three-person teams. We try and
cover most of the Part I material during the lectures, and the students read from
the Part II material on their own as needed. If using the book for self-study, you
might expect to read through most of Part I and to occasionally refer to Part II. If
your immediate goal is simply to get going on making working games, you can
skip right to Chapter 3, do the exercises at the end to get a first game working,
and then study Chapters 7–17 to see how to make more complicated games.

The necessity of breaking the book into two parts arises from the dilemma of
wanting to teach Windows-based software engineering to people who might not
know Windows programming. Part II covers topics such as the advanced features
of C++, Windows programming, the Microsoft Foundation Classes (MFC), and
the use of Microsoft Visual Studio – which is indeed the standard tool used by
many computer game designers.

The book touches on nine topics.

• Basic software engineering principles and techniques.

• How to organize and complete a substantial software project.

• Practical examples of object-oriented design and programming.

• The design of computer games.

Introductionxxviii

• Simulating physics inside our computer-generated worlds.

• Artificial life, or how to simulate live creatures inside a computer program.

• Using two- and three-dimensional Computer graphics to create a virtual reality.

• Windows programming using the MFC application framework.

• How to develop a project using Microsoft Visual Studio.

The code accompanying the book is called the Pop Framework. The Pop
Framework consists of C++ implementations of a few dozen classes that are use-
ful for constructing two- and three-dimensional computer games. Software
Engineering and Computer Games starts with the basics of software engineering,
and then presents the user with the Pop program, built with the Pop framework
to have a number of different game modes. The game modes include an
Asteroids-style Spacewar, a Picknpop game of picking and popping bubbles, an
Airhockey game, a three-dimensional shooting game, a free-play game called
Dambuilder, a side-scroller stub called Ballworld, and a few more. Each of the
games can be run in two-dimensional or three-dimensional graphics.

The name ‘Pop’ for the framework was chosen in memory of my beloved
father, not that he was at all interested in computers, but what the heck. This is
for you, Pop!

At the writing of this introduction nearly 100 different student projects have
been built using the Pop Framework, with the result that the code has become

Introduction xxix

The Pop Framework running four of its default games

quite solid and easy to extend. In Software Engineering and Computer Games, the
workings of the Pop code is explained within the general context of software
engineering, and the user is guided into extending one of the game modes to
create his or her own computer game.

Why teach something so seemingly frivolous as computer game program-
ming and design in an upper-division computer science class?

• Breadth. Computer games integrate techniques and code from the whole
spectrum of computer science: software engineering, graphics, artificial intel-
ligence, and user interface design.

• Depth. Developing a computer game involves many different levels of skills,
from low-level algorithm implementation to high-level object-oriented design.
Completing a computer game project requires a deep, sustained effort.

• Excitement. The visual and interactive nature of computer game projects can
deeply engage a student’s interest. Because it’s fairly easy to tell if a game
works well, the goal is satisfyingly clear-cut and challenging.

• Simulation applications. Writing a computer game involves creating an object-
oriented real-time simulation of a certain kind of toy world. The skills and
techniques can be transferred to simulating a wide range of other systems.

• Career preparation. A completed computer game is an impressive program
for students to demonstrate to prospective employers, whatever the nature
of the job. In addition, a number of students are interested in getting jobs
specifically as game developers.

Software Engineering and Computer Games uses C++ and an object-oriented
approach throughout. We use Unified Modeling Language (UML) for object-
oriented analysis, we discuss software patterns and how to incorporate them
into our object-oriented design process, and we consistently use the techniques
of object-oriented programming to implement our classes.

Among the special classes in the Pop Framework is a cCritter class to represent
our computer game ‘critters,’ and a cGame class for the games themselves. We
also develop some reusable utility classes such as a polygonal and bitmap-based
cSprite objects for putting images on the screen, a cRandomizer with a useful
randomizing function, a cVector class and a cMatrix class for physics and graphics,
and a cPerformanceTimer class to make our animations real-time and processor-
independent. In addition, the Pop Framework includes some sound, toolbar,
menu and dialog resources. The Pop Framework is built upon the underying
framework of the MFC, using some standard MFC classes: CPopApp, CMainFrame,
CChildFrame, CPopDoc, and CPopView. The Pop Framework’s MFC classes are cus-
tomized so as to be easily usable for animated simulations or computer games.

The Pop Framework has a cGraphics class that acts as a bridge between the
framework and any specific kind of graphics implementation. That is, all of our
graphics functions are in the abstract base class cGraphics, with the specific
implementation of the methods being deferred to child classes. We presently
have cGraphicsMFC and cGraphicsOpenGL implementations.

Introductionxxx

The cGraphicsMFC uses standard Windows API graphics calls. These calls have an
undeserved reputation for being slow; the Pop Framework’s speed is in fact more
than adequate for typical computer games, easily achieving update rates far in
excess of the minimal 30 frames per second that one typically needs. The key
trick is to assemble each new frame in an offscreen cMemoryDC object provided
by the Pop Framework, and to then rapidly block copy this image to the screen.
The cGraphicsMFC is optimal for two-dimensional games including sprites and
graphics, but doesn’t have adequate support for fully three-dimensional games.

The cGraphicsOpenGL provides support for three-dimensional graphics, with
z-buffering, lighting effects, and so on. On modern machines with graphics
cards that have hardware OpenGL support, the cGraphicsOpenGL gives acceptable
animation frame rates. As well as supporting polygons, we support bitmap
textures in OpenGL.

Software Engineering and Computer Games was developed through nearly a dozen
draft versions for use in my undergraduate software engineering and graduate
software projects courses over the past 15 years. Above and beyond covering the
syllabi for these courses, my agenda is always the same: to teach the students to
write complete, visually interesting programs that seem to come alive.

Being a programmer – or a computer science professor – is a little like living
on a Stairmaster. Your field never stops changing; your old knowledge is con-
tinually being swept into oblivion. Software Engineering and Computer Games and
the Pop Framework undergo updates and upgrades every semester. It’s never
really finished; there are always more features one could add. The Pop
Framework has many good starting points for further projects, ranging in level
from a homework assignment to a Master’s Degree thesis.

Software Engineering and Computer Games is designed for the latest flavors
of Windows and C++. As of 2003, the flavors of Windows we support are
Windows 95, Windows 98, Windows Millennium Edition, Windows NT 4.0,
Windows 2000, and Windows XP. The current Pop Framework was developed
using the C++ compiler and integrated development environment that are part
of the development product called Microsoft Visual Studio. Strictly speaking,
the part of Visual Studio that we use is called Visual C++, but in this book we
will use the more general ‘Visual Studio’ to refer specifically to the Microsoft
C++ compiler and development environment.

There are two versions of Visual Studio in current use, the older Visual Studio,
Version 6.0, and the more recent Visual Studio.NET, which is also known as
Visual Studio, Version 7.0. With regard to our task of building C++ programs,
the two products are quite similar, although there are some minor differences
in the layouts of the controls. When necessary, we distinguish between the two
products by calling them Visual Studio 6.0 and Visual Studio 7.0.

Although most of the Pop Framework was developed while using Visual
Studio 6.0, the most recent builds have been created using Visual Studio 7.0.
The framework code builds with no warnings in either environment. We supply
both Version 6.0 and Version 7.0 project files with the code.

When the text mentions specific control sequences for Visual Studio inter-
face, we will, where necessary, describe both the Version 7.0 [and the Version 6.0]

Introduction xxxi

controls, using square brackets around the Version 6.0 controls. Certainly most
readers will be moving to Visual Studio 7.0 soon, but at this point, Visual
Studio 6.0 is still very widespread. Also it may be that some programmers will
prefer to stick with the battle-tested Version 6.0 until more service packs for
Version 7.0 have been released.

We provide a convenient Appendix C to summarize for both versions the
specific Visual Studio control sequences which we discuss. Any problems or fixes
involving the code will be discussed on the book’s web-site www.rudyrucker.com/

computergames. This is also the place to check for new upgrades to the Pop
Framework and for examples of student projects.

Software Engineering and Computer Games will also be useful to individual readers
who are looking for a quick path into Windows MFC programming. Let’s stress
again that you do not need to know any Windows programming before using
Software Engineering and Computer Games. A familiarity with C++ is recommended,
but Software Engineering and Computer Games does include discussions of all the
key C++ topics that we use.

A note on notation. We’ve tried to consistently use some special fonts for
different purposes.

• C++ Language reserved words, Windows API functions, Windows Data types, built-in MFC

classes and their methods

• Special purpose classes and methods defined for our project

• Names of directories and names of files

• Menu item selections or dialog box controls

• Examples of C++ code

There are already some very good books on many of the coding topics we
treat. For a more traditional software engineering course, it may be appropriate
to accompany the use of Software Engineering and Computer Games with a book
such as Steve McConnell, Software Project Survival Kit (Microsoft Press, 1997). It’s
worth mentioning that Steve McConnell’s other books, Code Complete (Microsoft
Press, 1993) and Rapid Development (Microsoft Press, 1996), are wonderful sources
of information about, respectively, program-level and project-level practices to
use for efficient software engineering.

Perhaps the most popular older surveys of the field of software engineering are
Roger Pressman, Software Engineering: A Practitioner’s Approach (McGraw-Hill, 2000)
and Ian Somerville, Software Engineering (Addison-Wesley, 2001). And there
is much to recommend in the more recent book, D. Hamlet and J. Maybee, The
Engineering of Software (Addison-Wesley, 2001). Software engineering texts range
from being very code-oriented to being very process-oriented. Viewed as a soft-
ware engineering text, my Software Engineering and Computer Games is further
towards the code-oriented end of the spectrum than the other software engi-
neering books mentioned.

Ideally, a computer science curriculum might have two software engineer-
ing courses: a broad-based process-oriented course, and an in-depth software
project course using a book like Software Engineering and Computer Games. It

Introductionxxxii

would seem that the two courses could be taken in either order, as each would
shed light on the other. On the one hand, it’s nice to have studied the software
engineering process before attempting a big project; on the other hand, it’s
much easier to appreciate the purpose and importance of the software engineer-
ing process after you’ve actually gone through the experience of building at
least one substantial project.

Two good C++ books are those by Cay Horstmann: Mastering C++ (John Wiley,
1991), and Practical Object-Oriented Development in C++ and Java (Wiley, 1997).
Charles Petzold, Programming Windows 95 (Microsoft Press, 1996) is a classic
general reference for non-MFC Windows programming. The successive editions
of Inside Visual Studio (Microsoft Press, 1997), by David Kruglinski and others,
have good overviews of the Microsoft Visual Studio Developer’s Studio with
many short examples. Alan Feuer’s rich and knowledgeable MFC Programming
(Addison-Wesley, 1997) is an excellent book about MFC. George Shepherd and
Scot Wingo, MFC Internals: Inside the Microsoft Foundation Class Architecture
(Addison-Wesley, 1996), gives a valuable low-level guide to the workings of MFC,
including some material which can’t be found in the official documentation or
in any other books.

Kendall Scott and Martin Fowler, UML Distilled (Addison-Wesley, 2000) is a
very nice little book covering the basics of the Unified Modeling Language. The
standard book on design patterns is the well-written and inspiring book, Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995).

Regarding OpenGL programming, the so-called ‘Red, Blue, and White’ books
(named after the main colors of their otherwise identical covers) are canonical.
These are, respectively, Jason Woo, Jackie Neider, Tom Davis, and Dave Shreiner,
OpenGL Programming Guide (Addison-Wesley, 1999), Renate Kempf and Chris
Frazier, eds, OpenGL Reference Manual (Addison-Wesley, 1999), and Ron Fosner,
OpenGL Programming for Windows 95 and Windows NT (Addison-Wesley, 1997).
These books can also be found on-line. A recent link to the Red Book, for instance,
is http://fly.cc.fer.hr/~unreal/theredbook/about.html.

Finally, let’s mention some recent books on computer game design and pro-
gramming. Andre LaMothe, Tricks of the Windows Game Programming Gurus
(Sams, 2001), is an excellent, wide-ranging book on writing games. LaMothe has
written a number of other useful books as well. David Bourg, Physics for Game
Developers (O’Reilly, 2001), is quite interesting. Ian Parberry, Learn Computer Game
Programming with DirectX (Wordware, 2000), gets the user up and running with a
simple DirectX game framework. Also of interest are David Astle, OpenGL Game
Programming (Prima Tech, 2000); Rouse, Ogden, and Rybczyk, Game Design:
Theory and Practice (Wordware, 2001); Andrew Rollings, Game Architecture and
Design (Coriolis, 1999); and Mark DeLoura, Game Programming Gems 1 & 2
(Charles River Media, 2001).

You are free to use the Pop Framework in developing your own programs.
The Pop Framework source code is explicitly placed in the public domain. This
means that you can freely use any or all of the source code for any purpose,
including commercial products or inclusion in other texts. You do not need a

Introduction xxxiii

separate permission from the author or his publishers to do this, and you are not
required to acknowledge any use of the code (although a public line of thanks
is always nice!). You are free to place your own copyright notice on works
which include the source code, with the understanding that the author accepts no
liability for problems caused, and with the stipulation that all of the author’s
code remains in the public domain and may be further re-used by others.

Let’s say a few words about some possible future extensions of the Pop
Framework.

A feasible near-term enhancement of the Pop Framework is an implementation
of a cGraphicsDirectX class which might make faster three-dimensional animations
than cGraphicsOpenGL.

As support for three-dimensional games was only developed in late 2001,
there was not time to develop classes for three-dimensional geometrical objects,
classes to represent complex three-dimensional worlds, or strong examples
of three-dimensional games. This is an area that some of my students will be
working on in the near future. Any useful new code may be incorporated into
new releases of the Pop Framework available on the book’s website.

A less obvious future improvement might be to extend the framework to
support four-dimensional computer games (e.g. a HyperPacMan in a four-
dimensional maze or a four-dimensional Space Invaders). This could open some
interesting new ground. The fourth dimension is a topic dear to my heart.

Networking is lacking from the current Pop Framework. Although the frame-
work supports multiple players, it doesn’t support multiple players on differ-
ent machines. Perhaps a cListenerSocket child of the cListener class could to
be implemented for this. And one would need to research the existing work
on architectures and programming idioms that can keep two game sessions
sufficiently in synch with each other. As future versions of the Pop framework
are tailored to take advantage of Visual Studio.NET, it may turn out that we can
get networking features fairly easily via the use of .NET methods.

Experienced gamers will think of many other enhancements that could be
made. The Pop Framework presently has no support for scripting, for joysticks,
for DirectX Sound, or for loading meshes and skins. As the code is open
source and the architecture is resolutely object-oriented, adding these kinds
of enhancements is quite feasible. I gladly offer up these tasks to the more
adventurous readers. As time goes by, the book’s website will post the source
and documentation for any significant improvements to the Pop Framework.

The Pop Framework is written in C++, and it makes essential use of the
Microsoft Foundation Classes for its document-view architecture. Some will
wonder about porting it to Java. The port is feasible, given that: (a) the Pop
Framework classes use solid principles of object-oriented design, (b) most of
the classes are independent of any specific features of C++, Windows, or MFC,
and (c) the class members are, by and large, either primitives or pointers to
other class objects (as opposed to instances of other classes, which Java does not
allow). Regarding Java, the speed of Java applets does seems to be acceptable
for game play; see for instance the prototype Java applet Asteroids game
at www.rudyrucker.com/computergames/java. Nevertheless, there are some dis-

Introductionxxxiv

incentives to porting the Pop Framework to Java. Among the disincentives
would be that the Java language standard is something of a moving target, that
existing Java development environments don’t seem as powerful and solid as
Microsoft Visual Studio, that deploying a Java package across many platforms
is a ‘write once, debug everywhere’ experience, and the fear that Java may yet
be marginalized. A C++ port might be a liklier opton.

In closing, I’d like to thank my colleagues Jon Pearce, Cay Horstmann, and
Michael Beeson, with whom I’ve had so many useful discussions about the prac-
tical and theoretical sides of computer science. Thanks also to John Sutherland
and to John Foster who read a final draft of the book and made many useful
suggestions. Any errors that remain are my own.

Special thanks go to the programmers I learned real-world software engineer-
ing with at Autodesk, Inc., in the early 1990s: John Walker, Eric Lyons, Josh
Gordon, Bob Holt, Steve Demopoulos, Eric Gullichsen, Marc LeBrun, and John
Castellucci. Thanks to my wife Sylvia for her patience and support during the
seemingly endless hours of work this project took. And thanks to my many
students, without whom Software Engineering and Computer Games truly could
not have been written.

Rudy Rucker

San Jose, California
August 12, 2002

Introduction xxxv

Part I

Software Engineering and
Computer Games

Overview

The goal of this course is for you to learn some principles of software engineer-
ing and to use these techniques to design and build a Windows-based computer
game. Part I contains the main text. Part II is a reference section containing a
number of secondary topics that you may need to look at from time to time.

1Projects and games

In this book you’ll learn about software engineering in the context of working
on a computer game project of your own. The purpose of this chapter is to get
you to start thinking about your game project.

Software engineering is the set of techniques used to produce computer pro-
grams which people are willing to buy. In a single phrase, the software engineer’s
goal is: ‘Ship it!’ Although shipping a product used to mean putting a disk and
a manual in a shrink-wrapped box, these days it can equally well mean making
a program available for download from the web.

Although there is only one goal, there are many different aspects to software
engineering. If you go into a large computer bookstore and look at the section
on software engineering, you’ll find an extraordinary range of books.

In this book we are going to focus on software engineering as something that
programmers do, as opposed to something that managers do. Managers can motiv-
ate and orchestrate the process – but they are not doing the kind of software
engineering that we’re going to focus on. Here we think of a software engineer
more as a programmer, as the kind of person a business is looking for when they
advertise, ‘we are looking for programmers who have shipped an application.’
This book will show you how to make a certain kind of shippable application.

What kinds of applications? We’re going to focus on using C++ and the
Microsoft Foundation Classes (MFC) to create Windows applications for per-
sonal computers. And the kinds of programs we look at will be computer games
of various kinds.

All you really need in order to use this book is to have a solid knowledge of
C++ or, at the very least, Java or C. You’ll learn about Windows and MFC pro-
gramming as we go along. If you already know some Windows programming,
so much the better!

1.1 Features of a successful program

Here are two reasonable criteria for a successful program. Does it make money?
Is it beautiful?

A program you write can make money in a direct way if it is so attractive that
people are willing to pay to use it. Indirectly, a program can make money for you
if it is good enough to convince someone to hire you for a good job.

It’s also important for a program to be beautiful. Beautiful things don’t always
make money, but they do have their own value. In trying to make a program
that is profitable and beautiful, there are four areas to bear in mind.

• Basic concept.

• Interface.

• Documentation.

• Stability.

Let’s say a few words about each of these.

Concept

This is the hard one. If your program is to make money, people need some reason
to want it. Your program must do something which people value, and it should do
it better than competing programs. If your program is to be beautiful, it must be
based on an original and interesting idea – and these aren’t easy to come by.

If you look at the kinds of programs people buy, you’ll notice that they fall
into a few main categories: tools, games, education, and content.

Tool programs are things like word-processors, spreadsheets, paint programs,
compilers, web browsers, Computer Aided Design packages, and so on. These are
large programs with lots of code and are usually created by big teams of software
engineers. Tool programs are probably the hardest to create and the hardest to
market, and for this reason the author’s manager at Autodesk used to say, ‘Apps
good, tools bad.’ App is short for application, which is what executable programs
are usually called in the Windows world. And a really good app is often called a
killer app.

Game programs range from simple solitaire time-wasters up to interactive
virtual realities. And the web has opened up a lot of interesting possibilities for
shared-world games. As with tools, the key to a really massive success is to think
of a completely new kind of game. But even a fairly standard kind of game can
sell well if it is based on an original graphical concept and is soundly executed.
It’s worth noting that games and tools are about the only kinds of software that
people are still willing to actually buy in a shrink-wrapped box.

A game that you play on the screen of a wireless device like a cell phone
will be tiny, but commercially successful console and computer games are huge.
As well as including game-engine code, a game will use lots of data files with
things like sounds, bitmaps and level designs. Some contemporary games are
said to take over 100 person-years of work. The projects in Software Engineering
and Computer Games will focus on smaller games, of a complexity at about the
level of a classic arcade game.

Educational programs cover a wide range. The largest part of educational soft-
ware consists of very low-end programs to teach readin’, ritin’, and ’rithmitic.
Simple educational programs can involve even less code than games; indeed
these are usually developed in a high-level programming environment such as
Microsoft Visual Basic or a Macromedia product such as Director or Flash.

Software Engineering and Computer Games4

More sophisticated education programs often illustrate scientific concepts
with computer simulations. Simulation programs can model abstract mathematical
ideas like fractals and chaos theory, for instance, or they might model biological
systems using the techniques known as artificial life. The style of programs
known as cellular automata simulate real and imaginary kinds of physics. Arti-
ficial life programs show creatures moving about as if they were little pets inside
a toy world. Higher dimensional programs display objects that can’t fit into
the confines of three-dimensional space. These are some examples of beautiful
calculations that computers are good at doing, but which would be absolutely
impossible to perform by hand.

Content programs are multimedia packages of text, pictures, video, and sound
clips with a computer interface. A content program might be an encyclopedia
or a travel guide. It’s common to have a huge number of support files, includ-
ing bitmaps, sounds, and animations. Many programs are in fact small engines
whose main purpose is to navigate through the contents of a data base. Encyc-
lopedia and reference programs are examples of this. A modern commercial
computer game often includes enough media resources to be a kind of content
program on its own, by the way, with the content presentation driven by the
play of the game.

Although there’s no money in them, it’s worth mentioning that you can also
create programs which are art. The best known examples of art programs are
screensavers. These programs create images that people like to look at. A really
good artistic program can produce such a variety of interesting outputs that
people are mesmerized.

In this book, the programs we focus on will be computer games whose agents,
or critters, have behavior driven by an underlying physics simulation. (We’ll
use the Wild-West word ‘critter’ throughout this book for the creatures in our
computer games.) In that the critters are more or less autonomous, the pro-
grams are a simple form of the scientific computer programming known as
artificial life.

We focus on computer games because they’re interesting. To work hard on a
program, it has to be attractive to you in the first place, and to finish a program,
you have to want to see it in action. Just as you need something to write about
in order to learn how to write, you need something to program about to learn
how to program. Games are a rich source of inspiration.

Interface

Hardly anyone is happy with a program that is to be run from a command-line
prompt and controlled by special keyboard combinations. Any serious program
must run in graphical windows, support the mouse and include menus and
dialog boxes. One great virtue of developing for Windows using MFC is that in
this programming environment it’s very easy to implement a rich graphic user
interface.

Of course a good graphic user interface, called GUI for short, takes a lot
of thought. You usually need to try out several interfaces till you get it right.

Projects and games 5

Drawing sketches of the interface before you build it is a very good idea. There
are some commonly agreed upon principles of Windows interface design, but
getting a really nice and easy-to-use design is an art in itself.

In a nutshell, to develop a good set of controls and menu selections: test,
watch, pay attention, revise, revise, revise.

It may be that you can envision several different ways in which someone
might want to use your program. In this case it’s a good idea to make the inter-
face user-customizable. That is, you might have menu selections that change
the program’s response to certain kinds of mouse or keyboard controls. Or
you might have menu selections to control the kind of view that the program
displays.

In addition to the user controls, you might also regard the selection of your
games graphics and sound media files as being a part of the interface design. Of
course if you plan to work primarily as a programmer, there’s a good chance
that you yourself won’t be responsible for interface design. Nevertheless, in the
projects we do in Software Engineering and Computer Games, you will be develop-
ing the entire package: code, interface, media files, and documentation. It’s
good to have some hands-on experience with interfaces, so that you have a
clear idea both of what kinds of interface are possible, and also of how to pro-
vide code hooks to work with various kinds of interface controls.

A final interface-related feature is file-handling. If you can support file-
handling, you allow the user to save and reload the current state of the pro-
gram, including all of the current parameter values. Alternately, file-handling
can be used as a way to extend user-customizability, perhaps by allowing the
user to load different graphics backgrounds or sound files into your program.
Depending on what files get loaded, your program can behave in very different
ways. It’s worth mentioning that bug-free file-handling can be tricky to main-
tain, so programs often settle for simplified kinds of saving and loading.

Documentation

This is often the last thing that software engineers think about. But you
should really think about it right from the start, and in this book we’ll stress the
importance of working on your User’s Guide at the same time as you work
on your code.

You should keep in mind that the important thing about your documenta-
tion is that it has useful and accurate information, not that it has a whiz-bang
web-like interface. The user cares more about real information than about the
exact way in which the topic windows are indexed and linked. Programmers
tend sometimes to get lost in the maze of help file design.

The User’s Guide should include an explanation of why your program is
interesting, a guide to installation and quick start, and a feature by feature
explanation of all of the menu and dialog controls.

Software Engineering and Computer Games6

The User’s Guide is both the printed manual and the online help file. These
two are normally based on the same document. Your work, once again, is in
making this a good document, rather than worrying about giving it an intricate
interface. As it turns out, there is a tool called the Help Workshop that makes
it quite easy to convert your documentation file into an online Windows help
file to distribute with your program. With a certain amount of additional work,
you can eventually give your help file a wide range of hypertext features.

It’s worth mentioning too that you should also put a lot of documentation
into your code in the form of comments to help future programmers who might
work on your project – or to help you when you come back to the code in six
months and have forgotten why you made some of the choices that you did.

Stability

It goes without saying that your program shouldn’t crash. Its behavior should
be stable and consistent no matter what the user does. Attaining this goal
means putting energy into testing and debugging. Of course every program
has bugs. Keeping them down to a manageable level takes a sustained effort on
the part of the software engineer. Bug management has several parts: coding
defensively, inspecting and testing the code to find existing bugs, and fixing
those bugs.

Another aspect of stability means that you, as a programmer, should be will-
ing to leave out a flaky feature that always causes trouble. The tendency to
include unnecessarily complicated features is sometimes known as ‘developer
gold-plating.’ You have to have the willpower and big-heartedness to disable or
comment out the flaky code when you ship.

1.2 Game design

Many programmers have at some point in their lives been obsessed with com-
puter games. Programming itself is the ‘big game’, the meta-game, a game made
the more enticing by the fact that the points you score can be real-world fame
and fortune. Programming has a lot of the elements of gaming at its best. Why
settle for gaming when you can program?

Of course when you’re programming, you need something to program about,
and this is where computer games are useful in another way. Not only do com-
puter games get you started with the computer, they are in and of themselves
interesting things to try and program. Even a simple game program is reasonably
challenging, and it’s very easy to tell if a simple game works or not. And once
you get started with game programming, you have the possibility of building up
your program until it becomes something quite large and impressive. Another
plus is that it’s often possible to get your friends and family to play with your
games, which is rewarding.

Computer games are especially interesting as programming projects because
they draw on such a wide range of skills, including the following.

Projects and games 7

• Computer graphics – to get the game on the screen.

• Physical simulation – to make the objects move realistically.

• Artificial intelligence – to make your virtual enemies worthy opponents.

• Computer art – to provide beautiful images.

• Computer sound – to provide effects and background music.

• Interface design – to make the game interesting and intuitive to use.

• Code optimization – to make the runspeed high enough.

Another good thing about computer games is that the lessons that we learn
from designing games can be carried over into our non-game programs. So let’s
make some games!

A fresh look at the dimensionality of games

Ordinarily people speak of games being either two-dimensional, three-dimensional
or two-and-a-half-dimensional. The first two are fairly easy to explain: the older
arcade games with flat shapes moving in a plane are two-dimensional, while
the newer console and computer games where the player moves about in a
virtual reality are three-dimensional. The 2.5-dimensional case refers to those
games that view a three-dimensional world from a fixed direction – popular
examples of this are the Maxis games SimCity and The Sims. We don’t regard
these games as fully three-dimensional because we aren’t able, for instance, to
move our viewpoint down into the streets of SimCity and look up at the build-
ings as we could in a truly three-dimensional game. From a programming point
of view, 2.5-dimensional games are closer to being two-dimensional than to
being three-dimensional; one builds up a 2.5-dimensional game by drawing a
limited number of two-dimensional layers.

But now, for the rest of this subsection, we want to use a quite different
and somewhat idiosyncratic way of talking about the dimensionality of games.
Temporarily set aside your usual ideas about game dimensionality and get ready
to look at things in a novel way. What we will do here is to talk about three
separate dimensionalities: the player motion, the world motion, and the viewer
motion.

Just to make sure we’re in synch here, recall that a dimension is a degree of
freedom. The motion of a barnacle on a rock is zero-dimensional, it never moves.
A car on a road or a bug crawling along a thin twig is moving one-dimensionally,
it can go forward or backwards and that’s all. A horse galloping across a prairie
enjoys two-dimensional motion, and birds and fish move three-dimensionally.
A person’s motion upon the surface of the earth is largely two-dimensional,
although at small length scales you do have three-dimensional freedom: you
can jump up and down, and you can zoom your hands around.

All computer games have two key elements: the player and the world. In
many games the player is in some way represented on the screen: as a cursor tool,
as a moving figure, or as a hand holding a weapon. The world is the scenery and
objects that you see on the screen. We can try and classify games in terms of

Software Engineering and Computer Games8

the dimensionality of the player’s motion, the dimensionality of the motions of
other objects in the world and the dimensionality of the viewpoint motion.

Table 1.1 gives the names of some games and numbers for the three kinds
of dimensionality for each. In some cases we’ve used a fractional dimension
to suggest the idea of being in between two dimensions. If you happen to have
heard of the mathematical shapes called ‘fractals,’ you might wonder if the
fractional dimensions in this table are meant to be like fractal dimensions in
the mathematical sense – and the answer would be no. The fractional dimen-
sion numbers are used here in a somewhat loose and metaphorical fashion.
Thus a motion dimension of 1.25 is used here to refer to a two-dimensional
motion which is in some way constrained to be close to straight-line motion,
and a motion dimension of 1.5 is used to mean a two-dimensional motion
that’s a bit less constrained.

Harking back to the notion of ‘2.5-dimensional’ games mentioned at the start
of this subsection, we can see that this fits in with our new usage, if we regard a
2.5-dimensional world as a three-dimensional world in which the inhabitants
are constrained to move in certain orderly ways, being mostly limited to moving
in a particular plane.

In looking at the table and reading the discussion, keep in mind that if there
are some number values you disagree with, it’s possible that you’re right. The
point is to get you to start thinking about computer games in a novel way, not
to pronounce certain number values as being true once and for all.

Projects and games 9

Table 1.1 The dimensionalities of some familiar kinds of games.

Games Dimensionality of Dimensionality Dimensionality
player’s motion of the world of the viewer

motions motion

Shooting gallery type 0 1 0
Space Invaders 1 1.1 0
Centipede 1 1.5 0
Galaga 1 1.5 1
Defender 2 1.25 1
Slot Car Race 1.25 1.25 0
Atari Rally Race 1.75 1.1 1.75
Pong, Breakout 1 2 0
Asteroids 2 2 0
PacMan 1.25 1.25 0
Tetris 2 1 0
Mario 1.5 1.5 1
King’s Quest 2 2 2
Gauntlet 2 2.5 2
SimCity, The Sims, 2.5 2.5 2.5

Age of Empires
Doom, Quake, Half-Life 3 3 3
Flight simulators 3 2.5 3

We will sometimes speak of a game whose dimensionalities are, respectively,
a, b, and c as having an (a, b, c) ‘dimension signature’.

The most rudimentary games are the shooting gallery type in which the user
controls a little gun sitting still at the bottom of the screen. A row of targets –
things like bullseyes and ducks – moves across the middle of the screen. The
user presses a key to shoot bullets up at the objects. The user’s motion is zero-
dimensional, for the gun never moves. And if all that the targets do is move
along a steady line from right to left, we can think of the world as being essen-
tially one-dimensional. Admittedly there is a two-dimensional element here
because the gun’s bullets do move vertically, unlike the horizontally moving
targets. But, this is hardly a motion at all really, for the only thing the bullet’s
motion does is to establish a fixed time-lag between when the user presses the
shoot key and when the target might explode.

Like most of the early computer games, the shooting gallery type has a zero-
dimensional viewer motion, which is just another way of saying that the user
has no control over the viewpoint. In the early games one simply sits above the
world, looking at all of it at once.

In a variation on the shooting gallery game that was called Missile Command,
the user was allowed to rotate the barrel of the gun so that it shoots in different
directions. In a typical game like this, the user might be firing missiles at plane-
shaped targets. We can think of the gun rotation as a degree of freedom, so for
these games it would make sense to say the user’s motions are one-dimensional.

In a Space Invaders style game, the user has a gun at the bottom of the
screen, but now the gun can move back and forth. And instead of moving across
the screen, the objects are now moving steadily downward. The player is trying
to shoot the objects before they touch the bottom. In non-violent variations of
this game, the user is ‘catching’ the falling objects rather than shooting them.

Note that if the gun can move back and forth it usually can’t rotate. This is
because giving a user too many degrees of freedom in the controls can make the
game confusing to play.

In classic Space Invaders, the steady, unrelenting downwards-only motion
of the game objects is just a shade above one-dimensional. This is because the
enemies jiggle back and forth in synch with a sound the game makes. But the
jiggling is quite restrained; thus one might call the motion 1.1-dimensional.

More advanced offshoots of the Space Invaders game, such as Centipede,
have target objects which swoop wildly back and forth as they move down.
This isn’t a true two-dimensional motion, since the objects always do move
downwards, so let’s put 1.5 in the table. Centipede also had the fresh feature of
having the dead creatures leave obstacles on the screen.

Galaga was a game of the Space Invaders family in which the enemies
swooped about quite wildly. As an additional point of interest, this game had
a visually scrolling background, with new targets emerging from the top of the
screen and disappearing at the bottom, giving an effect that one is looking down
at a player object which is continually flying upward through space. Although
the user can’t directly control the viewpoint motion, the visual effect is of a
viewpoint that moves with one degree of freedom.

Software Engineering and Computer Games10

Defender was a game in which the player is limited to the left half of the
screen, but is free to move a bit forward and backwards as well as up and down.
The enemies come in from the right with slight variations in their motions. The
background scrolls to the left.

How about a game that doesn’t involve shooting? A common kind of game
is Slot Car Race. In a game like this, you look down on a race-track from a fixed
aerial view, seeing the whole track at once. The player and some rivals are little
cars that race around the curves of the track. You control the player by turning
a bit to the left and the right, by speeding up and slowing down. It would be an
exaggeration to say you have two-dimensional motion, as you have to stay on
the track. 1.25 dimensional motion is more like it, with the rivals having about
as much freedom as the player.

There’s another way to make a car-racing game, and this is to try and
immerse the player in a three-dimensional world. In a very early Atari car Rally
Race game, there is a player which is a car near the center of the screen, near
the bottom of a triangle that represents a road. Little rectangles flick past on
either side; these are fence posts along the road. You move left and right from
one side of the ‘road’ to another to avoid obstacles that appear; this is one
dimension of your motion. Your second dimension of freedom is how fast
you drive forward. Although this is nominally a three-dimensional world, you
can’t hop up and down, so you don’t get any use out of the third dimension.
The world is effectively a plane that you are looking at from the side. And, as in
Slot Car Race, you can’t drive off the track. Even so, there’s a more dimensional
feeling in this game, so let’s call it 1.75. That might seem too stingy, really,
given that the world is, in principle a three-dimensional one. But if you look at
your degrees of freedom, the number does seem pretty low.

Most of the obstacles in the Rally Race world appear and move down the
screen towards you as predictably as the monsters in Space Invaders, with only
a small amount of oscillation, so let’s call their motions 1.1-dimensional. (Note
that we’re well into a debatable gray zone here; remember that the purpose of
this discussion is to get the gears turning in your head, not to lay down any
absolute facts.)

In the Rally Race game the viewpoint is attached to the player’s car. The
viewpoint shares in the dimensional motion of the player. It’s worth mentioning
here that in almost all games which begin to try and show three-dimensional
space, player motion, the viewer and the player are attached.

The Tetris game is an interesting non-violent game which is a kind of vari-
ation on the Space Invaders style game. Here objects are falling, but rather than
being a gun or a basket at the bottom of the screen, the player is essentially a
controller that sits upon each block as it falls. The player is able to move the
block he or she is on back and forth and in addition can rotate the block. So we
can think of the player as having two degrees of freedom, with the understand-
ing that the second degree is rotation rather than motion.

Pong and Breakout were the first kinds of games with truly two-dimensional
world motions. Here something like a ball is moving around on the screen, and the
user moves a paddle back and forth along the bottom or side of the screen to keep

Projects and games 11

the ball from escaping there. Note that the player motions are one-dimensional
and the viewer, which sees the whole world, is still zero-dimensional.

Asteroids was the first game with two-dimensional player motion. The asteroids
move along two-dimensional paths, and the user’s ship moves two-dimensionally
as well. What makes the controls for Asteroids intriguing is that rather than
directly moving the ship with left/right up/down controls, the user moves the
ship via a pair of controls affecting the strength of the ship’s rocket and the
direction the rocket is pointing in. Unlike any previous games, Asteroids uses a
little bit of physics: the ship has inertia, and tends to keep moving in the same
direction until you rotate it and send a pulse of rocket energy the opposite way.
The ship is also able to shoot bullets; these always travel along the same direc-
tion as the ship’s rocket currently points.

PacMan was the first great maze game. Here the user and the objects move
somewhat two-dimensionally, but they are constrained to move around inside a
maze. So we speak of the motions as 1.25-dimensional. We use a number so close
to 1 because the maze branches very little, and there aren’t all that many places
where the user does indeed have two degrees of freedom in the motion choice.
Programming a maze game takes a little extra work because you need to put in
the maze-wall objects and arrange for your moving objects to notice the walls.

Historically, the next big advance after PacMan was the Nintendo family
of ‘side-scrolling’ games like Mario. In these games, the player’s figure moves
across a landscape that runs indefinitely along to the left and right. The player

Software Engineering and Computer Games12

The Pop Dambuilder game showing a 3D view of a 2D game

can jump up and down a little bit, so we think of the player’s motion as, say,
1.5-dimensional. Most of the objects in the landscape move pretty much one-
dimensionally, but a few of them hop up and down a bit too. What made this
game unique was that here we had a moving viewpoint that mattered. Unlike
the scrolling star fields of Galaga and Defender, we move through a world with
interesting new features (though parts of the backgrounds do repeat).

We mentioned before that in games with a moving viewpoint, the motion is
normally attached to the player. In a side-scroller like Mario, the viewpoint moves
along through the world with the player. The next advance in games was to
look down on a big world in which the viewpoint moves two-dimensionally.
King’s Quest and Gauntlet were examples of this. In both of these games, the
viewpoint is set to always keep the player in view. That is, the viewpoint won’t
actually move till the player bumps into an edge of the screen; at that point the
viewpoint will scroll (or jump) so as to keep the player onscreen.

King’s Quest was a room-based or tile-based game; that is, the player moves in
jumps from one screen to the other by passing across the edges. As mentioned
above, we say a game has an (a, b, c) dimension signature if the player has
a degrees of freedom, the world’s motions are b-dimensional, and the viewer
motions are c-dimensional. In and of itself, each screen of King’s Quest has a
(2,2,0) dimension signature; that is the player and world objects move two-
dimensionally and the viewpoint doesn’t move. The twitching of the viewpoint
from room to room gives the game as a whole its (2,2,2) dimension signature.

In Gauntlet we have a more distant view of the world, we see several rooms
at once, and the viewpoint scrolls when the player touches the edge rather than
jumping. An additional aspect of the Gauntlet game is that here we begin to use
a two-and-a-half-dimensional view of the game world. Rather than being shown
as a flat pattern seen from above, the world is drawn as if seen from a fixed
angle a bit to one side in space. This kind of view is also known as ‘isometric’.

SimCity and Age of Empires are games that take the two-and-a-half dimen-
sional view and run with it. In these games the user can design huge cities or
even civilizations. In a sense there is no onscreen player, as the gamer is the all-
pervasive ‘creator’ of these worlds. This said, the user can at times have the
experience of an embedded player by temporarily taking control of one of the
world creatures or, in SimCity, by controlling a cursor that acts as the ‘Finger of
God’. Although these games are isometric view, they give something almost like
an effective third dimension of viewer motion by allowing the user to zoom in
on close-up views.

The next wave of games were ‘first-person shooters’ like Doom, Quake and
Half-Life. In some ways these games are like three-dimensional PacMan. The
player moves through a three-dimensional maze of rooms, hallways and staircases,
enjoying a motion that we might call 2.5-dimensional (although once in a
while in these games you get a chance to swim underwater and you have some-
thing like pure three-dimensional motion). The motions of the objects appear
truly three-dimensional; they sometimes bounce around all over the rooms.

Although the viewpoint location is attached to the player in the first-person
shooters, we have additional extra freedom in the viewpoint because we have

Projects and games 13

two degrees of freedom in controlling which way the player looks – which is
the direction in which the player’s weapon gets aimed as well.

It’s often said that first-person shooter games are excessively violent. Certainly
it would be interesting to see more games like this in which you did something
other than shoot everything that moves. An aspect of the first-person shooter
games that seems a little sad is that the image of the player is generally nothing
more than a hand holding some kind of gun. There are, however, other immers-
ive three-dimensional games that are not primarily about shooting things.

We haven’t talked about flight simulators yet. In principle the idea of a flight
simulator seems very promising: you’re going to fly around in three-dimensional
space. But there are two big problems. First of all, the space that you fly around
in often doesn’t feel three-dimensional at all. In the lower-end simulators, you’re
always way up in the ‘sky’ looking down at a map. It feels like you’re in a two-
dimensional map world with a weak third degree of freedom that involves
magnifying the map. A second problem with flight simulators is that they tend
to be so closely coupled to the mechanics of how airplanes actually fly. Rather
than just getting out there and enjoying pure bird-like flight, you’re worrying
about complicated machine-age technology like ailerons, rudders, and stall speeds.
But some players enjoy mastering this. In some of the newer computer games,
the flight is more natural and less mechanical: you’re flying through all sorts of
interesting objects, like a fish in a reef or a bird in a forest, and you’re flying as
naturally and as effortlessly as you fly in your dreams.

Have we reached the end of the dimensions with three? Not necessarily.
In mathematics there is such a thing as a fourth dimension, a dimension per-
pendicular to every direction of our space. One way in which we think about the
fourth dimension is via analogy based on the notion of a two-dimensional world
called Flatland. The fourth dimension is to us as the third dimension would be
to Flatland. But there’s not room to say more about the fourth dimension here.
Suffice it to say that it would be really cool to write a four-dimensional PacMan
game or a four-dimensional Asteroids. To get some ideas about how to start,
you can download the Hyperspace 98 program from the author’s home page.
The Pop Framework is in fact designed in such a way that it would be relatively
easy to extend it to four-dimensional space; more on this topic can be found
in the comments at the start of the vectortransformation.h header file, and any
progress in this direction will be posted on the book’s website.

Looking back over this section, what can we conclude about the dimension-
ality of the games that we should try and design? Certainly more dimensions
tend to make a game more interesting. The risk in adding too many dimensions
is that a game can become confusing and hard to use. Another cost of more
dimensions is that you need to provide more furniture to put into your world.

When proposing a project, be sure and think about what dimensionalities you
plan to use for the motions of your player, his or her opponents, and the view-
point. In this author’s courses, shooting gallery or Space Invader game projects
aren’t acceptable for term projects as they’re too easy and too dull. (Later we’ll
do Space Invaders as an introductory exercise.) What’s wrong with choosing a
really easy project? In grading a projects course, it’s reasonable for the professor

Software Engineering and Computer Games14

to base at least part of the grade for a project on the difficulty. This is an
instance of how it is important to get good feedback during requirements gath-
ering. The very best student projects not only create a challenging game, but also
implement some new classes to make the game work.

The intelligence of games

A really well-designed game like Tetris forces the player to behave intelligently.
In Tetris you need to think ahead about which block to place where, keeping in
mind which blocks are coming. A game like Space Invaders requires very little
intelligence. You simply shoot everything you can as fast as you can.

It is exceedingly difficult to design a game which incorporates an inherently
challenging puzzle. The whole trick in a game of this nature is to give the user
several possible courses of action at all times, and to balance the consequences
of the actions so that there is some real difficulty in deciding which strategy to
use. Games are highly sensitive to very small tweaks in their play parameters, and
it’s a long-drawn-out process to get the values just right. But, you should try.

A simpler way to make your games intelligent is to give your game’s creatures
various kinds of behavior. In a shooting game like Asteroids, for instance, you
can have the asteroids check the player’s location and make a point of head-
ing towards the player. Or you can let the asteroids access the locations of
the bullets you shoot, and allow them to try and move out of the bullets’ way.
(The asteroids in the Pop Spacewar game do both.)

We’re not talking about a huge amount of intelligence here, we’re simply
talking about giving your game creatures some rudimentary abilities to gather
and use information about the player’s activities. Of course you can’t make the
enemies impossible to beat, as then there’s no game.

A good design trick might be to let the enemies do annoying things like
chasing the player and avoiding the bullets, but to have an enemy’s abilities
differ in a random fashion from one to the other. You might even have some
‘dumb and clumsy’ enemies who do exactly the wrong thing; these guys might
head towards bullets, for instance. This way the player is unable to be sure what
will happen when a new enemy is attacked.

Requirements for playable games

It goes almost without saying that a game should be attractive to look at, that it
shouldn’t run too fast or too slow. A game should also be relatively platform-
independent, that is, it should be able to behave well at different screen resolu-
tions and processor speeds.

Here are some less obvious principles that we might also keep in mind.

• The game needs a good interface.

• The user should get instant visual feedback from game actions, with sound
feedback for major events.

Projects and games 15

• The user should have a score or some other way of keeping track of how well
he or she is doing overall.

• There should be clear goals for the game and a clear termination point.

• There have to be advances and setbacks.

• Doing well should involve strategy as well as manual dexterity and quick
reactions.

• You may want to give the user the possibility of using different tools.

• Things should happen at a human pace, that is, not too slow or not too fast.
In particular, things shouldn’t change instantaneously.

The issue of good interface can’t be stressed enough. Most of all, the interface
must be simple. As a developer, you tend to want to put in lots of controls. The
Pop Framework games, in particular, are loaded with tons of menu selections.
These selections are really just present to help you look at some of the different
ways that the games might be configured. When you actually complete and dis-
tribute a game, almost all of the menu selections should go away. In the words
of the game developer Will Wright (designer of SimCity, SimAnt and The Sims),
‘A user interface isn’t done until there’s nothing left to remove.’

The most important part of the user interface relates to the actual game con-
trols rather than to the more or less rarely used menu selections. People can
only handle a few controls. Generally you shouldn’t expect to use more than
these: mouse moves, mouse clicks, arrow keys and the space bar. And maybe
not even all of those.

Regarding sound, it’s worth mentioning that sound can be used to set an
emotional tone, to signal critical events, and to speak clues and information. In
a pure Windows program, we’re limited to playing sounds that are stored in the
*.wav file format, as described in Chapter 30: Sound. It is, however, possible to
make a fairly simple extension of the Pop Framework to use the more powerful
sound capabilities of the DirectX library.

Any significant game event should be accompanied by visual or audio feedback.
At the barest minimum, you maintain some health and score numbers in the
status bar where the user can see them. But really the feedback should occur
directly within the game world. If you damage a critter, the critter should blink,
or send out fragments, and there should be a sound as well. When you gain
some health or score points there ought to be a sound, or perhaps a brief change
in your player icon.

The score is an all-important feedback to the user about their overall per-
formance. Once you have a specific score number to work with, you can tell if
you’re getting ‘better’ at a game, and you can compete at the game with your
peers. The point of a game is to make the users feel good, so you don’t want to
be stingy with your score numbers, though you don’t necessarily have to go
overboard and start dishing out scores in the billions. Another point to note is
that the more aspects of the game that affect the score, the better. Try and find
a way to award scores for each of the interesting kinds of things that a skilled
player can do.

Software Engineering and Computer Games16

Another issue relating to the interface is raised by Bruce Shelley (designer of
Age of Empires). You should evolve your game by playing it. Shelley suggests
that you play, test, and adjust your game daily while it’s being developed, and
that you use your own instinct as a gamer for guidance. When we discuss
an ‘Inventor’ software lifecycle model for developing our game projects, we’ll
factor in the notion that in the early part of the project you will be repeatedly
testing and revising your game.

Regarding goals, a fully engaging game will have a hierarchy of goals. There
will be cycles of success or failure applicable to different levels of time: say the
ten second level, the one minute level and, in advanced games, the one hour
or even one day or one week level. In order to make a game really successful,
you need to have users be interested in it for a fairly long period of time; an
‘infectious’ period longer than a week is necessary if you hope for your users to
recruit new users.

Let’s say a bit about advances and setbacks. One of the things that makes
an activity a game is that there has to be some sort of conflict. There need to be
advances and there need to be setbacks. The classic board game ‘Chutes and
Ladders’ is a really simple example of this. Some actions move you forward,
others drag you back. Playing roulette or craps has the same kind of rhythm, you
alternate between gaining and losing. In Asteroids you blow up an asteroid,
but then something hits you and you lose one of your lives. We need to make
it possible for the user to do ‘bad’ things as well as ‘good’ things. The game
should be geared so that the player should be able to do well. He or she should
sweat, but in the end, the player should win.

Regarding strategy, a game is more involving if the changes depend on things
you do. In an arcade ‘twitch game’, the issue is simply to react fast enough so as
to do the right things rather than the wrong things. In a turn-based strategy
game like chess, the issue is to figure out the right thing to do. The best kinds of
games involve some physical skill and some thought. If a user has a choice,
there should be something good about both possibilities, rather than some-
thing bad about both possibilities. A decision shouldn’t be trivial in the sense of
there being only one right answer, nor should it be random in the sense of it
not really making a difference which option you choose.

Will Wright remarks that it makes the decisions in a game fun if you
allow the player an occasional chance to be subversive, to go against what
might seem like the official and correct way to play the game. He gives the
example of allowing players in SimCity to remove buildings with their virtual
bulldozers.

Regarding the pace and strategy of a game, Bruce Shelley remarks that in a
game, the player should be the one having the fun, not the programmer or the
computer! The player should feel like the hero.

One type of strategy decision is to let the user choose different kind of tools for
his or her onscreen player. The simplest example is in a shooting game, where
the user selects which kind of gun to blaze away with. In adventure games, the
player may pick up or acquire all sorts of health packs and weapons that can
then be strategically deployed.

Projects and games 17

The issue of having things happen at a human pace ties in with the notion of
feedback and playability. The player needs to see things happen at a reasonable,
comprehensible rate.

All this said, none of the simple games we work on in this introductory book
are likely to rise to these high levels of design finesse. But it’s good to be aware
of what we’d really like achieve.

1.3 The Pop Framework

There are a zillion different projects that people can dream of. In Software
Engineering and Computer Games, we’re only going to help you do a few specific
kinds of projects. The book describes a framework called the Pop Framework
which will make it easy for you to build programs suitable for computer games
or for other kinds of simulations.

If you want to get a quick idea of what the Pop Framework can do, download
the Pop program from the book website, start up the Pop program and look at
some of the different game modes you can choose with the Game menu. A
recent version of the Pop help file is printed out as Appendix B, should you
wish to spend some time with it right now.

It turns out that the code for the Pop demo program is the same as the code
that we call the Pop Framework. Though getting a program to run is hard, it’s
even harder to design your code so that it is extensible enough to warrant being
called a framework.

You can call the code for a particular program a framework in the case
where the code has been designed to be very easy to extend to different types of
programs. Ordinarily, a framework is a set of files that make up a complete,
buildable project. The files contain implementations of some classes that are
reasonably easy to tweak and/or extend so as to make the program do different
things. The Pop Framework files are based on a ‘document view’ framework
generated by Microsoft Visual Studio. We’ll call this underlying framework the
MFC framework.

The Pop Framework is actually a bit more than just a collection of new
classes, it’s the notion of arranging these classes according to certain kinds of
patterns. By the same token, the MFC framework is both a collection of new
classes, and a certain way of arranging these classes. The special arrangement of
MFC classes is called the AFX framework, where the ‘AFX’ stands for application
frameworks. Instead of just speaking of the MFC framework, people sometimes
speak of the AFX/MFC framework. But for simplicity we’ll stick to just saying
‘MFC framework’.

Terminology aside, the idea for your project is simple. You build it on top
of the Pop Framework, which is in turn built upon the MFC framework (see
Figure 1.1).

The complexity of the kinds of programs people want keeps getting higher.
In order to stay afloat, software engineers are continually devising ways to
work at higher levels, and to spend less time on low-level tasks. The use of

Software Engineering and Computer Games18

object-oriented methods is one way to work at a higher level; instead of
designing the same kinds of structures over and over, we encapsulate them
into reusable classes. Learning how to apply software design patterns is another
way to work at a higher level; instead of reinventing ways of making your
classes relate to each other, you arrange your classes into a familiar pattern.
Finally, the use of frameworks provides software engineers with a huge amount
of leverage. A framework comes with a number of classes already organized into
useful patterns. Frequently you use a framework simply by deriving off a few
child classes from the basic classes it comes with; this is in fact what you’ll do
to make your computer game project with the Pop Framework.

To introduce you to the Pop Framework, let’s list the basic requirements it
was designed to satisfy.

(1) We want to be able to open more than one window within the program.
The different windows can correspond either to different game sessions or
to different views of the same session. A Windows way of putting this is
that we will use the multiple document interface (MDI for short) rather
than the single document interface (SDI for short).

Strictly speaking it’s not really that necessary to have multiple
windows for most games. But as the MFC framework gives us this pretty
much for free, we’re going to use it so as to make our framework as
powerful as possible.

So as not to confuse the users unnecessarily, the Pop Framework’s
default behavior is to show a single maximized view that fills the main
window. It will automatically tile additional views into the main window.

Another feature of the MDI is that we use a document-view architecture.
This means that we conceptually break the program into three main pieces:
the application, the document, and the view. These will be represented by
classes called, respectively, CPopApp, CPopDoc, and CPopView. The application
is the thing in charge of running your executable program. The document
holds the data involved in your game: things like the characteristics and
positions of the game pieces. The view is the graphical object in charge of
displaying your window on the screen.

(2) The graphics objects in a window must be stable and persistent, that is,
they shouldn’t disappear if we resize the window or temporarily cover
it with another window. This is a standard expectation, but it turns out
to be something you have to do a little bit of work to make happen. You
don’t get this for free. One way to achieve visual persistence is to maintain

Projects and games 19

Figure 1.1 Building on frameworks

an array that holds information about the appearance of your objects.
This array lives inside your document, and it is used whenever you need
to refresh the appearance of your view.

We use templates for our arrays so that they’ll be resizeable. Rather
than using the C++ Standard Template Library (STL) array templates, we’ll
use a special Microsoft MFC array template called CArray.

(3) We should have menu and toolbar commands for changing program
parameters and controlling the program flow. Once you have menu com-
mands in place, making them into toolbar buttons is quite easy with
Visual Studio.

An MFC program handles messages by putting message-handler func-
tions into some of its classes. As it turns out, a message can be handled
either by the app, by the document, or by the view. Generally we try
and partition out the responsibilities in a reasonable manner. Thus, a
program-wide switch for turning the sound off would be handled in the
app, a command for restarting a game would be handled by the doc, and
a command for switching between solid and wire-frame graphics would
be handled by the view.

(4) We’ll support mouse and keyboard input. These inputs normally go
directly to the view, but we pass them on from there to the game and the
game objects. Most people expect to use arrow keys to control computer
games. But for more complicated game play we’ll use the mouse and have
the option of changing the ‘cursor tool’ and appropriately changing the
action of the mouse.

(5) We want to have flexibility in the set of function calls that we use to put
our graphics onscreen. The Pop Framework is developed in a somewhat
graphics-neutral fashion, so that it can use standard Windows graphics
calls or OpenGL graphics calls, with the option of eventually adding sup-
port for DirectX graphics calls.

(6) We want the graphic images to be independent of the window size and
the screen resolution, that is, we want to see the same kind of pattern in
the window no matter what size it is. This is a somewhat non-standard
notion. There are many computer games that take over the whole screen,
throw it into some fixed resolution and don’t allow you to use resizable
windows at all. In effect these kinds of programs are making your
Windows machine behave like a dedicated arcade-station or like an
old DOS machine.

Many full-screen programs of this type give you a range of possible
resolutions you can choose from, but even so, once the game starts the
resolution is no longer adjustable.

The author’s feeling in designing the Pop Framework was that it’s
more elegant to have the game run in a well-behaved standard window
on your desktop, a viewport window with graphics that adjust to fit the
size of the window. We do this by saving our objects’ positions in terms
of real-number-valued vectors which we’ll convert into pixel positions

Software Engineering and Computer Games20

depending on the size of the viewport. We write the tools for this con-
version in Windows graphics; we get it pretty much for free in OpenGL
graphics.

(7) We want to have the option of displaying either 2D or 3D game worlds.
Note that the Windows graphics of the Pop Framework supports only the
2D worlds, and to see the 3D worlds, you need to use the OpenGL option.

(8) The objects in the program should move around on their own even
when you’re just sitting there watching, that is, we should have real-time
animation. We want to have an animation speed of at least 20 frames
per second.

(9) The animation should be flicker-free. This is a less obvious requirement
than some of the others, but it takes a special effort to keep a graphics
program from flickering. The technique used is often called ‘double
buffering’, meaning that as well as writing to the videocard buffer (which
is what a normal graphics call does), you also make use of a memory-
based video buffer. In the case of Windows graphics, it is the framework’s
job to construct and maintain this memory buffer; in the case of OpenGL
graphics, the buffering happens more or less automatically.

(10) The apparent speed of the game objects’ motions should be independent
of the number of frames per second that are being displayed by the par-
ticular combination of processor and videocard. Like being flicker-free,
this is a less obvious requirement that takes a certain amount of work. The
trick is to link the simulated motion per frame to the actual real-world
time elapsed between frames.

(11) We want to be able to save and to load files that contain the current state
of the game or process being shown. This is fairly easy to do in MFC, by
making use of an overridden Serialize function.

(12) We want to have character sprites based on geometric objects like polygons
and polyhedra. These objects should be able to change dynamically, that
is, rotate, change size, flex, etc.

(13) We also want to have character sprites which are based on bitmaps in
addition to objects that are based on geometrics such as polygons and
polyhedra. It should be possible to flip through sequences of bitmaps to
achieve character animation.

(14) Our objects should have easily alterable virtual functions controlling
their behavior. This way we can give them virtual personalities that are
easy to customize.

(15) We should handle collisions between moving objects in a physically
reasonable way.

(16) We should try and develop code which is as reusable as possible. This
means encapsulating our code into classes with the proper function calls
for making the classes fit together in an easily usable framework.

(17) Finally, and most difficult of all, we would like to make playable games.

Projects and games 21

1.4 Your project

As mentioned before, the best way to learn programming is to have some pro-
ject that you yourself want to work on. Read through this section and then take
a look at the exercises at the end of the chapter. Exercise 1.1 is designed to get
you into a mind-set where you’re thinking about things you might possibly do,
and Exercise 1.2 encourages you to take the initial step towards specifying a
game project you can build with the Pop Framework. It would be a good idea to
actually write out your answers, especially to Exercise 1.2.

Once you’ve come up with some ideas about what you might want to do for
your project, remember to keep thinking.

Don’t lock in on a particular project idea too early. Keep an open mind. You
should plan on getting feedback and revising your project idea several times
before you finalize anything. This iterative process is an example of what’s
called requirements gathering. Here are some suggestions for your requirements
gathering.

First of all, you’ll want to become familiar with the Pop code we’re using so
as to get an idea of what kinds of technical things will be easy to do.

Secondly, you’ll need to make sure you find a project of the right level of
difficulty. You don’t want a project that’s trivially easy, on the other hand you
don’t want a project that’s too hard to finish within the available time. Given
the realities of software development, it’s wiser to pick something on the easy
side, as software projects always take longer than you first expect them to. Your
professor can help you gauge this.

Thirdly, you may be using this book in a course where you’re expected to
work with a team, and you’re going to need to have a project that all of the
team members can commit to.

Fourth, don’t plan for your game to be an exact clone of an existing game
such as one of the Nintendo games, and don’t plan on using bitmaps or char-
acter names from any commercial games or other media sources such as Disney
or Warner Brothers. Although you may want to use the basic design and play of
an existing game, you must come up with your own, independently developed
name and graphics theme. Otherwise you will be (a) violating copyright or
trademark and (b) writing an ‘imitation’ game that is going to forever look
second-rate compared to the ‘real’ version of it. Regarding the copyright issue,
you might feel that a big game company wouldn’t bother to come after a student
project – and you’re probably right. But what if your project turns out really
well and you want to put it up on the web for free download? At this point
you actually do stand a chance of running afoul of a corporate webcrawler.
Regarding the issue of being second-rate, students sometimes feel that using a
commercial game’s graphics will make their game seem better. The opposite is
true. Reminding users of a real Nintendo game when they play your game is
only going to make your game look weak! Your game needs to stand or fall on
its own qualities, not on the borrowed glamour of some other work.

A fifth thing to keep in mind is that sometimes it only takes one good con-
cept to really make a game interesting. Try and think of an original concept

Software Engineering and Computer Games22

that is fresh and not over-familiar. Don’t be afraid to be inventive or even
downright weird! Even an easy project can seem fresh and new if it has a
good concept.

Take, for instance, our Spacewar game. This is more or less a copy of the
familiar Asteroids game. It has nice code in it, but the appearance isn’t fresh.
Perhaps the simplest kind of projects that students do is to take Spacewar
and to add something to make it seem new. One might, for instance, have
the player be a fairy with a wand, and have the enemies be bees. Or one might
have the player be a swimmer with a harpoon and have the enemies be sharks.
Or have the player be a photographer with a camera and have the ‘enemies’
be wild animals seen on a photo-safari. Or have the player be a deer who’s
shooting at hunters. Or have the player be a shepherd who’s chasing away
wolves. In each case, you’d still be using the same guns-and-bullets code of
Spacewar, but you’d be clothing the program in a concept that made it look
a little fresher.

A more powerful notion than redecorating an existing game is to come
up with some wholly new elements in the game. You might, for instance, have
a game like Spacewar, but specify that, to start with, the enemies are all inside
a box and the player is outside the box. And then have the enemies come
tunneling out one by one. Or have a treasure that the player has to pick up as
well having to shoot enemies. Or have your player racing the enemies through
a maze or around a track.

Also keep in mind that a game doesn’t have to be like Spacewar at all. There
are several other examples of games in the Pop program, and you may think of
still more.

The best of all is if you can think of some completely new idea. If you look
at the range of commercial games for arcade machines, game consoles and
personal computers, you’ll notice that there are a handful of games totally
different from the others. These are the killer apps, the ones that nobody’s
thought of before.

A final suggestion is that you should take a look at some of the descriptions
of past student projects in the Hall of Fame section of Chapter 19: More Ideas
for Games.

Review questions

A What are the features of successful programs?

B What are the three kinds of dimensions used to describe a computer game? What are
the values of these dimensionalities for Space Invaders? For Pong? For PacMan? For
Quake?

C What are some of the basic principles of good game design?

D What is a software framework?

E What is the Pop Framework?

Projects and games 23

Exercises

Exercise 1.1: Beginning to think about your project

In the following series of questions, you begin trying to work out what level of project you
might do.

(a) What are two computer programs you really like? Say what it is that you like about
them. These can be any kind of program at all.

(b) What is a ‘dream’ program you would like to write if you were the world’s best pro-
grammer and had all the time in the world? Write out some of the great features
you’d like for this program to have. If you have ideas for several different dream pro-
grams put them all down.

(c) What are some areas of programming you think you’d need to learn about to write
some really great programs? Try to be as specific as you can.

(d) What is an easy program you’re fairly sure you might be able to do, assuming that
you got a little help along the way? If you have several ideas put them all down.

(e) What are some features you could add to an easy program to make it more like a
great dream program? If you have several ideas put them all down.

Exercise 1.2: First specification sketch for your game

Spend a half hour running the Pop program. Assume that you’re going to build a project
by extending this code. Now write up an idea for a game project you think you might like to
do. This document will be what we call a specification sketch. It should have four parts:
(a) explain the concept of the game, (b) draw a picture of how you think your game screen
might look, (c) say how the user controls might work, and (d) describe how the play of the
game will run. Don’t forget to draw a picture, no matter how rough it looks; pictures are
all-important in the early stages of conceptualizing a game.

Software Engineering and Computer Games24

2Basics of software
engineering

Before talking any further about your specific project, let’s look at some basic
software engineering issues. How should you organize your effort and your
time? How do big programs get written?

In this chapter we lay out some of the basic software engineering principles
and tools that you need to carry out the goal of the course, which is to produce
a fairly large and complete computer game program based on an existing
object-oriented framework.

Software Engineering and Computer Games focuses on showing you how to
carry out one particular kind of software project. We are not going to give you a
complete or advanced treatment of the whole field of software engineering
here. Rather than attempting a broad-based survey, we are out to give you the
tools to carry out one kind of task in depth. And while discussing this task
we’ll also show you some things about the practice of object-oriented software
engineering.

Hopefully the lessons you learn here will give you a better insight into
the more theoretical principles of software engineering when you encounter
them in some other context. If this chapter gives you an appetite to learn
more about software engineering, consult some of the books suggested in the
Introduction.

2.1 The Constraint Triangle

If there’s one single thing you should know about software engineering it’s the
Constraint Triangle (see Figure 2.1).

Cost is the measure of how many programmers are hired to be on your team.
Time is the measure of how long you have to finish the project. Quality is the
measure of how many features your software will include and of how extens-
ively it will be tested.

Controlling time, cost, and quality are all important goals. You want to manage
time so that your project will be ready by its deadline. You want to control
development costs so that the project will be affordable and even profitable.
And you want the quality of the software to be good enough to make the soft-
ware attractive to users.

In a fantasy world, we’d like for our projects to be done instantly, to cost
nothing, and to be of infinitely good quality. But in the real world, we have to
compromise. The reality is that in order to change one of the time, cost or quality
goals we need to provide some slack by adjusting one of the other goals.

• You can decrease the time needed for your project, but to do so means
increasing the cost by hiring more programmers and/or reducing the quality
by eliminating features and perhaps cutting corners on the product testing.

• You can reduce the cost of your project by using fewer programmers, but
this means you’ll need more time and/or to reduce the quality.

• You can opt for a very high level of quality, but this means your project
must take more time and/or cost more.

Any change to one goal must be compensated for by a change to one or both
of the other goals.

If you let your customer (or your manager) arbitrarily specify all three
corners of the Constraint Triangle, your project is doomed to fail. Any change
to one corner must be balanced off by changes to the other corners.

The moral is that if your project is to be successful, you must be permitted to
make a realistic assessment of cost, time, and quality, and you must be permitted
to make the necessary adjustments to at least one of the goals. Unless you are
allowed to realistically adjust at least one corner of the Constraint Triangle,
your project will fail.

In the 1990s, NASA briefly adopted the slogan: ‘Faster, cheaper, better.’ This
was followed by a series of unsuccessful projects – and then they abandoned the
slogan. It’s important to realize that, pushed to the limit, the ‘Faster, cheaper,
better’ slogan is impossible to satisfy. It’s as absurd a statement as ‘I can fly’ or
‘I can turn rocks into gold.’ There’s a saying among software engineers that a
correct statement of NASA’s praiseworthy but impossible goal is this: ‘Faster,
cheaper, better: pick two out of three.’

At some point in your career you’re likely to be saddled with a manager who
thinks a rah-rah, can-do attitude is enough to get things done. Always speak
up and protest if you hear anything like ‘faster, cheaper, better.’ Don’t accept it
if your manager suddenly decides to halve the cost, halve the time, or double
the quality without making any compensatory changes to the other corners of

Software Engineering and Computer Games26

Figure 2.1 The Constraint Triangle

the Constraint Triangle. If you let so foolish a plan stand, it will come back to
haunt you. Mention the Constraint Triangle and draw a picture of it. Explain
that it is a simple impossibility to arbitrarily specify all three corners.

Unless you are in a fairly powerful position, you usually don’t have much
control over the time and cost corners. In particular, if you’re a student doing
a team software project in a course, you aren’t going to have any control over
the time you have to do the project, and you aren’t going to have much to say
about how many programmers you get to have on your team. The only corner
of the Constraint Triangle that you have control over is the quality corner.

The way to economize on the quality corner is not to say, ‘Well, I’ll write a
program with lots of bugs and I won’t fix them.’ The idea is, rather, to say, ‘we’re
going to strictly limit the number of features that our program will have.’

In limiting features, we need to avoid gold-plating, which is the mistake
of accepting overly strong requirements for the program. In addition, we need
to avoid feature creep, which is the tendency to keep adding cool new features
as the program goes on.

2.2 Requirements and specifications

Requirements

The development of a software product begins with a requirement for a certain
kind of program and a brief specification for what such a program might be. The
requirement is a little like a question and the specification is like an answer. Put
a little differently, the requirement is like a request and the specification is a
proposed solution.

The usage of the words ‘requirement’ and ‘specification’ is somewhat fluid, and
you will find different conventions in different books on software engineering. In
Software Engineering and Computer Games, we treat the requirement as a request
for a certain kind of software and a specification as a proposed description of
the software. And we stress that there is considerable interplay between the
requirement and the specification. During this requirements gathering process, the
stakeholders in the project try to converge on coming up with a requirement
and a specification that match each other. The stakeholders might include
corporate customers, investors, the managers, the programmers and perhaps a
sampling of eventual users.

So, once again, a software requirement says what the target program is
supposed to do. A requirement might be something as clear-cut as, ‘Write a pro-
gram which displays our inventory data in an attractive format,’ or something
less precise like, ‘Write a Web browser that runs on cell phones,’ or something
open-ended like, ‘Write a really nice game.’ At the preliminary level, the initial
requirement can also be called a vision or a software concept.

As well as saying what the program is supposed to do, a requirement may list
some specific features that the program is expected to have. Sometimes a soft-
ware requirement starts out very detailed, but more often it will be brief.

Basics of software engineering 27

In industry, another aspect of a software requirement is that it will include
some ideas about the marketability of the intended product. An industrial soft-
ware requirement will say why the program is worth doing and why people
will want to have it. Managerial types have a very persistent way of asking,
‘What is the intended market?’ So usually a software requirement will address
this question as well as the question of what the program will do.

UML diagrams

In recent years there’s been a movement to consolidate the different kinds of
ways that software engineers talk about what they do. The result is a loosely
defined set of names and conventions called the Unified Modeling Language, or
UML. UML is primarily used as a methodology for drawing diagrams relating to
the creating of programs. The fact that it is ‘unified’ means that UML includes
the contributions of many different computer scientists, to the point where it
is a bit of a catch-all. There are at least nine different kinds of UML diagram: use
case, class, object, activity, statechart, sequence, collaboration, component, and
deployment. We should also mention that much, though not all, of the UML
assumes that you are using an object-oriented style of software engineering like
we’ll be discussing in this book.

In Software Engineering and Computer Games we’ll discuss only these five kinds
of UML diagrams.

• Use case diagrams for software requirements.

• Component diagrams for the dependencies of the source-code files.

• Activity diagrams for program execution flowcharts.

• Class diagrams for the high-level structure.

• Sequence diagrams for interactions of program objects.

A basic thing to remember about UML diagrams is that they’re meant to be
quite simple. The primary purpose of UML diagrams is to make it easy for a pro-
ject’s various stakeholders to communicate with each other about the project.
Keep in mind that a number of the stakeholders are likely to be non-technical.
There’s nothing like putting some UML diagrams on a white-board to get a
discussion going. UML use case diagrams are of particular value during require-
ments gathering.

Another purpose of UML diagrams is for what is called forward engineering,
where we move from a concept towards actual code. UML class diagrams are
particularly useful when you are in the stage of working out the high-level
design for your program. The UML activity diagrams are useful for understand-
ing the overall program flow. And the UML sequence diagrams are good for
working out the details of how your objects interact.

A third purpose of UML diagrams is for reverse engineering, that is, for under-
standing how an existing program works. This is in fact the situation that the
readers of Software Engineering and Computer Games are in. In order to use the
Pop Framework to build a new game, you need to have some understanding

Software Engineering and Computer Games28

of the Pop program’s design structure and running behavior. This is also the
situation that you’re usually in when you start working for a big company.
They have some large body of code in place, and you’re supposed to start main-
taining or extending it. UML diagrams are a perfect tool for getting started with
the process.

A use case diagram can help you understand what the program is supposed
to do. A component diagram lays out the interdependencies of the source-code
files. An activity diagram shows the overall program flow. Class diagrams show
you the interrelationships between the kinds of objects the program uses. And
sequence diagrams can clarify the details of how the objects interact.

Use case diagrams

In a UML use case diagram, you represent your program as a big rectangle.
Outside the program you put one or more stick-figures corresponding to the
actors, that is, the people or other programs who might make requests to your
program. Inside the program box you put ovals corresponding to use cases,
which are things the actors might ask the program to do. You may also draw
relationship lines from actors to use cases to indicate which kinds of actors get
involved with which kinds of use case.

Even more than other UML diagrams, use case diagrams are exceedingly
simple. The stick-figures are a low-tech bit of psychology to make you to feel
more engaged with what is really little more than a list of requirements.

A use case diagram for the Pop Framework code might look like Figure 2.2.
Since Pop is both a program and a framework, its use case diagram mentions

two kinds of actors: the users who play the Pop games and the programmers
who use the Pop Framework to build new games.

Basics of software engineering 29

Figure 2.2 A use case diagram for the Pop Framework

Rather than going into a high level of detail about how we will display our
graphics, we simply have the ‘watch’ use case to express the idea that the game
should be pleasant to look at. The ‘resize’ case expresses the requirement that
the game should be resolution independent. The ‘adjust’ use case expresses the
fact that we require an ability to be able to do things like selecting game levels
or resetting the game. The ‘check progress’ use case leads to a requirement that
the game should display the current score, player health, and so on.

On the programmer side of things, we mention an ‘extend’ use case and a
‘test’ use case. Requirements coming out of the ‘extend’ case are that the code
should have clear, easily extended classes, and that the various numerical
parameters should be easy to find and easy to change. Requirements arising
from the ‘test’ use case might be that the framework should have methods for
randomizing parameters for so-called black-box testing, as well as an autorun
mode in which the game ‘plays by itself’.

Requirements gathering

A software requirement is a more or less detailed request for a certain kind of
program. A requirement asks, ‘Will you write a program to do such and such
which appeals to so and so and runs on the following platforms?’

A software specification is a more or less detailed description of a program. A
specification arises as an answer to the question posed by a requirement. A
specification answers a requirement by saying, ‘I can write a program with the
following features, and its appearance and behavior will be something like this.’

As mentioned before, the key thing to realize is that – like so many aspects of
software engineering – arriving at a final requirement and specification is an
iterative process. This is the process we call requirements gathering.

It is essential to spend a good amount of time on requirements gathering
before writing a single line of code!

Without enough requirements gathering you run the risk of spending a lot of
energy writing a program that your customer doesn’t want.

In order to discuss requirements gathering a bit more, let’s think of a simple
situation where you are the lead software engineer planning to create a pro-
gram for some customer. The customer proposes a requirement, you propose a
specification and show it to the customer, the customer alters the requirement,
you alter the specification, and the process is continued until the customer has
figured out what he or she really wants, and you have figured out an answer
which the customer finds satisfactory. This is an example of requirements
gathering.

What about the situation where you are developing a program on speculation,
without any investors or corporate clients involved? Well, you really shouldn’t
try to develop a program for an imaginary customer that exists only in your
head. You need to get out and talk to real people, to people other than yourself.
If you’re developing for the mass market, your ‘customer’ might be possible

Software Engineering and Computer Games30

users. If you’re well-funded, you might have a formal focus-group of users. If
you’re upgrading an existing product, your users might be your customer base.
If you’re pretty much on your own, your sample users might be whatever
friends or family you can find who are interested in what you’re doing.

In most situations there are project stakeholders other than customers.
If you’re starting a company, one of your stakeholders might be a venture
capitalist. If you’re an executive of a company, a key stakeholder might be
an executive at another company that’s contracting for you to write a specific
program. If you’re a low-level employee at a company, your most important
stakeholder is your boss. If you’re a student in a software projects class, your
stakeholders are your professor, the other members of your team, and any
sample users you can manage to talk to.

In each case one of the stakeholders proposes some more or less vague
requirements and it’s up to you to come up with a specification of a program
such that (a) all the stakeholders agree that the specification satisfies the require-
ment and (b) you feel you can complete the program given the existing time,
cost, and quality constraints.

Condition (b) means that in the requirements gathering phase you need
to keep the Constraint Triangle well in mind. It’s a mistake to ‘gold-plate’ the
requirement and insist that you will be able to include a huge list of fancy
features. Always remember the Constraint Triangle of cost, time, and quality. If
there are some absolutely necessary fancy features which are bulking up the
quality corner, you need to make sure you get allowances to the cost and/or
time corners to compensate. If your customer, or your boss, or your marketing
department, won’t accept a realistic feature set, you should quietly start looking
for a new customer or a new job. It’s too stressful to work on a project that’s
doomed from the outset by unrealistic estimates.

The specification sketch

It’s a bad idea to code without having any written plan at all. If you have a written
plan, looking at it can keep you from going off on tangents that may not be
crucial. And a short written plan makes a good starting point for discussions with
others. So you really do need to write up a specification before starting to code.

What should a specification look like? We distinguish between two kinds
of specifications: a short, casual one called a specification sketch, and a longer,
cleaner, more formal one called a full specification.

An ideal full specification might consist of your class header files and a com-
plete User’s Guide for the program. Realistically, you usually aren’t in a position
to correctly write a full specification until your program’s nearly done! That’s
why, to start with, we settle for a specification sketch. Better a sketch than
nothing.

It’s liberating to accept that it’s unreasonable to want to write out a full
specification before you write a line of code. In the real world, it helps to play
with some code while you’re thinking and to try a few things out so that you
have some idea of what your possibilities are.

Basics of software engineering 31

This is where the notion of a specification sketch comes in. If you feel like the
only possible specification you can write up is a full specification, you’re going
to be tempted to not make any kind of specification at all and just start right
in on coding. But if all you have to write up is a one or two page specification
sketch, the process feels more like a helper than like an obstacle.

As your program evolves, your specification will gain more and more detail.
Some aspects of the specification may not be worked out until you’ve written
several builds of the code.

The specification sketch should describe four basic areas: (S1) the concept,
(S2) the appearance, (S3) the controls and (S4) the behavior of the program.

• (S1) Concept. The concept states what the program is about, and describes
the unifying theme of the program.

• (S2) Appearance. The appearance should be specified by a few drawings of
what you expect the screens of your program to look like. For a very large
project you might go so far as to make software mockups of sample screens,
creating these either as paint program bitmaps or as outputs of a quick and
dirty prototype program. But for a small project, a pencil drawing on a piece
of paper may be enough.

• (S3) Controls. The controls should be specified by saying how the keyboard,
mouse, and more important menu controls will work.

• (S4) Behavior. The description of the behavior should mention the main
features of the program. It’s often useful to step through how the program
would respond to user actions in a typical use case scenario. Also describe
how a typical user will get started with the program, and mention some
expected tips for successfully using the program.

Suppose that your requirement is to write a computer game. A proposed
specification sketch might be based on, for instance, the concept for a game
resembling the PacMan game. (S1) The sketch’s concept would also need to
include an idea for a coherent graphical theme distinct from the graphics of
PacMan. (S2) The sketch would include a drawing of the screen of your game.
(S3) The controls are simply the arrow keys. (S4) Regarding the behavior, the
sketch would have some details about how many enemies there will be, what
the score for eating a power pellet will be, what the shape of the maze will be,
and how the successive levels of the game might differ.

Of course the customer’s response to such a specification might be, ‘I want a
new kind of computer game, not a clone of an existing game.’ And then you’d
need to find a way to make your PacMan specification more original, and con-
tinue on through the next cycle of requirements gathering.

2.3 The software engineering process

A software project consists of both the code and the process by which you develop
the code. It is important to formalize the process that you use. This means that

Software Engineering and Computer Games32

you should have a set of documents describing your process, and that you should
frequently look at and revise the documents while the project is underway.

There are many ways to separate out the different aspects of the software
development process (as distinct from writing, testing, and debugging the code).
Here we’ll view the process as having four pieces.

• Requirement and specification.

• Schedule.

• Design.

• Project documents.

We already discussed requirements and specifications. Now let’s say a bit about
the next three areas.

Schedule

We put a number of things under the category of schedule: lifecycle, mile-
stones, task list, QA plan, and risk management.

A software lifecycle is plan for what to do when, i.e. what order to carry things
out in. Different projects use different kinds of lifecycle models. The lifecycle is
a large enough topic that we’ll devote a whole section to it a little later on in
this chapter, eventually focusing on the Inventor lifecycle that you will use for
your game project.

Setting milestones means (a) figuring out some definite, identifiable stages to
reach, and (b) setting dates for when you plan to hit these milestones. As well
as the finish-line milestone of shrink-wrap (or of posting your package on the
Web), you have many preliminary milestones.

In a typical classroom project, your main milestones might be these.

• Preliminary specification sketch (followed by requirements gathering).

• PowerPoint presentation of an approved specification sketch and a UML
class diagram for the design.

• Classroom demo of an alpha build.

• Classroom demo of a beta build.

• Final demo.

Several times during the semester, you and the professor (the project stake-
holders) need to make out a list of your remaining class meeting dates and
figure out reasonable delivery dates for the milestones.

If you’re using this book for self-study, pretty much the same kind of schedule
might apply – with the difference that you’ll want to find friends or relatives to
discuss the specifications with you and to view and test your demos.

One thing to realize about the milestones and the schedule is that they need to
be continually revised – like everything else in software engineering. Managers
often make use of the Microsoft Project software to keep track of their schedule
and their milestones.

Basics of software engineering 33

As well as the main milestones, you may also want to think in terms of
smaller milestones. In the case of a PacMan style game, getting to a presentable
alpha build would involve, for instance, the milestone of creating a cMaze class
or writing a method that simply builds such a maze out of cCritterWall objects.

When thinking about how to fit the smaller kinds of milestones into your
schedule, it’s useful to have a task list. This would be a list of all the things you need
to do before the project is done. Particularly on your first few projects, you tend to
underestimate the number of little extra tasks you’re going to have to do near
the project’s end. These might include getting the bitmaps or art ready, making
demonstration files, checking the help file against the program, and so on.

In making a schedule it’s also important to allocate time for testing the pro-
gram and testing how well the documentation matches the behavior. This is
why software projects are usually divided into an alpha phase and a beta phase.
The beta phase is when the testing and debugging takes place.

The process of testing is called QA, for quality assurance. It’s important to
allocate sufficient time to this, and to accept that you really need to retest after
each new beta build. It’s not unusual for a bug fix in one spot to break some-
thing somewhere else. In making out the schedule you need to consciously
plan in enough time for sufficient QA. We’ll say more about the testing process
in Section 2.3: The Software Lifecycle.

As mentioned above, when you manage a software project you have to keep
going back over your schedule and making sure that it matches the reality of
what you’ve currently done. The process of risk management means looking
ahead and trying to anticipate some of the possible ways in which you may go
off schedule.

There are two main parts to risk management: monitoring and recovery.
Monitoring means that you have to honestly admit what the most dangerous
problems are so that you will immediately recognize them if and when they
start to happen. If your program hinges on your being able to integrate a
certain kind of image file into your code, there is a risk that you’re not going to
be able to do it. Monitoring means facing the fact that the worst can happen –
and persistently asking if it’s happened yet. The risk of not being able to use a
type of image remains until it’s been demonstrated that it can be done. Because
this task is a risk, it is not left until the very last minute.

The recovery aspect of risk assessment means formulating a Plan B, an alternate
strategy to pursue if a given fear comes true. If, say, such and such a team member
is unable to integrate *.gif image files into your code by the second alpha build,
then you will reduce the risk by using, say, only *.bmp image files. If the team
member who was supposed to provide your enemy creature’s behavior algorithm
stops coming to class or answering email, then someone else better start work-
ing on it, and if no one can, then you better figure out how to have a game in
which the enemies simply use a default framework behavior algorithm.

Risk assessment monitoring is about having your team be honest with your-
selves and not hiding your heads in the sand. Risk assessment recovery is about
formulating Plan B, and, to mix up the metaphors, being willing to throw the
stove and food out of your balloon basket if that’s what it takes to stay aloft.

Software Engineering and Computer Games34

Design

Design breaks into two levels: the high-level design and the detailed design. The
high-level design is also known as the architecture, which tends to sound a bit
more impressive.

The architecture or high-level design involves specifying the program’s
‘nouns’ and its ‘verbs’, that is, the program’s classes and the program’s runtime
behavior. The detailed design involves getting more specific about the classes
and beginning to write out prototype code for them.

When we are doing the high-level design, we use a process known as
object-oriented analysis to help figure out what classes we should use. This is a
matter of singling out the key concepts used by your problem, and thinking
about how best to represent the concepts as classes. Once you’ve decided which
classes to use, the process known as object-oriented design helps you find the best
way to make your classes work together.

Recall that we use ‘UML’ to stand for ‘Unified Modeling Language’. A good way
to talk about your class design is to use a UML class diagram, which is a bunch
of rectangles representing classes, with lines showing the relationships among
the classes. Drawing a class diagram is a good way to get a useful discussion
going about the spec, and can be helpful in moving from the architecture to
the detailed design. A class diagram on a whiteboard makes a focus for a group
discussion of class design, and provides a non-technical channel by which
coders and managers can usefully interact. Look ahead at the class diagrams of
the Pop Framework in Chapter 3: The Pop Framework (Figures 3.4 and 3.10).

Describing the program’s runtime behavior means figuring out the order
in which things happen. How, for instance, does an animation program update
itself? When a user clicks the mouse, what is the sequence of events we expect
to have? UML sequence diagrams are very useful for sketching this out. Look
at, for instance, some of the sequence diagrams in Chapter 6: Animation, for
instance Figure 6.3 showing the sequence diagram of how our Pop programs
animate the creatures onscreen.

The detailed design for your program states what members and methods
your classes will have. In C++, the detailed design can consist of explicit defini-
tions of the classes you will use; a good way to be precise about your classes is
to go ahead and start writing up the formal class definitions as *.h header files.
You can postpone the *.cpp implementation of the class methods for a little
while. But you will find, once you do get into implementing a class’s method,
that you often need to rethink the original class design. This kind of back and
forth is one of the enjoyable parts of object-oriented design. We say more about
this in Chapter 4: Object-Oriented Software Engineering.

Project documents

The most visible project document is the User’s Guide, whether in printed or in
help file form. For now suffice it to say that the User’s Guide might typically
include sections called Overview, Getting Started, Things to Try, and Controls,

Basics of software engineering 35

where the last section exhaustively describes the effect of each control found in
the user interface.

Looking back over the first three parts of our project process, we can imagine
making a document (or set of documents) for each of them, that is a specifica-
tion document, a schedule document, and a design document – all these in
addition to the User’s Guide document.

Table 2.1 lists software process stages and some of the documents that might
accompany them.

All documents should be visible to all the stakeholders involved in the project:
the managers, the coders, and the customers. On a really well-run project, one
might put all four pieces up on a website, possibly an intranet site or password-
mandatory site rather than a public one.

None of these documents is set in stone. We expect that each of them
is going to change somewhat during the project lifecycle, although there will
normally be a ‘feature freeze’ date after which no further changes to the specifica-
tion documents are allowed. But, up until that point, we are going to learn
more about our project from the code, from the early builds, and from the way
we see the schedule unfolding, so it’s reasonable to keep changing things.

There are various models for how to update the documents. Either one
person is in charge of maintaining each document, or they are changed during
group meetings, or stakeholders might be allowed to ‘check out’ a copy of the
document for revision, with the earlier versions being preserved.

2.4 The software lifecycle

Whether you’re working alone or working as part of a large team, there will be a
plan of action for how to design, code, test, debug, and document the software.
A plan like this is usually called a software lifecycle. In this next section we’ll dis-
cuss a couple of possible lifecyles and then describe an Inventor lifecycle to use
for the kind of exploratory, time-constrained project that we’ll do in this book.

If you do not consciously choose a particular software lifecycle, you end up
in fact using a scenario known as ‘code and fix.’ It means making no plan at all,

Software Engineering and Computer Games36

Table 2.1 Documents for software development.

Specification Revised requirement document
Specification sketch with concept, appearance, controls, behavior

Scheduling Calendar with ‘milestones’
Risk list

Design UML class diagram
UML sequence diagrams
Class headers

Documentation All of the above, plus User’s Guide

but instead simply diving in, writing code, and trying to fix each new problem
as it develops. Code and fix is considered one of the most inefficient ways of
developing software.

You should always take some time before starting a project to try and figure
out what you are going to do. A good rule of thumb is to estimate how much
time you should spend planning – and then plan for three times this long. One
well-spent hour of planning can save hundreds of hours in coding and fixing
further down the line. When you have a really clear vision of what you want to
do, writing the code to do it does not in fact take all that long. The hard part is
in getting the vision.

There are a number of tried and true software lifecycles which involve a
good measure of planning. The most traditional model is called the ‘Waterfall’
software lifecycle. This model describes a straight-through process: completely
plan what you want, specify how the program will behave, nail down the
architecture, work out the detailed design, and only then begin coding, finally
testing and debugging. The stages of the Waterfall are given in Figure 2.3.

In practice, people tend not to use a pure Waterfall approach, because it
is difficult if not impossible to completely specify and plan your program in
advance of writing any code. It’s more common to see a lifecycle that resembles
the linear Waterfall approach but which allows for the possibility of ‘swimming
upstream’ and revisiting the earlier stages. It would be quite reasonable, in
other words, to draw additional upwards arrows from the specification, archi-
tecture, detailed design, coding, and testing and debugging boxes.

Basics of software engineering 37

Figure 2.3 The Waterfall lifecycle

Another popular lifecycle is known as the Staged Delivery model. In this life-
cycle we organize the requirement phase so as to break the program into several
stages of functionality. The plan is that at the end of each stage the program
should be fully releasable. But stage one might include only basic functionality,
stage two a richer set of features, and perhaps stage three will have lots of bells
and whistles, while stage four will be incredibly deluxe. So as to be sure of
being able to deliver some kind of product when the time runs out, the Staged
Delivery method completely finishes stage one, then stage two, and so on. The
sketch for this lifecycle is given in Figure 2.4. Note that here we try and fix the
architecture early in the process, but we allow for changing the detailed design
at each stage. Note also that we try and figure out all of the features that we
want right at the start so that then our architecture will be roomy enough to
accommodate all of our planned functionality.

Names and descriptions for many other software lifecycles can be found, for
instance, in Steve McConnell, Rapid Development (Microsoft Press, 1996), from
which our description of the Staged Delivery model is taken.

In this book we’re going to use a somewhat exploratory software develop-
ment process where we tend to be occasionally groping in the dark. For this
we’ll use a model which is a linear process with two repetitive loops in the
middle. Just to have a name for it, we call it the Inventor lifecycle, to suggest
that it’s a reasonable lifecycle to use when you’re exploring an area that’s
new to you and are planning to discover new things about how to use your
tools and your framework, possibly developing some entirely new features as

Software Engineering and Computer Games38

Figure 2.4 The Staged Delivery lifecycle

well. The name isn’t meant to rule out the possibility that you might use
the Inventor lifecycle to make a highly polished final product. The Inventor
lifecycle goes as shown in Figure 2.5.

We expect to develop our program though a number of builds. The builds
break into the alpha and the beta stage. In the alpha stage we still don’t know
exactly what features we’re going to have, so we allow for the possibility of
changing our specification several times. When we see our deadline coming
into sight, we switch into beta mode by freezing our feature set and focusing on
testing, and debugging.

Now let’s discuss each stage of our Inventor lifecycle.

Requirements gathering

As discussed above, in the requirement phase you start with one or more soft-
ware concepts and try them out on the other stakeholders, who will be your
professor and your other team members in a classroom situation. If you’re using
this book for self-study, you might try and involve at least two other people as
stakeholders – if only in the role of interested on-lookers. After several cycles
of requirements gathering you arrive at a basic plan for how the program will
behave. You get a specification sketch describing the program and including

Basics of software engineering 39

Figure 2.5 The Inventor lifecycle

some drawings of how the screens will look. The specification sketch should
have the four components (S1) concept, (S2) appearance, (S3) controls, and (S4)
behavior.

Architecture

Before doing any coding, you need to figure out what classes you are going
to use. It is likely that your class structures will change somewhat as time goes
on, but it is important at the outset to make an honest effort to separate out
your classes and, above all, to think about how they will inherit from existing
classes. The most common design mistake that beginning programmers make is
to block copy an existing class’s code for a new class when it would be so much
cleaner and easier to have the new class be a child of the existing class. UML
class diagrams are a good tool for working out the high-level design.

Once you have a high-level design and a specification that’s been honed
by requirements gathering, you can put these together into a document some-
times called the ‘RAD’ for ‘requirements and design’. (Presumably by the end
of the requirements gathering, the requirement and the specification match.)
Of course, in an exploratory classroom or individual project, we can expect the
specification to get more detailed and feature-rich as time goes on.

Specification N

Once your requirement and basic architecture has the go-ahead, you need to
figure out what members and methods go into your classes. You will also need
to work out a more detailed draft of the User’s Guide so that you know exactly
what you want your program to do.

The specification N is a list of the features you expect the program to have,
and the detailed design includes all the methods you need to implement them.
When you get into the low-level design, what you will often be doing is to
write out C++ headers for your classes. You can start the process informally, but
given that you must eventually write the code, it’s not a bad idea to simply do
the low-level design by actually writing real headers. New inspirations will
come as you try and implement the methods, get them to compile, and make
them work in the program.

As time goes by, you will of course think of new features to add to your pro-
gram – and this is why we talk about specification N and detailed design ‘N’,
where N is a number that starts at 1 and usually ranges between ten and several
hundred. In practice you will end up cycling through steps specification and
detailed design N and alpha N many times. As you develop your program, more
and more new features will suggest themselves, and it would be foolish not
to include the good ones simply because they aren’t on some list you made
up before you really knew what you were doing. Conversely, you may also
find that some features you’d planned to include will be too difficult or time-
consuming; reduce your risk by throwing them out.

Software Engineering and Computer Games40

It seems odd to admit that it’s not possible to fully control the development
process, but this is a reality of contemporary software development. There
seems to be no way around it. A completed program is such a large and com-
plex object that it’s impossible to fully predict the form of the finished object
when you start. It seems likely that software engineering is intrinsically chaotic
in the formal sense of not being entirely predictable. It’s entirely possible that
software engineering never will become an exact science. [There’s an interesting
book about this notion: David Olson, Exploiting Chaos: Closing in on the Realities
of Software Development (Van Nostrand Reinhold, 1993).]

This fact leads some people to question if we should really call it engineering.
If you ask a mechanical engineer to build a bridge, he or she can tell you pre-
cisely how long it will take, how much it will cost, and what the finished bridge
will look like; but thanks to the chaos of complex systems, it’s hard to make
firm predictions about a software project. Of course your managers will ask
for predictions anyway. Try and buy yourself as much time as you can, and if
there’s still not enough time, remember the Constraint Triangle, and negotiate
to reduce the feature set or to add programmers to your team.

Alpha N program

The nearly-finished version of a program is usually called the beta version, and
the alpha versions are the ones that come before that. An alpha version of a
program is normally somewhat rough and unfinished.

The very first version of the program – the alpha 1 – is sometimes more of a
‘prototype’, which is a quick and dirty version of the program simply to prove
that your concepts will work. Very commonly there will be some existing pro-
gram that you use as a kind of ‘seed’ or ‘starter dough’ to get your program
going. These are prototypes of a kind. But for your real alpha 1, you need to make
the program show at least some minimal functionality in implementing your
required features. If there are several possible approaches, you will sometimes
want to prototype all of them so that you can compare. So in some situations
you may have several competing alpha 1 programs. But, by the time you get to
alpha 2, there should be only one version of the program.

As mentioned above, you can expect to run through at least ten or 20, and
more typically over 100 alpha versions of your program while developing
it. One thing to be careful about is that you don’t get stuck with some sloppy
design that happened to get into the alpha 1. During the early stages of alpha
development you should keep thinking about your class structures. If anything
is crude or awkward, now is the time to fix it, before the program goes on and
gets a lot more complicated.

Usually you’ll run through two or three alphas before going back and chang-
ing the design, so it’s more like you’ll do a specification and detailed design
step, a couple of alpha programs, then another specification and detailed design,
then a few alpha programs, and so on.

The most important practical thing of all when doing multiple versions of a
program is to keep the versions straight. There is so much to say about this

Basics of software engineering 41

issue that there is a File Names and Directory Structure section in Chapter 21:
Tools for Software Engineering.

Alpha N User’s Guide

Just as there is a distinction between a detailed design and actual code, there is
a distinction between a specification and actual User’s Guide documentation.
While doing new versions of the program, be sure and keep your documenta-
tion current. Put your documentation in a handy text file, and every time you
change a feature in your program, write this change down in your documenta-
tion. At the early stages, you do not want to be involved with a technical writer
or an expensive technical publications division. The alpha documentations
should be quick and light, preferably written by the programmers. The alpha
documentation doesn’t need to be anything fancy, but it does need to clearly
state what the controls are and what the ranges of the control parameters
are. Otherwise you’re likely to forget. This is particularly important if some
of your controls are still in the popup or hot-key stage. In a way, the ongoing
documentation acts as notes for the next specification. It’s also a good idea to
keep a separate document listing known bugs and desired features.

The User’s Guide should include an explanation of why your program is
interesting, a guide to installation and quick start, and a feature by feature
explanation of all of the menu and dialog controls. Often working on the
documentation will give you ideas on how to improve the user interface.

You should make your documentation as tight and neat as your code.
Use good clear English sentences, and always be sure to use a spell-checker on
your documentation. Avoid repeating obvious things over and over, and avoid
uninformative statements like ‘The Change Size control changes the size.’
Instead explain what size is being changed, what the allowable range of size
values is, why someone might want to change size, and give examples of relevant
behavior at the lower and higher ends of the range.

As well as the User’s Guide, there is another kind of documentation which
you can create: the programmer’s documentation. Most of the programmer’s
documentation appears inside your code: as dated logs at the beginning of the
main program files, as short comments on individual lines of code, and as
extensive comments next to the ‘tricky’ parts of the code. In addition there
might be a short overview document that explains to a new programmer how
all of your project files fit together.

Final design and feature freeze

In developing software, you are usually faced with some kind of temporal
deadline. You can’t go on changing and adding to the program forever if you
are going to hit your ship date. Polishing up the program and getting the final
bugs out is usually going to take more time than you expected. In fact there’s a
saying among software engineers: ‘The first 90% of the program takes the first
90% of the time, and the last 10% takes the second 90% of the time.’

Software Engineering and Computer Games42

The final design has a set-in-concrete nature that the alpha N designs do not.
Once you get to this point, this is what you are going to finish, and nothing
more or less. ‘Feature freeze’ means, of course, that you are not going to be
adding any more features, no matter how enticing they may seem.

Regarding how long it takes add things to a program, the author often thinks
of a fractal such as a coastline. Standing on one rocky outcropping of a coast,
you might look along the coast towards the next promontory and think it’s an
easy walk. But coasts and programs are fractals, and you’re likely to find inlets
blocking your way, inlets with further smaller inlets along them.

Beta N Program and Beta N User’s Guide

At this point you know exactly what the program is supposed to do. The problem
is to make this really true. So now you alternate making new versions of the
beta N release with testing and debugging the release. This phase is also when
you get really serious about your User’s Guide.

In software companies, the creation of the documentation is often farmed
out to a technical writing division within the company. The final specification
and detailed design acts as a good starting point for the tech writers; although it
is easier for them if you have been dutiful about your alpha N documentations.
In general it is not a good idea to let the tech writers get started before you have
done your feature freeze and gotten your final design together, otherwise they
may waste a lot of time working on documentation for features which are still
subject to change.

What’s wrong with that? The problem is that your company will account the
cost of the tech writers’ time as part of your project’s expense, making your
work appear much less cost-effective.

Testing Beta N

It’s hard to anticipate all of the bugs that a program may contain. The more
people you can get testing it the better. Often the writers working on the docu-
mentation function as a kind of testing staff; they try writing down what the
specification says the program does, and they see if this is true as they write it.

While testing your program, always run it in debug mode (by pressing the
F5 key) so that if and when it crashes, you will be able to use the debugger
information.

It’s a good idea to develop an ‘autorun’ mode for your program under which
it will run and do things without any user input. This is a type of automated
testing that can be pushed pretty far; you can, for instance, have your automated
test periodically change values of the program parameters as if a user were doing
things.

Larger companies will have a special group devoted to testing the software;
this is sometimes called the QA group. The fact is, developers don’t want their
code to break. Whether consciously or not, they know which kinds of tests
to avoid. Only a dispassionate QA tester can really find the problems in your

Basics of software engineering 43

code. By way of testing the Pop program, the author has let successive waves
of students try to find bugs in it, with extra homework points going to those
who succeed.

If a lot of people are interested in your program, you may be able to hand
out beta versions to them and have them try the program out.

As with the sequential alpha versions, you need to be careful to keep the
successive beta versions distinct. Another issue is that of bug tracking. You
should have a big document (or data base file) which includes a brief descrip-
tion of each bug and how to reproduce the bug, along with a record of what
has been done to fix the bug. For the purposes of a student project, a simple
text document with a name like bugs.txt can do the job. You might keep such a
file in with your source code and revise it as time goes on.

Debugging Beta N

There are a lot of special techniques software engineers use to try and keep bugs
out of their code.

Using the object-oriented language C++ instead of C is one good way for
avoiding bugs. C++ allows you to encapsulate closely related variables and
functions into the special kinds of types we call classes. (The instances of
your classes are your objects.) With the object-oriented approach, your code
becomes simpler to read and to understand, and this means it is less likely to
have major bugs in its logic. The use of ‘operator overloading’, for instance,
enables you to write something like a = b + c to stand for, say, vector addition
just like you would want it to.

Another good thing about object-oriented programming (called OOP for
short) is that it allows you to code up some frequently used routine only once,
and to provide interfaces so this same piece of code can be used over and over.
It is much easier to perfect and maintain a piece of code if it lives only in one
place instead of having variant versions copied all over the place. OOP also pro-
vides a kind of access-protection for the member variables of objects, which
makes it harder to carelessly alter a variable without taking into account the
side-effects that this change may have. Instead of arbitrarily changing member
variables, you use special ‘mutator’ functions that you have written so as
(hopefully) to nail down all side-effects once and for all.

Still another gain from OOP is the use of constructor and destructor func-
tions. These functions, which you write yourself for each class you define,
take care of initializing the fields of your objects to default values, allocating
necessary memory and resources for your objects, and freeing up memory and
resources when you are through with an object.

A final benefit to C++ is the availability of template libraries which include,
for instance, templates which encapsulate the notion of a linked list, a map
(also known as a hash table) and an array. The MFC templates for these useful
classes are called CList, CMap, and CArray, respectively. A CArray template class, for
instance, takes care of the memory management issues involved with allocating
and deallocating space for an array.

Software Engineering and Computer Games44

It should go without saying that learning how to use the debugger is all-
important. Beginning and intermediate programmers tend to avoid the debugger,
as it seems too confusing. But really and truly, the debugger is your friend. While
developing a program you should primarily be building the ‘Debug’ version of
the program as opposed to the ‘Release’ version – there is a switch for selecting
between the two in the Microsoft Visual Studio compiler (see Appendix C for
the control sequence). See Chapter 21: Tools for Software Engineering in Part II
for more detailed information about using the debugger.

Final version and product ship

Putting together the final version can involve figuring out things like how to fit
it all on the required number of disks, and how the users are going to install the
software from the disks. Lots of issues relating to the documentation will arise as
well. Often you will want to provide screen-shots for use in the documentation.

In a truly Staged Delivery cycle, it’s conceivable that after you reach this level
you jump all the way back to the specification and detailed design N stage, and
implement a new layer of features. Note, however, that this is time-consuming, as
once you start adding new features, you need to take them through the repeated
alphas to get them working, and then take them through multiple betas to get
them tested and debugged.

Trying to add new features late in the lifecycle is risky, but sometimes the
pressure is irresistible. The urge is known as feature creep. Unless you know that
you’re going to have enough time to fully test the new features after imple-
menting them, resist feature creep.

The development spiral

We mentioned above that there’s a kind of software lifecycle known as the Spiral
lifecycle. This means thinking in terms of spiraling clockwise around and around
through four stages: analysis, design, implementation, and maintenance.

Analysis Design

Maintenance Implementation

The analysis phase involves figuring out what you want the program to do.
This is similar to making a software requirement. In reality, we don’t immediately
know all the things we want the software to do, so actually we pass back through
this stage numerous times.

The design phase involves several things. One part is the object-oriented design:
figuring out which classes to use, and what the class methods should be. Another
part is the program design, figuring out how to break your code into modules,
and how to hook the modules together with global variables and function calls.
A third part of the design means figuring out your user interface. All this is too

Basics of software engineering 45

much to do at once; what you do is to keep extending and improving the designs
as you pass through the design phase over and over.

The implementation phase means writing the code. As with design there are
at least three types of coding you need to do: the class method coding, the pro-
gram flow code, and the user interface code.

As used here, the maintenance phase includes the debugging and tweaking that
goes into the program to make it work properly. The first time you implement
something it rarely works just as you wanted it to. You may need to fix a bug,
alter a function’s behavior, or change a dialog box design.

After each cycle through the four phases, you look at what you have and
try and document it. The documentation is itself a kind of analysis, and as you
get a deeper understanding of your program you’re ready to alter the design,
implement the new design, do some maintenance on the new implementation,
analyze what you’ve done, and so on.

Like most lifecycles, our Inventor lifecyle is a kind of cross between the
Waterfall and the Spiral lifecyles.

Some students are disappointed when they take a course in software engineer-
ing. They had hoped to learn a clear and simple series of steps to follow so as
to build a program. But the process turns out to be neither clear nor simple.
Like it or not, software engineering is a fuzzy discipline which involves a certain
amount of creativity.

A main design methodology we’re going to be using in this book is the
object-oriented approach described in Chapter 4: Object-Oriented Software
Engineering. To begin with, we’re using the object-oriented language C++, but we
need to do more than write in C++ to make our design and our code truly object-
oriented. More than anything else, doing object-oriented software engineering
involves iteration and successive levels of refinement.

Here’s a relevant passage from a classic book on object-oriented software
engineering:

B. Curtis studied the work of professional software developers by videotaping
them in action and then by analyzing the different activities they undertook
(analysis, design, implementation, etc.) and when. From these studies he
concluded that ‘software design appears to be a collection of interleaved,
iterative, loosely-ordered processes under opportunistic control . . . Top-down
balanced development appears to be a special case occurring when a relevant
design schema is available or the problem is small . . . Good designers work
at multiple levels of abstraction and detail simultaneously.’

Most software systems are highly unique, and therefore their developers
have only a restricted basis of experience from which to draw. In such cir-
cumstances, the best we can do during the design process is to take a stab at
the design, step back and analyze it, then return to the products of the design
and make improvements based upon our new understanding. We repeat this
process until we are confident about the correctness and completeness of the
overall design.

[Grady Booch, Object-Oriented Design (Benjamin/Cummings, 1991), p. 189]

Software Engineering and Computer Games46

2.5 Managing your project

Remember to regularly pause from your team’s mad programming frenzy to put
your heads up and think about the lifecycle and the schedule of your project.
What build are you on, is it an alpha or a beta, when’s your next demo, how
much time is left, who’s doing what now, and what are the major risks to
finishing your project on time?

At the beginning of the project your team (possibly a team of one, if you’re
working alone!) is in the prototype phase; this is the phase when you barely
know what you’re doing and are still trying things out. Later on you’re in the
alpha phase where you’re got a basic handle on things and you’re adding neat
features to the program as fast as you can. And then the team has something
you can show people, and that’s your alpha 1. Then you incorporate feedback
from your demos, add more features, clean it up a bit and get to alpha 2. And so
on. Eventually your team gets to the beta phase where you’re not allowed to
change things anymore and you have to focus on getting everything to work in
the nicest possible way.

In the early stages of a software project you have to keep going back over it
to make your design cleaner and simpler. When you first add some features,
you’re likely to do this in a messy, hurried fashion. As soon as you see that they
work, you want to go back and clean them up. If your team leaves anything
messy in your program it’s going to cause you trouble later on after the pro-
gram grows – maybe a lot of trouble.

In a simpler world, perhaps we would know what our programs are going to
do before writing any code at all. But this is impossible when you’re in a process
of learning new programming tools and exploring new intellectual concepts.
And, given the rapidly changing nature of the software business, a programmer
is always in the process of learning new programming tools. The new features
never stop, and it’s a shame not to learn how to use them. Remember that process
and project-management can be something you do to make things easier. Don’t
let it be an empty ritual done only to appease a boss.

Tracking the builds

Let’s say a bit about how to describe the build you’re currently on. How can
you tell the difference between alpha and beta builds? Entering beta means that
you’ve frozen your features and are now focusing on polishing and debugging.
So before that you’re in alpha phase. Is each new build an alpha? It’s really just
a matter of taste. Some software engineers call each successive build an alpha
build.

It’s more common to call a build a new alpha only if you plan to show it
to people outside your group, that is, only if the build is in some sense a big
deal, a rounding off point. In this way of thinking, the first true alpha of a pro-
gram would be the first version that has the program’s basic functionality and
architecture in place.

Basics of software engineering 47

Of course for a programmer what really matters is which version number of
the program is being built. You start with version 1, and you go on from there,
and you never ever mix up the code from different versions. Given the fractal
nature of software development (remember the crinkled coastline), you some-
times will do a number of builds without changing the version number – in
these cases be sure to add a date to the caption bar of the program and to the
name of the directory where the code lives. It’s worth the small extra organiza-
tional effort to avoid losing track of which is the latest build.

A formal name like ‘the alpha 1 build’ has more to do with your relationship
to society than it does with your relationship to the code. That is, if you’re in a
software projects class, the professor is going to want you to hand in an ‘alpha
1’ build of your program, so whatever build you have done by that date is per-
force your alpha 1. If you’re writing a program for fun, the first build that’s
good enough for you to feel like showing it to your friends is your alpha 1. If
you’re working in a company, and there’s going to be a little demo for a key
manager, the program you get working for that first demo is your alpha 1. The
boundary line between your prototypes and your alphas is hazy. It can very
well happen that the ‘alpha 1’ is ‘build 5’ of your program.

By the same token, you will probably develop a bunch of intermediate builds
between your official alpha 1 and your official alpha 2. If your professor wants
an alpha 2 version of your project, that doesn’t mean you’re only supposed to
rebuild the program once after the alpha 1! And of course in a business environ-
ment, the expectation is that the alpha 1 is going to be a springboard that
suggests all kinds of improvements you can still make before the alpha 2. It
might happen that you have two, three, or more version builds in between your
official alphas.

No matter whether you call a build an alpha or a beta, it’s extremely import-
ant to be fanatically, obsessively, compulsively organized about which files belong
to which version of your program. By far the best strategy is to assign numbers
and dates to the successive versions of your program, and to keep the code
for the separate versions in separate directories whose names include the
version number and the calendar date of the most recent build. Generally,
before starting to make extensive new changes, you should copy the directory
of the most recent successful build and change the directory name to include
the new date. That way, if something goes wrong, you haven’t thrown out the
last good build.

A modern way to handle this is to use a revision control tool like Microsoft
SourceSafe or the RCS (Revision Control Software) commonly used on Linux
systems. A complicating factor with using a revision control tool is that there
needs to be one master server directory which all team members use for
checking out and checking in their code. Since a laboratory course will often
involve teams of students working at home on disparate machines and with-
out access to a single server site, Chapter 21: Tools for Software Engineering in
Part II presents a cruder form of ‘manual’ directory-based revision control. But
once you get more serious about software engineering, you will definitely want
to learn how to use something like SourceSafe.

Software Engineering and Computer Games48

Commenting your code

Always try and construct the code so that it’s easy for you or other programmers
to understand it, and to tweak it. In this subsection we’ll first give some very
specific suggestions and then some more general ones.

It’s a lot easier to read code that’s properly indented. A good way to enforce
this is to always use tabs for your indents, and never use spaces, the reason
being that it’s easier to be inconsistent with spaces for indents, you might easily
vary between using three, four, or five spaces. In its default setting, the Visual
Studio editor will muddy the water by sneaking and replacing tabs by spaces.
To block this behavior, use Tools | Options dialog, go to the Tabs tab, check Keep

Tabs instead of Insert Spaces. Regarding the Auto Indent selection below that, it’s
not a bad idea to work with it set to None so that you have full control over
your tab indents. The basic principle is simple: each new block level is indented
one more tab. When lines run off the right of the page you break them with an
Enter, and add another indent to the typed lines.

As a rule, comments should be indented one tab more than the lines they
are commenting on; it should be easy to scan down some code and see where
the actual lines are. Every now and then, for a really long comment, particu-
larly at the start of a block of code, you can bring it over to the leftmost margin.
Indenting the comments is a little bit of work because as you edit a comment,
say by adding a long phrase in the middle of a paragraph, you’ll mess up the
line breaks and have to keep going through them and reorganizing the tabs
and Enters. Code editors like Visual Studio don’t do automatic line-wrap like a
text-processor.

Where should you comment? It’s easy to tell someone to comment every-
thing, but that’s neither helpful nor practical. One useful rule of thumb is to
comment the ‘intense’ parts of your code. If your heart actually beats faster
when you are writing some code, this is definitely a spot where you should add
a comment. Common coding emotions are confusion, pride, and anxiety.

When you’re confused you’re kind of feeling around in the dark, and the
comment will be helpful if you need to change what you tried. If you’re proud,
it means you thought of some cool trick that needs some explanation. Or this
might be a place where it took you a while to get things to work right, and now
you’ve finally gotten out the bugs. Tell about it, so that others can learn. When
you’re anxious, it means you’ve gotten something to work that you or some-
body else could easily break again, so you should explain what not to do.

2.6 Working in teams

Communication

Make sure to exchange email addresses and phone numbers at the earliest
opportunity. Make an address alias in your email program including the addresses
of all the team members. Try sending a message to the whole team at least once

Basics of software engineering 49

per week, and preferably at least once between each class meeting. To supplement
email, you can also bring copies of printed texts to team meetings to make
double sure that everyone gets the message.

Practice doing code hand-off. The idea is to (a) clean out the unnecessary
files from your source directory (we supply a clean.bat batch file for doing this),
(b) use the well-known WinZip utility to make a *.zip file, being sure to include
all files needed for a successful build, and (c) hand off the code by emailing it as
an attachment or putting it on a disk. Doing this right takes a little practice, so
make sure before handing off your zip that you can in fact build the executable
from the unzipped files. Take the time to test it. We discuss this a little more in
Chapter 21: Tools for Software Engineering.

Don’t overdo the sending of attachments. It can be a burden to get a large
*.zip file over email. It’s also possible to exchange your new files in class, bringing
them in on disk, or copying them across the lab’s high-speed local network.

In exchanging informational documents, remember that you can just paste
the document into the email instead of making it a Word attachment. Due
to macro viruses, people are increasingly uneasy about opening attached text
documents. It’s easy to do an Edit | Select All on a text document, followed by
an Edit | Copy in the document and then an Edit | Paste in the email document.
If you do get a Word document you’re uncomfortable in opening, use Windows

| Programs | Accessories | WordPad to open it, as this app doesn’t support macros.

Merging code

Unless you happen to be working completely alone, other people are going to
be working on other code modules at the same time you work on the modules
you’re responsible for. Every day, or every few days, you’ll have to merge the
modules. That is, you put all the updated modules into one directory and
try and build the program from there. Usually you’ll have to fix a few things
to get all of the new modules to build together. When working in a group it is
especially useful to maintain a ‘log’ section of comments at the beginning of
the modules you are changing.

Merging the code is a bit tricky when two people have worked on the same
module, but sometimes that can’t be avoided – it might be, for instance, that
they’ve added new functions to their own modules, and these functions need
to be called from the main module. In this case the two developers will each
have changes to the main module. When two people have changes to the same
module, someone needs to use a utility program which can locate the lines
where similar files differ. Chapter 21: Tools for Software Engineering describes
how to use the Microsoft Windiff utility.

Team roles

There are a number of separate tasks involved in making a complete program.
Seven of the main tasks are the following.

Software Engineering and Computer Games50

• Coming up with the design.

• Writing and debugging the code.

• Integrating the code and building the executable.

• Testing the code.

• Creating the written documentation and the help files.

• Creating images and sounds to be used in the program, or finding public
domain ones that you can copy.

• Giving public demonstrations of the product.

In a company, these roles might be filled by seven completely different
departments. Management might come up with the program design, the tech-
nical department might write and debug the code, the so-called ‘build’ or
‘development’ group would integrate the files and build the executables, the
quality assurance or ‘QA’ department would test for bugs, the technical publica-
tions department would create the documentation, the multimedia department
would provide bitmaps and sound files for use in the program, and marketing
would go out and give demos of the program.

On a small team of students a more typical situation is that the group jointly
arrives at a design they all can agree on. And then each of the students might
write some of the code. From week to week, it’s necessary to integrate the code.
It’s important to have one single individual in charge of the code integration
each week, as otherwise there will be uncertainty about which is the ‘real’ new
build. Let’s call this person the ‘builder’. It is the responsibility of the builder to
bring in the executable for the current class presentation or professor evalua-
tion. If the builder fouls up and doesn’t do his or her job, the team can get a
poor grade. Remember to do code hand-off when it’s time to change builders.

As well as being a position of responsibility, being the builder is a position of
some power, as it’s up to the builder to decide which pieces of the code to put
in, and which pieces to change or to leave out. For this reason, it’s a good idea
to let the position of ‘builder’ change from one student to another every couple
of weeks, so that each student has the experience of being the builder.

Another key role during the project is the ‘documenter.’ It’s the documenter’s
responsibility to produce the written User’s Guide and (later on) the help files.
As the periodic project evaluations are based on the current executable and the
current documentation, it’s the builder and the documenter who determine the
team’s grades. As with the ‘builder’, it’s a good idea to let the ‘documenter’ role
change every couple of weeks.

A third element in the project evaluation is the ‘presenter’, that is, the student
who stands up in front of the class and explains the current state of the program.
Each student should be the ‘presenter’ at least once.

At this level, it’s not always useful to think of any one student as being a
‘team leader’. All the students are still learning, and it’s a good idea to try and
let everyone have a go at a variety of roles. If anyone is really the ‘leader’ it’s
probably the ‘builder,’ which is why it is important to let this role shift from
student to student every few weeks.

Basics of software engineering 51

In parceling out the coding duties, the fact that we’ll be using object-oriented
design is helpful. Once the team agrees on a class’s members, it is (theoretically)
possible to have someone implement the class members separately from some-
one who’s writing code to use the class. In practice, though, these tasks need to
be done hand-in-hand, as you always find that the way you plan to use a class
will change your ideas about what the class’s methods should be. And it’s not
really practical to write code that uses a class without having the class already
implemented so you can test it.

An easier kind of coding division is between the program and its interface.
Sometimes it is practical to have one person working on the way the program
runs while having someone else work on the menus and the dialog boxes.

A common pattern is that two students get very involved in the coding, while
the other one or two members do not. The students who write less code should
try and do more in the other areas: the documentation, the testing, and the art.

By the time you get down to the project’s end and the last build, you’ll have
a good idea of which individual is going to do the best job at the final coding
push, and this will be the person the team should pick for the final builder. By
the same token, there will be a person who works best with the documentation,
and that person should handle the final documentation. Finally there will be a
student who’s going to be your best candidate for the presenter. For the final
version of your program, use the most appropriate team member for each role.

Inevitably the members of the team are going to be better at different things.
It’s important for each member to find some area that he or she ‘owns’ and is
responsible for during the final push. For fairness, nobody should do every-
thing, and everybody should do something.

In order to try and balance the contributions of team members, the author
usually groups together students who have accumulated similar cumulative
point totals on the assignments and tests given before the teams are assigned.

Although a reasonable standard policy is to give the same grade on a project
to each member of the team there can occasionally be some variations within
the team’s grades based on the individual contribution.

2.7 Giving a presentation

As a software engineer you can expect to have to give two kinds of presenta-
tions. First there are presentations in which you might discuss the concept,
specification, and design of your program. These days, presentations of this sort
are almost universally made into a series of PowerPoint slides. Second, there are
the presentations in which you show a live, running demonstration of your
program in its current state.

The two most important rules for either kind of presentation are these.

• Face the audience. Resist the tendency to turn your back to the audience and
stare at the screen. This is a particular risk when you’re presenting a software
demo. For software demos you really need one person to be at the computer
running the demo while another person talks.

Software Engineering and Computer Games52

• Speak loudly, clearly, and not too fast. Speaking loud to a group can be
psychologically difficult if you’ve never done it before. It’s said that fear of
having to speak to a group is one of the most widespread phobias. Practice
with your family or friends in advance if you get a chance. And when you
make your presentation, try and think of the group as not being hostile or
judgmental. Think of them as friends.

PowerPoint

Here are a few basic rules to remember about a PowerPoint style demonstration.

• Content, not graphics. You can be sure that your audience has seen Power-
Point presentations before. What is going to impress them is the content of
your material, not the fancy themes or colors that you use. Work the content
out first, and think about the graphics frills second – or not at all.

• Make the slides have good contrast. Yes, black text on white background
seems boring when there are so many other possibilities. But the person in
the last row is going to be unable to read your slides if they’re green on beige
or some such. PowerPoint is simply a medium for getting your words across.
Don’t let it get in the way. If you’d rather be different and use white text on
black background, that’s okay, but you’ll need to make the font a bit larger,
as this color-scheme is slightly harder to read.

• Use a big font. You shouldn’t try to squeeze more than three or four lines
of text onto a slide. Even if the font is still readable, too much information
on a slide loses your audience. When necessary, split a thought into two
or three subthoughts, start with a ‘contents’ slide listing the two or three
thoughts you’re about to discuss, show a slide for each thought, and when
you’re done come back to the contents slide to summarize.

• Supplement with paper handouts. It’s often not possible to fit a complicated
UML diagram onto a slide and still have it legible. You can break the UML
up into small pieces or, if this doesn’t seem to communicate the pattern
properly, you can print out copies of the full UML and hand it out. People
like getting a few paper handouts at presentations. It gives them something
to make notes on, and it reminds them of what you said.

Software demo

Software engineers refer to something called the ‘demo effect’. This is a weird
force which sometimes makes your wonderful program turn into a buggy piece
of junk in front of a large audience. Here’s a little law, gleaned from some years
of experience:

The strength of the demo effect is directly proportional to the size of the audi-
ence times the importance of the demo to your career.

Basics of software engineering 53

The ideal method is to bring your demo on a laptop, but sometimes you
won’t be allowed to do this. In a course using this book, it’s reasonable to
require the students to use a classroom machine which is hooked up to the
classroom computer projector. If you build your project on an individual self-
study basis, you might eventually take it to a friendly gamers’ group and show
it on a projector there.

If you have to bring your demo in portable form, there is the issue of getting
it to fit onto a disk. Floppy disks have a 1.44 Meg maximum size. If your game
includes a lot of bitmaps, it may well be larger than this size. But if the exe itself
is less than 1.44 Meg, put it alone on a floppy and put any support files like
*.hlp or parameter files or sample source code on another disk.

If you can’t fit your exe on a floppy, you can consider using a compress util-
ity like WinZip, or burning a CD or even DVD with your game on it.

Theoretically you can use the old-style DOS Backup utility to back a file up
onto two disks, but it can be tricky to get the command prompts for this right,
especially in a stressed situation. There are also other backup utilities that one
can download from various software sites on the internet, but they’re not much
easier to use. Forget backup utilities.

A typical sequence on demo day in a classroom might be that the students
bring their disks up, the professor gets all the executables copied or unzipped
from the floppies (or other types of disks), and puts them all into a directory on
a network drive, and then the students come up in teams and run the executables
on the classroom machine. If you’re doing a demo at a conference or a meeting,
it’s more likely that you yourself would be responsible for plugging in your own
laptop or for copying your software to the demo machine.

Here’s a list of tips for avoiding the demo effect, starting with our two prin-
ciples of scale and speed independence.

• Write your program so its behavior is independent of the resolution of the
display.

• Write your program so its behavior is independent of the speed of the
machine.

• Bring your program on your laptop if you can. But do keep in mind that
there’s a real chance that for some reason you won’t be able to use your
laptop; it’s not uncommon for people to have a problem in connecting
their laptop to a computer projector. Any task can become surprisingly hard
in a stressed situation with people watching you and giving you advice. If
at all possible, test your laptop with the projector during a break before
your demo.

• Understand that your demo machine may well be a randomly configured
rental machine with no Internet hookup that was delivered to completely
non-technical people (who are likely as not Windows-hating Mac-lovers)
five minutes before you go on.

• Before the demo be sure and test your program on a variety of machines.
Carry a disk with your *.exe around and try to run it other machines. If

Software Engineering and Computer Games54

you’re running it on someone else’s machine, you should ask permission
and, if possible, run the program from your floppy rather than cluttering up
their hard drive. Note by the way that WinZip actually lets you double-click
on a zipped executable and run it without formally unzipping the file.

• Bring your program to the demo in more than one medium: laptop, floppy
disk, CD ROM, on the Web for download, etc. For a really challenging event
– like if you are flying to another country to do your demo – give yourself
some insurance by bringing transparencies of some sample screens. If all else
fails you can show the slides with an old-fashioned overhead projector.

• If you bring your program on a floppy disk, bring an extra copy of the floppy
in case the floppy goes bad. All floppies die, sooner or later. On the same
theme, use a new floppy for your big demo.

• If you do bring your program in compressed *.zip form, bring a disk with an
unzipping utility program on it, just in case you need to install the utility on
the spot. If the demo is important enough, the demo machine (a) will not
have an unzip utility and (b) will not have an Internet hookup that would
let you download one.

• If it’s at all possible, get a half an hour of ‘quality time’ alone with the demo
machine and projector so you can properly install your program.

• Remember that what you see on the screen is not necessarily the same
as what goes over the computer projector. Projectors often don’t like high
resolutions. You can set the demo machine to a lower screen resolution by
right-clicking on the desktop and going to Properties | Settings.

• In the case of a Pop Framework program, remember that, as a last measure,
there is a File | Run Speed... dialog that might possibly help if your demo
machine goes too slow or too fast.

• Imagine the most horrible scenarios you can conceive, and then expect
something worse!

• Don’t cry or lose your temper. How you look and act and talk is as import-
ant as anything your audience sees, or doesn’t see, on the screen.

Review questions

A What is the Constraint Triangle?

B What is the relationship between requirements and specifications?

C What does ‘UML’ stand for? What are some kinds of UML diagrams?

D What is requirements gathering?

E What should a specification sketch include?

F What are some examples of project milestones?

G What is risk assessment?

Basics of software engineering 55

H What are high-level and low-level design?

I What are some documents that will be associated with your project?

J Diagram the three software lifecycles: Waterfall, Staged Delivery, and Inventor.

K What stage separates the alpha builds from the beta builds?

L At what point in the software lifecycle should you start work on the User’s Guide?

M Draw a picture of the development spiral.

N What sort of name should you use for the directory where your most recent build
lives? What are some other ways to keep track of your build version?

O What are the steps of code hand-off?

P What are the two most important rules for giving a presentation?

Q What are some steps you can take to help ensure a successful software demo?

Exercises

Exercise 2.1: Use case diagram

Suppose that you had a requirement for an online concert-ticket-ordering service. The
requirement might go like this.

A client can visit the server and search a schedule for a concert. A concert specifies a
performer, a venue and a date. After selecting a concert, the client sees a list of some avail-
able tickets, specifying seat and price. The client can view a map to see where the seats
are located. The client can select tickets and add them to his or her order. The client can
buy the order by filling in an address form and giving credit card information.

Draw a use case diagram indicating some of the possible scenarios.

Exercise 2.2: Scheduling

If you are using this book as the text in a projects class, make out a preliminary schedule
for your project, indicating target dates for the following milestones: initial specification
sketch, completion of requirements gathering, high-level design (architecture), detailed
design and first build, alpha demo, beta demo, final demo.

Exercise 2.3: Specification sketch

Write a preliminary draft of a specification sketch for a game project based on the Pop
Framework. Show it to friends, fellow students, and/or your teacher in order to get started
on your requirements gathering.

Software Engineering and Computer Games56

3The Pop Framework

3.1 Object-oriented simulations

One of the reasons why computer games are a good kind of programming
project is that writing computer games gives you some experience with creating
computer simulations of something like real-world processes. Simulation is one
of the most important things that we can do with a computer. In a simulation,
we set up a model of some real-world system we are interested in. By watching
the behavior of the simulation we can gain insights about the real world.

Things that have been simulated include factories, industrial machinery,
the stock market, people’s buying behavior, automobile traffic, the formation
of stars, nuclear weapons explosions, the spread of disease, the solar system,
organic molecules like human DNA, and games like golf and tennis. The entire
business of computer aided design, or CAD, is about simulating the appearance
of physical objects in mathematical space, and these days nearly everything
that is manufactured is first modeled in some CAD program.

Even something like a telephone or Internet control system is a kind of
simulation, insofar as the users and routes are being represented as data struc-
tures which the program manipulates. Payroll programs are again a kind of
simulation, with data fields standing in for dollars and employees. Spreadsheets
are one of the oldest kind of simulation programs; the power of a spreadsheet
lies in the fact that you can alter a single entry and automatically simulate the
changes that propagate out from it.

Object-oriented design (OOD) lends itself very well to simulation. The reason
is that when we have a system to simulate, the system tends to naturally break
into interacting objects, each object with its properties and behaviors. A class is
a very natural kind of model for an object of this kind. One of the big differ-
ences between C++ and C is that while in C we can have struct objects to hold
collections of data, in C++ we can have class objects that not only hold data but
also hold specific methods that act on the data. This is encapsulation.

Another good thing about OOD is that it makes it easy to give your simulation
objects a uniform behavior, such as is enforced by physical laws. Let’s explain this
a bit more. If you are modeling physics, all of the objects should obey Newton’s
laws of motion. By using the OOD mechanism of inheritance we can avoid having
to reprogram Newton’s laws over and over and over. Instead, we define a base

class with, say, a move(dt) method embodying Newton’s laws, and then we derive
all of our simulation classes from the base class. Thanks to inheritance, the
child objects will all obey the same laws of motion as the parent class.

The OOD technique of polymorphism is useful for expressing the fact that,
although real-world objects tend to group themselves into classes of similar
objects, it’s also the case that there will be subclasses that have their own dis-
tinctive behaviors. And each object knows on its own how to behave. By using
polymorphism, we’re free to think abstractly, and say something like ‘let each
of the objects move a time increment step now,’ and be able to trust our indi-
vidual objects to know to use their own specialized styles of motion. Thanks to
polymorphism we can ignore the differences between objects when working at
a high level – as when we form an array of them – and still be sure that on the
low, individual, level, the objects will be ‘smart’ enough not to exhibit simple
generic behaviors.

In our discussions, we are going to focus on depth rather than breadth.
Instead of talking about a wide range of processes to simulate, we’ll concentrate
on simulating one particular kind of thing: material objects moving around
according to the laws of physics. And we are going to place these objects into
the context of computer games built with the Pop Framework.

3.2 Running and testing the Pop program

At this point, the reader should get familiar with the sample Pop program that
we have built using our Pop Framework of classes. Read through the Pop help
file while running the Pop program, so as to get an idea of the code we’re going
to be working with. While you’re doing this, you can also get some experience
with software testing. Write out some answers to Exercise 3.1.

Before starting work, make sure that you have downloaded the very latest
version of the Pop program and help file from the course website. Even if two
builds have the same version number, it may be that their build dates differ;
compare the build date in your executable’s caption bar to the build date given
for the latest version of the downloadable program.

If you don’t like reading help files onscreen, we’ve also printed a version of
the help file as Appendix B, although this printed form will inevitably become
outdated at some point; compare the dates in the printed help file and in the
online help file. Note that when you open an electronic help file, you can use
File | Print to make a hard copy of it.

3.3 The Pop source code

Pop is a program built using the files listed below. In the first group we have C++
files for each of which there is a *.h header file and a *.cpp implementation file.
To save space, we simply list each of these file names once, with the under-
standing that each name represents two files, the *.h and the *.cpp.

Software Engineering and Computer Games58

We can roughly group these files according to their purpose. The MFC
Class files control things having to do with the program’s standard Windows
appearance. The Game files describe the different game modes that the Pop pro-
gram allows. The Critter files specify the moving objects in the game programs
and the Sprite files describe the appearances of these objects. The Physics files
implement classes used to define the shape and the physics of the world. The
catch-all category of Utility files includes a number of specially crafted files
used, among other things, to make graphical animations run smoothly. There is
no significance to the fact that some of the file names happen to be capitalized
and some are not. This is simply an accident resulting from the ways the author
typed in the new file names over the years. The Visual Studio compiler ignores
the case of file names.

MFC Class files
childfrm

mainfrm

pop

PopDoc

popview

stdafx

Game files
game

gameairhockey

gameballworld

gamedambuilder

gamepicknpop

GameSpacewar

gamestub

gamestub3d

Critter files
biota

critter

critterarmed

critterwall

critterviewer

Sprite files
sprite

spritebubble

spriteicon

spritepolygon

spritemultiIcon

The Pop Framework 59

Physics files
VectorTransformation

realbox

force

Utility files
controller

listener

metric

Randomizer

timer

Graphics files
graphics

graphicsMFC

graphicsOpenGL

memorydc

RealPixelConverter

texture

glshapes

Dialog file
SpeedDialog

We also have a few files used for holding certain constants and parameters.
These files do not appear in both the *.h and *.cpp format.

Parameter-holding files
static.cpp (and NO static.h)
graphicsconstants.h (and NO graphicsconstants.cpp)
RealNumber.h (and NO RealNumber.cpp)

In addition we have the Project files, which tell Visual Studio which files to
compile and how to link them together.

Project and resource files
In order to build an executable file from a collection of source code and resource
files, we need a Project file to orchestrate how the files are to be combined. A
Visual Studio project is described by two levels of files, a primary higher-level
project file called a Workspace or Solution file, and one or more secondary
lower-level files simply called project files. Generically any or all of these kinds
of files may occasionally be termed ‘project files.’

Microsoft changed the standard file extensions for their project files when they
replaced the older Visual Studio, Version 6.0, by the newer Visual Studio.NET,
also known as Version 7.0.

Table 3.1 will clarify the situation.

Software Engineering and Computer Games60

Another essential part of the source code is the Resource files. In a Windows
program, a ‘resource’ can be, among other things, a menu, a toolbar, a dialog
box, a bitmap, an icon, a cursor icon, or a sound. resource.h and Pop.rc describe
which resources to use, and the res subdirectory holds the digital information
used in the resources themselves.

Don’t forget that you need to keep the res subdirectory in order to be able to
rebuild your executable; you must include it when you hand-off your source
code to someone else.

Resource files
resource.h

Pop.rc

*.bmp Bitmap files, *.ico Icon files, *.cur Cursor files, *.wav Sound files, etc.
[Note that these last files are located in the res subdirectory.]

One final file that we usually include with our source code is pop.clw, where
CLW stands for ‘CLass Wizard’. This file keeps track of the names of all your
classes, and the class members and methods. You don’t really have to keep this
file, as Visual Studio can rebuild it if necessary. But it saves time to keep it
around.

A component diagram for the build process

A UML component diagram shows the dependencies among a set of the phys-
ical components involved with your program build. In this section, we’ll use
‘physical component’ to simply mean a file (or group of files) on your hard
drive.

In a component diagram we draw nodes for different kinds of components
and we draw dotted arrow-lines to indicate a dependency. An arrow from node
A to node B means that A depends on B.

If you look at Chapter 20: Using Microsoft Visual Studio, you’ll find quite a
bit of detail about how the different kinds of files are combined to build an exe

file. We can summarize some of that information with a component diagram
(Figure 3.1) that shows how different kinds of files depend on each other when
we build an exe file. In this figure, all the little names are kinds of file extensions.

The way we use these files is that we open the main Project file (sometimes
called a Solution or a Workspace file) with the IDE (integrated development

The Pop Framework 61

Table 3.1 The old and new Visual Studio names for project files.

Version of Visual Studio High-level main project file Lower-level project file
extension, and name extension, and name

.NET Version 7.0 *.sln, Solution file *.vcproj, Project file
Version 6.0 *.dsw, Workspace file *.dsp, Project file

environment) program such as Visual Studio, use the IDE to edit the h and cpp

files like text files, use the IDE to edit the rc file in a WYSIWYG fashion, and
possibly create or import some additional resources of the types bmp, cur, and
the like. If we like, we can use the IDE to change the build parameters of the
Project files. Part of the Project file information is stored in a subsidiary Project
file, though this is not something we normally notice.

As shown in Table 3.1 above, the extensions and names of the main and
subsidiary ‘project’ files differ between Visual Studio Version 6.0 and Visual
Studio.NET, also known as Version 7.0.

When you compile, the h and cpp are pulled together into obj files and the rc
and resource files are combined into a res file. The linker wraps the obj together
into an exe and then binds the res into the exe as well.

Another point to make about this diagram is that all of the files from cpp and
rc up are text files, that is, simple ASCII files that we can edit with a simple text
editor. (By the way if you ever happen to edit one of these files with a word-
processor, be careful to save it in text-only format and make sure the file name
gets the proper extension.) The obj, res and exe files, on the other hand, are
binary files consisting of raw zeroes and ones.

3.4 The essential Pop classes

To help organize this discussion, let’s start with a UML class diagram of some of
the main classes involved in the Pop Framework. We’ll give a more detailed
explanation of how to ‘read’ UML class diagrams in Section 3.5. For this initial
diagram, we use three conventions.

First, we represent a class by the class name inside a rectangle. Second, we
represent the class relationship of composition by a line with a diamond at one
end. The composition relationship means that a class object of the type at the

Software Engineering and Computer Games62

Figure 3.1 Component diagram for file types used in a Windows build

diamond end owns or has as members class objects of the type at the other end.
You can think of the diamond as a ‘socket’ where we ‘plug in’ one or more
instances of the class at the other end of the composition line. We express the
composition relationship by the phrase ‘has a’ (see Figure 3.2).

Third, we put a star at the end of a composition line to indicate that the
‘owner’ class may have more than one instance of the other class. We express
this relationship by the phrase ‘has a number of’. See Figure 3.3.

Okay, so now here’s a class diagram (Figure 3.4) of some of the main classes
involved in the Pop Framework.

The most central class is the cCritter class. cCritter objects are our game pieces:
players, enemies, bullets, furniture, and even the camera through which we look
at the world. The word ‘critter’ is a colloquial Wild-West variation on the word
‘creature,’ chosen for no better reason than that it’s fun to say. We often use
the word ‘critter’ to stand for ‘cCritter object’.

The Pop Framework 63

Figure 3.2 Composition. Read as ‘a cCritter has a cSprite’

Figure 3.3 Multiple composition. Read as ‘a cGame has a number of cCritters’

Figure 3.4 Class diagram for Pop Framework classes

We have quite a number of child classes derived from cCritter, specifying
different kinds of critters. These classes include cCritterArmed, cCritterBullet,
cCritterArmedPlayer, cCritterArmedRobot, cCritterWall, cCritterViewer, etc. (These child
classes are not shown in Figure 3.4.)

A unifying notion behind the critters is that they are implemented in such a
way that their motions obey a reasonable simulation of physical laws. Why
should our game objects move like physical objects? In order for a game to
engage the user’s attention it needs to feel in some way realistic. You want the
user to feel immersed within the world of the game. Given how accustomed we
are to the laws of physics, a game whose motions approximate physics is going
to be easier to relate to. Keep in mind that we are going to allow ourselves to be
fairly arbitrary about the kinds of interactions and ‘force fields’ that we put into
our worlds, so the use of some basic physically-inspired laws of motion is not
going to be a drastic limitation. We’ll talk about the physics of cCritter objects in
Chapter 7: Simulating Physics.

One of the principles of OO is to not make one class do too much. In line
with this principle, we let a separate cSprite class be responsible for a critter’s
appearance.

The most important method of the cSprite class is its draw method, which is
overridden in various ways for the different cSprite child classes. The child
classes include cPolygon, cSpriteIcon, cSpriteDirectional, cSpriteLoop, cSpriteCircle,
cSpriteBubble, etc. We often speak of ‘cSprite objects’ simply as sprites.

Each cCritter will have a pointer to a cSprite object. We say that a critter
delegates the task of drawing to its sprite. Delegation is a very useful technique
in OO. Rather than having a class be responsible for a given task, you use com-
position to give it a member class that handles the task.

One of the advantages of the delegation approach to drawing critters is that
after we develop a critter’s behavior, we can change its appearance without
having to create a new class. It would be tedious, for instance, to develop a
cCritterArmedRobot and to then have to derive off cCritterArmedRobotWithBitmapSprite

and a cCritterArmedRobotWithPolygonSprite. Since we’ve delegated the drawing task
to a cSprite member, we define a single cCritterArmedRobot class and then, accord-
ing to the needs of the game we’re writing, we put either a cPolygon* or a
cSpriteIcon* into the _psprite field of our cCritterArmedRobot objects.

A computer game, or other kind of simulated world, will contain a number
of critters, each with its own sprite. We have a cGame class which holds a special
array of critters. The cGame class has several important duties. A game initializes
the critters of its game world. A game carries out repeated updates of the critter
simulations, and makes calls to display the updated critters on the screen. A
game keeps track of the critters’ status and displays information about the
status of the game. The game method that updates the world is called step(dt); it
takes a real number argument dt that represents how big a slice of time is to be
simulated in this update.

We attain resolution independence and the possibility of simulating physics
by having all of our critter and game data stored in terms of real numbers. The
game exists in a two- or three-dimensional mathematical plane or space. We
have a class called cVector to specify the points or vectors in the world. cVector is

Software Engineering and Computer Games64

equipped with a wealth of methods and overloaded operators. There is a related
cMatrix class that’s heavily used for three-dimensional graphics. As class members
of this type are so all-pervasive we don’t include them in Figure 3.4.

In line with simulating physics, we allow for each cCritter to be influenced by
any number of cForce objects, or forces. Rather than making a force an essential
part of a critter’s implementation, we delegate out the forces, so that we can
‘plug in’ whatever forces we like to each critter. Examples of our child class
forces include cForceGravity, cForceDrag, cForceObjectSpringRod, cForceObjectSeek,
cForceEvadeBullet, etc.

We also delegate out the task of listening to the user’s input from mouse
and keyboard. At each update, each critter’s cListener member, called simply a
listener, is given access to the current mouse and key state, and is allowed to
change the critter’s motion or other states. The default listener does nothing,
usually we attach meaningful listeners to only two of our critters: firstly the
critter that the cGame recognizes as the ‘player’ to represent the user on the
screen, and secondly the cCritterViewer object that acts as a camera to determine
the active window’s point of view. Listener child classes include cListenerArrow,
cListenerScooter, cListenerCursor, cListenerViewerRide, etc.

We also use some MFC class files that were defined automatically by the
Visual Studio AppWizard when the original Pop application was created. Over
time, of course, the files for these classes have been edited so as to override and
alter the behaviors of the base classes.

The CPopApp is an application object or simply the running instance of the
program. It has an overridden OnIdle method that the system calls whenever the
program has no other tasks to do. We use the OnIdle call as the ‘pump’ to drive
our animation; our CPopApp::OnIdle uses an instance of our cPerformanceTimer class
to find the time dt elapsed since our previous update and then sets off a cascade
of calls that lead to invoking the cGame step(dt) method.

The CPopDoc document holds the data associated with your windows. The
document serves to hold the data about the game you are running.

The CPopView is a view that controls how your data is displayed in an onscreen
window and also does the initial processing on user input with mouse and
keyboard. We’ll say more about the Document and View pattern in Chapter 5:
Software Design Patterns.

The CPopView delegates the details of drawing graphics to a cGraphics class
object. The cGraphics class embodies a kind of software pattern known as the
Bridge, which means that it can work as a stand-in for such widely varying kinds
of graphics implementations as standard Windows graphics and OpenGL. These
are embodied in the cGraphics child classes cGraphicsMFC and cGraphicsOpenGL.

3.5 UML class diagrams

As we’ve mentioned before, a UML class diagram is a good way to think about a
program’s class structure. Now that we have some familiarity with the classes of
our Pop Framework, we can use the relations between these classes as the basis
for a more detailed discussion of UML class diagrams.

The Pop Framework 65

Keep in mind that UML diagrams are meant as visual tools to be used to
clarify the structure of your program. They are not formal, precise objects like
pieces of code. The vagueness – or even, horrors!, the downright sloppiness –
of a UML diagram is a reality that you simply have to get used to. It’s a bit
inimical to a programmer’s usual way of thinking. This is because UML is
meant to be a communication channel that non-programmers (like customers
and managers and computer-science theorists) can use as well as programmers.
Always keep in mind that the point of drawing one of these diagrams is to clear
things up. The point is not to show every possible detail. And remember that,
unlike code, there is not, and never will be, any objective standard for being a
truly correct UML diagram. Code either compiles and runs or it doesn’t – but a
UML diagram is simply a springboard for thought and discussion.

There are, by the way, a number of programs which will automatically generate
UML diagrams from a directory containing your C++ (or, for that matter, Java) code.
But often a hand-drawn and custom-designed UML diagram is more informative.

The basic principles of drawing a UML class diagram are pretty simple. First
you write down the names of the most important classes in your program, draw-
ing rectangles around them. One way to find out the names of all the classes in
an existing Visual Studio project is to take a look at the Class View, using
View/Class View (Version 7) [or View/Workspace/Class View (Version 6.0)]. And
then you draw lines among your classes expressing their relationships. Of
course if you haven’t written the program yet, then you need to first give some
thought to what classes you might need to use – we’ll say more about this process
of ‘object-oriented analysis’ in Chapter 4: Object-Oriented Software Engineering.

There are three main kinds of relationships that classes can have with each
other: inheritance, composition, and association.

Inheritance lines

Say ClassA and ClassB are classes. If I say ClassB inherits from ClassA, this means
that ClassB has the same members and methods as ClassA plus some possible
new members and methods. It’s also possible that ClassB overrides some of the
ClassA methods to implement them differently. When ClassB inherits from
ClassA, we also say that ClassB is derived from ClassA, or that ClassB is a child
class of ClassA. Most concisely, if ClassB inherits from ClassA, we say that
‘ClassB is a ClassA.’

In a UML class diagram, we use a single line with a big hollow triangle-
arrow at one end to express the relationship of inheritance. If ClassB is a child
of ClassA, we draw a line with an arrow pointing from ClassB to ClassA. In
other words the arrow points at the parent; this is a kind of ‘ancestor worship’
situation in which the parent is pointed out rather than the child! In the case
where we have a number of child classes beneath a single parent, we use a
horizontal bar to combine the three inheritance arrows into one, thus cleaning
up the picture a little bit.

Figure 3.5 is a picture of some of the classes that are used by the cGameStub class.
One thing you’ll notice is that we are allowed to ‘fork’ an inheritance line.

That is, in order to reduce clutter, if ClassB and ClassC both inherit from ClassA,

Software Engineering and Computer Games66

we can draw a single hollow-triangle-headed arrow to ClassA and have the
arrow’s shaft fork in two to have two tails, one ending at ClassB, one ending
at ClassC.

Just to make sense out of what these classes refer to, you might want to run
the Pop program and choose the Game | 2DStub option to see these classes
game in action. The cGameStub itself inherits from the base class cGame. If
you look at the game onscreen, you’ll see a variety of moving critter objects.
The triangular critter that you move with the arrow keys is a cCritterStubPlayer

object, and it shoots cCritterPlayerBullet objects. The critters that look like
bitmaps are the cCritterStubRival objects, that is, your enemies. They are shooting
cCritterStubRivalBullet objects at you. The polygonal critters are cCritterStubProp

objects, and they are not shooting anything, since they inherit from cCritter and
not from cCritterArmed.

Composition lines

We use the word composition to refer to the situation where ClassA has a ClassB
object as one of its members. The operative phrase here is ‘ClassA has a ClassB.’
In this situation we often say that a ClassA object owns a ClassB object. And if
you have a ClassA objectA with a ClassB objectB member, the objectB can say
that objectA is its owner.

Regarding composition, note that there are two different ways in which a
ClassA can have a ClassB member: either ClassA has a ClassB object, or ClassA
has a pointer to a ClassB object. That is, either ClassA has a member field
ClassB _bmember or it has a ClassB* _pbmember. (In C++ we very commonly
start our member field names with an underscore _.) The former kind of ClassB
member is called an embedded member or an instance member of ClassA, while
the second kind of ClassB member is called a pointer member or a reference
member. If the ClassB *_pbmember is truly related to ClassA by composition, we
expect that (a) the ClassB constructor will initialize _pbmember with a new

call and (b) the ClassB destructor will destroy _pbmember with a delete call.
Condition (b) is sometimes expressed by saying the ClassB reference member
of ClassA satisfies the ‘cascading delete’ condition.

The Pop Framework 67

Figure 3.5 UML diagram of some Game Stub classes

The word aggregation is used for a weaker version of composition where ClassA
may have a class ClassB reference member without this member satisfying the
cascading delete condition. That is, if a reference member object is not deleted
when its owner object is deleted, then we have an aggregation relationship rather
than a composition relationship. Making such fine distinctions when discussing
class relationships can sometimes be counter-productive, and we are not going to
say much more about the difference between composition and aggregation.

We draw a composition line with a diamond at one end – which we might
as well call the tail. This is used to mean that the class object at the diamond
end owns or has as members the class objects at the other end. As mentioned
before, you can think of the diamond as a ‘socket’ where we ‘plug in’ one or
more instances of the class at the other end of the composition line.

Another enhancement to the composition line is to write a little numerical
symbol like 1, 2, or * at the head (the non-diamond end) of a composition line
to indicate either how many different ClassB objects might belong to a given
ClassA object. The ‘*’ symbol stands for any number from one on up. A cGame can
own any number of cCritter objects, so we put a * by cCritter (see Figure 3.6).

If we don’t put multiplicities on a composition line, we will usually mean that
there’s meant to be only a single member object at the head, although it’s also
permissible in UML to take a lack of numbers to mean that you simply don’t feel
like mentioning (or haven’t thought about) the number of members.

Some UML experts like to graphically distinguish between the composition
relationship and the weaker aggregation relationship by filling in the diamond
with solid black for composition and leaving it hollow for aggregation. But we
won’t do this here, we’ll use the hollow diamond to stand for (usually) com-
position or (rarely) aggregation. In a nutshell, the diamond-headed line means
‘has a’ or, if there is a star at the end, ‘has several.’

A final thing to mention about composition lines is it is not considered accept-
able to ‘fork’ a composition line in analogy to the way we can fork an inheritance
line.

Association lines with navigation

The notion of being related by association generalizes the notion of composi-
tion. If two classes are related by composition, we can also say they’re related by
association, but we can use the association relationship more broadly than that.
We might say ClassA and ClassB are associated in any of the following cases.
ClassA and ClassB are associated if (a) each ClassA object has a ClassB object as
an explicit member (the same as composition); or if (b) ClassA has a method
that returns a ClassB object. Working the other way around, we also say ClassA

Software Engineering and Computer Games68

Figure 3.6 cGame and cCritter composition with multiplicity

and ClassB are associated if (c) each ClassB object has a ClassA object as an
explicit member (the same as composition), or if (d) ClassB has a method that
returns a ClassA object.

In speaking of association, we don’t distinguish between actual objects and
pointers to objects; that is, we think of case (a), for instance, as true regardless
of whether the ClassB member is an instance member or a reference member.

We use a plain line to indicate the association relationship (Figure 3.7). It’s
pretty clear that a cGame object is associated with cCritter objects.

Occasionally people will even speak of ClassA and ClassB as being associated if
one of the ClassA methods takes a ClassB as an argument, or the other way around.

Given how easy it is for two classes to be thought of as associated, you might
fear that UML diagrams would turn into spider-web diagrams very much like
what’s known in graph theory as a ‘complete graph’, in which every node is
connected to every other node. But in practice we don’t draw every conceivable
association line.

Part of the job in drawing class diagrams is knowing what to leave out. It’s
usually better to have three or four small, simple class diagrams instead of one
large, complicated one.

As well as the hollow-triangle-headed inheritance lines, the diamond-tailed
composition lines and the plain association lines, UML class diagrams also have
navigation lines. A navigation line is an association line that has been decorated
with barbed arrow heads at one or both ends. If a barbed arrow points from ClassA
to ClassB, this means that ClassA has a way of ‘navigating’ to some specific
ClassB objects. This would be the situation in cases (a) and (b) mentioned
above: ClassA has a ClassB member or has access to a method that returns a
ClassB object. We’d put an arrow pointing from ClassB to ClassA in the cases (c)
and (d) mentioned above.

To ‘navigate’ to an object might mean being able to get a copy of the object or
get a pointer to it. Or, in a broader sense, to ‘navigate’ to an object might just mean
being able to do something to it, perhaps by calling some kind of mutator method.

In the Pop Framework, a cGame owns an array that lists all of its member cCritter

objects, and each cCritter actually has an accessor that returns a pointer to the
cGame that owns the cCritter. So we can navigate in both directions (see Figure 3.8).

As with the composition line, we can put multiplicities on association or naviga-
tion lines. Here we can put multiplicities at either end to indicate either how many
different ClassA objects might associate with the same ClassB object or how
many ClassB objects might associate with a given ClassA object (see Figure 3.9).

The Pop Framework 69

Figure 3.7 cGame and cCritter association

Figure 3.8 cGame and cCritter navigation

In true composition cases with cascading delete, it only make sense for a
ClassB object to belong to one single ClassA object, so we assume by default
that the multiplicity at the diamond tail of a composition line is 1. So we will
often see lines in which there is a diamond at one end and a star at the other,
as Figure 3.10, indicating that a given class is composed with multiple instances
of another class.

If we don’t put multiplicities on an association line, we will usually mean that
it’s a 1 to 1 association, although it’s also permissible in UML to take a lack of
numbers to mean that you simply don’t feel like mentioning (or haven’t thought
about) the multiplicities. Always keep in mind the UML is meant to be a fairly
loose way of expressing things, and not a precise language like computer code.

It’s not considered good form to draw an arrow on a line with a diamond
at one end, so if we want to show the composition relationship along with the
navigation from cCritter to cGame we draw a diamond line for the composition
and an arrow line for the navigation as in Figure 3.10.

Now let’s draw a big UML diagram showing the relationships among our
custom Pop Framework classes and the MFC-generated classes CPopDoc and
CPopView. This is given as Figure 3.11.

Regarding Figure 3.11, note that the author had to redraw it a number of times
to try and make it as useful as possible. If your UML diagram makes things seem
more confusing, then you need to keep working on it. It usually takes a few tries
to get a UML class diagram into its most useful form. A typical thing that happens,
for instance, is that you have lines crossing each other, and then you will, if
possible, want to rearrange the locations of the classes so that the lines don’t
cross. Or you might leave out some of the less important associations. Or you
might split the diagram into several pieces. In this case, we split off the standard
MFC part of the diagram from the computer game-oriented Pop Framework
part of the diagram that is shown here. The MFC part is shown in Figure 5.14.

With an eye to the diagram, let’s say a bit more about how the Pop Frame-
work works. Once again, the moving objects one sees in the game are cCritter

objects. Each CPopDoc document holds a single cGame* _pgame pointer. A cGame

holds an array of pointers to all the active cCritter objects. The actual appearance
of a cCritter is separated off into a separate object called a cSprite; each cCritter

holds a cSprite* _psprite.

Software Engineering and Computer Games70

Figure 3.9 cGame and cCritter navigation with multiplicity

Figure 3.10 cGame and cCritter with composition and navigation

The motions of the critters are affected by user input, which is often fed in
from a cListener, and also by various simulated physics forces. Each critter has an
array of cForce objects. The sprites, listeners, and forces don’t need to maintain
a pointer to their owner critter. (We do in fact pass a pointer to the owner as a
function argument when we call the listen and force functions of the cListener

and the cForce, so a case could be made for having navigation arrows go from
cListener and cForce back to cCritter.)

The display of the game objects is the responsibility of the CPopView. A
cGraphics object is used to convert the critters’ real-valued positions into pixel-
valued positions within the visible window of the CPopView. We have two kinds
of cGraphics implementations, the cGraphicsMFC and the cGraphicsOpenGL.

3.6 Using the Pop Framework

In this section we’ll talk about how to use the Pop Framework to make a game
of your own. To be quite concrete, we’ll work through the steps necessary to
use the Pop Framework to make a version of one of the simplest and oldest
arcade games, the Space Invaders game of the early 1980s.

Extending the Pop Framework

To use the Pop Framework to create a computer game, you take over all of the
Pop code and then make some changes to it: either by changing some of the
files, by adding some new files of your own, or both.

The fact that this is fairly easy to do means that the Pop code is actually a
framework, where a framework is, once again, a collection of powerful code that
is written in such a way that it is easy to tailor it to your needs.

By way of making the Pop code into a usable framework, the code is designed
so that a fairly complete description of a game can be fitted into a single class
extending our basic cGame class. Thus, if you were to make a game called, say,
Space Invaders, you might do this by creating a new cGameSpaceInvaders class

The Pop Framework 71

Figure 3.11 Class diagram for Pop Framework classes using navigation arrows

which extends cGame. The class declaration for cGameSpaceInvaders would live in a
new file called gamespaceinvaders.h, and the implementation of the class methods
would be in a file called gamespaceinvaders.cpp.

With good planning and object-oriented design, your project need not involve
much more new code than is found in, for example, the two gamespacewar files.
How will you add files to the project? An easy way is to use copy-and-paste in
Windows Explorer to copy some existing similar files, then rename the files,
then edit them using the Visual Studio editor, and then use the Visual Studio
Project/Add Existing Item... dialog [or Project | Add to Project | Files... dialog
(Version 6.0)] to add your new files to the project. If your game is very similar
to, say, the Pop Framework’s Spacewar, you might use the gamespacewar files as
the ones to copy and rename, otherwise you might use one of our other sample
pairs of game files such as gamedambuilder, gamestub, or gamestub3d.

What other new code might you need? You may need some new kind of
behaviors for the moving objects onscreen. This involves extending the cCritter

class. So as to make your code easier to work with, it’s usually a good idea to
define your new kinds of critters within your two game class files; that way you
still only have two files to open and close.

Another area that you will eventually change in building your game is the
appearance of the bitmaps and the background, not to mention the menus and
the toolbar. These are all resources that live in the res directory.

The Game Stub classes

Software Engineering and Computer Games72

Game stub with solid background, Open GL view, and mixed sprites

In the exercises at the end of this chapter, you will actually carry out a series of
changes to the Game Stub classes that turn it into a Space Invaders game. For
reference, let’s get an overview of what the Game Stub classes are. To begin
with, Figure 3.12 shows a UML diagram of the important Game Stub classes.

Each class has its own constructor, of course. This is where we internally set
the characteristic features of the object, such as its behavior and its appearance.

The cCritter child classes generally override damage, collide, update and some-
times in the case of a player critter the reset method. The cCritterBullet children
often don’t need to override anything, but will sometimes override the
initialize(cCritterArmed *pshooter) method that gets called right after the bullet’s
constructor. The cGame child class overrides a few more methods; the most
important ones will turn out to be seedCritters and adjustGameParameters. This is
illustrated in Table 3.2.

The Pop Framework 73

Figure 3.12 UML diagram of the Game Stub classes

Table 3.2 The special classes used in the Game Stub code.

Parent class Child classes Overrides

cGame cGameStub constructor
Serialize
reset
seedCritters
adjustGameParameters
statusMessage
InitializeView
collide

cCritter cCritterStubPlayer constructor
cCritterStubRival damage
cCritterStubProp collide

update
reset

cCritterBullet cCritterStubPlayerBullet constructor
cCritterStubRivalBullet initialize

Just for example, here’s what two of the class prototypes look like in a recent
version of Pop. Note that our UML diagram (Figure 3.12) wasn’t fully detailed.
There is actually an intermediate Pop Framework class called cCritterArmedPlayer

between cCritterStubPlayer and cCritterArmed; and cCritterRivalBullet derives from a
special kind of Pop Framework bullet called cCritterBulletSilver. You can find
more information in the gamestub.h file.

class cCritterStubPlayer : public cCritterArmedPlayer //Our player.

{

DECLARE_SERIAL(cCritterStubPlayer);

public:

cCritterStubPlayer();

//overrides

virtual void reset();

virtual int damage(int hitstrength);

virtual BOOL collide(cCritter *pcritter);

virtual void update(CPopView *pactiveview, Realdt);

virtual cCritterBullet* shoot();

};

class cGameStub : public cGame

{

DECLARE_SERIAL(cGameStub);

//Name your statics here

static int PLAYERHEALTH;

static int DEFAULTRIVALCOUNT;

static int DEFAULTSEEDCOUNT;

private:

int _rivalcount;

public:

cGameStub();

//overrides

virtual void Serialize(CArchive& ar); /*Override for

_rivalcount */

virtual void reset();

virtual void adjustGameParameters();

virtual CString statusMessage();

virtual void initializeView(CPopView *pview);

virtual void initializeCritterViewer(cCritterViewer *pviewer);

//To change the default view direction.

virtual void seedCritters();

virtual BOOL collide(cCritter *pcriti, cCritter *pcritj);

};

Software Engineering and Computer Games74

Review questions

A Why is an object-oriented approach useful for simulation?

B What are some of the different game modes that the Pop program runs in?

C What is the difference between a *.h file and a *.cpp file?

D What do the *.res file and the *.sln or *.dsw file do?

E Draw the component diagram of the Windows build process.

F Draw a class diagram for the Pop Framework.

G What is the relationship between cGame, cCritter, and cSprite?

H What is the difference between composition and inheritance?

I How many files do you need to edit to write a game with the Pop Framework? How do
you get started?

Exercises

Exercise 3.1: Testing the Pop program

Any large program’s code is likely to have bugs in it, and it’s even more likely that there are
places where the documentation is out of sync with the actual behavior of the program.
While going through the help file and testing the Pop program, look for these three kinds
of problems.

Bugs. A bug is when the program does something that seems wrong. Crashing is the
extreme case, but other kinds of odd behavior can be bugs as well. For a useful bug
report, explain exactly how to reproduce the bug. Note that it possible that something the
tester thinks of as a bug may be what the programmer thinks of as a feature.

Bad features. Features of the program that you find bad or confusing or which look like
bugs. Explain what you don’t like. If many testers have the impression that a feature is a
bug, then the feature needs be changed or, at the very least, better documented.

Bad documentation. Find cases where the help file description does not seem to
match the behavior of the program. Also note cases where some program feature is not
well-explained.

Exercise 3.2: First build

Install Visual Studio. Put the Pop code onto your hard drive, find the pop.sln file (Version 7.0)
[or pop.dsw file (Version 6.0)] file in the Windows Explorer and double-click on it to open
up the project in Visual Studio. Press Ctrl+Shift+B (Version 7.0) [or F7 (Version 6.0)] to
build the Pop program, watching the messages that go by in the Output pane that can
be found at the bottom of the Visual Studio window. If you get a successful build, press
F5 to run the Pop program inside the Visual Studio debugger. If you have any problems or
questions check Chapter 20: Using Microsoft Visual Studio for more information. After the
build, use Windows Explorer to see what kinds of files have been added to your disk by
the build.

The Pop Framework 75

Exercise 3.3: Code hand-off

First clean your Pop code directory by closing Visual Studio, using Windows Explorer to
navigate into the directory, and clicking on clean.bat. After clean.bat runs, use Windows
Explorer to see if there are any *.exe still in the directory. If there are, delete them so as
to minimize your directory size.

If you don’t have WinZip on your machine, go to www.winzip.com and download and install
a free evaluation copy. Choose the ‘Classic’ settings as your preferred WinZip default.

Right-click on your Pop code directory and select WinZip from the context menu to zip
it up.

Note these considerations about the WinZip settings. Let’s assume you are running
WinZip in the ‘Classic’ interface mode and that you are using the current (as of Spring,
2002) Version 8.1. WinZip will save your directory name, which is good, as the directory
name will probably have version and date information. Also WinZip automatically saves
your directories subdirectories, which is good, as you need the res subdirectory to be able
to rebuild the code.

In the Options field of the Add dialog box, don’t check Save Extra Folder Info. You
don’t want to check Save Extra Folder Info because, for portability, you don’t want to
include the full path to directory where your files live. Even if this isn’t checked, WinZip will
save the name of the directory you are zipping.

Choose the name mypop1.zip for your zip file and save it somewhere where you can find
it, perhaps in the C:\Temp directory. Don’t save it in with the same code that you’re zipping.
After its been zipped, find mypop1.zip and unzip it (not into the same location as the original
Pop code that you were working with). Open its pop.dsw with Visual Studio and see if it will
build. If this works, try sending mypop1.zip to yourself as an email attachment, see if you
can then unzip it and build it. Practice these steps until you can do them all.

Exercise 3.4: Changing the date information for your build

Set the date of your Pop build to match the current date in three places. (a) Put a version
number and a build date into the name of your executable file. In Visual Studio, Version 7.0,
first make sure that you have View | Project Explorer open and that you have clicked on
the Pop node, and then use View | Property Pages | Linker | General | Output File. If
another node is active, Property Pages will open up a different dialog. [In Version 6.0, you
can always simply use the Program | Settings | Link | General | Output File Name.]
Change the name of the executable both for the Release build and the Debug build. You
switch between them in either Version 6.0 or 7.0 by using the settings for control in the
upper left-hand corner of the dialog box with which you are editing the output file name.
(b) Open the Resource view. You can do this in Version 7.0 with View | Resource | View.
[In Version 6.0, use View | Workspace | Res, where you’ll find the ‘Res’ as a tab at the
bottom of the Workspace window.] Click on the String Table resource in Resource View
and then click on IDR_MAINFRAME to use this string to include the build number and the
date; this string is what appears in the caption bar of your *.exe. (c) Change the name of
the directory where you code lives by highlighting the the directory name in Explorer and
pressing F2 so you can edit it.

Exercise 3.5: Look at some Pop code files

With the Pop project in Visual Studio, use File | Open to open the gamespacewar.h and
gamespacewar.cpp files to get an idea of how much code goes into a game definition.
You’ll see that it’s not all that much, as you only need to mention the methods that you

Software Engineering and Computer Games76

plan to override. Now look at the game.h and game.cpp files to get an idea of what kinds
of methods cGameSpacewar inherits from cGame.

Now take a brief look at the critter.* and critterarmed.* files. This code is fairly gnarly
(in the sense of ‘complex’), but we’ll explain a lot of it later on. For now just scan over
critter.h to get an idea of what the cCritter methods are.

Exercise 3.6: Look at the Pop resources

Open the Pop project in Visual Studio and then open the Resource View. You can do this
in Version 7.0 with View | Resource View. [In Version 6.0, use View | Workspace | Res,
where you’ll find the ‘Res’ as a tab at the bottom of the Workspace window.] Now click on
the various items in the Resource view to view them – the way this works is that anything
with a + next to it is like a directory to be opened up. Click down through the things with +
till you get some bottom level things like bitmaps, menus, etc. Find the IDB_BACKGROUND
bitmap and the IDR_POPTYPE menu. Note that the Resource view of the menu is ‘live,’
that is, you can open up the menu selections and edit them. This is useful as, later, when
you want to turn Pop into a single game, you can simply remove the menu references to
the other game modes so that the users won’t have the possibility of going into them.

Exercise 3.7: Renaming a game

Changing the names of a game that appear in copies of existing files is a little tricky. In this
problem we ask you to practice. In Windows Explorer, select the gamestub *.h and *.cpp
files, and use Ctrl+C and Ctrl+V to copy them. Highlight the file names one by one, press
F2 and change the names to, say, gamemyproject.h and gamemyproject.cpp. Now open up
the Pop Framework in Visual Studio and use the Project | Add Existing Item... dialog
(Version 7.0) [or Project | Add to Project | Files... dialog (Version 6.0)] dialog to add your new
files to the project. Edit the files in Visual Studio to replace every instance of the phrase
‘Stub’ by the phrase ‘MyProject,’ being sensitive to upper and lower case. That is, you must
replace ‘Stub’ by ‘MyProject’, ‘stub’ by ‘myproject’ and ‘STUB’ by ‘MYPROJECT’. You can do
this by using Ctrl+H to do a search and replace several times in each file, with the Match
Case checkbox turned on. Now see if you can get the altered project to compile. This may
take a couple of tries, especially if you weren’t careful about case sensitivity in the search and
replaces. If you’ve totally messed things up (always easy to do when starting out!) make
fresh copies of the files and start over. Once it compiles, edit the CPopDoc constructor in
the popdoc.cpp file so that the default start up game class is cGameMyProject. You’ll have
to add a line #include “gamemyproject.h” to popdoc.cpp so this will compile. If you
want to do a bit more, look at Chapter 27: Menus and Toolbars and figure out how to add
and implement a My Project option on the Game menu.

Exercise 3.8: Expanding a UML diagram

The UML diagram given for the cGameStub in this chapter is missing the classes
cCritterArmedPlayer, cCritterArmedRobot, and cCritterBulletSilver. Redraw the picture, with
these intermediate classes squeezed into the tree of inheritance.

Exercise 3.9: Writing a Space Invaders game

The rest of the problems on this chapter have to do with converting the Game Stub game
into a Space Invaders game.

The Pop Framework 77

Game stub modified to resemble a Space Invaders game

Rather than carrying out the slightly tricky task of changing all the names in the
gamestub.* files, let’s just use these files as is, and make some changes in them. You
might want to save off reference copies of these files called gamestubold.* in case you
want to get the old code back after a while. Or simply make sure that you do your work in
a fresh copy of the whole Pop source directory.

The following exercises describe a specific series of changes to make to the files. The
purpose is simply to have you get a feel for how you might make your own game out of the
Pop code. Don’t feel you need to be able to understand all of the code you see, just go
ahead and carry out the following steps to see how you might work with it.

Just in case you’ve never seen a Space Invaders game, the idea is that the player controls
an upwards-pointing critter that can be moved left and right along the bottom of the screen
with the arrow keys. The critter shoots a bullet upwards when the spacebar is pressed.
Falling down from the top of the screen are enemy critters. Shooting enemies gives the
player score points, and each time an enemy survives to touch the bottom of the screen, the
player loses a health point. Whenever all the falling creatures have been shot, a new wave
of them appears; alternately we can bring in new enemies as fast we kill them off. Typically
the player starts with three or maybe five health points and plays until he or she loses them
all. The new waves of enemies move faster than the earlier waves, so that as time goes on,
the game gets harder and harder to play, inevitably ending in the player’s death. The score
points accumulated are a measure of how long the player managed to stay alive.

A Space Invaders style game is generally not considered to be an acceptable project for
a course taught with the Software Engineering and Computer Games textbook. The reason
is that (a) this project is too easy and (b) the one-dimensionality of the Space Invaders game
player motion makes the game pretty boring. Once you finish the Space Invaders game in
this section, you should set it aside and make a fresh start for your real course project.

Exercise 3.10.1: Change the default game. Beware the wrong-directory-gotcha

When you get into tweaking one particular game mode, it saves time to have the Pop pro-
gram start up in the game mode that you want to play with. The way to control this is to edit
the CPopDoc constructor in popdoc.cpp. Simply comment in exactly the one setGameClass
line corresponding to the game you want to play. If you make a new game class, add a line
for it. For the following exercises, have your startup game be cGameStub.

CPopDoc::CPopDoc():

_pgame(NULL)

{

/* Choose the type of game you want at startup by commenting in ONE

setGameClass line. The setGameClass sets brandnewgameflag to TRUE. */

// setGameClass(RUNTIME_CLASS(cGameSpacewar));

// setGameClass(RUNTIME_CLASS(cGameAirhockey));

// setGameClass(RUNTIME_CLASS(cGameBallworld));

// setGameClass(RUNTIME_CLASS(cGameDambuilder));

// setGameClass(RUNTIME_CLASS(cGamePickNPop));

// setGameClass(RUNTIME_CLASS(cGameWorms));

setGameClass(RUNTIME_CLASS(cGameStub));

// setGameClass(RUNTIME_CLASS(cGameStub3D));

// setGameClass(RUNTIME_CLASS(cGameDefender3D));

}

The Pop Framework 79

If you do this exercise and the game still starts up in the original Spacewar Game
mode, it’s very likely that you edited the wrong copy of popdoc.cpp. One of the gotchas of
Visual Studio is that when you use the File | Open command, the file selection dialog
doesn’t make it clear which directory you are in. Visual Studio has a certain persistence of
state, and if you open a file in DirectoryA, the next time you open a file the dialog is likely
to search in DirectoryA again, even if you are now working on a project in DirectoryB. One
often has multiple copies of the Pop Framework code on one’s disk, and it is easy to be
editing a file in the wrong directory.

A sure sign that you’re editing the wrong files is if (a) your program always compiles
and runs with no warnings or error messages and (b) the appearance of the executable
looks the same after each ‘build.’

How to avoid this gotcha? If you see signs of (a) and (b), close all your files, close your
project, reopen your project in your desired directory, and then open your file, only this
time use the File | Open dialog to back a step or two up the directory tree to find out what
directory you’re really in, and then go back down into the correct directory.

Exercise 3.10.2: Change the cGameStub world

We edit some of the cGameStub methods in the gamestub.cpp file to change the appear-
ance of the game world.

(a) Our goal here is to make a simple Space Invaders game. Let’s not use the
cCritterStubRival at all, let’s just have dumb non-shooting cCritterSpaceInvadersProp
falling down on us. We can do this by changing the two static critter count numbers that
are used in the cGameStub constructor to initialize _rivalcount and _seedcount.
The statics are defined right before the cGameStub::cGameStub() constructor. Change
the lines to read:

int cGameStub::DEFAULTSEEDCOUNT = 8;

int cGameStub::DEFAULTRIVALCOUNT = 0;

(b) Let’s make our world tall and thin. We can do this by changing a line in the
cGamestub::cGamestub constructor. Take the line _border.set(60.0, 40.0), and
change it to _border.set(20.0, 40.0).

(c) We don’t want to start out zoomed in on the world. Find the code for the void
cGameStub::initializeViewpoint(cCritterViewer *pviewer) method and
comment out two lines.

//pviewer->zoom(4.0);

and

//pviewer->zoom(2.0);

(d) We don’t want the view to move with the player, so find the void

cGameStub::initializeView(CPopView *pview) code and comment out a line.

//pview->pviewpointcritter()->setTrackplayer(TRUE);

Software Engineering and Computer Games80

Exercise 3.10.3: Change the cCritterStubPlayer

(a) Before changing the constructor, change the value of a static variable used in the
constructor. At the start of the gamestub.cpp file, change the PLAYERHEALTH line to
this.

int cGameStub::PLAYERHEALTH = 3;

Now we’re going to add some code to the end of the
cCritterStubPlayer::cCritterStubPlayer(cGame *pownergame) code in
gamestub.cpp.

(b) We want to use the arrow keys to move our player. Either add this line to the end of
the constructor, or alternately use it to replace the existing setListener line with
this line.

setListener(new cListenerArrow());

(c) To make the arrow key motion a little peppier, give the player a higher maximum
speed (which is the speed the arrow moves it at). Add this line.

setMaxspeed(30.0); // Careful not to write setMaxSpeed

(d) Limit the player to moving back and forth along the bottom of the screen. This means
we want to change the player’s cRealBox _movebox field.

We do this in the player’s constructor. Our framework is set up so that in this
code block you can assume that the player’s _movebox has already been set to
match the game’s _border box. We now want to use setMoveBox to change the
_movebox.

The setMoveBox call takes a cRealBox as argument. The cRealBox constructor we
use here takes cVector specifying two opposite corners as arguments, the lower left
front corner and the upper right back corner. Add this block of code to the end of the
constructor code. What we’re doing here is to move the ‘high corner’ down almost to
the bottom of the _border box.

/* At this point the player’s _movebox matches the _border it got

from pownergame.

Now we want to make the _movebox just be the bottom edge

of the world. */

setMoveBox(cRealBox(

_movebox.locorner(),

_movebox.hicorner() –

//Move high corner almost to the bottom of world.

(_movebox.ysize()-2*radius())* cVector::YAXIS

));

(e) Another aspect of a Space Invaders game is that the player’s gun always points
straight up. We’ll make this change in the cCritterStubPlayer constructor. Change the
old cCritterStubPlayer constructor by adding these lines to the bottom of it.

The Pop Framework 81

setAttitudeToMotionLock(FALSE);

/* The default for _attitude motion lock is TRUE, which means

that by default a critter turns its heading to match its direction

of motion. We turn this behavior off so the player can always

point up. */

setAttitudeTangent(cVector::YAXIS); /* Call this AFTER turning off

the lock setAimVector(cVector::YAXIS); */

Exercise 3.10.4: Change the cCritterStubProp constructor

Now we make some changes to the bottom of the
cCritterStubProp::cCritterStubProp(cGame *pownergame) code in
gamestub.cpp.

(a) Let’s have the props automatically be positioned up near the top of the world. Since
the cCritterStubProp constructor uses a cGame argument, its base class constructor
will have set its _movebox to match the game’s _border. To move the critters up to
the top of the world, add these lines.

randomizePosition(cRealBox(

_movebox.locorner() +

(_movebox.ysize() – 2*radius()) * cVector::YAXIS,

_movebox.hicorner()

));

(b) Let’s put a force of gravity on the cCritterStubProp critters. Usually when you have
gravity, it’s a good idea to put in some ‘air friction’ as well. Add these lines to the
end of the constructor code.

addForce(new cForceGravity());

addForce(new cForceDrag());

(c) Let’s soup up the game by allowing the critters to fall a bit faster. Add this line. You
might find the value 8.0 to be a shade too low or high.

setMaxspeed(8.0); //Careful not to write setMaxSpeed

(d) Now let’s try having the cCritterStubProp critters run away from the bullets. Try adding
a line like this. You may not like the effect of this, so it’s optional.

addForce(new cForceClassEvade(4.0, 1.0,

RUNTIME_CLASS(cCritterStubPlayerBullet)));

Software Engineering and Computer Games82

Exercise 3.10.5: Change cCritterStubProp::update

Each critter has an int _outcode field that is an OR combination of bit flags telling you
which, if any, edge of its cRealBox _movebox the critter touched during its last move.
The bit flags, which are defined in the realbox.h file, have simple names like BOX_LOY. We
will use the _outcode to take action when a cCritterStubProp hits the bottom or the top
of the screen.

When one of the cCritterStubProp critters hits the bottom of the screen, we want to kill
off the critter and reduce the player’s health by calling its damage method.

If you have called setWrapflag(cCritter::WRAP), then the cCritterStubProp might
get to the bottom by going around the top. When our cCritterStubProp run away from
bullets they might sometimes do this. It would unfairly punish the player if we let the
cCritterStubProps get away with that, as then they would be in a position to cross back
and the game might think they landed on the bottom. Therefore if a cCritterStubProp hits
the top of the world we kill it off without charging the player a damage point.

We do all this by changing the cCritterStubProp update method to look like this.

void cCritterStubProp::update(CPopView *pactiveview, Realdt)

{

cCritter::update(pactiveview, dt); //Always call this first

if (_outcode & BOX_LOY) //Landing damages me

{

pplayer()->damage(1);

die();

}

if (_outcode & BOX_HIY) //So they don’t sneak around over the top.

die();

}

Exercise 3.10.6: Change cCritterStubPlayer::collide

Let’s eliminate the feature of cGameStub which rewards the player for bumping into a
cCritterStubProp critter. This means you should comment out this line from within the
lines from the cCritterStubPlayer::collide(cCritter *pcritter) code.

// setHealth(health() + 1);

Exercise 3.10.7: Change cCritterStubPlayer::shoot, and the cCritterStubPlayerBullet
behavior

(a) In the gamestub.cpp file, try giving yourself prop-seeking missiles for your bullets.
Change the code of the cCritterStubPlayer::shoot() as follows.

That is, give your bullets a cForceObjectSeek so they turn into smart missiles that
hunt down whichever critter was closest to the line you aimed along. If you think it
makes the game too easy or too hard, leave it out or perhaps use a smaller value for
the argument 50.0 passed to the cForceObjectSeek constructor.

cCritterBullet* cCritterStubPlayer::shoot()

{

cCritterBullet *pbullet = cCritterArmedPlayer::shoot();

cCritter* paimtarget =

The Pop Framework 83

pgame()->pbiota()->pickClosestAhead (cLine(position(),

aimvector()), this);

/* Find the critter closest to your aiming line. Including

“this” as the second argument means to exclude

yourself from consideration as the closest critter.

Note that you can use additional params with

pickClosestAhead to narrow the angle the critter

“sees” and also to limit the possible targets to

certain kinds of critters, see biota.h for details. */

pbullet->addForce(new cForceObjectSeek(paimtarget, 50.0));

return pbullet;

}

(b) You may now find the game is now hard to play because your bullets die at the
screen edges and sometimes do this before hitting a prop. Fix this by adding this line
to the cCritterStubPlayerBullet::cCritterStubPlayerBullet() constructor.

_dieatedges = FALSE;

(c) A downside of (b) is that you’ll now notice that some silly bullets bounce off the top
and get confused and bumble around on the bottom of the world. To fix this, you
have to override the void cCritterStubPlayerBullet::update(CPopView
*pactiveview, Real dt) as follows.

Add this line to the prototype in gamestub.h.

virtual void update(CPopView *pactiveview, Realdt);

Add this code to gamestub.cpp.

void cCritterStubPlayerBullet::update(CPopView *pactiveview, Realdt)

{

cCritterBullet::update(pactiveview, dt);

//Always call base update first

if (_outcode & BOX_LOY || _outcode & BOX_HIY)

//Landing damages me

die();

}

Exercise 3.10.8: Change the cGameStub::adjustGameParameters

(a) To make this more of a game, it’s better to have the action be non-stop. As it
presently stands, you can kill off all the attackers. We fix it so each time you kill an
attacker, some new ones come in. We do this by adding this code to the bottom of
the cGameStub::adjustGameParameters code.

int propcrittercount =

pbiota()- >count(RUNTIME_CLASS(cCritterStubProp));

if (propcrittercount < _seedcount)

new cCritterStubProp(this);

//The constructor automatically adds the critter to the game.

Software Engineering and Computer Games84

Note that if you’ve killed, say, three cCritterStubProps all at once, it will take the game
three steps of calling adjustGameParameters to restore the full cCritterStubProp
count. This is fine, as visually it’s just as well not to change the game too rapidly.

(b) What about making the game get harder as you play it? This step is optional.
You could keep track of the cGame::score(), and each time this gets larger than

some increment size, make the game harder in some way, perhaps by increasing the
size of _seedcount.

Or you could add a cCritterStubRival whenever the score passes a certain size,
similar to how the Spacewar game adds cCritterUFO. To make this effective you
might need to tweak the cCritterStubRival methods a bit.

Exercise 3.11: Hand in a Space Invaders project

This is an assignment the author usually gives his classes fairly early in the semester.
Typically, the credit assigned for the three parts of this problem is in a 25%, 50%, 25%
ratio for, respectively, mechanics, basics and improvements.

Even if you’re studying this book on your own, you will find it worthwhile to carry through
the mechanics steps so as to have experience in putting your code into a form that can
be handed off.

Mechanics. Hand in the following: (1) A sheet of paper with a little ‘User’s Guide’ describ-
ing the controls of your game and listing any special features you added. (2) Two floppy disks:
one disk with a release build of the executable in the root directory, and another disk with
clean, minimal-sized, buildable source code. Label the disks with your name and with a
word to indicate if this is the EXE or the SOURCE disk. You will probably need to WinZip your
source and probably your executable to fit onto floppies. If the *.zip is larger than 1 Meg
you probably haven’t cleaned your source directory properly (or you’ve included a lot of
extra big sounds and bitmap files). Another option is to write the information onto a CD-ROM.
Emailing your homework to the professor as a gigundo attachment is forbidden! (3) Put disks
and paper in a two-pocket folder with your name on it. (4) Put your name on the program
caption bar. To change the caption bar, see Section 23.9 of this book.

Basics. Carry out the steps outlined in the series of Space Invaders exercises 3.10.1–
3.10.8 just above. You don’t necessarily need to use all the exact same parameter values
suggested. Get the program working so that the critters are neither too hard nor too easy to
hit, the game itself should be neither too hard nor too easy. You may need to tweak some
parameters to get it right.

Improvements. Possibilities: change the background, use different kinds of sprites, add
code to make the game use levels that get progressively harder, change the code so that
the enemies jiggle back and forth like in the traditional Space Invaders rather than running
away from bullets. Add sound effects. Have some enemies that shoot at you. Have the
enemies change appearance when you hit them before disappearing, maybe have them
shatter or show a cSpriteIcon or cSpriteLoop explosion bitmap for a few seconds. Looking
at the gamespacewar.cpp or the gamedefender3d.cpp files may provide inspiration.

The Pop Framework 85

4Object-oriented software
engineering

4.1 OO is the way

As computer science continues to evolve, our programs get more and more
powerful, using larger and larger amounts of code. The Pop program has some
10,000 lines of code, and if we were to take into account the code for the
underlying Windows functions, we’d be looking at hundreds of thousands of
lines more. How can we deal with such large programs?

Our only hope is to continually move to higher levels. We learn to design and
program in higher-level and more abstract ways. In the earliest days, software
engineers worked very close to the hardware writing microcode to directly control
the processor chip. Machine language is a step up from this, consisting of coded
instructions that the processor can read and execute. Assembly language is
human-readable code quite close to the machine language level, but which
allows the programmer a few higher-level constructs like macro statements to
abbreviate having to write out repetitive blocks of code.

Assembly language gave way to a range of high-level languages designed to
be something much closer to something a human can read. Some of the earlier
languages were Fortran, APL, Modula and Pascal. Eventually these converged on
C, which is still something of an industry standard. Libraries of C functions are
available so that programmers don’t continually have to reinvent the wheel.
With the advent of object-oriented languages like C++ and Java, computer science
moved to a new still-higher level of programming and design. There’s no turning
back. An object-oriented approach (OO for short) is the way.

We can draw a UML dependency diagram to illustrate the progress, with
the arrows indicating that the higher levels depend on the lower levels (see
Figure 4.1).

Simply using C++ or Java doesn’t guarantee that you are doing object-
oriented software engineering. Object-oriented techniques can be used at a
variety of levels. Software engineers often distinguish among three kinds of
OO: object-oriented analysis (OOA), object-oriented design (OOD), and object-
oriented programming (OOP).

The idea behind OO software engineering is to break your programs up into
independent self-sufficient objects. If you don’t plan to alter an object’s behavior,
you don’t need to worry about how its code works. All you need to know is

Object-oriented Software Engineering 87

what the object does. The object becomes like a black box with input/output
jacks. You feed things into it and you get things out, and you don’t worry
about what’s inside.

The objects of OO are instances of data structures called classes. A class is
like a C structure, except that it has functions, or methods, inside it as well as
data fields (see Figure 4.2). A class is like a high-level data type. And an object is
an instance of a class. To make the distinction between class and object quite
clear, you might compare a class to a type like int, and an object to a specific
integer like 2.

There is some variability in the language that people use to talk about
classes. The data fields of a class can also be called class attributes. And the
methods of a class can also be called the class’s functions or its operations.

The OO approach suggests that instead of trying to analyze a problem in
terms of a zillion small tasks, we look at the problem in terms of a few high-
level classes. Figuring out which classes to use for your program is the process
of OOA. Deciding what members and methods your classes should have is a
matter of OOD. And actually implementing the code for the classes is the work
of OOP.

The three stages do blend together a bit, so if we list the expected outcomes
of the OOA, OOD, and OOP processes, it makes sense to list some outcomes in
two lines.

Figure 4.1 Levels of language

Figure 4.2 A class has data and methods

Software Engineering and Computer Games88

A preliminary way of describing the stages is to say that OOA involves look-
ing at a problem with the aim of understanding it. OOD means defining and
designing an appropriate solution. And OOP is building that solution. These
three steps are really part of any reasonable approach to problem solving (see
Table 4.1). Now let’s look into what we do to make the steps object-oriented.

The OOA stage is a high-level design phase in which we figure out which
classes to use and what data and methods to put into them. Initially you might
simply write out class names and key data and methods. But after a bit, you
want to actually start moving down towards the detailed design phase and
writing out correct C++ class headers.

The OOA phase shades into the OOD phase when we begin thinking in
some detail about what to put into the classes. The OOD phase of the process
continues through the writing of the *.h header files, while the OOP part kicks
in when you write the *.cpp files where the implementation of the methods
lives. You shouldn’t think that first you finish the OOA and OOD, and then
you move into OOP without ever coming back to OOA and OOD again.

The reason you can’t just finish one stage off completely and then start on
the next stage is that it’s so hard to design a program. You’re rarely going to
nail it right off the bat. Of course you do need a design to get started, but every
time you finish a new alpha build, you should step back and take a long look at
your design. A good place to start is by looking at the ugliest, most complicated
parts of your code, the parts that you feel most uneasy about. Ask yourself how
this could be made simpler. And, as long as you’re revisiting your design, think
about what features you want to add to your program next, so that you can lay
the groundwork for them.

OOA is about figuring out how to arrange a collection of classes that does a
good job of representing your real-world problem in a format which a computer
program finds easy to deal with. OOD is about what kinds of data and methods
go into your classes and about how the classes relate to each other in terms of
inheritance, membership and function calls. OOP is about making the class
implementations work. The three go hand in hand. You need to do some OOA
and OOD before you OOP, and after you OOP you learn enough new things
about your program to go back and improve the OOA and OOD. Like so many
other things in the software engineering process, it’s a feedback loop that you
can run through as many iterations as your schedule allows. And, again like
other things in software engineering, the precise boundaries between OOA,
OOD and OOP can be somewhat fuzzy.

A useful terminology that people sometimes use is to speak of a distinction
between ‘top-down’ design and ‘bottom-up’ design. In our present context, we’re

Table 4.1 Three stages of the OO process, with expected outcomes.

OOA Which classes? UML diagrams
OOD UML diagrams, *.h header
OOP *.h header, *.cpp implementation

thinking of OOA and OOD as a top-down process where you use some high-
level abstract thinking to figure out which classes to use and how to design
them. And then you move down into the details. This describes a top-down
movement from OOA to OOD into OOP.

The bottom-up part of the process comes about like this. When you go about
implementing a design you find out a lot of things about it that you hadn’t
anticipated – some things work out easier than you’d hoped, and a few things
turn out to be harder. So then you change your design to make the hard things
work better. This describes a bottom-up movement from OOP into OOD and
OOA.

The OOD expert Grady Booch puts it like this.

Our experience indicates that design is neither strictly top-down, nor strictly
bottom-up. Instead . . . well-structured complex systems are best created
through the use of ‘round-trip gestalt design.’ This style of design emphasizes
the incremental and iterative development of a system through the refine-
ment of different yet consistent logical and physical views of the system as
a whole . . . Object-oriented design may seem to be a terribly unconstrained
and fuzzy process. We do not deny it. However, we must also point out that
one cannot dictate creativity by the mere definition of a few steps to follow
or products to create.

[Grady Booch, Object-Oriented Design (Benjamin/Cummings, 1991), p. 188]

4.2 Object-oriented analysis

The first part of the OOA stage is figuring out what classes you will use and
what some of their main methods might be. How might this work? Suppose that
you have completed the requirements-gathering stage, and you’ve come up with
a written summary of what the software is supposed to do. A good way to start the
OOA process is to review a printed copy of the requirement summary and mark
it up. Circle the noun and noun phrases in one color ink and circle the actions
in another color ink – or use boxes and circles. The nouns are likely to be either
classes or member fields of classes. The verbs are likely to be class methods.

In keeping with our book’s theme of being a case study about software engin-
eering a computer game framework, let’s look at a requirement for this.

Requirement: a framework for computer games with moving critters. The critters
are drawn as polygons, bitmaps, or animated loops of bitmaps. The critters
update themselves on the basis of the world around them. The world may include
forces like gravity and friction. The critters listen to mouse-keyboard controls.
The critters can shoot bullets. It is possible to open more than one view of the
game. The games can use 2D or 3D graphics.

• Nouns: game, critter, polygon, bitmap, animated loop, world, force, gravity,
friction, controls, mouse-keyboard controls, bullets, view, graphics.

• Actions: move, draw, update, listen, shoot.

Object-oriented Software Engineering 89

Software Engineering and Computer Games90

Once you have the two lists you can think about how best to group the nouns
into classes, and about which class should be responsible for which action. Do
be aware that often there will additional classes involved that aren’t explicitly
mentioned in the specification.

During this process you can draw a more detailed kind of UML picture of a
class, wherein you list some of a class’s members and methods inside the box
that stands for the class. Two horizontal lines separate the class name, the class
members, and the class methods. In these kinds of diagrams we often leave out
the argument lists of the methods and the type declarations of the members.

Two of the classes you come up with for the game framework example might
look as shown in Figure 4.3. Do note that not all of the members and methods
are shown here. Also note that our final Pop Framework implementation of the
cGame and cCritter will be a bit different from the preliminary design we’ve
drawn here.

In UML diagrams we generally only show the things that are important for
the point of the particular diagram being made. It’s often better to draw two
diagrams to make two different points than to have one diagram try to make
two points.

Once you begin to get have a handle on which classes you might use, you
can start to think about the UML class diagram. One part of becoming skilled
with OOA is to draw a lot of UML class diagrams. Programmers often have a
little trouble getting started with this process. Here are some pointers.

Dive right in
UML diagrams can be drawn at many levels, from the very simple to the very
detailed. Usually a fairly simple diagram is all you need. Remember that UML
class diagrams are supposed to be easy, so easy that anyone with a stake in the
project can understand them. Don’t approach them as if you’re writing code
that has to compile; the whole point of UML diagrams is that you should be
able to get them done quickly and easily. They don’t have to be perfect. To start
with, the main thing is simply to get something down on paper.

Redraw many times
Typically you might start by drawing boxes with the names of all the main
classes that you use (or plan to use) in the program. And then you add in the
hollow-headed inheritance arrows, the diamond-tailed composition lines, and
the solid-headed association-with-navigation arrows. Typically you’ll end up

Figure 4.3 UML classes with members and methods

with several lines crossing each other. Though there’s nothing strictly ‘wrong’
about this (you can always erase a little space in one line to indicate the lines
pass under or over each other), it doesn’t look nice. It makes the diagram harder
to read. So, really, you should redraw it. The process of redrawing the UML class
diagram is not at all a waste of time. For while you’re doing this, you’ll begin
thinking more concretely about your classes and the class instances as being
definite entities that you are moving around. Drawing a UML diagram is as
much about the process of drawing it as it is about the finished product. Since
you’re going to redraw it many times, its not a bad idea to do it with a pencil
and a few sheets of paper to hand. It is possible to use special UML-drawing
software that automatically generates a diagram from your code – in this case
you’ll usually get a diagram that has more detail than you want, and your
revision process will involve pruning the thing down and rearranging the
boxes. Try to avoid drawing your initial diagrams with an interface that’s hard
to use, and which discourages revision. If, for instance, you’re drawing your
UML diagram by inserting boxes and arrows with the Drawing Toolbar of
Microsoft Word, it’s a real pain to move things around, and you’re not going
to do it as much as you should. It’s much better to always do a few first drafts
with pencil, an eraser and a large, clean piece of paper.

Keep each diagram simple
Don’t feel that you have to get every single class into one diagram, and don’t
feel you have draw every possible association line. A big program is like the
Grand Canyon or the Rockies, you can’t show all of it in one picture. Instead, you
pick a telling vantage point and crop your frame to include only the features
you are currently interested in. In order to give a fairly complete accounting of
your classes, it’s usually better to draw several UML class diagrams rather than one.
Thus, when talking about the Pop Framework, we might use several different
UML diagrams: one for the MFC framework classes having to do with document
and view, one for the custom Pop Framework classes, one for the details of the
various critter child classes, another for the sprite child classes, and so on.

Step through use cases
In order to tell if your UML diagram describes an architecture that will work
you need to ‘test out’ the diagram. A good procedure is to step through the
stages of various use case scenarios, thinking about which kinds of collaborator
objects each object needs for the different steps of the scenario.

You’ll find some examples of OOA problems to work on at the end of the
chapter.

4.3 Encapsulation, inheritance, and polymorphism

The technique of putting data and methods inside a single object is called
encapsulation. The two other words most commonly used when talking about
OO are inheritance and polymorphism.

Object-oriented Software Engineering 91

Software Engineering and Computer Games92

The idea behind inheritance is that if you already have a class that’s almost
like something you need, its a good idea to define a new class that is a child
class of the existing class, recoding or overriding some of the new class methods
so that they behave differently from the old class. We can draw a picture of
inheritance as in Figure 4.4.

When an inherited method calls the code of the base method and then does
something additional, we can say that it extends the method as well as saying
that it overrides it. Thus, if ClassB inherits a foo() method from ClassB, we say
that ClassB overrides foo so long as ClassB redefines the implementation code
for foo in any way at all. And we can say that ClassB overrides and extends foo
if the redefined code for foo has a form like ClassB::foo(){ClassA::foo();
doMore();}.

The MFC framework provides you with some key base classes called CWinApp,
CDocument, and CView. Rather than reinvent the principles of Windows program-
ming, we code our Pop program as a Windows application by implementing a
CPopApp, CPopDoc and CPopView which are children of the standard MFC base
classes. As we discussed in the last chapter, we draw pictures of inheritance
relationships by drawing a hollow-headed arrow from the child to the parent
class (see Figure 4.5). These kinds of drawings are the UML class diagrams that
we mentioned before.

Figure 4.4 A class and a subclass

Figure 4.5 Inheritance diagram for basic MFC classes

Object-oriented Software Engineering 93

The notion of polymorphism is that an object ‘knows’ what class it belongs
to, and when you have it call some method, it will be sure to use the version of
the method that’s coded up by its class. This takes on special significance when
you have a collection of objects belonging to disparate classes.

As a concrete example of polymorphism, let’s think about having some
classes that inherit from a class called cCritter. The cCritter class has an update()

method that changes a critter object’s state according to the current situation of
the game world. Now it might be that we have several different kinds of critters
in our program. This is illustrated in Figure 4.6. (As before, to make the UML
class diagram cleaner, we use horizontal bars to combine into one arrow what
could otherwise be drawn as separate inheritance arrows.)

Now suppose we were to have an array called biota which is an array of N
pointers to cCritter objects. The prototype might be something like cCritter*
biota[N]. And then we’d be able to update all the critters at once with a line
like for(int i=0; i< N; i++) biota[i]->update(). And each biota[i] cCritter

pointer object would know exactly which kind of cCritter child it was pointing
to, and would know to use the appropriate version of the cCritter move method.

One annoying C++ gotcha is that in C++, a variable that can have child class
values assigned to it will only show polymorphic behavior if it is a pointer
variable.

That is, if the biota in the example just given were to be defined as cCritter
biota[N] and the loop were to call biota[i].update(), then we would unhappily
find that even if the various biota[i] objects were supposed to be differing
kinds of cCritterChild classes, the base class cCritter::update would be executed
for each of the biota[i] objects, with the actual child class information about
these objects being totally ignored. The cause of this problem is that, in order
to put a cCritterChild object childcrit into one of the biota[i] array slots, you’d
actually need to ‘upcast’ it into a base cCritter object (cCritter)childcrit, thus
losing its child class information. But a pointer variable works alright because a
cCritterChild *pchildcrit pointer can be placed into a cCritter * pointer

variable without having to change anything about the pointer.

Figure 4.6 Class diagram for cCritter child classes

This issue doesn’t come up in Java, as all class object variables in Java are
automatically pointers anyway. The moral is to use pointer-objects whenever
you’re planning to have them behave polymporphically. More information
about this can be found in the reference Chapter 22: Topics in C++.

The two languages most used for OO these days are C++ and Java. This is not
to say that there aren’t others, such as Smalltalk and Ada 95. And Microsoft is
currently promoting a new OO language called C# (pronounced ‘C sharp’).
Certainly most new applications are written with object-oriented code. This
said, there are certainly a number of legacy applications that are in plain old C;
this is particularly true for low-level programs such as device drivers.

Regarding Java and C++ for OOP, both have their pros and cons. At this
moment in the history of computer science, a software engineer would do
well to know both languages. C++ is a language of choice for stand-alone OO
programs on a desktop machines, and Java is popular for distributed Web
applications. By learning both languages you allow yourself a wider range of
platform options. A less obvious point is that many aspects of OO only become
really clear when you’ve learned more than one OO language. Learning Java
has certainly increased this author’s understanding of C++. And if you happen
to know Java but not C++, learning C++ will undoubtedly increase your under-
standing of Java.

For a review of C++ and its OO features take a look at Chapter 22: Topics in
C++ now. You may not want to read every detail of the chapter at this time, but
at least skim through it, so that you’ll know what information is there, and
then you’ll know where to look when you need it.

A little more terminology. The public methods for a class are sometimes
called the class’s interface. We often like to think of an object as a black box
whose internals are hidden from the other objects. The interface to a black box
like this is the methods you can use to make it do things.

A class normally has several different types of methods besides the constructors
and the destructor. Specifically, accessors return information about an object’s
internal members, and mutators make changes to an object’s members.

Occasionally we want to have a base class which doesn’t actually have imple-
mentations of its methods. We can do this by giving the methods empty in-line
code definitions, as in void doSomething(){}; or we can explicitly indicate that
this method is not implemented at all with a line like void doSomething() = 0;.
A method of the second type is called abstract, and a class with an abstract
method is called abstract as well.

A base class with no data members and trivially defined or abstract methods
is often called an interface. In the Java language there actually is an interface

language construct that you can use in place of class to specify a base class with
abstract methods.

Thus we can use the word interface in two senses. (a) If ClassB inherits
from ClassA, then ClassB will have an interface (set of methods) that extends
the interface (set of methods) of ClassA. (b) If ClassA really has nothing more
than its set of methods, then we can simply speak of ClassA itself as being an
interface.

Software Engineering and Computer Games94

Object-oriented Software Engineering 95

Figure 4.7 Inheritance and composition

Figure 4.8 Use composition to avoid multiple inheritance

4.4 Composition and delegation

We say that ClassB is composed with ClassA if ClassB has a ClassA or ClassA*
member; for short we can say ClassB has a ClassA. And, as before, ClassB inherits
from ClassA if ClassB is derived from ClassA as a child class; for short we say
ClassB is a ClassA.

As it turns out, you can always replace an inheritance relationship by a com-
position relationship as indicated in Figure 4.7. If ClassB has a ClassA member
object *_pA, then (a) a ClassB object gets a set of ClassA data fields wrapped up
inside *_pA and, (b) ClassB can implement the same methods as ClassA simply
by passing these method calls off to *_pA. When you pass method calls to a
composed object, this is called delegation.

Note that you can also do composition and delegation by using a member
object ClassA _mA, but we prefer pointer members because they permit poly-
morphic function calls.

Why would you want to use composition in place of inheritance? There are
several reasons.

First, C++ code using multiple inheritance tends to be a bit difficult to main-
tain, and there are special MFC CRuntimeClass methods and macros that would
need to be overridden if you want to use multiple inheritance. If you have
a ClassB that you’d like to have inherit from both ClassA and ClassC, you can
instead use composition for ClassA or ClassC. Figure 4.8 shows how this looks if
we compose ClassB with ClassC.

Software Engineering and Computer Games96

Second, inheritance locks in a class’s behavior at link time, while composi-
tion allows you to change the behavior of a class during runtime. This is illus-
trated in Figure 4.9. The ClassB has a set_pA member method to delete the old
*_pA and install a new one. In the Pop Framework, when you use the Player
menu to change the player’s controls, you are actually changing the kind of
cListener *_plistener member which the player cCritter is composed with.

Third, inheritance is sometimes called ‘white box’ code reuse, because when
you inherit from a class its internals are visible to you. Composition, on the
other hand, is called ‘black box’ code reuse because (unless you’ve unwisely
used a friend statement) the internals of the class you compose with are hidden.
A practical advantage of black box code reuse is that you’re less likely to break
things that are used by classes other than your own. A useful mental model
when using composition is that you’re making a class by snapping together pre-
existing components.

A fourth and final reason why we often prefer composition to inheritance
is that composition lets us avoid the ‘combinatorial explosion’ that we end up
with if we try to separate out a class for every possible combination of the
behaviors that we would otherwise delegate out to a composed member.

Of course there are still many situations where inheritance is the appropriate
design method. Particularly if you’re interested in having a polymorphic set
of objects, it’s good to have the objects inherit from a common base class. In
the case of the Pop Framework, the cCritter base class plays this role. The indi-
vidual cCritter child classes have constructors which compose specialized critters
by ‘snapping together’ some component classes. And the individual cCritter

update methods are usually overridden. We use inheritance so as to have a
uniform list of cCritter child objects, and we use composition both to create
new kinds of cCritter child classes and to possibly change the cCritters while the
program is running.

Look, for instance, at the diagram of the critters and the classes they com-
pose with (Figure 4.10). We see two kinds of critters, two kinds of sprites, two
kinds of listeners, and two kinds of forces, eight classes in all. Now suppose that
we wanted to avoid composition and put all of the behavior into the classes.
Unless we use multiple inheritance, we’d end up with 18 classes: cCritter and

Figure 4.9 Composition makes dynamic change possible

Object-oriented Software Engineering 97

cCritterArmed, with eight child classes each, one child for each of the eight ways
of choosing polygon/icon, cursor/fly, or gravity/evade. This is illustrated in
Figure 4.11. But if we can use composition to farm out the choices to helper
classes, then we end up with a smaller number of classes in all.

Now let’s say a bit about the practicalities of composition and delegation.
When you compose ClassB with a ClassA member _mA (or with a *_pA member)
the owner ClassB will need to use ClassA accessors and mutators to get at
the ClassA object’s data. You can get around this by having ClassA declare
ClassB as a friend, but generally we try to avoid friend statements as they break
encapsulation.

When you use composition with delegation as illustrated in Figure 4.7, you
need to explicitly declare and implement a ClassB function like foo() which is
intended to pass off the call to the ClassA member method foo(). This is differ-
ent from inheritance, where a child class automatically gets the methods of the
parent class. In the case of composition, you of course don’t have to give the
ClassA method the same name as the ClassB method which it calls. In fact it is
likely to make your code easier to understand if you give the ClassA method a
name like ‘feelfoo’ or ‘dofoo’ or ‘callfoo.’

A fairly trivial example of composition is that we give both our cSprite and
our cRealBox classes a cColorStyle*_pcolorstyle member which holds things
like the fill color to be used for the shape. The color-related mutators and
accessors for cSprite and cRealBox pass the calls on to their _pcolorstyle members.
This is shown in Figure 4.12.

Figure 4.10 Critters and classes they are composed with

Figure 4.12 Simple composition

Figure 4.11 Combinatorial explosion of classes

Object-oriented Software Engineering 99

Why didn’t we just make cSprite and cRealBox inherit from, say, a common
cUsesColorStyle class? The reasons were that (a) other than being drawable with
colors, the two classes really have nothing in common and, more importantly and
(b) as we move from two-dimensional graphics to three-dimensional graphics, we’d
like to allow the possibility of using richer and more complicated kinds of cColorStyle

child classes to specify the colors and styles of our sprites and world boxes.
A less obvious point about delegation is that when ClassB delegates a method

like foo(), you often want foo to be able to access and mutate the members of
ClassB. If ClassB has a ClassA *_pA member, the correct way to delegate foo() so
that it can access and mutate ClassB is the following.

ClassB::foo()

{

_pA->foo(this);

}

ClassA::foo(ClassA *powner)

{

/* Use ClassA accessors and mutators to read and change the fields

of powner */

}

In the specific example of the cCritter and the cListener *_plistener that
it’s composed with, we have the following code.

void cCritter::listen(Real dt)

{

_plistener->listen(this); /* We pass the pointer “this” to the

listener so that it can change the fields of this calling

cCritter as required. */

}

void cListenerScooter::listen(cCritter *pcritter)

{

cController *pcontroller = pcritter->pgame()->pcontroller();/*The

caller critter’s pgame() holds the cController object that

stores all of the keys and mouse actions you need to possibly

listen to in here.*/

//Translate

if (pcontroller->keyonplain(VK_UP))

pcritter->setVelocity(pcritter->maxspeed()*

pcritter->tangent());

/* I want to move the critter position. But I don’t just

use a moveTo because I want to have a correct _velocity

inside the critter so I can use it to hit things and

bounce and so on. So I change the velocity. */

//Etcetera....

}

Software Engineering and Computer Games100

In other cases it may be that the foo call does some setup code before passing
the call off to the composed object. This is the situation where cCritter delegates
some of its draw call to its cSprite *_psprite member. The matrix manipula-
tions serve to translate and rotate the graphics frame of reference to match the
critter’s position and orientation.

void cCritter::draw(cGraphics *pgraphics, int drawflags)

{

pgraphics->pushMatrix();

pgraphics->multMatrix(attitude());

_psprite->draw(pgraphics, drawflags);

pgraphics->popMatrix();

}

4.5 Principles for OO design

In this section we list some principles for object-oriented software engineering.
As kind of an intellectual game, we’ve made an effort to label each principle with
an OOA, OOD, or OOP, according to at which stage of the software engineering
process the principle is most likely to come into play. The idea is that principles
marked OOA are things you can work out when you’re doing the high-level
design, the OOD are things that you’ll get into when you work out the detailed
design for the classes, while the principles marked OOP are design details that
you’re more likely to think of after you start coding. Don’t take these labels too
seriously!

• OOA: An object is an organism. Make class objects responsible for all their
behavior. A class should own every method it needs to do things.

• OOA: Let your classes multiply. Freely derive classes from your base classes to
implement variations on behavior. Remember, you want to start thinking of
defining a class as something easy. Move as much code as possible up into
helper functions that live in the base class; this makes deriving the children
easier.

• OOA: Use utility classes in place of primitives. Most of your class members
should be other classes, or pointers to other classes. Admittedly, somewhere you
will need to have data that is of a primitive type such as int, float and char.
But, so far as possible, you should wrap these primitives up inside of classes that
are closer to the way you think. Thus we use the MFC CString objects instead
of char arrays, and we use our cVector objects instead of pairs of float x, y.
With practice, you can learn to think of creating a new class as something
easy and helpful, rather than as something arcane and risky! Figure 4.13
illustrates the kind of class nesting that you might expect to see in an OOD.

• OOA: Keep your classes light. Don’t make one single class do too much. You
wouldn’t want to have only one class called Main, with all of your program’s
data and methods in it! It makes the code easier to develop and maintain

Object-oriented Software Engineering 101

if each class has only a limited number of related responsibilities. Delegat-
ing a given functionality off into a separate class gives you the option of
implementing it in some standard way in a base class with child classes for
alternate behaviors.

• OOA: Reuse classes. When appropriate, inherit from or compose with other
people’s classes, or classes that you’ve used in other programs. Be aware of
what classes are available for you in the MFC framework, for instance.

• OOA: Prefer object composition to class inheritance. If you use composition it
makes it easier to have each class be focused on one kind of task. Composi-
tion also prevents a combinatorial explosion of classes.

• OOD: Think like an object. In trying to determine a class’s methods, try and
read through your code taking the viewpoint of one of your class objects.

• OOD: Use pointer members rather than instance members. When you give a
ClassB a member object of ClassA, you can either declare it as ClassA _mA or
as ClassA *_pA. The former is an instance member, the latter is a pointer
member. Using pointer members is a bit more work because you need to
remember to construct and destroy the object it points to. The virtue of
a pointer member is that you can put child class variables into it with-
out having to upcast them to the base class as you would with an instance
member. This makes polymorphism possible; that is, if a pointer member
is of type ChildA* instead of type ClassA*, then it will use the overridden
methods of ChildA.

• OOD: Program to an interface, not to an implementation. When thoroughly
carried out, this principle means that you have abstract, implementation-
free classes at the top of your class hierarchies. This gives all of the derived
classes identical interfaces. When less thoroughly done, this simply means
that you try and think always in terms of what your classes have in common.

Figure 4.13 The dots are primitives, the shapes are classes

An example of this in action would be to have your object variables be
given the highest base class type possible rather than a specific child class
type. Thus, it would be better to have, say, a cCritter * variable than to have a
cCritterSpaceWarGameAsteroid * variable. The reason is that if your code only
mentions the base class cCritter, then the code is more reusable.

• OOP: No forgery. Avoid storing the same data in two different places. Any copy
of a data object is a ‘forgery’ which may be corrupt. Thus, it would be a mis-
take to try and maintain an int _crittercount member in the cGame class,
because the same information is already present in the CArray<cCritter*>
_pbiota cGame member, and can be accessed as _pbiota->GetSize(). If
we kept a separate _crittercount variable, we’d repeatedly have to worry
about keeping the ‘forged’ _crittercount in synch with the ‘genuine’
_pbiota->GetSize().

• OOP: Don’t write the same code twice. Avoid writing the same code in two
different places. If you have more than three or four lines of code that you
use twice, put this code inside a method that you call in the different places.
The reason for this is that if you have the same code in two places, then over
time (bug-fixes, development) the two versions may drift apart and become
different. Sometimes you will want to encapsulate the code inside a class
that you can compose with.

• OOP: Encapsulate methods. If you use some piece of data as an explicit
or implicit argument to function calls more than two lines in a row, think
about giving the class that owns the data a method that accomplishes these
lines with a single call. Thus, if we have a cVector v object, instead of writing
Real mag = sqrt(v.x()*v.x() + v.y()*v.y() + v.z()*v.z()), we give cVector

a magnitude method that does the calculation and allows us to just write
Real mag = v.magnitude().

• OOP: Don’t ask objects their class type. If you’re doing a switch on the type
of a class, you should replace the switch with a polymorphic function call
so you don’t need to find out the class’s type. This said, there are times
when we will use the MFC GetRuntimeClass method to condition an action on
the type of an argument object. But always think twice to see if it’s really
necessary.

• OOP: Don’t break encapsulation. Avoid friend statements like the plague. Make
most data private or at least protected. Conceal the actual implementation
structure of your class, and reveal only the few basic public methods that
others need to call. It takes only seconds to write in-line accessor and mutator
methods like Real age(){return _age;}; void setAge(Real age){age =

_age;}. If a method is in-line and non-virtual, there is no computational cost
whatsoever in using it, because the preprocessor replaces each occurrence
of, e.g., ‘age()’ by ‘_age’. So why bother? Because, with reference to the
age example, at some point you may decide to associate another age-related
variable with the _age variable, and then you may want to change the accessor,
the mutator, or both.

Software Engineering and Computer Games102

Object-oriented Software Engineering 103

4.6 The code interface

There’s two ways of thinking of your body of code: the semantics and the syntax.
The semantics of your code has to do with what it means, and the syntax has to
do with what the text in your files actually looks like.

At the semantic level, your code is used to prototype and implement classes
and to weave some class objects together into your program’s run-cycle. That’s
what we’ve been talking about so far in this chapter.

In this section we’ll say a little about your code syntax, and how you can
make the syntax more ‘object-oriented’ – in the sense of being more like a black
box with an interface of clearly accessible switches and settings.

Of course code is really more of a white box, since you can open up the files
and read every bit of them. The point is that if you organize your code in a nice
way, you can put something like an interface into it. Here we’re not using ‘code
interface’ in the sense of the class prototypes found in the header files – those
are the class interfaces. By code interface we mean a collection of tricks and
idioms that experienced programmers use to make their implementation files
more tweakable.

C++ language features useful for creating a good code interface include the
following.

• #define switches for #ifdef code blocks.

• typedef statements for renaming types.

• static variables.

• static methods.

Detailed information about #define and #ifdef can be found in the Pre-
processor Directives section of the Part II Chapter 22: Topics in C++. Quite
briefly, if you have two possible versions of some code, or a piece of code that
you only want to turn on sometimes (for instance when debugging), it’s a
good idea to use a #define and an #ifdef. So you might have something like this
example taken from critter.cpp.

//#define DRAWMOVINGTRIHEDRON

/* This draws red, blue, yellow lines for each critter’s

_tangent, _normal, _binormal. It’s useful in debugging motion

problems. */

Intervening code . . .

void cCritter::draw(cGraphics *pgraphics, int drawflags)

{

pgraphics->pushMatrix(); pgraphics->multMatrix(attitude());

_psprite->draw(pgraphics, drawflags);

#ifdef DRAWMOVINGTRIHEDRON

cColorStyle dummy;

dummy.setLineColor(cColorStyle::CN_RED);

pgraphics->line(cVector::ZEROVECTOR, 2.0 * cVector::XAXIS, &dummy);

dummy.setLineColor(cColorStyle::CN_BLUE);

pgraphics->line(cVector::ZEROVECTOR, cVector::YAXIS, &dummy);

dummy.setLineColor(cColorStyle::CN_YELLOW);

pgraphics->line(cVector::ZEROVECTOR, cVector::ZAXIS, &dummy);

#endif //DRAWMOVINGTRIHEDRON

pgraphics->popMatrix();

}

When you have #define-controlled switches like this, be sure to put the
#define line up at the top of the *.cpp (or *.h) file where it’s used, and follow it
by a long comment explaining the consequences of turning this switch off or
on by, respectively, commenting it out or leaving it in.

Another type of code interface switch uses typedef. In the Pop Framework we
use a lot of floating point real numbers. So as to avoid having to permanently
commit to whether we want to use the faster float or the more accurate double,
we have a file realnumber.h that includes these two lines.

//typedef double Real;

typedef float Real;

At present we’re going for more speed and less accuracy, but if it ever seemed
better to have more accuracy at the expense of speed, we would only need to
edit those two lines. And everywhere in our files where we need a real number,
we always use the defined type Real, rather than float or double. For this to work,
of course, we have to have an #include realnumber.h in all of these files.

A simpler kind of code interface setting is a parameter whose value affects
the way the program works. Always try and avoid putting raw ‘magic numbers’
in our code. Instead of a raw number you should either use a #define or, better, a
static variable.

Using static variables is an example of a good OO practice that is more
common in Java programming. In Java it’s very easy to declare and initialize a
static variable, you simply place it right into your class definition. In C++ it’s a
bit harder. You declare the static variable inside your class header, but you have
to actually set the variable’s value down inside one of your *.cpp files. As we
show in Figure 4.14, a class will have multiple object instances, but all of these
are thought of as showing the same static variables, and they all agree on the
values of these variables.

Sometimes we make our static variables public; in this case they’re the
closest thing to a global variable that OOP allows. A static variable that you set
once and for all is typed as a const. In Windows programming, a color is coded
up as a 32-bit integer with the three right-most byte fields representing the
red, green, and blue intensities, which can range from 0 to 255. An RGB macro
assembles three intensities into a color-coding integer. To avoid having to
remember all this, we can make public static const int variables in, say, a cColorStyle

class. The colorstyle.h header would have code like this.

Software Engineering and Computer Games104

Object-oriented Software Engineering 105

class cColorStyle: public CObject

{

public:

//Color constants.

static const int CN_RED;

//More code...

};

And the colorstyle.cpp would instantiate the static variable, giving it a place to
‘live’ by using a line like this.

const int cColorStyle::CN_RED = RGB(255, 0, 0);

The line does not appear inside any method, it’s simply in the file as is. Note
that when you instantiate a static you also are allowed to initialize it. Unlike
Java, C++ won’t let you initialize a static inside the class prototype in the header
file. (Well, actually ANSI C++ will let you do this if it’s a const static, but
Microsoft C++ won’t in any case.)

If a static variable is public, we can access it in any file of our code, assuming
that file has included the header where the static’s owner class is protoyped. A
typical use of a static looks like this.

ppolygon->setFillColor(cColorStyle::CN_RED);

As a matter of good programming, we always prefix a reference to a static by
its owner class name and the scope resolution operator ‘::’. You don’t actually
need this prefix if you are using the static within a method of the static’s owner
class, but it makes the code more uniform and easier to follow. It’s also good
practice to consistently use a different name style for statics; in the Pop Frame-
work we always capitalize them.

We typically instantiate our statics in the *.cpp that matches the *.h file
where they’re declared. The statics specific to cGameSpacewar are initialized in
gamespacewar.cpp, the statics specific to cGamePicknpop are initialized in gamepickn-

pop.cpp and so on.

Figure 4.14 Objects share the static members of the class

The ‘code interface’ aspect of statics involves using them for parameters that
we may wish to change during successive builds of the program – unlike a fixed
constant like CN_RED. When you write a game, there are a lot of values that
you may want to change repeatedly. If these are statics initialized (and well-
commented) at the head of the *.cpp file, it’s easy to keep adjusting them until
you see the performance you like.

A few more facts about static variables. You can, if you like, instantiate a static
in any *.cpp file you like. Generally it’s easier to find them if they live in the file
that goes with the header that declares them. But sometimes you may want to
group a bunch of statics together, particularly if their initialization values depend
upon each other. In the Pop Framework, for instance, we instantiate the ‘mutation
flag’ statics all inside a file we created called static.cpp. The reason is so that we
can make sure that these single-bit flag variables don’t have conflicting values.

const int cCritter::MF_NUDGE = 0x00000001;

const int cCritter::MF_POSITION = 0x00000002;

const int cCritter::MF_VELOCITY = 0x00000004;

const int cSprite::MF_RADIUS = 0x00000008;

const int cSprite::MF_ROTATION = 0x00000010;

//Etc.

If a static has the const modifier, that means you aren’t allowed to change its
value anywhere in the code, other than in the line where you initialize it. Other
statics can in fact be changed. One use of a non-const static might be a variable
to keep track of whether any instance of a given class has been initialized yet.
Thus we declare a static BOOL FIRSTTIME variable in graphicsopengl.h, instantiate
it in the *.cpp as BOOL cGraphicsOpenGL::FIRSTTIME = TRUE, and have some code
that, if FIRSTIME is TRUE, sends some informational output and sets FIRSTTIME to
FALSE. Or you might use a static int INSTANCECOUNT to track how many objects
of a given type have been created, initializing INSTANCECOUNT to 0 and letting
the class constructor and destructor respectively increment and decrement
INSTANCECOUNT.

There are a number of reasons why it’s better to use static variables rather
than #define parameters.

• Type checking is performed on static variables, but not on #define parameters.

• Since the initialization of the statics is inside a *.cpp rather than inside a *.h,
when you change the value of a static parameter, you don’t need to recompile
as much of your code.

• If you always put the class name and scope resolution operator in front of
your static names, this adds a level of self-documentation to your code that
#define names don’t give you.

• Static variable names are less likely to cause namespace conflicts than #define

names. That is, if you #define a name like CRITTERSPEED in two different files,
your compiler won’t like this. But if you have a cGameRunner::CRITTERSPEED
and a cGameWalker::CRITTERSPEED there’s no conflict.

Software Engineering and Computer Games106

• Using statics is a good habit to get into because it’s useful for having
OO-correct versions of things very much like global variables, such as the
single static cRandomizer cRandomizer::RANDOMIZER object defined in our
randomizer.h and randomizer.cpp files. This way, whenever we need a randomizer
anywhere in our program, we just use cRandomizer::RANDOMIZER.

• Since a static is a variable, you can change it inside your code. Thus, for
instance, many of our cGame child classes change the value of the static Real

cCritter::MAXRADIUS as a way of altering the default maximum size of all
the critters.

• Java doesn’t allow the #define statement, so you might as well start learning
to live without it.

Review questions

A What are OOA, OOD, and OOP? What are some outcomes of these processes?

B What are some basic principles for drawing UML diagrams?

C What are encapsulation, inheritance, and polymorphism?

D How can you replace inheritance with composition? Draw a UML diagram.

E What is meant by the interface of a class?

F What does it mean to delegate a method to another class? Draw a UML diagram.

G Why do you sometimes use the argument this when delegating a method?

H Why are pointer members preferable to instance members? What is the additional
burden of having a pointer member?

I What do we mean by ‘no forgery’?

J What is the combinatorial explosion of classes, and how can you prevent it?

K How do you use #ifdef?

L How do you declare and instantiate a static variable?

Exercises

Exercise 4.1: OOA for a concert ticket site

Let’s revisit the ticket-site example that was mentioned in Exercise 2.1. Here’s the
specification again.

A client can visit the server and search a schedule for a concert. A concert specifies a
performer, a venue and a date. After selecting a concert, the client sees a list of some
available tickets, specifying seat and price. The client can view a map to see where the seats
are located. The client can select tickets and add them to his or her order. The client can
buy the order by filling in an address form and giving credit card information.

Figure out a set of classes based on some or all of the nouns in the description and
arrange them into a UML diagram. Test the completeness of your diagram by tracing
some use cases through it. Draw the diagram at least three times, improving it each
time.

Object-oriented Software Engineering 107

Exercise 4.2: OOA for a music sharing site like the old Napster

A couple of years ago the music-sharing site called Napster ran a ‘share-server’ that satisfied
the following specification. A client can log into the share-server. The share-server maintains
a ‘share pair list’ of ‘share pairs,’ where a share pair consists of a song name and a link to
a client who has this song available. When a client logs in, the share-server adds share pairs
for the client’s songs to the share pair list. A client can request a song, and the share-server
displays a sublist of the share pair list showing share pairs for that song. If a client selects
a share pair, the song is transferred to this client from the client mentioned in the share pair.

Figure out a set of classes based on some or all of the nouns in the description and
arrange them into a UML diagram. The diagram will primarily have composition lines con-
necting the boxes. Test the completeness of your diagram by tracing some use cases
through it. Draw the diagram at least three times, improving it each time.

Exercise 4.3: OOA for a music sharing site like KaZaA

Napster was successfully sued by the record companies for maintaining a share-server like
this. In 2001 a possibly legal work-around emerged. Companies like KaZaA added another
layer to the architecture. Rather than maintaining a share-server, they maintain a meta-server
which directs clients to other client machines that are acting as share-servers.

Show how to add a meta-server to the UML diagram you got in the last exercise.

Exercise 4.4: Writing a utility class

Write a few lines of code to implement a utility container cCritterPair class to hold two
cCritter * pointers as private members. The class should have a constructor that takes a
pair of pointers as arguments and two accessors to get at the member pointers. Don’t bother
with mutators. Assume that cCritterPair should not delete its members in its destructor.

Exercise 4.5: Tweaking static variable values in the Spacewar game

Here we make some changes to the initializations of the static variables in gamespacewar.cpp
and see what happens. When you change a static, it’s usually wise to leave the original
value as a comment to the right so you can get it back if necessary.

Increase cGameSpacewar::WORLDSIZE and notice how much bigger the world gets
relative to the critters.

Increase cCritterAsteroid::DARTACCELERATION and cCritterAsteroid:

:DARTSPEEDUP and notice that it becomes nearly impossible to shoot an asteroid.
Change cGameSpacewar::ASTEROIDHEALTH to four and notice how many times you

have to shoot and split up an asteroid before finally getting rid of it.

Exercise 4.6: Composition and inheritance

Draw two pictures to represent the inheritance and composition relationships shown in
Figure 4.8, but have your pictures represent classes by egg-shaped images as were used
in Figure 4.5.

Software Engineering and Computer Games108

5Software design patterns

Every year people’s expectations of software get higher and every year the job
of being a software engineer gets harder. The only way we can hope to keep our
heads above water is to continually improve the tools of our discipline.

Software engineers are always looking for a higher-level way of working,
a tower to climb to get some perspective. We go from low-level languages to
high-level languages, we use object-oriented methods, and over time we learn a
number of reusable idioms. And now there’s a new route to higher ground: the
use of software design patterns. Adding another layer to the UML dependency
diagram (Figure 4.1) we now get Figure 5.1.

While object-oriented software engineering encourages us to think about
encapsulating our data and methods into classes, software design patterns show
us good ways to get our classes to collaborate with each other.

It turns out there are certain useful but non-obvious ways in which one can
have classes interact with each other, and a certain limited number of these
design patterns recur over and over again. The simpler kinds of patterns are
simply idioms, but the more complicated ones are what we call software design
patterns. In recent years, software engineers have taken to cataloging software
design patterns.

Figure 5.1 Levels of design

Repositories of these patterns can be found online and in textbooks such as
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995). The pattern
names used in the Design Patterns book include Abstract Factory, Builder, Singleton,
Adapter, Bridge, Composite, Decorator, Façade, Flyweight, Proxy, Chain of
Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer,
State, Strategy, Template Method, and Visitor.

A software design pattern is usually described in terms of being a solution to
a certain type of problem in a particular context. In this chapter’s brief over-
views, seven patterns are documented by describing the kind of problem the pattern
is useful for, and giving a brief summary of the solution presented by the pattern
followed by a mention of how the pattern is used in the Pop Framework.

5.1 Strategy

The Strategy pattern is an example of delegation, the general object-oriented
idiom that was mentioned in the last chapter. Before starting, we should mention
that in discussing implementations of patterns such as the Strategy pattern it
will be helpful to use obvious, illustrative class names like Context and Strategy,
as in Figure 5.2. But of course when you use the software patterns in your own
code you can call your classes anything you like.

The problem addressed by the Strategy pattern is when we have a range of
objects, all members of the same class called, let’s say, Context, and we want to be
able to change the behavior of the behave method of a Context object without
having to change the class the object belongs to.

The solution is to create a Strategy class that holds a behavealgorithm
method. The Context class will have a Strategy *_pstrategy member, and a
Context::behave(){_pstrategy->behavealgorithm(this)}.

The reason you need to pass the ‘this’ to the behavealgorithm is so that the
method can use the Context mutators and accessors to view and to alter the data
of the Context object. Possibly behavealgorithm may call some other Context

methods as well.

Software Engineering and Computer Games110

Figure 5.2 The Strategy pattern

If you find it useful, you can use the same name for the Context::behave()
and Strategy::behavealgorithm methods.

The Strategy pattern plays a role similar to the role of function pointers in
old-style C programming. One of the motivations for using the Strategy pattern
is to avoid having a combinatorial explosion of classes. Rather than having to
derive off new subclasses for new kinds of behavior, we use the Strategy pattern
to let classes ‘plug-in’ whatever behavior they need.

In the Pop Framework, the cCritter::feellistener() method calls a cListener::lis-

ten(cCritter *pcritter) method. In particular, we give each cCritter a cListener *_plis-

tener. The cCritter::feellistener() calls _plistener->listen(this).
The cListener::listen(cCritter *pcritter) method takes input from the mouse or

keyboard and affects the owner critter in different ways.
The fact that a Strategy object can be dynamically changed means that when

you are running the Pop program, for instance, you can use the Player menu to
select different kinds of controllers for the player. When you are doing this, you
change the player’s listening strategy.

5.2 Template Method

The problem arises when you have a range of different child classes with a
common base class. You want each child class to execute some fixed sequence of
methods in the same order, but you want to be able to vary what the individual
calls of the sequence do.

The solution, as shown in Figure 5.3, is to place the sequence of method calls
into a non-virtual templateMethod function that is not overridden by the child
classes. The Template Method has calls to various virtual hookMethod calls that
can be overridden.

Software design patterns 111

Figure 5.3 The Template Method pattern

In the Pop Framework, the cGame::step method is a template that holds
a sequence of calls to cGame methods that update and show the critters in a
certain order, with certain calls that you might override located at a certain
positions within the sequence. In this case the methods you might override are
cGame::adjustGameParameters and cGame::gameOverMessage.

The cSprite::draw method is another example of the Template Method pattern;
it has some special ‘don’t touch me’ code nested around the virtual method
cSprite::imagedraw that the sprite child classes override.

5.3 Command

The problem is that you may want to ask an object to do something, but you
don’t know exactly when the object will carry out the request or exactly how
it will do it.

The solution, as shown in Figure 5.4, is to create a Command object that repres-
ents which command you want executed, possibly with information about
which target object is supposed to be affected by the command’s execution.

Often the Command pattern is used in partnership with a CommandProcessor

that holds the collection of commands that still need to be executed. The
CommandProcessor can be derived from an array template or a linked list template.

The Windows operating system uses something like the Command pattern,
although the pattern is not implemented in a fully object oriented way. In
Windows all commands are stored as message structures that have an integer
messageID specifying the type of command to be executed. Rather than indi-
vidually implementing an execute method, the messages pass off the execution
task to a big switch statement in the Windows code, with the switch looking
at the value of the messageID.

Software Engineering and Computer Games112

Figure 5.4 The Command pattern

In the Pop Framework, we do a similarly half-hearted implementation of
the Command pattern; we use a cServiceRequest structure and pass the task of
executing the command off to switch in the code of a cBiota object that holds
our command queue.

A bit more detail. When we carry out an update of the game world, we walk
through a list of critters and call an update method for each of them. When an
object dies, it’s not practical to remove it from the simulation until we’re done
updating all the other objects, otherwise one of the not-yet-updated objects may
still need to finish interacting with the about-to-die object. What we do is main-
tain an array of cServiceRequest objects, where each cServiceRequest holds a cCritter
*_pclient and CString _request field. And at a certain time specified by the
cGame::step template, we make a call to the cBiota::processServiceRequests method
that carries out each of the pending commands.

5.4 Composite

The problem is that you may have a set of Primitive objects which you also group
into Composite objects, and you want to be able to treat the primitive and the
composite objects the same. You also want to be able to have composites made
of mixtures of composites and primitives, and so on.

The solution is to have a base class called, say Component, with both the Primitive

and Composite classes inheriting from it. Composite has a member, typically an
array, which holds any number of Component objects.

When you use a Composite pattern the Component class usually has some
virtual method doSomething() that you override in the child classes. Typically the
primitive children of Component override doSomething() in various particular kinds
of ways and the Composite child class overrides doSomething() to (a) walk through
a loop to call doSomething for all of _pchildren[i] and (b) possibly do some
additional step peculiar to the particular Composite class.

Software design patterns 113

Figure 5.5 The Command pattern

It’s sometimes useful to think of a Composite pattern in terms of a tree. The
Primitive objects are the leaves of the tree, and the Composite objects are the forks.
When you call the doSomething at some fork, you end up working your way out
to all the leaves above this fork. Thus, in Figure 5.6, if we supposed that *pA
points to the object in the small circle, then the call pA->doSomething() will
cascade down to all of the other objects included in the large oval.

In the Pop Framework we use the Composite pattern with our graphical sprite
objects. That is, we have a base class cSprite with a some ‘primitive’ sprite child
classes: cSpriteBubble, cSpriteIcon, and cPolygon. We also have a cSprite child class
called cSpriteComposite, and this class has a CArray _pspritechild of cSprite* objects.

Java uses the Composite pattern for its graphics classes: there is a base
Component class which has as child classes (a) Primitive classes such as Button

and Scrollbar, and (b) a Composite class called Container, which holds an array of
Component objects. In addition, the Container class has (c) child classes Panel,
Window, Frame, Dialog, etc.

5.5 Singleton

The problem addressed here is that one may have a class that one only wants to
have one single, easily accessible instance of.

The solution, as shown in Figure 5.7, is to give the Singleton class a single
static Singleton *_pinstancncesingleton member. Initially this member
is NULL. You give the Singleton class a public static accessor pinstance()

that (a) initializes pinstancncesingleton if it’s still NULL and (b) returns
pinstancncesingleton. An additional wrinkle is that, in order to prevent the
users of this class from making additional Singleton instances, you make the
Singleton constructor private.

Software Engineering and Computer Games114

Figure 5.6 A Composite pattern tree

Figure 5.7 The Singleton pattern

The static Singleton *_pinstancesingleton pointer instance resides in
singleton.cpp and is initially set to NULL with a line like this.

Singleton* Singleton::_pinstancetancesingleton = NULL;

So when does _pinstancesingleton get initialized? The trick is to have
pinstance() initialize it the first time it’s called. That is, we use code like the
following.

Singleton* Singleton::pinstance()

{

if (_pinstancesingleton == NULL)

_pinstancesingleton = new Singleton();

return _pinstancesingleton;

}

In the Pop Framework, the cRandomizer class is a Singleton class. There are a
large number of useful cRandomizer methods for returning random integers, reals,
vectors, colors, and so on. In order to call these methods, we need a cRandomizer

object to call them. The methods that return random values can’t be static
because the internal state of the cRandomizer object is changed by each of these
calls. The internal state has to change so that the cRandomizer doesn’t repeat
itself any sooner than necessary.

An annoying but seemingly unavoidable side-effect of having a pointer
singleton instance Singleton *_pinstancesingleton is that we need to have the app
remember to delete this instance at exit. In the case of the cRandomizer, we have
a static cRandomizer::deleteSingleton() method that we call in the CPopApp

destructor. (In Java or C#, with automatic garbage collection, this isn’t an issue
you’d have to worry about.) In most cases, deleting this little Singleton object
isn’t really that important, since you are, after all, terminating the program, at
which time any remaining memory is freed up anyway. But the Visual Studio
debugger does give you a nagging warning if you fail to free all your memory,
so it’s just as well to do the right thing.

Why not just have the static Singleton member be an instance that we
declare as Singleton Singleton::_instancesingleton;? And then go ahead
and in-line the pinstance method as Singleton::pinstance(){return

&(Singleton::_instancesingleton);}?
If we took this approach with cRandomizer, it would in fact work in most ver-

sions of the Pop Framework. But the approach is risky. The risk has to do with
the fact that in a multi-file C++ project, the programmer has no sure control
over the order in which the static objects declared in the various *.cpp modules
get initialized. So it’s possible that the constructor of some static object might
call Singleton::pinstance() before the Singleton::_instancesingleton got
initialized, and disaster would ensue.

By using the Singleton::_pinstancesingleton, we can make a fail-safe
pinstance() that expressly initializes _pinstancesingleton the first time it’s
called.

Software design patterns 115

5.6 Bridge

The Bridge pattern is a kind of super Strategy pattern, that is, it is a way of
encapsulating alternate versions of a whole range of methods rather than
encapsulating alternate versions of just one method.

The problem is that you may have a set of methods that you contemplate
implementing in two or more completely different ways. You don’t want
to have to mess up the rest of your code with the details of the different
implementations.

The solution is to write a base class Interface that includes more or less empty
implementations of the methods you need, and then to derive off Implementation

child classes that provide concrete implementations of these methods. In the
rest of the program, you program towards the somewhat abstract interface of the
Interface object without worrying about the details of the Implementation children.

The UML diagram (Figure 5.8) is very similar to that for the Strategy pattern.
Learning about the Bridge pattern was crucial for the development of the

Pop Framework code. The author had initially targeted the code throughout for
Windows graphics calls. But then the time came to try and support OpenGL
graphics. How to port to OpenGL graphics without losing all the work done
implementing for Windows graphics and without, God forbid, developing two
alternate versions of the same program. The solution was to abstract out an
interface of all the graphics calls needed for Windows graphics or OpenGL
graphics and to form a cGraphics class with prototypes for all these methods.
Derived from this class are the cGraphicsMFC class and the cGraphicsOpenGL class. The
CPopView window object owns a cGraphics *_pgraphics member which can in
fact be dynamically changed between being cGraphicsMFC or cGraphicsOpenGL. For
each ‘behave’ graphics call inside CPopView the code is now passed to a virtual
_pgraphics->behavealgorithm call. Depending on the type of _pgraphics, the
behavealgorithm call is then dynamically shunted to the Windows graphics or
to the OpenGL graphics code.

Software Engineering and Computer Games116

Figure 5.8 The Bridge pattern

Now that we have this instance of the Bridge pattern in place, a further port
to DirectX graphics should be non-problematic (emphasis on should because
one never knows with software engineering projects)!

5.7 Document-View

The Document-View pattern is also known as the Document-View architecture.
In this section we’ll discuss a refined version of the Document-View pattern that
allows for an event notification mechanism. This refined version is sometimes
called the Observable-Observer pattern, or the Publisher-Subscriber pattern.

The problem arises when you have a number of different representations of
the same data. How do we keep the representations in synch with each other?

The solution, as shown in Figure 5.9, is to have one Document (or Publisher)
class that holds the core data, and to have a range of View (or Subscriber) classes
that display the data. To smooth out our exposition, we’ll write ‘document’ or
‘view’ to mean, respectively, a Document object or a View object.

The document needs to be able to add and remove views from its active list.
And it needs to have a UpdateAllViews method that tells all of the views that
some of the data may have changed.

A view needs to have a getDoc() method that returns a pointer to the owner
document. When the document calls UpdateAllViews, each view executes an
OnUpdate method which checks the data in the document and updates the state
of the view accordingly.

Another aspect of the Document-View architecture is that the view not only
needs to be able to access the data in the document, it should also be able to
mutate the data in the document. Part of the implementation of the document
mutators must be that when document data is changed, the document calls
UpdateAllViews so that all of the active views will show the new data. This acts
as a roundabout way for the views to communicate with each other. We can
represent this by a UML sequence diagram as shown in Figure 5.10.

As this is our first sequence diagram, we need to mention that UML sequence
diagrams are used to show how the objects in a program interact over time. The
diagram is set up as a series of columns, with one column for each object. Each
column has a vertical lifeline showing the lifetime of the object. Arrows are
drawn from lifeline to lifeline to symbolize the passing of messages via method
calls. We normally label a message with the name of a method being called,
and this method is expected to be a member method of the class column that
the message points to. Use a dotted arrow line when the caller object is not
shown. A call that an object makes to itself is drawn as an arrow that starts and

Software design patterns 117

Figure 5.9 The Document-View pattern

ends on the object’s own lifeline. The labels at the heads of the columns can
either be class names or, if you want to distinguish among multiple instances of a
class, you can use object names which are written in the format Class:Object1.

In this diagram, we see how the View1 object can edit the Doc data and
mutate it. The document mutator uses an UpdateAllViews call to ‘publish’
the changed data out to both View1 and View2. Presumably there has been a
call to Document::updateAllViews before the start of this sequence diagram, so
that View1 is in fact looking at a current view of the Doc before beginning
to edit it.

Documents and views in Windows programs

Most Windows programs use variations of the Document-View pattern to
simultaneously show multiple views of multiple documents. Putting this a
bit differently, the Document-View architecture allows you to have different
views of the same set of data, and it also allows you to display different views of
different sets of data.

In a Windows Document-View architecture program you can get new views
in two ways. (a) You can use a command with a name like File | New or File |

Open to open an additional document, or (b) you can use a command with a
name like Window | New to open an additional view of the currently active
document. In case (a) what you have is a completely new set of data inside the
new window, while in case (b) you get a different view of the data of one of
the windows you already had open (the window which currently had the focus,
i.e. the window that had the highlighted caption bar).

Software Engineering and Computer Games118

Figure 5.10 Sequence diagram of a view editing a document

Each onscreen window view shows the data in an associated document. It is
possible to have several view windows showing the same document, but it is
not possible to have one view window showing more than one document.

One can imagine, say, a financial analysis program in which you might
want to view the same numerical data both as a table and as a bar graph at the
same time. These would be two different views of the same document, with the
document being the set of numerical data. Or consider a computer game in
which you want to show both a 3D rendered view of what virtual player sees,
and a 2D overview map of the landscape. Here again, we’d have two views of
the same document, where the document might have information like the
game level, the positions of the players in the landscape, and the players’ scores
and strengths. In a word-processing program, the document is the text you’re
working on. If you use a splitter window, then the two subwindows represent
two different views of the same document. In a paint or photo-retouching pro-
gram, the document is the image you’re working on, and you have a variety of
possible views showing, for instance, different zoom levels, different layers of
the image, and so on.

Having the different views show the same data is not something that you get
for free. You have to write code to make it happen. It used to be fairly hard to
write a Document-View architecture program, but now, thanks to MFC and the
‘AppWizard’ (the Visual Studio tool for creating projects), it’s pretty easy. When
you use the AppWizard to generate some starting code for a new project, its
default choice is to use the Document-View architecture. The default program
architecture chosen by the AppWizard is called MDI. This uses the Document-
View architecture.

In Windows, Document-View architecture programs used to keep all of their
views of all their documents inside a single-frame window. But now it’s becom-
ing the fashion to have a different frame window for each document. In the
versions of Word starting with Word 2000, for instance, you’ll find that the
program pops up completely different frame windows when you open different
documents. Some programs, such as Macromedia Dreamweaver, even pop up
separate frame windows for each view, visually shattering the program into
something like a sea of dialog boxes. But under the hood and on their menus,
these are still Document-View architecture programs in which one executable
manages a set of documents, each with its own set of views.

The app, the doc, and the view in MFC

Table 5.1 summarizes how MFC sets up the Document-View architecture for the
Pop Framework.

As we discuss below, not all of your application’s data is supposed to go into
the CDocument. A flag saying whether or not you want to mute the speaker
might go into your CWinApp. And a flag saying whether you want to show
you graphical objects as solids or as wire-frames might go into your CView.
It’s only the data that relates to the description of what you’re looking at that
goes into the CDocument.

Software design patterns 119

This raises the point that you may want to be able to refer to one of the
classes from inside one of the others. Suppose, for instance, that one of our
CPopView methods wants to look at a _soundflag that lives inside CPopApp.
And surely, our CPopView is going to need to find the data that’s in the CPopDoc.
If we’re writing code inside a CPopApp, CPopDoc, or CPopView method, is there a
way to talk about the other classes?

It turns out that in terms of navigating among the app, the docs, and the
views there are four tasks that we normally care about.

• First, we need (but not very often) a way for any doc or view to get a pointer
to the app that owns them.

• Second, we need a way for any view to get a pointer to its ‘owner’ doc.

• Third, we need a way for a doc to tell all of its views to update themselves,
and we prefer to do this without having to individually list the views.

• Fourth, we need a way for a document to know which of its views, if any,
is the active focus window of the user interface.

The first task is done by the global method ::AfxGetApp(), as in:

CPopApp* papp = (CPopApp*)(::AfxGetApp());//cast CWinApp*

The second task is accomplished by the CView::GetDocument() method, as in:

CPopDoc* pdoc = GetDocument();

As it happens, you don’t need the cast on GetDocument; because GetDocument is
redefined for each child of CView to include the cast. (To make this clear, you
can look at the definition of CPopView::GetDocument() in popview.h.)

The third task is accomplished by the CDocument::UpdateAllViews method,
which cascades a call to CView::OnUpdate down to each of the doc’s views.

The full prototype of this third method is void UpdateAllViews(CView* pSender,

LPARAM lHint = 0, CObject* pHint = NULL). The first argument isn’t used very often.
The second argument is used for a document to signal to its views if it is in
some different-looking state, for instance if a game is over, the doc might put a
number into lHint to tell the views to change color. The third argument is a
catch-all where a doc can put pretty much anything it likes to pass to its views.
That is, a doc can wrap some information up inside a class object and then pass
the view a pointer to the class with the information.

Software Engineering and Computer Games120

Table 5.1 The application, the document, and the view in MFC.

Colloquial name Pop class Inherits from Code is in

Application CPopApp CWinApp Pop.*
Document CPopDoc CDocument PopDoc.*
View CPopView CView PopView.*

As we mention in Chapter 23: Programming Windows with MFC in Part II,
there actually is a way to individually step through a doc’s views, but this is a
technique that you should use only rarely. Using UpdateAllViews is a higher-level
and cleaner way for your doc to pass information to its views.

The fourth task can be accomplished by a special CPopDoc::getActiveView()

method that we wrote for our CPopDoc class; see the Levels of Windows section
in Chapter 23 for details.

Documents and views in the Pop Framework

Using the Document-View architecture forces a programmer to think about
where to declare his or her variables. In this subsection we talk about this issue
in the Pop Framework.

Your program is normally going to have a number of variables that describe
the data being displayed by the program as well as the current state of the
program. These are the kinds of variables that you might once have made
into global variables or into static variables living inside your main function.
In MFC programming you will usually put these variables either into your
CDocument class or into your CView class – well, actually they go into your app’s
specific children of these classes (which are called CPopDoc and CPopView in our
example program). Once in a while you might store a particular variable in the
CWinApp class or in your CMainFrame class instead; an example of this kind of
variable might be a global switch that specifies whether or not to pause your
program when another program is in the foreground. But the overwhelming
majority of your variables will live in your CDocument and your CView. But in
which one?

The CDocument variables tend to be either the kinds of file variables that you
might want to save, or the kinds of temporary helper objects that you might
want to share among several views. And variables whose values are specific to
an individual view go into the CView.

Let’s say more about the Document-View distinction in terms of a computer
game program such as we’ll be writing in this book. In a computer game you’ll
often have an array of ‘critters’ moving around on top of a bitmap background.
Each of your critters will have a position, a velocity, a health-index, and so on.
(Normally one of the critters will represent you, the player, and its actions will
be controlled by your input rather than by the program code. But it’s still just a
critter.) As the user plays the game, he or she will see the critters moving inside
a window. It may be that if the user wants the game to run faster, he or she will
have the choice of showing the critters in simple outline instead of in colorful
detail. The variable controlling this choice would probably be stored at view
level rather than at document level. Another example of a situation where there
might be a view-specific variable might be the user’s ‘point of view’. This would
be a factor if the critters’ world is larger than the window, and the user can
scroll the view this way and that. Or perhaps the world has a lot of detail and
the user can zoom in or out. Or perhaps the game is three-dimensional, and the
user will have the option of changing the angle of view.

Software design patterns 121

In our computer games, we’d expect the critters and the background bitmap
information to live in the CDocument. But, as mentioned, the switch that deter-
mines whether or not to show the critters in detail would live in the CView, as
would the variable (perhaps a real-valued rectangle or a matrix) that specifies
the user’s point of view. If you were to ‘save’ your game, you’d normally only
want to save the states of the critters, that is the document data. But it could
happen that you might want to save some information about the view as well,
e.g. the current location of the player’s point of view.

It isn’t always easy to decide whether to put a given variable into the docu-
ment or into the view, but as we go along in our example programs the process
should become a little clearer. Very often there is no one ‘absolutely right’ way to
program something. (But there are plenty of things that are absolutely wrong!)
For a beginning programmer, the number of choices is daunting, and it’s easy
to feel paralyzed with indecision. Well, the only real way to learn is by doing,
so go ahead and program, but keep an open mind and be willing to go back and
rewrite what you did before. Another way of putting this is that learning pro-
gramming is a matter of first making every possible mistake, so the faster you
make your mistakes the faster you’re learning!

Here’s how the CPopDoc updates the game. First, the stepDoc method calls
_pgame->step, where the cGame *_pgame reference member object holds the data
of the game document. And second, the stepDoc uses UpdateAllViews to update
the views to display the newly updated _pgame data.

Software Engineering and Computer Games122

Two views of a Pop Dambuilder game document

void CPopDoc::stepDoc(Real dt)

{

CPopView *pview = getActiveView();

_pgame->step(dt, pview); /* Move the critters for timestep dt.

Maybe add or delete some critters. Critters might use the

pview to sniff out the pixel colors near their current image

locations (rarely used). */

cTimeHint timehint(dt); //Wrap dt up so we can pass it to the views.

UpdateAllViews(NULL, 0, &timehint); /* Redraw all the views and

possibly animate their viewpoints with the dt inside

timehint. */

}

As a sequence diagram, this looks like Figure 5.11. Since we only have one
object of each class type in this picture, we just label the columns with the class
names.

Software design patterns 123

Figure 5.11 Sequence diagram of the CPopDocument::stepDoc cascade

Controlling multiple documents and views

How do you fit the Document-View pattern into your application if you want
more than document? And how do you send messages to the various pieces of
the program?

One solution is to have an App class that holds an array of Document objects,
and to have App, Document, and View inherit from a base class Target. This is the
architecture used by the MFC framework when you go for a MDI.

The idea is to use an App class in addition to a Document and a View class. In
the MFC Application Framework, these classes are called CWinApp, CDocument,
and CView.

What we have here is close to a pattern called ‘model-view-controller.’ In
the model-view-controller pattern the ‘model’ plays the role of the Document,
the ‘view’ is a View in the same sense we’ve already talked about, and the
‘controller’ is an abstraction of the user interface controls. Stretching things a
bit, you might think of the controller as being the App, so that Document-View-
App becomes a close analog of model-view-controller.

This analogy is, however, imperfect, because in the specific example of MFC
we actually process user commands with any of the three Document-View-App
components, which in MFC are the CDocument objects, the CView objects, and
a CWinApp object. In an MFC program, all three of these classes can process
messages and act like a ‘controller’.

Software Engineering and Computer Games124

Pop showing two game documents

In any case, this is a good place to say a bit about how MFC processes user
commands. In MFC there is a general base class called CCmdTarget. A CCmdTarget

object is characterized as being an object that you can send Windows messages
to. Put differently, a CCmdTarget is something that can process, say, menu item
selection messages such as OnCommandGamePlaySounds. (As it so happens, in the
Pop program this message was originally processed by the CPopDoc, and later we
changed it so that the message is processed by the CPopApp.) Now we can send a
message either to a document, to the application, or to a window, and Figure 5.12
expresses that notion. Just to make the diagram a little bigger, we’ve put in the
three child classes CPopDoc, CPopApp, and CPopView as well.

This diagram shows inheritance; now let’s talk about composition and naviga-
tion. As we’ve already said, the CWinApp class corresponds to the program as
a whole, and the CDocument class corresponds to the files that the program
currently has open. Although a CWinApp does not have a set of CDocument

objects as explicit members, we certainly think of it as associating with the
CDocument class. As for navigation, MFC happens to have a global ::AfxGetApp

method that returns the current CWinApp, so we can navigate from CDocument to
CWinApp. And, although it’s not simple to describe, there is also an accessor-like
process by which a CWinApp can walk through a list of its CDocument objects, so
we can say that we can navigate from CWinApp to CDocument. (If you’re curious
about the details of Windows programs, see Chapter 23: Programming
Windows with MFC). So we draw a composition line in one direction with a
navigation line coming back the other way. A CWinApp can open as many views
as we like (by using Window | New), but a CDocument has only one associated
CWinApp. So we put a * by CDocument at the end of the composition line. This is
shown in Figure 5.13.

This is entirely analogous to how a Document relates to a View (Figure 5.14).

Software design patterns 125

Figure 5.12 Inheritance diagram in a multiple document pattern

Figure 5.13 App and documents

For the sake of completeness, let’s draw one more UML diagram (Figure 5.15)
showing some of the relationships among our Pop Framework MFC classes.

You might say that this UML diagram is primarily about the Windows
operating system, and the UML diagram of the Pop Framework classes in the
last chapter was primarily about the Pop program. It make sense that CPopDoc

and CPopView appear in both diagrams, because these classes are designed by
MFC to contain, respectively, the application’s data and the application’s
appearance. The CPopView, your app’s onscreen image, is where it makes contact
with the Windows operating system.

Review questions

A What are software design patterns?

B Give examples of the design patterns we discussed: the Strategy pattern, the Template
Method pattern, the Command pattern, the Composite pattern, the Singleton pattern,
the Bridge pattern, and the Document-View pattern.

Software Engineering and Computer Games126

Figure 5.14 Document and views

Figure 5.15 Class diagram of the Pop Framework MFC classes

C For each pattern draw a relevant UML class diagram.

D What are the standard Document and View classes called in MFC programs? What are
some other basic classes used in MFC programs?

Exercises

Exercise 5.1: Strategy Pattern and sales chart display

Suppose that you have a cSalesData object with a drawGraph() method. Draw a UML
including a few lines of code to show how you could use a Strategy Pattern to select at
runtime between drawing a bar graph or a pie graph of the data.

Exercise 5.2: Template Method pattern and opening diverse file types

When you use Visual Studio you can open various sorts of files, edit them, and then save
them. Text files are shown as text and bitmap files are shown as images. We might suppose
that there is a FileOpen(CString filename) method. Some of this code will act the same no
matter what kind of file you open, but part of the code will act differently depending on the
kind of file. Describe how this might be accomplished by using the Template Method.
Draw a UML diagram and write out some very rough code, simply using made-up names
for the functions you use.

Exercise 5.3: Command pattern and a word-processor’s Undo and Redo

Experiment a bit with the effect of Ctrl+Z (for Undo) and Ctrl+Y (for Redo) in your word-
processor. What do you think might be a WordProcessorCommand in this context? What are
the methods that WordProcessorCommand must implement? What kind of data structure
might you need for holding the WordProcessorCommand objects? Draw a simple UML class
diagram.

Exercise 5.4: Composite pattern and building a virtual city

Say that you want to develop a cStructure class for describing doors, walls, rooms, floors of
buildings, buildings, city-blocks, cities, and so on. Draw a UML showing how to do this using
the Composite pattern.

Exercise 5.5: Singleton pattern and preserving a connection

On many home computers you can to click some desktop icon to connect to the Net via
a conventional modem or a broadband modem. Some email and browser software will
try and make a connection even if one exists. Trying to make a connection when a connec-
tion is already open sometimes spoils the existing connection in such a way that it’s
impossible to reconnect without rebooting the machine. How might your operating system
use the singleton pattern to avoid this problem? Draw a UML diagram.

Exercise 5.6: Bridge pattern and the look and feel of windows

In Java it’s possible to change the ‘look and feel’ of your windows. This includes, for
instance, how you draw a window frame, draw the caption bar, draw a button, and draw a

Software design patterns 127

scroll bar. You can select, for instance, a Windows, a Mac, or an XWindows look and feel.
Draw a UML diagram showing how this can be done by using the Bridge pattern.

Exercise 5.7: Document-View pattern and guestbook conversation

Say that a number of clients are viewing a web page on a server. Suppose that the web
page holds a guestbook that a client can update in real time by typing in characters and
pressing a Send button. Draw a sequence diagram to show the steps by which Client1
can send a message to and get an answer from Client2 by using the server.

Software Engineering and Computer Games128

6Animation

In this chapter we’ll talk about how to write a program which continually
updates itself onscreen. There are four tasks in an animation program.

• Place an animation update call in the app where you loop back indefinitely
often.

• Calculate an appropriate timestep dt for each update.

• Cascade update calls from the app down to the individual data elements of
the documents, passing them the current dt.

• Update the views after the data is updated.

In this chapter, we’ll have one section on each of these four tasks.

6.1 The endless animation loop

In a game program like Pop, the images keep changing even when you’re not
giving it input. Things move. The program animates itself. Where is the point
in the program that we can repeatedly loop back to for new updates?

Another characteristic thing about game programs is that the user can give
input at any time, using the mouse or the keys to move the player icon. How
do we synchronize these inputs with the game updates?

In any Windows program, the internal update processes and the user input
processes are concurrent or parallel flows, that is, the updating is computed by
the machine and the inputs are ‘computed’ by the player, with the two systems
acting independently.

We’ll draw a new kind of UML diagram to show how this fits together. Recall
that UML has quite a range of diagrams. The use case diagrams are good for
requirements gathering. Component diagrams are useful for mapping out the
interdependencies of a project’s source-code files. Class diagrams show how the
classes inherit and associate. Sequence diagrams show the order in which pro-
gram events happen. We’re going to talk about more sequence diagrams in this
chapter and also about one more kind of UML diagram: an activity diagram.
Sequence and activity diagrams are for showing how a program runs. When
you design a program you need to think not only about its classes but also
about its run-cycle or work flow.

A UML activity diagram is similar to a traditional flow-chart. We draw
rounded rectangles around activities in the program and draw little diamonds
to indicate test points. Arrows show the flow of the program control. What
makes an activity diagram a bit more than a flow-chart is that it allows you
to show concurrent processes. We use horizontal lines to indicate the ‘forks’
and ‘joins’ where parallel processes either split apart or join back together.
Figure 6.1 is an activity diagram for the Pop program as a whole.

A Windows program maintains an internal structure called the message
queue, which is basically an array of special MSG structures. A message is placed
on the queue, or ‘enqueued,’ each time that the user does something – press a
key, move the mouse, make a menu selection. And some Windows methods
place messages on the queue themselves. A message can be placed on the queue
at any time.

Rather than responding to each message immediately, a Windows program
like Pop lets the messages wait in the queue until it is ready to deal with them.
Pop works its way through the message queue, processing the messages in the
order in which they arrived.

As we mentioned in Chapter 5: Software Design Patterns, this is an example
of the Command pattern. Rather than executing a Windows message right
away, we encapsulate the idea of the message into a command that we place
into our message queue, to be executed when we have time.

When there are no more messages to process, Pop begins calling an internal
method named OnIdle. When OnIdle returns, Pop checks if there are any new
messages to process, and then it calls OnIdle again. When there are no messages

Software Engineering and Computer Games130

Figure 6.1 Activity diagram of the Windows program flow

at all, Pop’s behavior is simply to call OnIdle over and over again. If you want to
read more about the Windows execution flow see Chapter 23: Programming
Windows with MFC.

Given that OnIdle gets called over and over, this is the spot to stick in the code
to run your animation. The CPopApp class defined in the pop.h and pop.cpp files is
a child of the MFC CWinApp class that owns the OnIdle method. So what we’ll do
to animate our program is to override and extend the code for CPopApp::OnIdle

inside the pop.cpp file.
If you write an ‘eternal-loop’ program in the wrong way, you can find

it impossible to terminate the program (short of using Ctrl+Alt+Del to get to
the Task Manager). That’s why it’s a good idea to use the approach described
here. By locating the eternal loop inside the OnIdle function, we’re sure that
all user messages to the program get properly processed. If a user message tells
the program to terminate, then it never does get back to OnIdle and it exits
smoothly.

Inside CPopApp::OnIdle we do two things: we compute an appropriate Real dt

timestep, and we pass this dt to the documents with a CPopApp:animateAllDocs(dt)

call. Before discussing these points, let’s say a bit more about how we override
OnIdle.

Using the OnIdle method to call animateAllDocs

We animate by overriding the CWinApp::OnIdle function. We want it to make calls
to the CDocument objects that will cascade down to the cGame objects and the
CView objects.

An application executes the CWinApp::OnIdle function at least once each time
that it finishes processing its current messages. Normally the first two calls
to OnIdle are used for maintaining the appearance of the user interface, that
is, things like the toolbar buttons and the menu selections. Thus the first call
to OnIdle will generate a call to, for instance, OnUpdateGameSpacewar to tell the
menu whether or not the Game | Spacewar selection should have a checkmark
next to it.

The return type of OnIdle is BOOL. If you want your application to keep calling
OnIdle over and over again even if no messages are found, you have OnIdle keep
returning TRUE. This is safe because OnIdle will continue checking for messages
after each return in any case.

If you only want to call OnIdle once each time that you finish processing
messages, then return FALSE. Here, a way to keep a program doing things
‘forever’ is to have its OnIdle function generate more messages. After the pro-
gram processes these messages, it goes back to OnIdle, which produces more
messages, and so on. We can think of either approach as an ‘eternal-loop’
program (see Exercise 6.5).

The simplest way to put an animation loop inside OnIdle might be to pick a
target timestep of, say, 0.05 second (that is, 50 milliseconds, or 20 updates a
second), and do something like this.

Animation 131

BOOL CPopApp::OnIdle(LONG lCount)

{

CWinApp::OnIdle(lCount); //Do the base class WinApp processing.

animateAllDocs(0.05);

//Step through all the docs and feed this timestep.

return TRUE; //Keep doing it over and over.

}

But we’ll improve on this a bit.

• First of all, we’d like the timestep that we feed into animateAllDocs to reflect
the actual time that it really takes the computer to do the update. To do this
we need to get information from the computer about the system time.
There is a C++ clock method which returns the time in milliseconds, but
using the function is a bit messy. So we’ll encapsulate our time-getting
code within a class we’ll call cPerformanceTimer, and give it a tick function
which returns the time as a Real number of seconds. More about this in the
following section.

• Secondly, we’d like to have a switch for turning the animation on and off.

• Thirdly, we’d like to avoid another problem with eternal-loop programs,
which is that they can suck up every available machine computation cycle – a
very bad situation if you minimize such a program, forget about it, and then
try and run some other programs. If the minimized eternal-loop program is
still running, you’ll find that your other programs behave very poorly. Our
standard practice for avoiding this is to have our eternal loop only be active
when our eternal-loop program is the focus or foreground window, that is,
only when it’s the window whose caption bar is highlighted.

For full details about how to do this, see the CPopApp::OnIdle code in the
pop.cpp file of the Pop Framework.

6.2 Processor-independent simulation speed

What value should we use for an animation’s dt? We’d like to make it some-
what independent of the speed at which our program is running. The run speed
can be influenced not only by your processor speed, but also by the size of your
game window, and whether or not you have multiple views or documents open
in your game. As far as possible, we’d like the apparent speed of our moving
creatures to stay the same.

What exactly does this mean? As we discuss in Chapter 7: Simulating
Physics, we give each simulation object a vector _position and a vector _velocity.
For each update cycle, we compute an appropriate time step dt, we update our
_velocity, and then we use the standard rule:

_position == _position ++ dt * _velocity

Software Engineering and Computer Games132

The issue at hand is this: what should dt be? One might imagine setting dt to
some ‘reasonable’ fixed value like 0.1 that happens to look good on your own
machine. But if your processor is running at 400 Mhz and your user’s machine
is running at 200 Mhz, your critters are going to move half as fast on the user’s
machine. If the user has a slow video card then your program is going to run
even slower. And, on the other hand, when you get a 1.2 Gigahertz machine
your critters are going to go three times as fast, and if they’re part of a game this
game is now going to be unplayable. (Gigahertz, or GHz, is of course a billion
cycles per second, that is, a thousand Mhz. It took desktop machines something
like 20 years to make it from MHz to GHz speeds. One of these days you’ll see
personal computers running at a terahertz or Thz speeds, where a terahertz is a
trillion cycles per second.)

No, the trick is to let dt be real time. That is, we will measure the time length
dt of each update cycle, and use that in our simulation. If the machine is slow,
then the dt will be big, and the critter will move in a bigger step during each
update cycle. If the machine is fast, the dt will be small, and the critter will
move in smaller steps during each update cycle.

The way we implement this is to give our application a cPerformanceTimer

object that has a tick() method which will return the elapsed time dt since the
last time that tick() was called. And then we make our OnIdle method look like
the following.

BOOL CPopApp::OnIdle(LONG lCount)

{

CWinApp::OnIdle(lCount); //Do the base class WinApp processing.

double dt = _timer.tick();

animateAllDocs(dt);

//Step through all the docs and feed this timestep.

return TRUE; //Keep doing it over and over.

}

We’ll say more about the cPerformanceTimer class in the next subsection. For
now, let’s analyze the effect of using a ‘real time’ dt. Suppose that we have a
simulation running on two machines, at 25 updates per second on the slower
machine and at 50 updates per second on the faster machine. If each machine
computes a dt as the elapsed time between updates and updates a critter’s posi-
tion as pos+ = dt * vel, we’ll get the figures shown in Table 6.1.

Animation 133

Table 6.1 The effect of basing dt on the updates per second.

Updates per second Time between updates Action during 0.04 second

25 0.04 pos + = 0.4 * vel;

50 0.02 pos + = 0.2 * vel;

pos + = 0.2 * vel;

Compare the net action during 0.04 second on the machines. If the velocity
is constant, the net observed motion is the same. It is possible to imagine a
simulation in which the value of vel might change between the first and second
updates; this would simply mean that the simulation on the faster machine
would be more accurate, which is no surprise. But letting dt be real time elapsed
makes the best of things.

Since we measure the dt in seconds, this means that the speed is in units-
per-second. Another way of looking at this is to realize that the speed is the
magnitude of the _velocity, and the velocity is (new_position − _position)/dt, which
clearly has a units/sec magnitude.

In the Pop Framework we often give our critters a default speed of something
like 2.0. What does this speed mean? The meaning emerges when you look at
the size of the window world you are moving in. If you specify that the world is,
say, ten units across, a speed of 2.0 means that a critter takes about five seconds
to move across the window.

No matter what kind of computer you’re using, and no matter how many or
how few critters are running, no matter how big or how small the window is,
the time for a critter to cross the screen should always be the same.

Measuring a timestep

We implement the timing of dt with a cPerformanceTimer class. The basic way
that a timer works is to use a private double _currenttime member, a private
double getsystemtime() method and a public double tick() method. The
tick() call gets the system time, computes dt as the difference between the sys-
tem time and the _currenttime, resets the _currenttime to match the system
time, and returns dt. This is shown in Figure 6.2.

(Seasoned Windows programmers will be familiar with a special Windows
object called a ‘timer’ that is created with a CWnd::SetTimer call. These timers are
something like coarse beepers that can be set to send a window an OnTimer message
at regular intervals, so long as the intervals aren’t very short – a hundredth of a

Software Engineering and Computer Games134

Figure 6.2 A cPerformanceTimer class

second is for instance a shorter interval than a Windows timer can handle.
Instead of being a coarse beeper, our cPerformanceTimer is a highly accurate clock.
It has no relationship whatsoever to the standard Windows timers.)

The Pop Framework implements the cPerformanceTimer. On newer machines the
cPerformanceTimer computes the system time by using a so-called ‘high-resolution
performance counter.’ On the latest machines this counter seems to run at the
same clock cycle as the machine, that is, if a machine’s processor runs at 400 Mhz,
the high-resolution performance counter measures of 400,000,000 ticks per
second. And then we figure out a time interval in seconds by taking the number
of elapsed ticks divided by the number of ticks per second. On slightly older
machines, the high-resolution performance counter runs at about 1 Mhz, or
one million ticks per second. So, the counter frequency is not necessarily the
same as the chip Mhz.

On very old machines, the cPerformanceTimer code has to use the old clock()

function, which runs at about 50 ticks per second. The multimedia timeGetTime

function seems to be essentially the same function as clock, by the way.
A minor point. When you pause, for instance by opening a modal dialog,

reading a help file, or letting your mainframe lose the focus, a lot of time will
elapse before you go back to the OnIdle. Before restarting the process, call
_timer.tick(), otherwise the next _timer.tick() will return a dt that’s too
large, as it’s been running while you were out of the AppUpdate. A good place to
put this extra update call is inside the CPopView::SetFocus method, because that
gets called by at least one view whenever your program gets its focus back and
starts back up. We do put upper and lower bounds on the dt values that our
cPerformanceTimer::tick is allowed to return.

First let’s talk about very high dt values. A machine may run a program
dreadfully slowly, maybe only at five updates per second, taking something
like 0.2 second per update. If the dt step size gets too big, the motion starts to
look jerky. The objects move too far with each step, and you lose the illusion of
continuous motion. The critters look like they’re hopping about instead of
smoothly sliding. We have a brute force correction for this. If the dt turns out to
be larger than some maximum size of a _maxdt value of, let’s say, 0.1 second,
we’ll just ‘lie’ to the program and have tick() return the _maxdt.

Now let’s talk about very small dt values. With a really fast processor it’s
possible for dt to get so small that the machine begins to act weird, with odd jumps
in the motion. This is because now the dt is so short that it’s less than the refresh
rate of your video card. If you ask your video card to refresh itself, say, 120 times
per second and the card hardware is only refreshing itself at 60 Hz, then you’re
going to be asking for invisible and useless graphics updates – worse than useless,
actually, as the refresh requests can pile up and cause an odd-looking glitch
when the message queue tries to process several of them in a row.

To avoid choking up the graphics pipeline, we set a _mindt, and make the tick()

process spin in a while loop until at least _mindt seconds have passed. To compute
an appropriate _minddt we find the graphics refresh rate by making a call to the
global Windows method ::GetDeviceCaps(hdc, VREFRESH), and then we take
the reciprocal of the refresh rate. The code looks roughly like the following.

Animation 135

int refreshrate = ::GetDeviceCaps(hdc, VREFRESH);

_timer.setMinDt(1.0/double(refreshrate));

//Don’t run faster than the card.

More details of this code can be viewed in the Pop Framework mainfrm.cpp file.
It’s useful for the designer (and eventually the user) to be able to see how fast

the simulation is running. A good place to show this information is in the status
bar that appears at the bottom of your View window. Rather than displaying
the timestep dt, it’s more useful to show the reciprocal 1.0/dt. The quantity dt is
the seconds per update, and 1.0/dt is the updates per second. Because Windows
is always doing little tasks in the background, the actual value of the dt is going
to vary somewhat from cycle to cycle. To keep our updates per second from
jumping around a lot, and being hard to read in the status bar, we actually
compute this number as a rolling average of the last 60 1.0/dt values. This
means that when you make a change to your program, it takes a few seconds
for the updates per second value to settle down.

Improving the animation speed

The speed at which a program like Pop runs depends on two factors: the amount of
computation and the graphics overhead of putting images on the screen. If you
have a large number of critters with complex update methods the computation
will dominate. Remember that when you have N objects, the number of pairs of
objects is proportional to N2. If you are checking for collisions among each pair of
critters, or using forces which involve evaluating all the critter-to-critter distances,
your computational overhead will go up as the square of the number of critters.

More often it is the graphics overhead that dominates. The exact costs of
the graphics depend on the kind of cGraphics that your program uses, that is,
cGraphicsMFC or cGraphicsOpenGL.

Whatever kind of graphics you use, there is one basic cost that we may as
well call the pixel overhead. For every frame of the animation that you show,
you are doing some sequence of actions in order to set the color of each visible
pixel in your program’s onscreen window. There are three factors that affect
this pixel overhead.

pixel overhead ≅ area of rectangle * colors per pixel * bus overhead

The area of the rectangle is the number of pixels you are moving. Keep in mind
that area grows as the square of the edge dimension. A 1600 × 1200 rectangle has
four times as many pixels as a 800 × 600 rectangle. This means that if you develop
your program while looking at a display with a 800 × 600 resolution, but some
of your users run at a 1600 × 1200 resolution, then a full-screen animation pro-
gram on their machine will run about four times as slow!

So one thing we do to help our animation programs run well on more machines
is to start the main window out at moderate size of 800 × 600 rather than a full-
screen size, because we have no control over how big ‘full-screen’ might be.
Exercise 6.4 shows how to control the window size.

Software Engineering and Computer Games136

The importance of the number of colors per pixel is a little less obvious.
Right-click on your desktop and select Properties... to bring up the Display
Properties dialog. Go to the Settings sheet. The Color Palette control group has a
dropdown select box with the options for the total number of colors. Some
common options are listed in Table 6.2.

Many users tend to set the number of colors to a maximal value, although
for many applications 256 colors are enough. The 256 limit is not as bad as it
sounds, because a window is able to pick which particular 256 colors it uses. But
programming for 256 color mode is a hassle, so our preferred choice is one of
the next two higher selections, 32,768 or 65,536 colors.

The number of colors being used affects the speed of the pixel overhead
because the more bits per pixel that you have, the more information your
graphics implementation needs to move around. But this is not something that
we can very easily change from within our program, nor should we, as it would
be very poor Windows etiquette for your app to do something that affects all of
the other apps on display. This said, it’s actually quite common for commercial
computer games to do this. In order to squeeze the most out of a system, com-
mercial games usually bail out from Windows to a full-screen, single-task mode
and adjust the graphics settings at will. But, in order to make our code as gener-
ally applicable as possible, we don’t take that route in Software Engineering and
Computer Games.

If you are using OpenGL graphics, then you sometimes must use the
16 bits per pixel mode, or 65,536 colors, as some graphics cards only provide
hardware OpenGL acceleration for the 16-bit color mode. You can tell if you
have hardware acceleration in the Pop Framework by consulting the Help | Your

System’s OpenGL Graphics Support dialog.
While we are on the topic of the Display Properties dialog, you may also be

able to set the refresh rate of your graphics card on this dialog. A typical default
speed is 60 Hz or 75 Hz, where, once again, ‘Hz’ means ‘Hertz,’ or ‘updates per
second.’ Set this update speed as high as your card will allow for the pixel
resolution you’ve chosen. You really shouldn’t use a display running at only
60 Hz, as it will tire out your eyes. These days 90 Hz or higher is not uncommon.
Upping this value gives your animation program the possibility of running
faster; as was mentioned earlier in this chapter, you can’t animate faster than
your card’s refresh rate.

Animation 137

Table 6.2 The number of different bits per pixel in
different color modes.

Number of colors Bits per pixel

256 8
32,768 15
65,536 16
16,777,216 24
True Color 24 or 32

A final thing to think about when you look at the Display Properties dialog is
your pixel resolution. If your resolution is something like 1600 × 1400 and you
try and run your game in a maximized window, the game is going to run slow,
simply because of the enormous number of pixels in the window. If you want
to run your game at a reasonable speed in a full-screen window, you need to
reduce the pixel resolution. Alternately you can keep a high pixel resolution,
but be aware that you shouldn’t make your game window so large as to slow
the update speed down too much.

We called the third pixel overhead factor ‘bus overhead.’ This is the time
cost of moving the pixel information from one memory location to another.
The reason we speak of ‘moving the pixel information’ is because normally one
builds up a graphics image in some temporarily invisible offscreen memory
location called a ‘memory buffer’, and then, when it’s all ready, you move the
image into a location called the ‘frame buffer,’ which is the information that
the graphics card uses for painting the current image onscreen.

The bus overhead factor is very much dependent on the kind of graphics
card you have, and whether you are running 2D MFC graphics or 3D OpenGL
graphics. In the worst case, your graphics image is being stored in your system
RAM and then being transferred to the frame buffer on the graphics card for
each update. In a better kind of scenario, the memory image is on the graphics
card ‘near’ the frame buffer. In the best possible situation, we don’t actually
have to move the memory image to the frame buffer; instead we use a trick
called page-flipping to simply change the address that the graphic card uses as
the location of the frame buffer.

In the past, graphics cards could only support page-flipping for an entire
screen’s worth of display. As mentioned above, you’ll notice that most com-
mercial computer game products do not in fact run in a windowed mode. They
take over your whole screen. This is because (a) they want to use page-flipping
for fast animation, sometimes (b) they want to set your screen resolution and
colors per pixel down to lower values so that there’s less pixels to have to set
per image, and sometimes (c) they’ve written their code using brute pixel-count
numbers and the code is not resolution-independent.

Perhaps wrong-headedly, we insist on having all our programs run inside
windows on your desktop – it seems more modern and user-friendly, and it makes
our code more usable for other kinds of applications. As it happens, OpenGL
graphics will in fact page-flip for windowed apps. But in MFC graphics we have
to move a screen-sized block of pixels for each update, using the CDC::BitBlt

method. But this method is so fast on modern graphics cards that our animations
can in fact run as fast as we want. For many years, you couldn’t write such a
computer game with the normal Windows API, but those days are truly over.

We haven’t said anything yet about the graphics costs besides the pixel
overhead. Generally bitmaps are more expensive to draw than are triangles and
geometric objects. In OpenGL graphics a number of more specialized considera-
tions arise. Smoothing objects costs computation, textures are expensive, lighting
has its costs, and so on. We’ll say more about these details in Chapter 26: OpenGL
Graphics.

Software Engineering and Computer Games138

6.3 The animation cascade

This section discusses how the CPopApp:animateAllDocs(dt) cascades its calls down
to the simulation objects of each open document.

Sequence diagram of the animation

In this subsection we’ll give a description of the animation process and then
we’ll draw a UML sequence diagram of it.

First let’s write out in words a description of how the animation process works.

• The CPopApp::OnIdle function makes a call to the CPopApp:animateAllDocs(dt).

• The cPerformanceTimer tick() method returns the time dt elapsed since the prior
update.

• CPopApp:animateAllDocs(dt) steps through the list of open CPopDoc documents
and for each of these documents calls a CPopDoc::stepDoc(dt) function.

• Firstly, CPopDoc::stepDoc(dt) calls the cGame::step(dt) method for the game
inside the CPopDoc.

• cGame::step(dt) updates the positions and appearances of an array of critters
stored inside the game.

• Secondly, CPopDoc::stepDoc calls CPopDoc::UpdateAllViews.

• This sends down a CPopView::OnUpdate to each of the document’s views, and
each view generates a call to CPopView::OnDraw.

• The OnDraw methods use the cGraphics *_pgraphics member of the CPopView to
draw an image of the game and to display it in the onscreen view window.

• Any remaining messages in the Windows message queue are processed.

• CPopApp::OnIdle is called again.

Let’s draw a sequence diagram (Figure 6.3) showing some of these steps.
As we mentioned in Chapter 5: Software Patterns, UML sequence diagrams are
used to show how objects interact over time. The diagram is set up as a series of
columns, with one column for each object. Each column has a vertical lifeline
showing lifetime of the object. Arrows are drawn from lifeline to lifeline to
symbolize the passing of messages via method calls. Use a dotted-line arrow if
the caller isn’t shown. We label a message with the name of a method being
called, and this method is expected to be a member method of the class column
that the message points to. A call that an object makes to itself is drawn as an
arrow that starts and ends on the object’s own lifeline.

We can draw activation boxes to symbolize the time during which a given
method is active, although if it gets to be too messy we can leave out the activa-
tion boxes. These boxes are sometimes called ‘candlesticks’, because they’re
long and thin.

A sequence diagram is supposed to show the behavior of objects. Although
there is a class name at the top of each lifeline, the line really refers to a particular
instance of the class in question.

Animation 139

Our sequence diagram leaves out details relating to the innards of cGame::step

and CPopView::OnDraw.
One minor point about the diagram. Why does OnDraw appear down after the

end of the animateAllDocs candlestick? This has to do with the way the Windows
architecture works. When you want to redraw a view, as in the OnUpdate method,
you place a message onto the Windows message queue that tells Windows to
redraw the view whenever it’s done doing whatever it’s currently involved in.
Thus Windows doesn’t get around to executing the requested OnDraw until
animateAllDocs is over.

The stepDoc method

The purpose of the animateAllDocs(dt) code is to find all the open documents and
call their stepDoc(dt) methods. For details about how this works, you can look at
Chapter 23: Programming Windows with MFC in Part II of this book.

Software Engineering and Computer Games140

Figure 6.3 Sequence diagram of the animation cascade

The stepDoc(dt) method does two things: it tells the active game to update the
critters, and it tells the views to draw a fresh image of the critters. Remember
that in the Document-View architecture we separate out the values of the data
from the view of the data. The document is a kind of bridge between the num-
bers being computed and the images used to represent them. In a nutshell, the
CPopDoc::stepDoc looks like this.

void CPopDoc::stepDoc(Real dt)

{

_pgame->step(dt); /* Move the critters and maybe add or

delete some. */

cTimeHint timehint(dt); /* Wrap dt up so we can pass it to the

views. */

UpdateAllViews(NULL, 0, &timehint); /* Redraw all the views and

possibly move the views’ _pcritterviewer according to the dt

inside timehint. */

}

We’ll discuss the details of cGame::step(dt) in Chapter 10: Games. And we’ll
talk about UpdateAllViews in the next section.

6.4 Updating the views

The UpdateAllViews(CView* pSender, int lHint, CObject* pHint) method generates calls
to the CPopView::OnUpdate(CView* pSender, int lHint, CObject* pHint) method for each
open view, passing on the same arguments.

A minimal version of the OnUpdate method could look like this.

void CPopView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)

{

Invalidate(); /* Enqueue a message asking Windows to call OnDraw

for this view. */

}

Invalidate produces a call to OnDraw, which is where the critters get drawn to
the active window.

But what about the three arguments to UpdateAllViews and OnUpdate? It’s
possible for a view to initiate a call to UpdateAllViews with a line like this:
GetDocument()->UpdateAllViews. This trick provides a path by which one view
can contact the others. In some programs this mechanism is heavily used, and
in programs like this you may want the other views to know which view initi-
ated the UpdateAllViews call. This is what the psender argument is for. In the Pop
Framework we don’t make any use of the psender.

The second argument to the OnUpdate method is an integer hint field which
lets the document feed in an integer to tell the view that some special action is

Animation 141

called for here. In the normal run of things we just want OnUpdate to call Invalidate

so the view will draw itself to the screen, but if you’re in the process of starting
up a new game you might need to do something additional, and in this case
you’d have the call put in a hint integer to remind you. In the Pop Framework,
the lHint will usually be 0, but in the case where we’re starting up a new game,
for instance, we use the PopDoc::VIEWHINT_STARTGAME hint value of 2.

Although stepDoc never produces an UpdateAllViews call with an lHint other
than 0, there are other spots in the program where UpdateAllViews can be
called. For instance the CPopDoc::setGameClass(..) method has a call to
UpdateAllViews(NULL, CPopDoc::VIEWHINT_STARTGAME, 0).

The third argument to the OnUpdate method is a pointer hint, that is, it’s
a pointer to whatever kind of structure of additional information you want
to pass to the view. In the Pop Framework, we pass the Real dt on to the view so
that the view can appropriately move a viewer object that it owns, but we have
to wrap it up inside a cTimeHint object with a single Real field so we can pass it.

Here are the steps taken by the CPopView::OnUpdate(CView* pSender, int lHint,

CObject* pHint).

• If lHint is CPopDoc::VIEWHINT_LOADINGARCHIVE, you’re saving or loading a
game, and you’ve placed a pointer to a CArchive file object inside the pHint
field. Get the active CArchive from pHint and read or write the view parameters
from or into the archive.

• If lHint is CPopDoc::VIEWHINT_STARTGAME, you’re initializing a new game.
In this case, use the CGame methods initializeView and initializeCritterViewer to
prepare this view, and then return.

• If the lHint is the default value 0, we get the dt timestep out of the pHint.

• Use the dt to move and update the pviewpointcritter by the timestep dt.

• If this view is the active view, update the status bar, and pass any mouse or
keyboard actions to the pviewpointcritter.

• Invalidate the view to force a call to OnDraw.

For further information, the commented source code for CPopView::OnUpdate

can be consulted in popview.cpp.
The OnDraw method carries out these steps.

• Wake up the graphics.

• ‘Garbage collect’ any unused image resources.

• Graphically show the status of the game by adjusting the color of the win-
dow margins around the game.

• Clear the graphics background.

• Install the projection and view matrices.

• Draw the world, by default as a background and a foreground rectangle.

• Draw the critters.

• Send the graphics to your video display by a BitBlt or a page-flip.

Software Engineering and Computer Games142

More information about the action of CPopView::OnDraw can be found in
Chapter 24: Two- and Three-Dimensional Graphics, or by looking at the source
code for this method in popview.cpp.

Review questions

A When is the OnIdle method called? Which class is it a method of?

B How do we calculate the timestep dt between updates of our game?

C How does a critter use dt and its velocity to get its new position?

D What is the gain of having the dt we give our moving critters match the actual time
between updates?

E What are some factors that influence the frame rate of your animation?

F How does the application pass the dt down to the individual critters in a game?
Mention all the intervening classes.

G How does the stepDoc(dt) call both update the critter positions and draw them on the
screen? Draw a sequence diagram.

H What is the relationship among CDocument::UpdateAllViews, CView::OnUpdate,
CView::Invalidate, and CView::OnDraw? Draw a sequence diagram.

Exercises

Exercise 6.1: Timing the critter motions

Min speed Max speed Avg speed Approx. seconds to
(units/sec) (units/sec) (units/sec) move ten units

Spacewar 0.5 3.0 1.75 About six
Defender3D 0.5 10.0 4.75 About two

Get a watch with a second hand, start up Game | Defender3D, and time how long it takes
a critter to move across the screen. Is it about two seconds? Now make the window very
small, and time again. Now make the window big, add more critters by selecting Game |
Large, and time again. Do you still get about the same speeds? Now try with Spacewar.
Time the critter motions again. Try editing the cGameDesign::CRITTERMAXSPEED value
in gamedesign.cpp and try that game again.

Exercise 6.2: Estimating sizes

When you try and estimate the BitBlt overhead and its effect on a program’s speed, it’s
nice to be able to carry out the calculations in your head or with a paper and pencil. Some
key facts to remember are the following:

Animation 143

210 = 1 K ≈ one thousand
220 = 1 Meg ≈ one million
230 = 1 Gig ≈ one billion
240 = 1 Ter ≈ one trillion
250 = 1 Pet ≈ one quadrillion
260 = 1 Ex ≈ one quintillion

How do we use this knowledge? Suppose you want to estimate the number of bytes in
an 800 × 600 pixel screen image in 16-bit color mode (64K colors per pixel)? 800 × 600
× 2 is 480,000 × 2, which is about 1,000,000, which is a Meg.

You can use the information another way around as well. If you see a number close to
32,000, then you can think this is 25 * 1K, which is 25 * 210 , or 215. So a mode in which
you have about 32,000 colors is a mode in which you use 15 bits per pixel.

How many bytes are used by an 800 × 600 display if you use the ‘true color mode’ of
24 bits per pixel? Give your answer in K or Meg.

How many bits per pixel are used if you are in what Windows calls 16,777,216 color mode?
How many pixels are in a display of size 1024 × 768? or 869 × 1152? How many pixels

in a 1024 × 1280 display? How many bytes are needed for each of these images if you
are allowing 65,536 colors per pixel? Give your answers in K, Meg or Gig.

Exercise 6.3: How to maximize the main frame

If you like, you can make your game program start out as a maximized window. As we
mentioned above, this is actually unwise, because if someone is running their video card
in a very high-resolution mode, then your runspeed is going to be unacceptably slow. But
here’s how to do it anyway. Try it out and see if it works.

Find the BOOL CPopApp::InitInstance() code in Pop.cpp, and comment in the
first of the two code lines and comment out the second. Run the program. Note that now
the window is maximized. But you can still bring it back to a default size by clicking the
Restore icon box in the upper right corner of the frame.

//pMainFrame->ShowWindow(SW_SHOWMAXIMIZED | m_nCmdShow);

//Use this version if you want main window maximized.

pMainFrame->ShowWindow(m_nCmdShow);

//Use this version if you don’t want main window maximized.

Exercise 6.4: How to set the main frame to a specific size

Here let’s look at the spot where our default main window size is set. The numbers are
set using some statics.

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

{

if(!CMDIFrameWnd::PreCreateWindow(cs))

return FALSE;

// TODO: Modify the Window class or styles here by modifying

// the CREATESTRUCT cs

cs.cx = CPopApp::STARTPIXELWIDTH; //800;

cs.cy = CPopApp::STARTPIXELHEIGHT; //600;

return TRUE;

}

Try changing the statics to 640 and 480, respectively.

Software Engineering and Computer Games144

Exercise 6.5: Why OnIdle returns TRUE for animation

Go into the CPopApp::OnIdle code and change the last line from return TRUE; to return
FALSE;. Build and run the program. At first nothing moves, but then move the mouse
around on the screen and look what happens. You’re moving the whole world yourself!
Each time the program processes some messages it calls OnIdle and generates a single
call to animateAllDocs(dt). As long as you keep moving the mouse, the motion proceeds
smoothly. To make the program update continuously on its own, you can add a call to OnIdlp
that “fakes” a key press: PostMessageC::AfxgetMainWnd()->L getSafeHwnd(),
WM_CHAR, Ø, Ø);

Exercise 6.6: Why we clear the background for animation

Go into the CPopView::OnDraw code in PopView.cpp and comment out the line _pgraphics
->clear(targetrect); This line erases the game area plus the rest of the game window
at each update. Also comment out the pDoc->pgame()->drawWorld(_pgraphics,
_drawflags);. This line fills the game area with the background color at each update.
With these two lines out, your old sprites don’t get erased. Run the program and look at
the trails. Kind of nice at first, but after a while the screen gets too messy. If we did want
to have critter trails a better way to do it would probably be to develop a cSpriteTrail class
that inherited from cSprite, but which held an array of, say, a critter’s most recent ten or
twenty sprites, and then erased them.

Animation 145

7Simulating physics

The physical world is the great teacher. A computer scientist is inclined to think
of physics as the one supreme computation that has been running for billions
of years. One can partially characterize the laws of physics as being (a) parallel,
(b) homogeneous, and (c) local.

Regarding parallelism, the idea is that the world’s computation isn’t localized
in some hidden controller chip, the computation is taking place everywhere at
once. If you toss a rock into a pool of water, you see the ripples spread out in
every direction. Each bit of water is computing the appropriate motion, and
these computations add up to what we see as waves.

Homogeneity means that the same natural laws apply to all the objects in the
system at every place and at every time. When objects seem to behave differ-
ently, these differences can be traced to special properties of the objects rather
than to disturbances in the uniformity of physical law.

Locality expresses the notion that the state of an object or a region of the
world will be updated solely on the basis of the immediately adjacent regions
of the world. (What about gravity, like the pull of the Earth on the Moon? Isn’t
that action at a distance? Doesn’t have to be. According to Einstein’s General
Theory of Relativity, Earth’s mass warps the fabric of space-time, the warping
propagates outward like a sag in a sheet, and the Moon moves in accord with
the curvature of spacetime in its immediate neighborhood.) When we carry out
the special types of physical simulations known as cellular automata or finite
difference methods, we do implement locality. But in the case of the Pop
Framework, we won’t insist on locality. We’ll feel free to have old-style ‘actions
at a distance’ under which an object is attracted or repelled by an object that’s
nowhere near it.

In this chapter we’ll focus first on implementing parallelism, and then on
homogeneously applying Newton’s laws of motion. That is, we allow a critter to
access the positions and velocities of other critters, as if it could “see” them.
Strictly speaking vision is local, by way of particle-photon interactions – but we
won’t simulate down to this low a level.

7.1 Parallelism

The most obvious way to implement parallelism would be to have a dedicated
processor for each simulation object, and to have an operating system that
keeps all these processors running in lockstep synchronization with each other.

At this stage in the history of computer science, of course, our computers
are serial. At best you might have four processors running on your desktop
machine. We simulate parallelism by keeping a master array of our ‘physics
objects’ and trying to arrange our program so that the updates of the objects
happen in a parallel fashion.

But why use an array? Why not give each object a concurrent execution
thread, and let the threads execute in parallel? The fact is, by default, threads
aren’t really parallel. There’s no way for them to get around the fundamental
fact that your machine’s computations are being carried out by, normally, a
single processor that works its way down a long one-dimensional column of
machine-code instructions, now and then jumping up and down the column,
but never carrying out more than one instruction at once. The operating system
gives first one thread a little execution time, then another, then another, with
the actual scheduling being something that’s fairly fluid and hard to control.

Indeed, if you give each of your objects its own thread, you’ll find that
the activities of the threads are far from parallel. One thread may get, say, two
hundredths of a second in which to execute, the next thread may get three
hundredths of a second, a third may get one hundredth of a second, and so on.

For certain kinds of simulations this disorder doesn’t matter. But if you want
your simulation to be as close to a parallel physical process as possible, you’ll
have more success if you keep the simulation objects in a single array and
maintain a strict, logical control over the order in which the objects execute
their individual simulation steps.

When we simulate physics objects, we an regard our objects as having two
main simulation-related methods: (a) an update() method in which they look at
all the objects around them, detecting forces, collisions, etc. and (b) a move(dt)

method in which they change their positions. The dt argument is the current
timestep that has been passed down from the application as described in
Chapter 6: Animation.

A little more generally, if we think of our physics objects as active critters,
we might say that (a) the update method incorporates looking, thinking, feeling,
deciding and any other kind of individual behavior, while (b) the move method
incorporates Newton’s laws of motion.

In the Pop Framework, the programmer overrides the update method to indi-
vidualize the critters. And the move method is a non-virtual method which we
don’t intend to override.

If we have a collection of objects numbered, say, from 0 to COUNT-1, there
are various ways that we might systematically make an update and a move
method call for each object.

On the one hand, we could do something like the following. This is an
approach that we would consider wrong.

Simulating physics 147

update 0
move 0
update 1
move 1
. . .
update COUNT-1
move COUNT-1

The problem with the approach just described is that, although object 0 sees
the old position of object 1, object 1 will only see the new, moved position of
object 0. Instead we could do something more parallel, something like this.

update 0
update 1
. . .
update COUNT-1

move 0
move 1
. . .
move COUNT-1

In this second approach, all of the objects look at and react to each other in
the initial position. All the updates happen before anything moves. They don’t
actually carry out their motions until they’ve all had a look and decided what
to do. This is a more parallel approach to the simulation.

To make these ideas clear, consider the following situation. Critter #0 is
chasing critter #1. Critter #0’s goal is to touch critter #1 as often as possible,
critter #1’s goal is to run away from critter #0. In Figure 7.1, we show the effects

Software Engineering and Computer Games148

Figure 7.1 The wrong and the right way to simulate

of the two different ways of grouping the various update and move calls. In the
figure, we draw an arrow to indicate the current ‘intention’ of a critter regarding
its next move step, and we erase the arrow once the intended move has been
carried out.

At the bottom of the left-hand column of events drawn in Figure 7.1, critter #0
does not think it has tagged critter #1, and critter #1 feels it’s been tagged once.
At the bottom of the right-hand column, critter #0 feels it hasn’t tagged critter
#1, and critter #1 feels it hasn’t been tagged. The right-hand column shows
a parallel simulation, the simulation in the left-hand column is not parallel. In
thinking this over, remember that

the critters only access the other critters’ positions during their own update
calls.

In terms of code, to say that we want to have a parallel simulation means
that we don’t want to have a runcycle like this:

for (i=0; i<COUNT; i++)

{

physicsobject[i].update();

physicsobject[i].move(dt);

}

Instead we want to do something more like this:

for (i=0; i<COUNT; i++)

physicsobject[i].update();

for (i=0; i<COUNT; i++)

physicsobject[i].move(dt);

Again, what’s wrong with the first approach is that here the physicsob-
ject[0] would already be at its new position before physicsobject[1] looks at
it. So the behavior of the simulation would depend heavily on the order in
which the physicsobject members happen to be listed in the array. We want
to try and design our simulation so that the behavior is independent of the
order in which the objects happen to be listed.

Now why exactly do we speak of this kind of simulation as ‘parallel’? The
idea is that we are emulating parallelism by repeatedly freezing and thawing
the flow of simulated time. We freeze the flow of simulated time while our
processor takes the time to let each critter look at the others and decide what to
next. Then we thaw the simulated time and give a dt tick to each of the critters
to move with. Then we freeze time again and let the critters evaluate the new
state of affairs. And so on.

Simulating physics 149

7.2 The laws of motion

As well as being parallel, physics is homogeneous. We implement the principle
of homogeneity by making sure to derive all of our classes from a base class that
has the necessary laws built into it. We give the base class a move(dt) method
that encapsulates the laws of motion. And we ensure homogeneity by making
move(dt) non-virtual so that the child classes can’t override it.

What are the laws of physical motion that we need to use? Ordinarily we
discuss motion in terms of a scalar mass quantity and four vector quantities:
position, velocity, acceleration, and force. (Keep in mind that when we say, for
instance, that velocity is a vector, we mean that velocity is a scalar speed times a
unit direction vector.) The laws relating these are quite simple, where the d/dt

operator is the derivative operator.

force = mass × acceleration
acceleration = d/dt velocity
velocity = d/dt position

If we suppose we are working in two or in three dimensions, then each line
is really two or three scalar equations – for in a vector equation the correspond-
ing components must match.

In our simulations, we want to think of the force as the given, and the
position as the thing that we figure out. So we actually want to turn all of these
equations around. It’s clear how to turn the first equation around, but how do
we ‘turn around’ an equation of the form rate = d/dt quantity? We do it in the
following way.

rate = d/dt quantity
∴ rate = dquantity / dt

Taking a derivative is the same as evaluating the ratio of differentials.

dt × rate = dquantity

We can think of the differential dt as a normal number.

dt × rate = newquantity − oldquantity

The dquantity is the change in quantity from its old to its new value.

newquantity = oldquantity + dt × rate

We get this by moving the terms of the equation. Now drop the new and old to
write a line that looks like computer code.

quantity = quantity + dt × rate

Think of the left side as the new value and right side as old value.

Software Engineering and Computer Games150

Now we can ‘turn around’ our three motion equations and come up with
this.

(1) acceleration = force/mass
(2) velocity = velocity + dt × acceleration
(3) position = position + dt × velocity

These are the equations we’re going to use for the simulation of physics that
we’ll use in our Pop Framework. What characterizes this set of equations is that
if you specify an object’s mass, a force that acts on the object, a timestep dt, and
an initial position, velocity and acceleration, equations (1), (2), and (3) will generate
fresh values for position, velocity and acceleration.

In discussing simulations, by the way, it’s a common practice to blur the
line between the infinitesimal dt of a mathematical derivative and a dt that is
instead thought of as very small real-number change. The fascinating subject
of numerical analysis goes into the details of exactly when and how this can be
done in a reasonable way so as to yield stable and accurate simulation equations.
Suffice to say that what we’re doing here is reasonably Kosher. [More precisely,
we’re doing ‘Euler integration’ of the motion path; for greater accuracy one can do
‘Runge-Kutte integration’ of the motion path. A good algorithm for Runge-Kutte
can be found in the classic work Numerical Recipes in C, by W. Press, S.
Teukolsky, W. Vetterling and B. Flamery (Cambridge University Press, 1992).
Numerical Recipes in C can also be accessed for free online at www.nr.com]

Regarding the critters in the Pop Framework, let’s mention how we com-
pute their mass. The critters have a Real _mass field as well as a _density, and a
_radius. The critter’s internal mutators and accessor ensure that _mass is always
the _density times the cube of the _radius. Making mass proportional to size gives
behaviors that look more ‘physical,’ or realistic. The default _density is simply
1.0, but if we want a critter to be more resistant to the action of forces we set its
density to a higher value. You can read more about this point in Chapter 8:
Critters.

Both physics and computers like to do the same thing over and over.
Physics works by continually reapplying the laws of motion to every object in
the world. Our simulation will work by applying our three equations over
and over.

We can state this a bit differently. It’s common these days to speak of physics
as a dynamical system. A dynamical system has some state and a transform oper-
ator that maps each state to a new state. In the case of motion, the state might
be a triple consisting of

<acceleration, velocity, position>

and the transform would be specified by giving a mass and a force and three
equations above. When we investigate (or play with!) a dynamical system we
like to drop ‘test particles’ into it and watch what happens to them. This means

Simulating physics 151

that we specify a starting state_0 and watch how it evolves under successive
applications of the transform operator. That is, we look at sequences like this.

state_0
state_1 = transform(state_0)
state_2 = transform(state_1)
. . .
state_n+1 = transform(state_n)
. . .

That’s essentially what we’re doing when we run instances of the Pop pro-
gram and repeatedly apply the cGame::step, which first calls an update loop and
then a move loop. The step method as a whole is our transform.

Regarding our three equations for position, velocity, and acceleration, how do
we divide these up between the ‘update’ and the ‘move’ phases? Changing the
acceleration is more of an update thing because we are going to take into account
the possibility of changes to an object’s motion due to object–object collisions,
possible forces among objects (including flight and pursuit), and possible user
input. So we put the first equation into an update method and put the second
two into a move method.

So we might imagine our physics objects as having methods like this.

update()

{

acceleration = force/mass;

/* Possibly make additional changes to acceleration and/or

velocity due to collisions,

object-to-object forces, or user input. */

}

move(dt)

{

velocity = velocity + dt * acceleration;

position = position + dt * velocity;

}

Our cCritter::update will use a dt argument in case the critter needs to do some-
thing to itself relating to the timestep; an example might be changing its size,
as in a balloon leaking air. We feed a CPopView *pview into the update so that
the critter can possibly ‘sniff’ at the graphical world of the CPopView to find out
the pixel colors of some locations, perhaps reversing its velocity direction when
approaching certain colors. In the examples given in this book, neither the dt
nor the pview arguments are used by our critter update methods. But you will
need to use these arguments for some of the exercises.

We’ll say more about exactly how we represent our forces in the rest of this
chapter.

Software Engineering and Computer Games152

7.3 Force and acceleration

We handle the question of the forces acting on our critters by using the Strategy
pattern. That is, we let our critters be composed with cForce *_pforce objects,
and we let a critter feel forces by calling _pforce->force(this).

If we hadn’t used the Strategy pattern, we might instead have given the
cCritter class a virtual cVector force() method which would give the force acting
on the critter at any location and time. But, we want to able to change the
kinds of forces that act on a critter without having to derive a whole new child
class for each combination of forces. For to derive off critter child classes for the
different kinds of forces would lead to a combinatorial explosion of more and
more kinds of critter child classes.

We want to allow for force fields such as gravity, friction, a whirlpool, etc.
Rather than specifically defining gravity-influenced critters, whirlpool-influenced
critters, friction-influenced critters, and so on, we take the notion of a force,
and split it off into a separate class called cForce.

The main method of cForce is a cVector force(cCritter *pcritter). The cForce::force

method returns a vector that we think of as the force acting on the pcritter.
Instead calling a cCritter::force() method, we’ll have the critter call _pforce->force(this).

Let’s review from our discussions of composition and of the Strategy pattern
the question of why we need the this argument. When we use a Strategy pattern,
we usually want the delegated strategy function to have access to the calling
critter. That is, in order to figure out the force acting on a critter, we may need to
know where the critter is located, what its velocity is, etc. And it may also be that
we want to have an ‘impulsive’ force that directly changes the critter’s velocity.
By passing this into the method call, we give the cForce object the ability to
access the members of the calling critter by using the cCritter accessors and then
mutate the calling critter with its mutators.

As it turns out, each of our cCritter objects has a CTypedPtrArray<CObArray, cForce*>

_forcearray. This is an variant of the Strategy pattern; rather than strategizing out a
single force() method we strategize out an arbitrarily sized array of such methods.

The basic cCritter update method feels the forces affecting the critter, and
changes the acceleration of the critter accordingly.

void cCritter::update()

{

feelforce();

}

The default feelforce method applies Newton’s Law

force = mass * acceleration

or

acceleration = force/mass

Simulating physics 153

That is, feelforce (a) sums up the vector forces acting on the critter, (b) divides
the vector sum by the critter’s mass, and (c) sets the critter’s acceleration to this
value. In code, these steps look as follows.

void cCritter::feelforce()

{

cVector forcesum; /* Default cVector constructor sets this

to (0,0) */

for (int i=0; i<_forcearray.GetSize(); i++)

forcesum += _forcearray.GetAt(i)->force(this);

_acceleration = forcesum/mass(); /* From Newton’s Law:

Force = Mass * Acceleration. */

}

We make cCritter::feelforce virtual because in some situations you might not
want to simply sum up the forces. This could happen if some of the forces were
what the computer scientist Craig Reynolds calls ‘steering forces’ [Steering
behaviors for antonomous characters’, (www.red3d.com/cwr/steer/gdc99].
Suppose, for instance, that you had a steering force f1 that avoids bumping into
obstacles and a steering force f2 that runs away from bullets. If you simply add
the forces f1 and f2 it might sometimes happen that they cancel each other out
and you end up hitting an obstacle and being hit by a bullet. A more sophisti-
cated feelforce might prioritize your steering forces. Another possibility that
might be used, if you are using several computationally expensive forces, is to
‘dither’ between them by doing first one force and then the other on alternat-
ing updates.

There’s one other way that we change our critter’s velocities and accelerations:
via mouse and keyboard controls. Making another use of the Strategy pattern, we
give each critter a cListener* _plistener object. cListener has a listen(cCritter *pcritter)

method, and the cCritter feellistener() method calls _plistener->listen.
The Pop Framework provides several different kinds of built-in listener options,

and some of them, such as the cListenerCar and cListenerSpaceship, act by adding
in a vector value to the _acceleration of the calling pcritter. Other listeners,
such as the cListenerScooter, act by directly changing the critter’s velocity. You’ll
find more about listeners in Chapter 12: Listeners.

7.4 Implementing forces

The base class cForce::force returns a zero vector, but we have ‘global’ force classes
cForceGravity, cForceDrag, and cForceVortex which return non-trivial values. We use
them in the Ballworld and Dambuilder games, discussed in Chapter 18: Inter-
esting Worlds. We also have ‘relative’ steering force classes liked cForceObjectSeek,
cForceClassEvade, and cForceEvadeBullet.

Figure 7.2 is a class diagram of all the forces we provide with the Pop
Framework.

The idea is that each force(cCritter*) method should return a force that the
critter will divide by its mass and add into its acceleration. The magnitude of

Software Engineering and Computer Games154

the force will depend on the critter’s current situation in the world and on a
Real _intensity field that cForce has.

Gravity is proportional to mass – much as electrostatic attraction is proportional
to electric charge – and, again from Newton, we know that the gravitational
force (F) between two objects is a gravitational constant (G) times the product
of their masses (m1 and m2) divided by the square of the distances between
them (D2), to give a force like

F = G × m1 × m2/D
2

For simple simulations, we like to use a much simpler approximation to
gravitational force. It’s characteristic of games to choose liveliness and speed of
execution over a 100% accurate emulation. For a small object near the surface of
the Earth, the distance to the Earth’s center is so large that the object’s motions
don’t effectively change this distance. In a situation like this, we can lump
together the gravitational constant, the Earth’s mass, the inverse square of the
distance to the Earth into a new constant (g), and then an object of mass (m)
will experience a gravitational force (F) of size

F = g × m

It’s useful to have the freedom to specify the direction of a ‘global’ gravity
like this, so we’ll give our cForceGravity class a _pulldirection as well as its _intensity

constant.

cVector cForceGravity::force(cCritter *pcritter)

{

return _intensity * pcritter->mass() * _pulldirection;

}

Remember that the cCritter maintains its mass as a quantity proportional to its
density times the cube of the critter’s radius.

Simulating physics 155

Figure 7.2 Class diagram of the cForce child classes

For simulating something like a solar system, we’d want to implement a more
sophisticated kind of object-to-object gravity – this is left for Exercise 7.5.

We think of drag as being a force like friction. The effect of friction is to slow
something to a stop. Normally friction increases with an object’s speed, and
acts in a direction opposite to the object’s motion. Friction is also proportional
to an object’s area: think of a sliding puck or of an airship moving through the
atmosphere pushed by the wind. More area means more drag.

To make our drag force more general, we allow for the possibility that it is
a drag relative to some moving fluid. Either we think of objects sliding on a
moving surface such as a conveyer belt, or we think of floating objects under
the influence of air or water currents. We use a _windvector field to specify the
speed and direction of the medium’s motion. The effect of drag in a moving
medium is to match the object’s velocity to the velocity of the medium. If the
_windvector is the zero vector, then our generalized drag force is the same as
friction. The idea is to continually return a force that will act to accelerate the
critter in such a way as to minimize the difference between the critter’s velocity
and the _windvector.

cVector cForceDrag::force(cCritter *pcritter)

{

Real area = pcritter->radius()*pcritter->radius();

return cVector(area * _intensity * (_windvector –

pcritter->velocity()));

}

One caveat regarding cForceDrag. If you set the _intensity to a large value, there
is a danger of overshooting the _windvector and oscillating back and forth.
In terms of a simple frictional drag force with zero _windvector, if you define an
overly large _intensity constant, then your simulated physics will cause a moving
object to jerk backwards due to its counteracting friction force, and then, once
it’s going backwards, the drag will make the object jerk forwards again, and so
on. Generally it’s a good idea to keep the intensity of a cForceDrag between 0.0
and 1.0. (Do remember, however, that, in general, if you find some anomalous
tweak of your values that enhances your game, go ahead and use the values
even if they’re not physically realistic.)

It might be fun to have some whirlpools, so we allow for a child of cForceDrag

in which the windvector varies from point to point. We call our new force
cForceVortex, and we set it up as shown in Figure 7.3. We specify a center of the
vortex and, thinking of the eye of a hurricane, we call it _eyeposition. And we
give a _spiralangle to determine which way the vortex is moving things:
inward, outwards, or in a circular fashion.

The idea is that the drag force at a critter position is computed as follows: (a)
take the vector that runs from the _eyeposition to the critter position; (b) imagine
placing this vector with its tail at the critter position: and (c) rotate this vector
couterclockwise by _spiralangle degrees. The further a critter gets from the
eye position, the more powerful is the vortex force. Remember that in C++
angles are measured in radians, so we normally think of the angle as some

Software Engineering and Computer Games156

multiple of PI. (By the way, we #define PI in realnumber.h.) So if you want a circular
motion, you set _spiralangle equal to PI/2.0. The cForceVortex force method
gets implemented like this.

cVector cForceVortex::force(cCritter *pcritter)

{

_windvector = (pcritter->position() – _eyeposition);

_windvector.turn(_spiralangle);

return cForceDrag::force(pcritter);

}

The next forces we look at are what might be called ‘relative’ forces as
opposed to ‘global’ forces. Relative forces involve a critter’s reaction to some
other critter. We provide for two kinds of relative forces. In the cForceObject, we
react to some one specific other critter that we’re watching. The baseclass
cForceObject holds a cCritter *_pnode reference field to a certain critter and its
force(pcritter) method considers the pcritter situation relative to _pnode.

There are a variety of cForceObject forces like this that we might implement.
Spring forces and relative gravitational forces come to mind. The Pop Framework
provides a cForceObjectSpringRod, which is a force for attracting a critter to another
critter by a ‘spring’ while using a ‘rod’ to keep them from getting too close. You
can make amazing wobbly assemblages of things by hooking critters together
with these. The cForceObjectSpringRod:force(cCritter *pcritter) does the following.

• If pcritter is closer than the desired _rodlength from the _pnode, we move
pcritter out to _rodlength away from _pnode and return a zero force

• Otherwise return a force proportional to the distance between pcritter and
_pnode.

The Worms game, described in Chapter 14: 2D Shooting Games, demonstrates
a use of the cForceObjectSpringRod. Full code for all the forces can be found in
force.cpp.

Another kind of relative cForceObject force is the cForceObjectSeek, which helps
the pcritter pursue a _pnode critter. The simplest notion would be to have

Simulating physics 157

Figure 7.3 Vortex force

cForceObjectSeek::force(pcritter) simply return a force along the vector direction
from pcritter to the _pnode of the cForceObject.

The Pop Framework uses an improved seeking force suggested by Craig
Reynolds (op. cit., p. 154). Reynolds makes the point that rather than applying
a force in the desired direction of motion, it’s more effective to apply a force
in the direction of the difference between the critter’s desired motion and its
current motion, as shown in Figure 7.4. We will also have the seek force set the
critter’s speed to its maximum.

There is a more general kind of relative force we can consider. This is a
force in which a critter reacts to any and all members of a specified class of
critters that we watch. We create a base class cForceClass for this and give it a
CRuntimeClass *_pnodeclass member. As is discussed in Chapter 22: Topics in C++,
a CRuntimeClass object keeps track of a class type, basically by storing a string
with the name of the type along with some additional information.

One issue in interacting with objects of a certain class type K is whether
we also want to interact with objects of class KChild, where KChild is a child
class of K. We give the cForceClass a BOOL _includechildclasses field to let the
programmer decide.

In the Pop Framework we provide a cForceClassEvade force for evading all
objects of a given class, and we derive as child of this a cForceEvadeBullet to
evade all cCritterBullet objects. Here’s a summary of how cForceEvadeBullet acts.

• If there are no bullets to evade, return a zero force.

• Otherwise find the closest bullet.

• If the closest bullet is moving away from you, return a zero force.

• Set your evade direction to point away from the bullet.

• If this evade direction lies in the same direction the bullet is moving, you’re in
a ‘rabbit running down a railroad track away from a locomotive’ situation,
which is no good. Rotate your evade direction by 90 degrees.

• Now, your desired evade velocity is your maximum speed times the evade
direction.

• Return an evade force which is the vector difference between the evade
velocity and your current velocity.

Software Engineering and Computer Games158

Figure 7.4 A seek force

7.5 Preserving your physics

As a rule, once you have a cCritter::move that gives you a visually convincing
simulation of some reasonably accurate physics, you shouldn’t override it at all.
If you ignore this rule, you run the risk of developing a game that runs great on
your home machine, but which behaves badly when you bring the program in
for a classroom demo – or, if you’re working alone, when you try and show it
off at a conference or at a friend’s house. The critters may seem to be barely
moving at all – or flying around the screen like neutrinos.

All the careful work in calculating a real time dt and passing it to your critters
is going to make no difference if you make the cCritter::move(dt) method a virtual
method and override it with a method that ignores dt and does something like
_position += _velocity. Remember that it’s only if you have the proper move

code of _position += dt * _velocity that your program is going to adjust the
motions of your critters to take into account the actual speed at which your
game is running.

It should be possible to make all your changes to your critter motions by
adding in forces to get used in the update call to feelforce, or by directly editing
the update method.

• To apply a steady, ongoing force to a critter, give the critter a cForce that
returns a non-zero vector.

• To apply a sharp impulse to a critter, such as when you hit it, change the
critter’s _velocity by using the setVelocity mutator to make the change. This
call can be made from inside a cForce::force or directly within the update

method or possibly some other method.

• To change a critter’s position if you want to ‘teleport’ it from one spot to
another, use the moveTo mutator.

We’ll talk more about the user controls and the cListener class in Chapter 12:
Listeners. For now though, we might as well mention some of the ways that some
of our standard listeners change the main player critter’s motion in response to
an arrow key or a mouse action. Most of the time, a critter using a listener will
ignore any acceleration due to forces. We ignore physics in order to have the
player critter be fully responsive to the game’s user.

• Arrow key. As long as an arrow key is pressed, set the velocity to the arrow
key direction. If no arrow key is pressed, set the velocity to zero. Ignore any
acceleration.

• Scooter. If the Up Arrow key is pressed, set the critter’s velocity to be at the
maximum speed in the critter’s current direction. Pressing the Down Arrow

key moves the critter in reverse. If neither the Up nor the Down Arrow key is
depressed, the speed immediately drops to zero. The Left and Right Arrow

keys rotate the critter’s current direction. Ignore any acceleration.

• Car. As long as the Up key is pressed, add to the critter’s forward acceleration.
The Left and Right Arrow keys rotate the critter’s current direction.

Simulating physics 159

• Cursor. Move the critter to the current cursor position and give it a velocity
that matches the motion from the old position to the new position. Ignore
any acceleration.

Review questions

A In what order must we call our critter[i].move and critter[i].update meth-
ods in order to make the simulation behave in a more ‘parallel’ fashion?

B How do we justify converting the physical law acceleration = d/dt velocity into the com-
puter code velocity += dt * acceleration?

C How do we use Newton’s law F = m × a?

D Draw a UML diagram and write a little code to explain how a cCritter object delegates
its reactions to forces out to instances of the cForce class.

E What is the code for the cCritter::feelforce method? Why is the argument this passed?

F What are some of the kinds of forces implemented by the Pop Framework?

G What’s the difference between a cForce, a cForceObject, and a cForceClass?

Exercises

The use of forces is one of your most powerful tools for customizing your game. Here
are a collection of problems to let you try this out. In doing these problems, don’t forget
that when you get into tweaking one particular game mode, it saves time to have the
Pop program start up in the game mode that you want to play with. The way to control this
is to edit the CPopDoc constructor in popdoc.cpp. Simply comment in exactly the one
setGameClass line corresponding to the game you want to play. If you make a new game
class, add a line for it.

Exercise 7.1: Changing the relative sizes of the critters and the world

The critters sometimes show forces better if you make them smaller. There are two ways you
might make them smaller: (a) change the values of the statics cCritter:: MINRADIUS

and cCritter::MAXRADIUS in your game constructor; (b) in your game constructor put a
line _border.set(newxsize, newysize); with the newxsize and newysize larger
than the default cGame::WORLDWIDTH, cGame::WORLDHEIGHT values defined in game.cpp
and used in the cGame constructor. First try making the critters, say, three times as small
and then put them back to the same size and try making the world three times as big. The
relative sizes of the critter to the world should come out the same either way, that is, the
screen sizes should come out the same. But something will be different: the critters will
seem to move slower if you make the world bigger. This is because their speeds are set
to some specific numerical values of units per second. Is it nicer to have the small critters
move slower? Experiment with this a little and decide which way looks more playable.

Exercise 7.2: Making the world larger than the view

Many games are more interesting-seeming if they run across several view screens. You can
do this by the following steps that we’ll discuss in terms of, say, the cGameStub child class.

Software Engineering and Computer Games160

Go into your cGameStub constructor and add a line like _border.set(100.0, 100.0)

(for a square world) or maybe _border.set(100.0, 8.0) (for a Mario-style side-scroller
world).

In the cGameStub constructor after the setPlayer call, you can add a call like
pplayer()->moveTo(_border.locorner()). This starts the player out at the corner
of the world instead of in the center. This is something you may or may not want to do,
depending on the game. In a side-scroller we like to start the player out at the left end
of the world, but in an Asteroids-style game we might still want the player to start in the
center.

In the cGameStub::initializeViewpoint(cCritterViewer *pviewer) method,
replace the code with these lines.

pviewer->setViewpoint(cVector::ZAXIS, pplayer()->position());

pviewer->zoom(3.0);

pviewer->setTrackplayer(TRUE);

The exact value of the number you feed into the zoom call will depend on how zoomed-
into the world you want to be. The call to setTrackplayer(TRUE) has the pleasant
effect of automatically scrolling your screen to keep the player in view as it moves across
the edges. The Ballworld game also overloads cgame::worldShape.

Before doing the following exercises, make sure you’ve made the sizes of your critters
smaller relative to the size of the world, otherwise the screen will be too crowded to
see rich behavior.

Exercise 7.3: Adding forces

Get fresh (like original) copies of the gamestub.* files in case you changed them during
the Space Invaders exercises (3.10.1–3.10.8). Change the cGameStub construcor to set
_rivalcount to 0, and _seedcount to 20. Try using some of the different kinds of
cForce constructors in the cCritterStubProp initializer. Try cForceDrag(?, cVector(?,

?)) for a wind to the right. Try cForceVortex(?) for a spiraling-in vortex. One caution: if
you make the first argument (which is ‘friction’ parameter) too big in cForceDrag or
cForceVortex, the critters will have a bad kind of motion; rather than slowing them to a
steady state, a too-large value of friction makes them overshoot and oscillate back and
forth. Try cForceDrag(300) to see what we mean. Usually friction shouldn’t be much
bigger than 1 or 2.

Exercise 7.4: The spring and rod force

In the cGameWorms, make a circular loop of the critters connected by spring and rod forces
and push the loop around with the cursor. Adjust the force of the spring upward to make
it fairly rigid. Try making a shape like an asterisk, with one critter at the center and four or
five separate worms of connected critters coming out of the center. Try making a shape
like a person. (You can find an interesting interactive website of rod and spring shapes
by searching for ‘sodaplay’ or ‘soda constructor.’ The correct address was recently
www.sodaplay.com, but this may change.)

Simulating physics 161

Exercise 7.5: Planets

Now implement a cForceObjectGravity that gives a critter a gravitational attraction
towards the _pnode of the cForceObject. Give it a Real _gravity field. The force
ought to be something like _gravity * pcritter->mass() * _pnode->mass()

* pcritter->directionTo(_pnode)/(pcritter->distanceTo(pnode)

*pcritter->distanceTo(_pnode)), although you can speed up the computation a bit
by prefixing the line with a call to cDistanceAndDirection dnd = pcritter->

distanceAndDirectionTo(_pnode), and then in the next line getting the distance and
direction out of dnd instead of doing three separate computations. In the seedCritters go
ahead and walk through every possible (i,j) pair and connect every pair of critters with a
cForceObjectGravity.

This is not the most computationally efficient way to do it, but first try it and see how it
looks. You will need to tweak the gravity force and the speeds and the sizes for a while until
you can start to get things like critters going into orbit around each other. Also you want to
be doing this for a fairly large worldsize. Also, keep in mind that the mass of the objects
depends on their density and size; if they’re unresponsive, make them more massive.

Exercise 7.6: Brine shrimp

Try making a tide-pool world in which the critters move like brine shrimp. That is, whenever
they slow down to a certain speed, they suddenly propel themselves forward in a slightly
different direction.

Do this by having a cForceDrag to slow the critters down, and a new
cForceBrineshrimp force to make them periodically dart forwards. The way the
cForceBrineshrimp force ought to work is that if a critter’s speed drops below a certain
level, then the critter’s speed is set to its maximum value. You must do a ‘sudden
impulse’ change like this all at once by calling pcritter->setSpeed and not by return-
ing an acceleration value, otherwise the critter will simply speed up a tiny amount to get
faster than the trigger speed. When you apply the impulse, also wobble the critter a bit
with a call to pcritter->turn(...small random argument...).

Exercise 7.7: Random linkages

This problem is suggested by a fascinating recent book, Stephen Wolfram, A New Kind of
Science (Wolfram Media, 2002). Wolfram makes a case that all the seemingly complex
behaviors and patterns we see in the world arise from the interactions of small simple
programs. So let’s see how well we can do with our simple drag, spring, ball-and-spring, seek
and evade forces. Try a world in which each critter gets one or several randomly selected
forces linking it to some randomly selected other critter. Arrange your program so that the
behavior gets freshly randomized every time you reseed the world, and then press Enter a
few times to look at the kinds of overall behaviors you get. Do you see anything that might
be useful for making interestingly animated enemies or prey?

Exercise 7.8: Following waypoints

In adventure games and car racing games we often want to make some of the computer
operated critters move along certain fixed paths. Thus you might want an enemy guard
to patrol a certain route, or you might want a rival race car to drive around and around
a track.

Software Engineering and Computer Games162

A good method to make this work is to set a series of ‘waypoints’ that you want the
critter to follow. Implement a cForceWaypoint which has these fields.

CArray<cVector, CVector> _waypoint

int _currwpindex

Real _closeenough

You might also want to give cForceWaypoint an add(cVector newwaypoint) mutator
method for adding points to be _waypoint array. Suppose that the constructor initializes
_currwpindex to 0 and _closeenough to some reasonable (relative to your world size)
value like perhaps 2.0.

If our waypoints are arranged in a circle, as on a race track, we might define the
cForceWaypoint force method like this.

cVector cForceWaypoint ::force(cCritter *pcritter)

{

if (distanceTo (_waypoint[_currwpindex]) <_closeenough)

{

_currwpindex ++;

if (currwpindex >= _waypoint.GetSize())

_currwpindex = 0;

}

setTangent(_waypoint[_currwpindex] - position()); /* setTangent

will normalize the arg return cVector::ZEROVECTOR; */

}

Get this to work and then make a variation in which the critter moves back and forth along
a curving line of waypoints. You can do this either by listing the inner points twice (once in
each order), or by using a _currwpinc field that can be either +1 or −1 to determine the
direction in which you traverse the waypoints.

Simulating physics 163

8Critters

8.1 Kinds of critters

In understanding the importance of the cCritter class for the Pop Framework, it
will be useful to have a little overview of some of the cCritter child classes that
we use. Let’s put the UML class diagram (Figure 8.1) here of some (but not all)
of our cCritter child classes.

We’ll get into more details about various critter child classes later on. For now,
note that in the Spacewar game, the player inherits from cCritterArmedPlayer, the
asteroids inherit from cCritter, the UFOs inherit from cCritterArmedRobot, and the
various kinds of bullets inherit from cCritterBullet. Children of the cCritterWall

class are used in the Dambuilder and Airhockey games.
Typically you will define some special cCritter child classes for each new game

that you write. The best practice is to put the prototype headers for your new
critters in the same *.h file as your game header, and to implement your over-
ridden critter methods in the same *.cpp file as your game implementation.

Which cCritter methods do you typically reimplement for child classes?
Certainly you will write a child class constructor to change some of values of
the critter fields set by the base class constructor. And you very often override
the cCritter::update method. Other cCritter methods you might override are called
reset, touch, collide, die, and damage. Table 8.1 on p. 180 lists the overrides.

Figure 8.1 Some of the cCritter child classes

8.2 Overview of the critter class fields

Our critters will have a large number of primitive fields relating to their internal
state, to the game they participate in, and to their motion. These primitive
fields will mostly be int, Real, or cVector objects. Recall that Real is a type we
typedef in realnumber.h to be float, although it could be changed to double.

Mixed in with the primitives, our cCritter objects will have pointer fields that
hold references to a few other classes. The best way to get a quick idea of the
class members is to look at the full cCritter prototype listing in the last section of
this chapter.

In brief, the cCritter fields fall into these groupings.

• State fields, such as the Real _age and int _health.

• Game fields, such as the int _score, and the cBiota* _pownerbiota.

• Position fields, such as the cVector _position.

• Velocity fields, such as the Real _speed and the cVector _velocity and _tangent.

• Acceleration, mass and force fields, such as the Real _acceleration and _density,
and a _forcearray of cForce* objects.

• Listener fields, such as the cListener* _plistener.

• Attitude and display fields, such as the cMatrix _attitude, and the cSprite *_psprite.

Basic critter fields

In the coming pages, we’ll see, step by step, how we to build up a cCritter class
whose instances can serve as the all-purpose inhabitants of our computer
games.

It’s useful for every critter to know its age in seconds. How to measure this
age? In keeping with our discussion in Chapter 6: Animation, we’ll use real
elapsed time for a critter’s _age. Ten and a half seconds after the start of the game,
all the critters should have an age of 10.5, and so on. When a critter is con-
structed, its age is set to 0.0, and we update the age within the code for the critter
move(Real dt) method with a line like

_age += dt;

Another key state field is a critter’s integer _health. By default the _health starts
out at 1, and if the critter is damaged, for instance by a bullet, its health will
drop. In the standard cCritter::update method, we have the critter die and get
deleted if its health drops to 0 or below. We can also allow the possibility of
giving a critter a Real _fixedlifetime and forcing it to die once its age passes this
value.

These considerations lead to these fields.

Critters 165

protected:

Real _age; /* Measure in seconds of time simulated, start at 0.0

when constructed. */

BOOL _usefixedlifetime; /* If TRUE, then die when _age >

_fixedlifetime. */

Real _fixedlifetime; /* Max lifetime in seconds, applies only if

_usefixedlifetime. */

int _health; /* Lose by being hit and taking damage(). Usually

die when _health is 0. */

Since our critters are going to be part of a game, we’re going to have some
game-related fields as well. For one thing, a critter needs an integer _score field to
track how well it’s doing. So that a critter can ‘see’ the other critters in the game,
we give it a pointer to a special kind of an array called a cBiota. In any given
game, all of the active critters are stored in a common cBiota object. We’ll say a
bit more about this class in the next subsection.

In our repeated listings of the cCritter fields, we’ll carry along some of the
fields already mentioned, but not all of them lest our page gets too cluttered.
Remember that the full listing can be found at the end of this chapter.

protected:

Real _age;

int _health;

cBiota *_pownerbiota;

int _score;

We want our critters to simulate a reasonable kind of motion like we
discussed in Chapter 7: Simulating Physics. To start with, in the light of that
chapter’s discussion, it’s clear that we want to have a vector _position and a
vector _velocity.

The cVector class is defined in vectortransformation.h, with a switch that lets us
make it either a two-dimensional or a three-dimensional vector throughout the
program. Our current choice is to have all of our vectors be three-dimensional,
so that really cVector stands for the class cVector3. In the case of the flat, two-
dimensional games, the third vector component isn’t really necessary, but
carrying it along adds to generality and turns out to impose only a negligible
penalty on speed.

In any case, to start with we’ll give the cCritter two more fields. As mentioned
above, we’ll only relist the most important of the fields already mentioned.

protected:

Real _age;

int _health;

cVector _position;

cVector _velocity;

Software Engineering and Computer Games166

As we discussed in Chapter 7: Simulating Physics, the normal way that
objects move can be approximated by repeated updates like this.

_position += dt * _velocity.

As we mentioned in Chapter 6: Animation, it’s a good idea to let the time
step dt be computed (by a cTimer object belonging to our CPopApp) to represent
the actual time between program updates.

The cCritter has a move(dt) method for moving its position, with the assump-
tion that dt is a real number measuring the time since the last update. Because
we are going to construct this method rather carefully to embody the physical
laws that apply to all of our objects, we are going to make it a non-virtual
method that we can’t override.

protected:

Real _age;

int _health;

cVector _position;

cVector _velocity;

public:

int move(Real dt);

Whenever you run a simulation with moving objects, you have to worry
about the objects moving off towards infinity and about the possibility of them
speeding up and going unnaturally fast. To keep a cCritter from wandering off
and getting lost, we’ll need to give it a cRealBox _movebox to stay inside. The
cRealBox class is a utility class of ours for holding real-valued rectangles or 3D
boxes (as opposed to the MFC CRect which is for integer-valued rectangles).

A cRealBox is created by a constructor that takes two or three arguments. If
there is no explicit third argument, it’s assumed to be 0.0. The dimensions of a
cRealBox are chosen so that it’s centered on the origin (0.0, 0.0, 0.0), which is
also known as cVector::ZEROVECTOR. This is illustrated in Figure 8.2.

Critters 167

Figure 8.2 cRealBox (6, 4) and cRealBox (6, 4, 4)

Our cGame has a cRealBox _border that keeps the objects inside it. By default a
critter has a _movebox that matches the _border of the game its added into. This
setting happens because we normally give the cCritter constructor a cGame
*pownergame argument.

When a critter hits a wall, we can do various kinds of things. We might just
do something like _movebox.clamp(_position) to simply keep it inside the box,
where the clamp function just forces a position to be inside the box. Or we
might do something more subtle: we could make the _position ‘bounce’ off the
walls of the _movebox like a rubber ball or, perhaps, let it ‘wrap’ from one edge
of the box to the other. Conceivably we might want the critter to wrap across
some walls but bounce off others. We’ll use an int _wrapflag to decide which of
the possible kinds of actions it does.

protected:

Real _age;

int _health;

cVector _position;

cRealBox _movebox;

int _wrapflag;

cVector _velocity;

To keep our cCritter class object from rushing around too rapidly, we’ll give
it a _maxspeed that bounds the magnitude of its _velocity. Since you’re going to
be computing this magnitude, it’s convenient to keep it around as a Real _speed

variable, and while you’re at it, it’s useful to maintain a unit-length vector
cVector _tangent. We’ll require that at all times _velocity = _speed * _tangent.
You need to be a little careful with your mutators so as not to allow someone to
change one of these three fields and not the other two: this is a classic example
of a situation where you would not want your fields to be public, for otherwise
someone might ignorantly change the _speed or the _tangent field without
making the corresponding change to the _velocity.

protected:

Real _age;

int _health;

cVector _position;

cRealBox _movebox;

int _wrapflag;

cVector _velocity;

Real _speed;

Real _maxspeed;

cVector _tangent;

By now our move method has become more a three-step process.

Software Engineering and Computer Games168

• Set _speed and _tangent to match the latest _velocity. If _speed > _maxspeed,
reduce _speed, and change the _velocity to match.

• _position += dt * _velocity.

• Make sure _position is not outside of _movebox.

More complications arise when we put our critters into three-dimensional
worlds. As well as tracking as the _tangent the direction the critter is moving in,
we align a _normal with the direction the critter was most recently accelerating
or turning in, and compute a _binormal perpendicular to _tangent and _normal

(that is, we let _binormal be the vector cross product _tangent * _normal).

protected:

Real _age;

int _health;

cVector _position;

cRealBox _movebox;

int _wrapflag;

cVector _velocity;

Real _speed;

Real _maxspeed;

cVector _tangent;

cVector _normal;

cVector _binormal;

We’ll also maintain a four column cMatrix object called _attitude. By default a
critter will keep the four columns of _attitude equal to, respectively, the _tangent,
_normal, _binormal, and _position. As it turns out, if we feed an _attitude like this
into the graphics pipeline used in our display process, the critter will appear to
be rotated so as to match the motion, using a bird-like or fish-like kind of way
of holding its body. That is, we imagine that a critter’s visual representation has
three principal directions similar to, say, the long axis of a whale, the horizontal
line of its flukes and the vertical line of its spout. And if we match the _attitude

to the _tangent, _normal, _binormal, and _position, the ‘whale’ will ‘heel over’ in a
natural kind of way when it makes a turn.

There are, however, situations where we want a critter’s visible attitude not to
match the motion; for instance, if our critter is a fighter that turns this way and
that to shoot a gun. Here we have the option of freeing up the _attitude by setting
an _attitudetomotionlock field to a FALSE value. In this kind of situation, we’d use
some other method for setting the _attitude, possibly controlling it with user key
input, or possibly letting the critter tumble at some rate about an axis, with the
spin rate and spin axis encapsulated inside a cSpin _spin field.

protected:

Real _age;

int _health;

cVector _position;

Critters 169

cVector _tangent;

cVector _normal;

cVector _binormal;

cMatrix _attitude;

BOOL _attitudetomotionlock;

cSpin _spin;

cVector _acceleration;

(Remember that for these illustrative listings of the cCritter fields, we don’t
keep showing every single field we’ve mentioned so far. A complete list of the
cCritter fields appears in the code printed at the end of the chapter.)

Given our plan to have critters move like objects, we have an _acceleration

vector as well. Leaving out the lines about checking against the _movebox and
the _maxspeed, we would get something like this for our move(dt) method, just as
described in Chapter 7: Simulating Physics.

_velocity += dt * _acceleration;

_position += dt*_velocity.

Of course if a critter is to do anything interesting, its motion should change
over time. We can alter our motion in four ways: (a) use forces acting on the
critter to change the velocity or acceleration, (b) make changes to the critter’s
position, velocity and/or acceleration based on user input, (c) use a collide

method to bounce critters off each other, and (d) override the cCritter::update()

method to make other changes to the velocity and acceleration, possibly related
to the critter’s age.

The details of how we carry out (a) and (b) depend on some class reference
members in the cCritter class. Let’s start a new subsection in which to discuss
these kinds of members.

The cCritter reference fields

The associated classes are these: one owner cBiota*, one display-delegate cSprite*,
and one listening-strategy cListener* per critter. In addition, there is at most one
target cCritter*, and any number of cForce* force-strategy objects. This is shown
in Figure 8.3.

The cBiota class is an array-like container class based upon the MFC CArray

template. cBiota acts as a helper class for the cGame class. Each cGame has a cBiota

member that holds pointers to the active critters of the game.
We give each cCritter a cBiota* _pownerbiota pointer which points to the array-like

cBiota object that contains it. This ‘back reference’ provides a means for the critter
to ‘see’ all the other critters in the simulation – by walking through the array of
all the members of the _pownerbiota object.

The cSprite* _psprite member specifies the critter’s appearance on the screen.
To make our code more modular, we don’t want to tie ourselves to any one
particular way of representing a cCritter. We’ll work with several kinds of cSprite

Software Engineering and Computer Games170

objects, the disk-like cSpriteBubble objects, the polygonal cPolygon objects, and
the bitmap-based cSpriteIcon objects. The cSprite has a draw method that is called
by the cCritter:: draw method. Note that before calling _psprite->draw, the
cCritter::draw sends the current _attitude matrix into the graphics pipeline. We’ll
say more about draw below.

If critters hard-coded their display implementation, we’d be facing a com-
binatorial explosion of all possible critters times all possible sprites. Giving cCritter

a cSprite* member is an example of the object-oriented technique of delegation.
More information about sprites appears in Chapter 9: Sprites.

The cListener* _plistener is another example of the delegation technique; more
precisely it’s an example of the Strategy pattern. Later, we’re going to introduce
a cController class which will hold current information about which keys or
mouse buttons are being pressed. And we’d like critters to have the ability to
‘listen’ to this information. Most critters will ignore user input, so the default
listening behavior will be to do nothing. Typically there will be at least one
critter that represents the player and which responds to user input. And we
might sometimes want more than one critter to be listening to user input.
We might, for instance, want to write a two-player game. Or we might want a
pinball game with two flipper critters that respond to user input. So we do need
to have a listen method for every critter, and we want different critters to be
able to listen in different ways. Even when we have only one player listening,
we might want to choose between having the player be controlled like a
PacMan that moves with arrow keys or having the player be controlled like
a car or like a spaceship. Rather than calling a cCritter::listen method, we have a
cCritter::feellistener method that calls _plistener->listen.

The CTypedPtrArray<CObArray, cForce*> _forcearray holds any number of force
strategy objects that the critter accesses with a feelforce call made by the default

Critters 171

Figure 8.3 The reference members of the cCritter class

cCritter::update method. The CTypedPtrArray is a variation on the MFC CArray

template. As we discussed in Chapter 7: Simulating Physics, the feelforce makes
calls to _forcearray[i]->force(this).

For the maximum of flexibility we allow for the critters to be subject to
a variety of forces. To avoid a combinatorial explosion of classes, we don’t
specifically define gravity-influenced critters, whirlpool-influenced critters,
lighter-than-air critters, and so on. Instead we use the Strategy pattern; that is,
we take the notion of a force, and split it off into a separate class called cForce.
The main method of cForce is a cVector force(cCritter *pcritter). The cForce::force

method computes a vector force for any critter with its concomitant location and
velocity. The value of the returned force vector may be based on the critter’s
position, velocity, or other factors, and it’s used to change the critter’s acceleration.
We also allow the possibility of a force directly changing a critter’s position,
velocity or acceleration.

We give each critter a _forcearray of cForce * pointers to force objects. As we
already discussed in Chapter 7: Simulating Physics, we have a cCritter::feelforce()

method which turns around Newton’s law: F = ma to have a = F/m.

_acceleration = (Sum over i of _forcearray[i]->force(this)) / mass()

We’re going to estimate our critter masses by regarding them as three-
dimensional spheres. That is, we’ll maintain the equality _mass = _density *
radius()^3. (Strictly speaking this is the formula for a cube’s mass, but we can
think of the necessary 4/3 * PI multiplier for spherical mass as being part of
the _density parameter.) Even though this is a two-dimensional simulation,
the dynamics of bouncing looks better if you give things the masses of three-
dimensional objects. Think in terms of balls rolling around on a pool table.

The radius() of a critter is going to be something that we get from the appear-
ance of the critter, that is, radius() will get its value from the critter’s cSprite

*_psprite member, to which a critter delegates its display methods. That is, the
cCritter::radius() simply returns _psprite->radius().

The cCritter *_ptarget member can be used when we want a critter to ‘keep
an eye’ on one particular other critter. One example is the cCritterArmedRobot

child critter class, which automatically aims and shoots at its _ptarget. Another
example occurs in the Airhockey game, where each of the two cCritterHockeyGoal

objects sets its _ptarget to the critter that’s trying to knock the puck into that
goal. This way the goal knows to whom to award a score point when the puck
goes inside it.

Having a cCritter* member of the cCritter class imposes a certain burden on us
regarding destructors. That is, if a critter gets deleted somewhere in the game,
any critter that has a _ptarget reference to the dead critter needs to be notified.
The cCritter class has a virtual fixPointerRefs method that a critter calls in its
destructor. The mission of fixPointerRefs is to go out and tell any other critters in
the game to drop any references to the critter now being destroyed. Depending
on how heavily referenced a given kind of critter might be by other critters, you
may need to overload the fixPointerRefs in various ways.

Software Engineering and Computer Games172

Dropping a few fields from our growing list and adding in these new ones,
we get something like this. Once again, if you want to see the full listing, it’s at
the end of the chapter.

protected:

Real _age;

int _health;

cBiota *_pownerbiota;

cVector _position;

cVector _velocity;

cMatrix _attitude;

cSprite *_psprite;

cVector _acceleration;

CTypedPtrArray<CObArray, cForce*> _forcearray;

Real _mass;

cListener *_plistener;

cCritter *_ptarget;

8.3 Critter methods

In order to run a game, we repeatedly call six methods for each critter, cycling
through the calls over and over. The cGame::step method orchestrates the calls.

Figure 8.4 isn’t any particular kind of official UML diagram, it’s simply an
informal way of showing the order in which a critter object is cycled through
its main method calls, with time flowing in the clockwise direction.

The Update, Feelforce, and Feellistener methods

We give the cCritter a basic update(CPopView *pactiveview, Real dt) method. The
argument isn’t often used; a bit more about it appears below.

The basic update method feels the forces affecting the critter, and changes the
acceleration of the critter accordingly. In addition, the basic update checks if
the critter should die of old age.

Critters 173

Figure 8.4 Critter methods called by the cGame step method

void cCritter::update(CPopView *pactiveview, Real dt)

{

feelforce();

if(_usefixedlifetime && _age > _fixedlifetime)

dieOfOldAge(); /* I don’t call die() because I like to use

die for when a critter dies of unnatural causes, like

getting shot. It’s more likely that I override die()

to do something dramatic than that I override

dieOfOldAge(). */

}

The pactiveview arguments aren’t used by any of our critters in the standard
Pop Framework files; they’re in place simply for possible use. Some students
have in fact written two-dimensional games in which the update feeds the
pactiveview into the method COLORREF cCritter::sniff(const cVector &snifflocation,

CPopView *pactiveview). The purpose of this is to let a critter adjust its behavior
according to the colors of the nearby pixels as drawn in the active view; we’ve
designed car-racing games in this way, for instance, by using the sniff method to
let a critter know when it had driven off the track.

As we already discussed in Chapter 7: Simulating Physics, the feelforce

method sums up the forces acting on the critter and applies Newton’s Law to
compute the acceleration.

void cCritter::feelforce()

{

cVector forcesum; //Default constructor (0,0)

for (int i=0; i<_forcearray.GetSize(); i++)

forcesum += _forcearray.GetAt(i)->force(this);

_acceleration = forcesum/mass(); /* From Newton’s Law:

Force = Mass * Acceleration. */

}

Recall that the base class cForce::force returns a zero vector, but we have
‘physical’ child classes cForceGravity, cForceDrag, and cForceVortex which return
non-trivial values. We also have ‘behavioral’ force classes like cForceObjectSeek,
cForceClassEvade, and cForceEvadeBullet

void cCritter::feellistener(Real dt)

{

_plistener->listen(dt, this); /* We pass the pointer “this” to

the listener so that it can change the fields of this calling

cCritter as required. The caller critter’s pgame() holds the

cController object that stores all of the keys and mouse

actions you need to process. */

}

Software Engineering and Computer Games174

Taken together, the sequence of actions involving the update, feelforce, and
feellistener methods can be summarized as follows.

• Call update and, within update, call feelforce().

• Call feellistener(dt) and possibly add in some more acceleration.

• Use the _acceleration in move(dt).

The Move method

The cCritter::move method has a dt argument because we want the motion
to adapt itself according to the speed of the processor running the program. A
fast processor will pass very small dt to the move method, and we will want the
critters to move only a slight amount with each update. A slow processor will
pass larger dt timesteps to the move method, and in that case we need for the
critters to move a larger amount with each update.

What we basically want from our move(dt) method is these two lines.

_velocity += dt * _acceleration;

_position += dt*_velocity.

But, as we mentioned in the last section, our move(dt) has to do a bit more.

• Age the critter by dt seconds.

• Add acceleration * dt to the velocity.

• Clamp the velocity’s speed against maxspeed.

• Add velocity * dt to the position.

• Wrap, bounce, or clamp the new position relative to the border.

• Update the critter’s normal and binormal to reflect the current state of motion.

• Set the critter’s outcode according to which border edge, if any, it hit.

In terms of the special cCritter field names, this can be put a bit more precisely
as follows.

• Increment the _age by dt seconds.

• Add _acceleration * dt to the _velocity, and recalculate _speed from _velocity.

• Clamp the _speed against _maxspeed, possibly redefining the _velocity.

• Add _velocity*dt to the _position.

• Wrap, bounce, or clamp the _position relative to the _movebox.

• Update the critter’s _tangent, _normal and _binormal to reflect the current state
of motion.

• Set the critter’s _outcode according to which _movebox edge, if any, it hit.

As usual, for the fully complete and accurate version, look at the actual code in
critter.cpp.

Critters 175

Although it isn’t really necessary, we happen to have implemented our
cCritter::move, and some other critter-moving methods such as clamp and moveTo,
so that they return the outcode. But the real use of the outcode is as the internal
cCritter field int _outcode.

Let’s say a few words about the meaning of the outcode. The word ‘outcode’
comes from computer graphics. The outcode value of the critter is set to reflect
the relationship between the border box of the world and the last position the
critter moved to (prior to having this position clamped or wrapped).

In two dimensions the outcode would distinguish among nine positions relat-
ive to a rectangle: inside the rectangle, to its right, to its top right, to its top, and so
on. The idea is that we imagine extending the edges of the rectangle into infinite
lines, and these lines cut space into nine regions. This is shown in Figure 8.5.

Relative to a box in three dimensions, an outcode can distinguish among 27
possible regions: think of a 3 × 3 × 3 Rubik’s cube of space regions built up around
the central box. Rather than making up 27 different outcode names, it’s more use-
ful to OR together bitflags specifying a location’s region relative to each axis.

The values we use for our outcodes are defined in realbox.h as follows. (These
happen to be implemented as define values rather than static int constants.)

#define BOX_INSIDE 0

#define BOX_LOX 1

#define BOX_HIX 2

#define BOX_LOY 4

#define BOX_HIY 8

#define BOX_LOZ 16

#define BOX_HIZ 32

Thus in the plane, a critter located to the ‘northwest’ of a box would have an
outcode of BOX_LOX | BOX_HIY. And to perform some action dosomething() only
if a critter had touched the lower edge of a box, we could put a line like this
into an overridden version of the critter’s update method.

if(_outcode & BOX_LOX)

dosomething();

Software Engineering and Computer Games176

Figure 8.5 The nine outcode zones in two dimensions

Indeed, looking back at our Space Invaders Exercise 3.10 in Chapter 3: The
Pop Framework, recall that we suggested a condition of just this form for use in
the critter’s update to detect if the critter had touched the bottom edge of the
screen during its last move.

The Draw method

In order to draw a critter we need to have a pointer to a cGraphics object.
Also we may have some drawflags to indicate some special aspects of how we
want to draw the critter; generally, for instance, we draw a circle around the
player critter, and we draw our critters as ‘hollow’ if they have been recently
damaged.

So the cCritter::draw code looks essentially like the following, though the
actual code you’ll find in critter.cpp is a little more complicated.

void cCritter::draw(cGraphics *pgraphics, int drawflags)

{

if (recentlyDamaged())

drawflags |= CPopView::DF_WIREFRAME

pgraphics->pushMatrix();

pgraphics->multMatrix(_attitude);

_psprite->draw(pgraphics, drawflags);

pgraphics->popMatrix();

}

The draw code is an example of the Template Method pattern. We always
want to multiply in the attitude matrix, doing the necessary set-up and clean-up
to the pgraphics matrix stack. The part of the call that we override is separated
out into the virtual cSprite::draw method.

We almost don’t need to make cCritter::draw a virtual function, but the
cCritterArmed::draw does override and extend the cCritter::draw to draw a short line
segment to represent the gun.

The Animate method

Let’s say a bit more about the critter’s _attitude matrix. This specifies how we are
to orient the sprite image that represents the critter. The place where the critter
updates the _attitude is in its cCritter::updateAttitude call, which is called by the
cCritter::animate.

void cCritter::animate(Real dt)

{

updateAttitude(dt);

_psprite->animate(dt, this);

}

Critters 177

If _attitudetomotionlock field is TRUE, the updateAttitude method matches
the _attitude matrix to the motion matrix given by the tangent, normal, binormal,
and position vectors. This is a good default behavior that makes the critters
look lively. If _attitudetomotionlock is FALSE, we allow for the possibility that
the critter is spinning.

void cCritter::updateAttitude(Real dt)

{

_attitude.setLastColumn(_position); //always update position.

if (_attitudetomotionlock)

copyMotionMatrixToAttitudeMatrix();

else //_attitudetomotionlock is FALSE

rotateAttitude(dt*_spin);

}

As we’ll see in Chapter 9: Sprites, the reason we pass this to the
cSprite::animate() call is that the sprite may want to change itself depending
on the direction or the health of its owner critter.

Randomizing and mutation methods

As well as the randomizePosition and randomizeVelocity methods, we can also
change a critter by calling a cCritter::mutate(int mutationflags, Real mutationstrength)

method.
The way this works is that we can feed in various combinations of the static

MF_ mutation flags, some of which are defined in critter.h, some in sprite.h and
some in spritepolygon.h. The cCritter::mutate method changes a few critter values
and then makes a call to the cSprite::mutate method. For randomizing purposes,
these methods use the singleton cRandomizer::pinstance() object.

The Die and Damage methods

The default cCritter::die method is implemented in-line simply as virtual void

die(){delete_me();}. This tells the owner game to delete the pointer and
remove it from the cBiota array when the current round of critter updates is
done. The reason we wait a bit is that it can cause trouble if you start adding
and deleting critters to an array that you’re in the process of updating.

Some critters override the die or the damage method to make a noise with a
call of the form playSound(“Bonk”). Both the cCritter and cGame classes have a
playSound method. The string you feed into a playSound call needs to be defined
in quotes as the ID of the relevant resource, for instance as ‘BONK’. The names
of resources are not case sensitive.

The standard cCritter::damage(int hitstrength) code reduces the _health by
hitstrength, and if the _health is less than or equal to zero, the critter makes a
call to die().

Software Engineering and Computer Games178

The Collide method

Collision is a tricky matter, and we’ll give a more detailed discussion of it in
Chapter 11: Collisions. Critters collide in pairs.

Each critter has the virtual BOOL cCritter::collide(cCritter *pother) method whose
default behavior is to perform an elastic collision between the caller critter and
the pother critter, changing their positions and velocities in a manner that
would be physically natural if the critters were spheres.

We can override a critter’s collide method to include a reaction to the critter
that it’s colliding with, possibly killing one of the critters, adding a score to
one, or the like.

Sometimes we may have two cCritter *pcritteri, *pcritterj that belong
to cCritter child classes that have different overrides of the collide method. In this
case it makes a difference whether you call pcritteri->collide(pcritterj) or
pcritteri->collide(pcritterj). We generally don’t want to call both collide

methods as (a) this would waste computational time and (b) the collide methods
are designed to have a symmetric effect on the critters, so it would be physic-
ally incorrect to call collide twice for one particular collision. As we discuss in
Chapter 11: Collisions, we give the critters an int _collidepriority field and a virtual
int cCritter::collidesWith(cCritter *pcritterother) method to resolve the question of
which critter gets to control a given collision.

8.4 Critter method overrides

Table 8.1 gives you an overview of which critter methods we override to make
the sample games provided with the Pop Framework.

8.5 The full cCritter prototype

Here’s a full listing of the cCritter prototype from a recent critter.h header file. For
the most current listing, you can examine the file itself inside Visual Studio.

//

// Critter.h: interface for the cCritter class.

//

//

#ifndef CRITTER_H

#define CRITTER_H

#include “randomizer.h”

#include “realbox.h”

#include “realpixelconverter.h”

#include “vectortransformation.h”

#include <mmsystem.h> //For PlaySound flags

class cGraphics;

Critters 179

Software Engineering and Computer Games180

#define USEBOUNCINESS /* Compile switch used in critter.cpp,

critterwall.cpp, realbox.cpp. */

/* We don’t need to include the headers for the following classes

as we only mention them as pointers. In general, we only include a

header in a header if we absolutely have to. Here we can get by

with forward class declarations that simply say such and such a

class exists. Of course we will need to include the headers in

the critter.cpp which is where we actually use the properties of

these classes. */

class cBiota; //For the *_pownerbiota member.

class cSprite; //For the *_psprite member.

class cListener; //For *_plistener member.

class cForce; //For _forcearray member.

class cDistanceAndDirection;

// Return type of the distanceAndDirection function.

class CPopView; //Used as an argument to sniff.

class cGame; //For the return type of the pgame() method.

class cGraphics; //For the draw method.

class cCritter : public CObject

{

DECLARE_SERIAL(cCritter); /* An MFC macro used to enable

CRuntimeClass reflection of class type, dynamic creation,

and serialization. */

public:

// Statics ==

//Constant Statics ================================

//The MF_ statics are mutation flags used in the mutate methods.

static const int MF_NUDGE;

static const int MF_POSITION;

static const int MF_VELOCITY;

static const int MF_ALL; //MF_POSITION | MF_VELOCITY

/* Wrapflag values specify possible behaviors when critter hits

edge of world. */

static const int BOUNCE;

static const int WRAP;

static const int CLAMP;

/* special high density used for player or other immovable critter. */

static const Real INFINITEDENSITY;

//Variable Statics ================================

//These might (rarely) be reset by a cGame constructor.

//Motion Statics ================================

static Real MINSPEED; //Used in randomizing critter _speed.

static Real MAXSPEED; /* Used in randomizing, and to clamp _speed

in move(dt). */

static Real MINTWITCHTHRESHOLDSPEED;

//Default for _mintwitchthresholdspeed

Critters 181

static Real NEAREDGEPERCENT; // Default arg for moveToMoveboxEdge.

static BOOL STARTWRAPFLAG;

static Real DENSITY; //Default density.

//State Statics ===============================

static Real MUTATIONSTRENGTH; //Default argument to mutate method.

static Real MINRADIUS; //Used in randomizing

static Real MAXRADIUS;

static Real BULLETRADIUS; /* Gets set to cGame::BULLETRADIUS in

cGame constructor. */

static Real PLAYERRADIUS;

static Real LISTENERACCELERATION;

//Default for _listeneracceleration

static int STARTHEALTH; //Default is 1.

static Real SAFEWAIT; /* Time in seconds of invulnerability, use

at start up and after damage, gives critters breathing room so

they don’t get damaged twice in a row, like by the same bullet

volley. */

static Real FIXEDLIFETIME; /* Default lifetime for critters with

_usefixedlifetime TRUE. */

protected:

//===

//State Fields. ===================================

//===

Real _age; /* Measure in seconds of time simulated, start at 0.0

when constructed. */

BOOL _usefixedlifetime;

//If TRUE, then die when _age > _fixedlifetime.

Real _fixedlifetime;

//Max lifetime in seconds, applies only if _usefixedlifetime.

int _health; /* Lose by being hit and taking damage(). Usually die

when _health is 0. */

BOOL _shieldflag; //Immunity to damage() calls.

UINT _personality; /* Random bits to sometimes use for making

critters have different behaviors, as when using evasion

forces. */

Real _mutationstrength; /* Number between 0.0 and 1.0 controlling

how different a spawned copy will be. */

cCritter *_ptarget;/* In case you are following or dragging or

watching or aimed at someone else, use this field to track

them. _ptarget is one of the only fields that is NOT

serialized. We use the _targetindex with the _pownerbiota to

copy or serialize _ptarget. */

//==

//Game Fields ===================================

//==

cBiota *_pownerbiota; /* Used in makeServiceRequest and in other

places. It allows the critter to be aware of all the other

Software Engineering and Computer Games182

critters. Gets set by the cCritter(cGame *pownergame)

constructor. _pownerbiota is NOT serialized. */

int _score; //Usually gain by eating or shooting others.

int _value; //Value to another critter shooting or eating this one.

int _newlevelscorestep;

//Step size between score levels that are rewarded.

int _newlevelreward; //Health reward for new score level.

//==

//Motion Fields. ==================================

//==

//Position Fields =================================

cVector _position;

cRealBox _movebox; //Keep critter inside _movebox.

cRealBox _dragbox; /* Usually same as _movebox, but in

cGamePickNPop, it’s bigger, so can drag a critter outside of

its _movebox. */

int _wrapflag; //BOUNCE, WRAP, or CLAMP when you bump a wall.

int _outcode; /* Flag info about which wall, if any, the last

move bumped. */

//Velocity Fields ================================

BOOL _fixedflag; //Refuse to move.

cVector _velocity;

Real _speed;

cVector _tangent; /* We always keep _velocity = _speed * _tangent.

It’s useful to have _tangent around even when _speed goes to 0

and _velocity is zero, this way we know what direction to

start back up in. */

cVector _normal; /* We maintain a _normal and _binormal vector to

fully express themotion of the critter through 3D space. */

cVector _binormal; //Always cVector::ZAXIS in 2D worlds.

Real _maxspeed; //Clamp _speed below this in move().

Real _maxspeedstandard;/* In case _maxspeed might be temporarily

increased, for instance if the critter is allowed to move

extra fast while fleeing or chasing another. */

//Acceleration Mass, and Force Fields ==============================

cVector _acceleration; /* _acceleration gets reset during every

cycle, using the _forcearray and possibly the _plistener to

change it. */

Real _mass; /* Use fixMass() helper to maintain _mass = _density *

radius()^3. */

Real _density; /* Default is 1. We often assign the cCritterPlayer

a very large _density so that it can whack others around. */

CTypedPtrArray<CObArray, cForce*> _forcearray;

//We serialize this array

//Listener Fields. ================================

cListener *_plistener; //Never NULL. We serialize the plistener.

Critters 183

Real _listeneracceleration; /* This is the acceleration used by

listeners such as cListenerCar and cListenerSpaceship that

“drive” the critter around. Like the critter’s engine

strength. */

//Collision Fields ================================

Real _collidepriority;

/* These are default cCritter _collidepriority values, in

increasing size for increasingly high priority, where in a

pair of critters, the higher priority critter is the caller of

the collide method, and the lower priority critter is the

argument to the collide call. */

Real _absorberflag; /* Don’t change your own velocity after a

collision. This siphons energy out of the system, cooling

down the motions by absorbing it. */

Real _bounciness; /* ranges from 0.0 to 1.0. Determines how

elastically you bounce off of walls or off of other

critters. 1.0 is perfect bounce, 0.9 is pretty reasonable,

0.0 don’t bounce at all. */

Real _mintwitchthresholdspeed; /* If we have

_attitudetomotionlock, and we have some critters barely

bouncing on a “floor” it looks bad if they keep twitching

their orientation up and down. Don’t change the _attitude

to match the motion if the speed is less than

_mintwitchtriggerspeed. */

//==

//Attitude and Display Fields ============================

//==

cSprite *_psprite; //Never NULL. We serialize the _psprite.

BOOL _attitudetomotionlock; /* Shall I lock together the display

sprite and the motion? By default the player has

_attitudetomotionlock FALSE and all other critters have it

TRUE. */

cMatrix _attitude; /* The attitude expresses the way that the

critter is situated for rendering. When _attitudetomotionlock

is TRUE, _attitude has the columns _tangent, _normal,

_binormal, _position. If _attitudetomotionlock is FALSE,

_attitude can be instead controlled by _spin or by the

_plistener actions. */

cSpin _spin; /* A cSpin holds the spinangle in radians per

second and the spinaxis which is the axis to spin around

(z by default). Presently used only when _attitudetomotionlock

is OFF. */

Real _defaultprismdz; /* We copy this into the psprite’s _prismdz

field in setSprite. If we are in 3D and if the sprite is, for

instance, a polygon that makes use of the _prismdz field, then

_prismdz will determine the z-thickness of the sprite. */

Software Engineering and Computer Games184

//===

//Bookkeeping Fields ===============================

//===

//Serialized Bookkeeping Fields ===============================

Real _lasthit_age; /* Age at last hit (or age at birth), use to

time invulnerability. */

BOOL _oldrecentlydamaged; /* Used in update() in connection with

sprite display lists. */

cVector _oldposition;

//This is used by the cCritterWall::collide method.

cVector _oldtangent;

//This is used by the cCritter::fixNormalAndBinormal method.

cVector _wrapposition1, _wrapposition2, _wrapposition3;

//Use for showing wrap in 2D

int _targetindex; /* _targetindex is a dummy used to copy and

serialize the _ptarget pointer reference. */

//Nonserialized Bookkeeping Fields ============================

int _metrickey; /* Index into the _pownerbiota cBiota’s _metric,

can be used to look up metric values. _metrickey is NOT

serialized. Uspd if #define USEMETRIC*/

public:

//==

//Constructor and destructor and helpers ==========================

//===

cCritter(cGame *pownergame = NULL); /* Initializes fields, adds

to pownergame if not null. With the NULL default for the

pownergame argument, this constructor doubles as a no-argument

constructor. */

virtual void copy(cCritter *pcritter); /* Helper function for copy

constructor, and for clone method. */

cCritter(cCritter *pcritter); //copy constructor

cCritter* clone(); /* Returns a pointer to a cCritter of the same

child class type, with the same info in it. */

virtual ~cCritter(); /* deletes pointer members and calls

cBiota::removeReferencesTo(this). The destructor is virtual

so that child critter destructors can do extra cleanup before

the baseclass destructor. */

void removeReferencesTo(cCritter *pdeadcritter); /* Don’t let

pdeadcritter be the _ptarget or the pnode() of any

cForceObject in the _forcearray. */

//===

//Mutators ================================

//===

//State Field Mutators ==============================

void setValue(int value){_value = value;}

/* The velocity, direction, and speed mutators always keep

_velocity = _speed * _tangent. */

Critters 185

void setShield(BOOL shield){_shieldflag = shield;}

void setUseFixedLifetime(BOOL yesno){_usefixedlifetime = yesno;}

void setFixedLifetime(Real lifetime){_fixedlifetime = lifetime;}

void setMutationStrength(Real mutationstrength){_mutationstrength

= mutationstrength;}

virtual void setTarget(cCritter *pcritter){_ptarget = pcritter;}

/* Comes in handy sometimes, though more often I’ll use a

cForceObject. */

void setMetricKey(int i){_metrickey = i;}

virtual void reset(); //can override to do special things.

virtual void setAge(Real age){_age = age; _lasthit_age = _age –

cCritter::SAFEWAIT;} //overridden by cCritterArmedRobot.

//Game Field Mutators ===================================

void setOwner(cBiota* pownerbiota){_pownerbiota = pownerbiota;}

//Used in Add and CBiota::Serialize

virtual void addScore(int scorechange);

void setHealth(int health){_health = health;

if(_health<0)_health=0;} /* We can add health points at

certain score levels. */

void setNewlevelreward(int healthgain){_newlevelreward =

healthgain;}

void setNewlevelscorestep(int pointspread){_newlevelscorestep =

pointspread;}

//===

//Motion Field Mutators ==============================

//===

//Position Field Mutators =============================

int setMoveBox(const cRealBox &box);

void setDragBox(const cRealBox &box){_dragbox = box;}

virtual void setWrapflag(int wrapflag);

//We have a kludge override for cCritterWall

virtual int moveTo(const cVector &newposition, BOOL

treatascontinuousmotion = FALSE); /* Do the move,

and then clamp against _movebox, return outcode of

clamp. */

virtual int moveToZ(Real z){return moveTo(cVector(_position.x(),

_position.y(), z));} /* I use moveToZ in

cGamePickNPop::seedCritters. */

virtual int moveToProportional(const cVector &newposition,

Real proportion, BOOL treatascontinuousmotion = FALSE);

/* Proportion between 0.0 and 1.0 is how much of the way

you want to move towards newposition. */

virtual int dragTo(const cVector &newposition, Real dt);

/* Move and clamp against _dragbox, return outcode. In

addition, use dt to set critter velocity to match the drag

velocity. I make it virtual so cCritterWall can override to

NOT change the velocity. */

Software Engineering and Computer Games186

void moveToMoveboxEdge(Real percent = cCritter::NEAREDGEPERCENT);

/* Useful in some games, to start a critter near the _movebox

edge. */

//Velocity Field Mutators ============================

void setFixedflag(BOOL flag){_fixedflag = flag;}

void setVelocity(const cVector &velocity);

void addVelocity(const cVector velocitychange)

{setVelocity(_velocity + velocitychange);}

void setTangent(const cVector &direction);

void rotate(const cSpin &spin); /* cSpin is a way to express

general 3D angles. */

void yaw(Real turnangle); //Rotate around _binormal.

void roll(Real turnangle); //Rotate around _tangent

void pitch(Real turnangle); //Rotate around _normal

void orthonormalize(); /* Make sure _tangent, _normal, _binormal

are orthogonal units. */

void setSpeed(Real speed);

void setMaxspeed(Real maxspeed)

{_maxspeed = _maxspeedstandard = maxspeed;}

void setTempMaxspeed(Real maxspeed){_maxspeed = maxspeed;}

void restoreMaxspeed(){_maxspeed = _maxspeedstandard;}

//Acceleration, Mass and Force Field Mutators ======================

void setAcceleration(const cVector &acceleration)

{_acceleration = acceleration;}

void addAcceleration(const cVector &acceleration)

{_acceleration += acceleration;}

void setDensity(Real density){_density = density; fixMass();}

void fixMass(); //Keep _mass = _density * _radius()^3.

void addForce(cForce *pforce);

void clearForcearray();

void copyForcearray(cCritter *pcritter); /* This helper method

will empty the existing force array and copy all of the forces

in the pcritter force array. */

virtual void copyPhysicsForces(cCritter *pcritter); /* A more

modest kind of force copying. Here we don’t wipeout the

existing forces in the caller, and we only copy the “physics”

forces like cForceGravity and cForceDrag from pcritter. Use

the BOOL cForce::isGlobalPhysicsForce() to tell us which ones.

We need this method so that bullets can copy the physics of

their shooters but not their behavioral forces. */

//Listener Field Mutators ==================================

void setListener(cListener *plistener);

void setListenerAcceleration(Real la){_listeneracceleration = la;}

//Collision Field Mutators ===================================

void setMinTwitchThresholdSpeed(Real twitchspeed)

{_mintwitchthresholdspeed = twitchspeed;}

Critters 187

void setBounciness(Real bounciness)

{CLAMP(bounciness, 0.0, 1.0); _bounciness = bounciness;}

void setAbsorberflag(BOOL flag)

{_absorberflag = flag;

_absorberflag?_bounciness=0.0:_bounciness=1.0;}

void setCollidePriority(Real collidepriority);

//Rebuild the pgame()->_pcollider just in case.

//===

//Attitude and Display Field Mutators ===============================

//===

void setSprite(cSprite *psprite);

void setSpin(cVector3 spinvector){_spin = cSpin(spinvector);}

void setAttitudeToMotionLock(int lockmode)

{_attitudetomotionlock = lockmode;}

void setSpin(Real spinangle, cVector3 spinaxis = cVector::ZAXIS)

{_spin = cSpin(spinangle, spinaxis);}

void rotateAttitude(Real angle);

//{_attitude *= cMatrix::rotation(angle);}

void rotateAttitude(cSpin &spin);

//{_attitude *= cMatrix::rotation(spin);}

void setAttitude(const cMatrix &attitude); /* This changes the

orientation aspect of _attitude, but NOT the _position

aspect, that is, it leaves the last column alone. */

void resetAttitude(); /* Assume the identity orientation. */

void setAttitudeTangent(const cVector &tangent); /* points

_attitude in tangent direction. If _attitudetomotionlock is

TRUE, we move _tangent to match. */

void copyMotionMatrixToAttitudeMatrix();

void copyAttitudeMatrixToMotionMatrix();

BOOL lookAt(const cVector &targetpos); /* Aim attitudeTangent

at targetpos, and try and perverse attitudeNormal while

you’re at it. Return FALSE if the targetpos is right on

top of you, preventing you from looking at it, else return

TRUE. */

BOOL lookAtProportional(const cVector &targetpos, Real

proportion); /* Proportion is between 0.0 and

1.0 specifying how far towards targetpos you turn

to look. */

int setRadius(Real radius);

void setPrismDz(Real prismdz); /* Sets _defaultprismdz and the

current _psprite->_prismdz. */

//===

//Randomizing mutators ===========================

//===

void randomizePosition(const cRealBox &startbox);

void randomizePosition(){randomizePosition(_movebox);}

Software Engineering and Computer Games188

void randomizeRadius(Real minradius, Real maxradius)

{setRadius(cRandomizer::pinstance()->randomReal(minradius,

maxradius));}

void randomizeVelocity(Real speed);

void randomizeVelocity(Real minspeed, Real maxspeed);

void randomizeVelocity(){randomizeVelocity(MINSPEED, _maxspeed);}

void randomizeSpin(Real minspeed, Real maxspeed);

virtual void mutate(int mutationflags, Real mutationstrength);

/* Mutate flagged position, velocity and sprite properties by

an amount specified in mutationstrength. */

void mutate(int mutationflags)

{mutate(mutationflags, _mutationstrength);} /* Uses the member

_mutationstrength, which defaults to 0.6. */

void randomize(int mutationflags){mutate(mutationflags, 1.0);}

//1.0 is maximum.

//==

//Accessors =================================

//==

//State Field Accessors ==============================

Real mutationStrength()const{return _mutationstrength;}

int value()const{return _value;}

unsigned long personality()const{return _personality;}

BOOL shield()const{return _shieldflag;}

BOOL usefixedlifetime(){return _usefixedlifetime;}

Real fixedlifetime(){return _fixedlifetime;}

Real age()const{return _age;}

BOOL recentlyDamaged(){return (_age – _lasthit_age) < SAFEWAIT;}

//Game Field Accessors =================================

cBiota* pownerbiota()const;

virtual cGame* pgame()const; /*Normally this will just return

_pownerbiota->pgame(), but in the case of a cCritterViewer

associated with a CPopView we use a different path to the

cGame.*/

cCritter* ptarget()const{return _ptarget;}

cCritter* pplayer(); /* return pgame()->pplayer(), in other words

the player of the game that this critter belongs to. */

int score()const{return _score;}

int health()const{return _health;}

//===

//Motion Field Accessors ==============================

//===

//Position Field Accessors ==============================

cVector position() const {return _position;}

cVector oldposition() const {return _oldposition;}

cPlane plane()const{return cPlane(_position, _binormal);}

int wrapflag()const {return _wrapflag;}

cRealBox moveBox()const{return _movebox;}

Critters 189

cRealBox dragBox()const{return _dragbox;}

cRealBox realBox(); //Smallest box holding the sprite.

virtual BOOL draggable(){return TRUE;} /* Used to see if a critter

is willing to be dragged in cGame::onLButtonDown. If you ever

want a non-draggable critter child class, override draggable

to return FALSE. */

BOOL in3DWorld(); //Tells you if the owner game has a z-Thickness.

//Velocity Field Accessors ==================================

BOOL fixedflag()const{return _fixedflag;}

cVector velocity() const {return _velocity;}

cVector tangent() const {return _tangent;}

cVector normal() const{return _normal;}

cVector binormal() const{return _binormal;}

Real speed()const {return _speed;}

Real maxspeed()const {return _maxspeed;}

Real maxspeedstandard()const {return _maxspeedstandard;}

//Acceleration, Force and Mass Field Accessors =======================

cVector acceleration() const {return _acceleration;}

Real density()const{return _density;}

CTypedPtrArray<CObArray, cForce*>* pforcearray()

{return &_forcearray;}

//Listener Field Accessors ================================

cListener* plistener()const{return _plistener;}

Real listeneracceleration()const{return _listeneracceleration;}

//Collision Field Accessors =================================

Real minTwitchThresholdSpeed(){return _mintwitchthresholdspeed;}

Real bounciness(){return _bounciness;}

BOOL absorberflag()const{return _absorberflag;}

Real mass()const{return _mass;}

Real collidePriority(){return _collidepriority;}

//===

//Attitude and Display Field Accessors ===========================

//===

cSprite* psprite() const{return _psprite;}

Real radius() const;

cSpin spin()const{return _spin;}

cMatrix attitude(){return _attitude;}

cVector attitudeTangent()const {return _attitude.column(0);}

cVector attitudeNormal()const {return _attitude.column(1);}

cVector attitudeBinormal()const{return _attitude.column(2);}

BOOL attitudetomotionlock() const{return _attitudetomotionlock;}

Real defaultprismdz()const{return _defaultprismdz;}

//==

//Bookkeeping Field Accessors ==================================

//==

int metrickey()const{return _metrickey;}

//==

Software Engineering and Computer Games190

// Serialize methods ==============================

//==

virtual void Serialize(CArchive &ar);

//==

// Helper methods ==================================

//===

//Service Request Methods ==

/* The point of these is that if a critter is do something that

affects the set of critters as a whole, we want it to let the

cBiota* _pownerbiota do it, so that all critter changes are

coordinated. So critter just passes this request to its

_pownerbiota, and later _pownerbiota calls

cBiota::processServiceRequests. */

void makeServiceRequest(CString request);

void add_me(cBiota *pownerbiota, BOOL immediateadd = FALSE);

/* Make a request to the pownerbiota to add yourself to its

array, normally this doesn’t happen until pownerbiota makes a

periodic call to processServiceRequests, but you can force it

to be immediate with immediateadd. */

void delete_me(){_health = 0; makeServiceRequest(“delete_me”);}

void spawn(){makeServiceRequest(“spawn”);}

void zap(){makeServiceRequest(“zap”);}

void replicate(){makeServiceRequest(“replicate”);}

//copy yourself to all the others.

//Helper Methods for Move Methods ====================================

virtual int clamp();

//Clamp against _movebox. cCritterWall treats differently.

virtual int clamp(const cRealBox &border); //Clamp against border

virtual void addvelocityandcheckedges(Real dt); /* do _position +=

dt*_velocity, and clamp, wrap, or bounce the new position off

the _movebox. Set _outcode to tell which edges. Called by

move(). Need the dt to figure out a velocity bounce. */

void synchSpeedAndDirectionToVelocity(); /* Enforces

_speed*_tangent = _velocity and avoids having _speed less than

SMALL_REAL */

void fixNormalAndBinormal(); /* This is easy in 2D, subtler in 3D.

Call this from inside move on every update. It also

orthonormolizes _tangent, _normal, and _binormal. */

//Helper method for pointer references. ==============================

virtual void fixPointerRefs(); /* This helper is for fixing things

like _ptarget after serialization, is also needed when we

delete a critter.*/

//==

//Distance, touch, sniff, collide methods ============================

//==

/* The first three methods’ code depends whether USEMETRIC is

#defined in metric.h */

Critters 191

virtual cVector directionTo(cCritter *pcritter);

//Use cMetricCritter or compute direct

Real distanceTo(cCritter *pcritter);

//Uses cBiota’s cMetricCritter or computes direct

Real distanceTo(const cLine &testline)

{return testline.distanceTo(_position);}//Direct

cDistanceAndDirection distanceAndDirectionTo(cCritter *pcritter);

//ditto

Real distanceTo(const cVector &vpoint); //Brute force.

virtual BOOL touch(const cVector &vpoint);//Brute force.

virtual BOOL touch(const cLine &sightline); /* In 3D, clicking the

screen really picks a line of sight rather than a particular

point in space. */

virtual BOOL touch(cCritter *pcritter); /* TRUE if pcritter is

different from this and the distance between the centers is

less than the sum of the radii. Uses cBiota’s cMetricCritter

or just does the brute force distance checks. */

virtual BOOL contains(cCritter *pcritter); /* TRUE if the disk of

pcritter is inside the disk of the caller. */

virtual COLORREF sniff(const cVector &snifflocation, CPopView

pactiveview); / Can be used in update to check the current

screen’s pixel color at locations you’re interested in. */

virtual int collidesWith(cCritter *pcritterother); /* Returns

cCollider::DONTCOLLIDE, ::COLLIDEASCALLER, or ::COLLIDEASARG

to specify which of the pair, if either, gets to call for a

collision. Default just checks _fixedflag and

_collidepriority. */

virtual BOOL collide(cCritter *pcritter); /* Does a physically

natural collision and possibly overrides to make the critters

react in some other way such as damage. */

//==

//Game methods ============================

//==

virtual void die(){delete_me();} /* Can be overridden to add

dying behavior. But should eventually produce a call to

delete_me. */

virtual void cCritter::dieOfOldAge(){delete_me();} /* dieOfOldAge

is called in the update method if(_usefixedlifetime &&

_age > _fixedlifetime). We distinguish between die() and

dieOfOldAge() so die() can make a different sound for

instance. */

virtual int damage(int hitstrength); /* Deducts hitstrength from

_health, calls die if this is below zero, returns _value as a

reward to the damager. */

//==

//Force and Listen methods ==============================

//==

Software Engineering and Computer Games192

virtual void feellistener(Real dt); /* Call _plistener->listen,

maybe more. */

virtual void feelforce(); /* Do _acceleration =

(sum of _forcearray[i]->force(this))/mass(). feelforce is

virtual because you might possibly want to select which forces

you feel, depending on the situation, like whether you’re

currently pursuing or fleeing. */

//===

//Drawing methods ====================================

//===

void updateAttitude(Real dt, BOOL forceattitudeupdate = FALSE);

/* This keeps graphical attitude matrix of the critter in

synch with its motionmatrix. To prevent a too-busy look, we

normally don’t do the update if the _speed is less than

_mintwitchthresholdspeed. But if we are controlling the

critter with arrow key calls to, e.g. the yaw, pitch and roll

methods, we do want to force the update of the appearance, and

then you set the forceattitudeupdate argument to TRUE. */

virtual void draw(cGraphics *pgraphics, int drawflags=0);

/* Calls _psprite->draw. Has to be virtual because some child

critters draw stuff (like guns) on top of sprite. */

virtual void drawHighlight(cGraphics *pgraphics, Real

highlightratio); /* Draw a highlighted XOR circle around the

sprite with a size = highlightratio * radius(). */

//==

//Sound methods =============================

//==

static void playSound(CString wavfileresourcename, int soundflags

= SND_RESOURCE | SND_ASYNC);

/* By default interrupts any current sounds to play this

sound. wavfileresourcename has to be the resource name of

a *.wav file that you added as a resource to your build. */

static void stopSound(); //Turns off any currently playing sounds.

//===

//Simulation methods ==============================

//===

virtual void animate(Real dt); /* Calls _psprite->animate(dt,

this). Can override to setAimVector. */

virtual void update(CPopView *pactiveview, Real dt); /* Call force

to set the _acceleration to zero or to the quantity determined

by _pforce. The pactiveview argument can be used to sniff

pixel colors. */

int move(Real dt); /* You really should NOT change the delicately

constructed move method, which is why its not virtual. */

};

#endif //CRITTER_H

Critters 193

Ta
bl

e
8
.1

S
pe

ci
al

 c
la

ss
es

 u
se

d
in

 t
he

 P
op

 F
ra

m
ew

or
k.

U
se

d
in

C
la

ss
 n

am
e

P
ar

en
t

cl
as

s
O

ve
rr

id
de

n
m

et
ho

ds
N

ew
 v

ir
tu

al
 m

et
ho

ds

B
as

ic
 c

la
ss

es
cC

ri
tt

er
A

rm
ed

cC
rit

te
r

an
im

at
e,

 d
ra

w
,
fix

Po
in

te
rR

ef
s,

 u
pd

at
e

sh
oo

t
cC

rit
te

rA
rm

ed
Pl

ay
er

cC
rit

te
rA

rm
ed

co
lli

de
,
da

m
ag

e,
 d

ra
w

,
fe

el
lis

te
ne

r,
 s

ho
ot

cC
rit

te
rA

rm
ed

R
ob

ot
cC

rit
te

rA
rm

ed
up

da
te

cC
rit

te
rP

la
ye

r
cC

rit
te

rA
rm

ed
Pl

ay
er

cC
rit

te
rB

ul
le

t
cC

rit
te

r
co

lli
de

,
co

lli
de

sW
ith

,
fix

Po
in

te
rR

ef
s,

 u
pd

at
e

in
iti

al
iz

e,
 is

Ta
rg

et
cC

rit
te

rB
ul

le
tR

ub
be

r
cC

rit
te

rB
ul

le
t

co
lli

de
,
up

da
te

cC
rit

te
rB

ul
le

tS
ilv

er
cC

rit
te

rB
ul

le
t

da
m

ag
e

cC
rit

te
rW

al
l

cC
rit

te
r

cl
am

p,
 c

ol
lid

e,
 c

ol
lid

es
W

ith
,
di

st
an

ce
To

,
dr

ag
To

S
pa

ce
w

ar
cC

rit
te

rA
st

er
oi

d
cC

rit
te

r
da

m
ag

e
cC

rit
te

rU
FO

cC
rit

te
rA

rm
ed

R
ob

ot
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rU
FO

S
m

ar
t

cC
rit

te
rU

FO

B
as

ke
tb

al
l

cC
rit

te
rB

as
ke

t
cC

rit
te

r
co

lli
de

cC
rit

te
rB

al
lw

or
ld

cC
rit

te
r

di
e

cC
rit

te
rB

al
lw

or
ld

Pl
ay

er
cC

rit
te

rA
rm

ed
Pl

ay
er

di
e

D
am

bu
ild

er
cC

rit
te

rD
am

Fl
oa

t
cC

rit
te

r
cC

rit
te

rD
am

Pl
ay

er
cC

rit
te

rA
rm

ed
Pl

ay
er

cC
rit

te
rD

am
B

ul
le

t
cC

rit
te

rB
ul

le
t

is
Ta

rg
et

cC
rit

te
rD

am
W

al
l

cC
rit

te
rW

al
l

D
ef

en
de

r3
D

cC
rit

te
rD

ef
en

de
r3

D
-P

la
ye

r
cC

rit
te

rA
rm

ed
Pl

ay
er

co
lli

de
,
da

m
ag

e,
 d

ra
w

,
re

se
t,

 s
ho

ot
,
up

da
te

cC
rit

te
rD

ef
en

de
r3

D
-P

la
ye

rB
ul

le
t

cC
rit

te
rB

ul
le

t
cC

rit
te

rD
ef

en
de

r3
D

Pr
op

cC
rit

te
r

co
lli

de
,
da

m
ag

e,
 d

ie
cC

rit
te

rD
ef

en
de

r3
D

-P
ro

pF
ra

g
cC

rit
te

r
up

da
te

,
co

lli
de

sW
ith

cC
rit

te
rD

ef
en

de
r3

D
-R

iv
al

cC
rit

te
rA

rm
ed

R
ob

ot
co

lli
de

,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rD
ef

en
de

r3
D

-R
iv

al
bu

lle
t

cC
rit

te
rB

ul
le

tS
ilv

er
in

iti
al

iz
e

Software Engineering and Computer Games194

Ai
rh

oc
ke

y
cC

rit
te

rH
oc

ke
yG

oa
l

cC
rit

te
rW

al
l

co
lli

de
cC

rit
te

rH
oc

ke
yP

la
ye

r
cC

rit
te

r
re

se
t

cC
rit

te
rH

oc
ke

yP
uc

k
cC

rit
te

r
cC

rit
te

rH
oc

ke
yR

ob
ot

cC
rit

te
r

up
da

te

Pi
ck

-N
-P

op
cC

rit
te

rJ
ew

el
cC

rit
te

r
di

e,
 u

pd
at

e
cC

rit
te

rP
ea

nu
t

cC
rit

te
r

di
e

cC
rit

te
rU

np
ac

ke
dJ

ew
el

cC
rit

te
r

di
e

S
tu

b3
D

cC
rit

te
rS

tu
b3

D
Pl

ay
er

cC
rit

te
rA

rm
ed

Pl
ay

er
co

lli
de

,
da

m
ag

e,
 r

es
et

,
up

da
te

cC
rit

te
rS

tu
b3

D
-P

la
ye

rB
ul

le
t

cC
rit

te
rB

ul
le

t
cC

rit
te

rS
tu

b3
D

Pr
op

cC
rit

te
r

co
lli

de
,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rS
tu

b3
D

R
iv

al
cC

rit
te

rA
rm

ed
R

ob
ot

co
lli

de
,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rS
tu

b3
D

-R
iv

al
B

ul
le

t
cC

rit
te

rB
ul

le
tS

ilv
er

in
iti

al
iz

e
cC

rit
te

rS
tu

bP
la

ye
r

cC
rit

te
rA

rm
ed

Pl
ay

er
co

lli
de

,
da

m
ag

e,
 r

es
et

,
sh

oo
t,

 u
pd

at
e

S
tu

b
cC

rit
te

rS
tu

bP
la

ye
rB

ul
le

t
cC

rit
te

rB
ul

le
t

cC
rit

te
rS

tu
bP

ro
p

cC
rit

te
r

co
lli

de
,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rS
tu

bR
iv

al
cC

rit
te

rA
rm

ed
R

ob
ot

co
lli

de
,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rS
tu

bR
iv

al
B

ul
le

t
cC

rit
te

rB
ul

le
tS

ilv
er

in
iti

al
iz

e

W
or

m
s

cC
rit

te
rW

or
m

S
eg

m
en

t
cC

rit
te

r
co

lli
de

,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rW
or

m
sP

la
ye

r
cC

rit
te

rA
rm

ed
Pl

ay
er

co
lli

de
,
da

m
ag

e,
 r

es
et

,
up

da
te

cC
rit

te
rW

or
m

sP
la

ye
r-B

ul
le

t
cC

rit
te

rB
ul

le
t

cC
rit

te
rW

or
m

sR
iv

al
cC

rit
te

rA
rm

ed
R

ob
ot

co
lli

de
,
da

m
ag

e,
 u

pd
at

e
cC

rit
te

rW
or

m
sR

iv
al

-B
ul

le
t

cC
rit

te
rB

ul
le

tS
ilv

er
in

iti
al

iz
e

Ta
bl

e
8
.1

(C
on

tin
ue

d)

U
se

d
in

C
la

ss
 n

am
e

P
ar

en
t

cl
as

s
O

ve
rr

id
de

n
m

et
ho

ds
N

ew
 v

ir
tu

al
 m

et
ho

ds

cCritter initialization

To complete this detailed code section, here’s how the cCritter fields get initialized
by the default constructor. Remember that when we define children of the critter
class, like, say, cCritterArmed, when the cCritterArmed constructor is called the
base class cCritter constructor gets called first. In other words, the cCritter con-
structor is code that all of our critters will execute at start up. Child classes may
override some of these initialization values; they may also initialize additional
variables that the child class may have.

We go ahead and list the full code of a recent version of the cCritter con-
structor here just to give you an idea of all the member fields actually used.
A C++ usage worth noting here is that when we write a C++ constructor, it’s
common to set the values of fields by using initializer lines of the form
_variable(value), rather than having a line of the form _variable = value;

inside the curly brackets of the constructor. It makes the code easier to over-
view, and it’s useful to see the allocation calls using new isolated inside the
constructor’s curly brackets, so that then it’s easier to remember what you
have to undo in the destructor. (If you happen to have any data fields that
were declared as const you are in fact required to use initializer lines to set their
values.)

Also note that if the pownergame argument isn’t supplied, it will get the
default NULL value, and the code involving it will be skipped over in the
constructor.

cCritter::cCritter(cGame *pownergame):

_pownerbiota(NULL),

_age(0.0),

_lasthit_age(- cCritter::SAFEWAIT), /* We do this so

that critters don’t start out thinking they were

just hit. cCritter::SAFEWAIT is currently 0.3

seconds. */

_oldrecentlydamaged(FALSE), //Can use to notice when you need to

change sprite.

_health(cCritter::STARTHEALTH), //Default 1.

_usefixedlifetime(FALSE),

_fixedlifetime(cCritter::FIXEDLIFETIME),

_shieldflag(FALSE),

_outcode(0),

_score(0),

_newlevelscorestep(0),

_newlevelreward(0),

_value(1),

_personality(cRandomizer::pinstance()->random()),

//Use our static randomizing method.

_movebox(cRealBox(4.0,3.0, 0.0)),

//Dummy defaults to be reset with setMoveBox

Critters 195

_dragbox(cRealBox(_movebox)),

//Dummy defaults to be reset with setDrag

_wrapflag(cCritter::STARTWRAPFLAG), //cCritter::BOUNCE

_defaultprismdz(cSprite::CRITTERPRISMDZ),

_density(cCritter::DENSITY),

//This standard value is currently 1.0.

_mass(1.0), //Dummy default is reset by fixMass.

_collidepriority(cCollider::CP_CRITTER),

_absorberflag(FALSE),

_fixedflag(FALSE),

_position(cVector::ZEROVECTOR),

_oldposition(cVector::ZEROVECTOR),

_wrapposition1(cVector::ZEROVECTOR),

_wrapposition2(cVector::ZEROVECTOR),

_wrapposition3(cVector::ZEROVECTOR),

_velocity(cVector::ZEROVECTOR),

_speed(0.0), //Must match _velocity.magnitude().

_tangent(cVector(1.0, 0.0)),

//We always want some unit vector _tangent.

_oldtangent(cVector(1.0, 0.0)),

_normal(cVector(0.0, 1.0)),

_binormal(cVector(0.0, 0.0, 1.0)),

_attitudetomotionlock(TRUE),

_acceleration(cVector::ZEROVECTOR),

_listeneracceleration(cCritter::LISTENERACCELERATION),

_spin(), /* _spin is initialized to 0 spinangle around ZAXIS by

default constructor */

_maxspeed(cCritter::MAXSPEED), //Default 3.0

_maxspeedstandard(cCritter::MAXSPEED),

_mintwitchthresholdspeed(cCritter::MINTWITCHTHRESHOLDSPEED),

_bounciness(1.0),

_mutationstrength(cCritter::MUTATIONSTRENGTH),

//Default 0.6 (out of 1.0 max)

_ptarget(NULL),

_metrickey(0)

{

_psprite = new cSprite(); /* Let’s always have a valid sprite.

The default cSprite looks like a circle, by the way. */

_plistener = new cListener(); /* For uniformity, always have a

valid listener as well. The default listener does nothing.

Don’t call setListener(new cListener()) here as this call may

have side-effects I don’t want yet. */

_attitude.setLastColumn(_position);

/* The default _attitude constructor has set the matrix

to the identity matrix, and it’s more accurate to the

make the fourth column match the position. */

Software Engineering and Computer Games196

if (pownergame)

pownergame->add(this, TRUE); /* This call will set _movebox

and _dragbox to match pownergame->_border, and will set

_wrapflag to match pownergame->wrapflag). The TRUE flag

means to insert the critter into the game cBiota array

right away. */

}

Review questions

A What are some child classes of the cCritter class?

B What are the cCritter methods most commonly overridden?

C What are the three classes to which the cCritter delegates functionality?

D In updating the critter’s motion, what do we do to keep the critter from running off
towards infinity or from acquiring an unrealistically large velocity?

E What is the meaning of the information in the cCritter’s _outcode field?

F Why is the cCritter draw method code an example of the Template Method pattern?

Exercises

Exercise 8.1: The importance of being virtual

If you don’t explicitly label a method as virtual in the base class, then the child class over-
rides will ignore it. The Pop Framework has deliberately made move a non-virtual method,
because it would be a bad idea for you to override it, like tinkering with the delicate innards
of a watch. Even if you were to write a move method inside one of the child classes, your
code would be ignored (unless you were to put virtual in front of the move prototype in
critter.h).

Let’s see what happens if we make update non-virtual. This will mean that all of the
critters’ specialized update methods will be ignored and they’ll just use the base class
update method, which in fact does very little.

Open up the Pop project file and remove the world ‘virtual’ from the line virtual
void update(CPopView *pactiveview, Real dt) at the bottom of the critter.h file.
Build and run. You’ll find that you’re no longer able to shoot bullets in the Spacewar
game. This is because the shooting behavior is part of the cArmedCritter::update code,
which is now not being used.

Exercise 8.2: Tweaking the evolution process

Try changing the default _mutationstrength value, and make some changes to the cPolygon
and cPolyPolygon mutate methods as well. See what kinds of interesting polypolygons you
can come up with.

Critters 197

9Sprites

9.1 Kinds of sprite

‘Sprite’ is a word traditionally used in computer game programming for the
little character images that move around. Normally, computer game sprites are
based on bitmaps, and we do indeed have a cSpriteIcon child of the cSprite class
that uses bitmap images.

We also have some geometrical sprite objects. The cSprite child classes, cPolygon

and cSpriteCircle, draw polygons and disks, respectively. Geometrical objects
have the virtue of being scale-independent, crisp-looking, and lightweight in
terms of memory use. Another good thing about them is that they can be easily
rotated. Bitmaps can be rotated in OpenGL graphics, but not in Windows
graphics.

Exercise 9.11 discusses how to create sprites of a variety of standard 3D
shapes: sphere, cone, torus, tetrahedron, cube, octahedron, dodecahedron,
icosahedron, and teapot.

The cSpriteComposite class uses the Composite software pattern to provide
for sprites which are made up of component sprites. The cSpriteBubble is a com-
posite holding a cSpriteCircle and a decorative cPolygon highlight. cPolyPolygon is a
special kind of composite drawn as a polygon with polygons (or polypolygons)
at its vertices.

The cSpriteShowOneChild of cSpriteComposite shows only one of the components
rather than all of them. How might we choose which component to show? We
might either look at the direction the sprite is currently moving in, getting the
cSpriteDirectional, or we might track the passage of time and continually flip
through an animation loop of sprites like the cSpriteLoop does.

Figure 9.1 is a UML class diagram of the cSprite classes used in the Pop
Framework.

Students are usually most interested in the bitmap-based sprite cSpriteIcon;
this is initialized from a *.bmp file that you add to your project resource. These
work very well in Windows graphics, but in our three-dimensional OpenGL
graphics, they run a bit slow. We presently implement the OpenGL bitmap
sprites as texture maps that are applied to rectangles. In both the Windows and
OpenGL graphics, we have the option of giving transparent backgrounds to our
cSpriteIcon objects.

One can chain these constructions and have, for instance, a cSpriteDirectional

that is an array of cSpriteLoop objects, so that one sees a different animation
depending on the direction of the critter’s motion. This is useful, for instance,
for showing a running human form.

9.2 The cSprite class

Now let’s look at what goes inside a cSprite. A sprite does not need to know
the name of its owner cCritter. This is the way it should be, as a sprite is simply
some geometry in space, possibly textured with a bitmap. This makes life easier
as maintaining a cCritter* pointer inside cSprite while maintaining an ‘inverse’
cSprite* pointer inside cCritter would be a bit of a hassle, particularly when it
came to writing the destructors for these objects.

A sprite is something that a critter uses to draw a picture of itself. We will
think of the size of a critter as being the visual size of its sprite. So a sprite will
have a Real _radius field. Our decision was to have the _radius belong to the sprite
rather than the critter, by the way, because we want the radius to represent the
visual radius that we see on the screen, and we’d like to have anything visual
belong to the sprite.

The effective radius of a sprite may be affected by a scaling matrix, or by the fact
that the sprite is a composite of several sprites, so it’s not always going to be the
case that the virtual Real cSprite::radius() method returns the same value as _radius.

Different sprites will override radius() in different ways. For purposes of colli-
sions, a critter will regard its own radius() as being its _psprite->radius().

The sprite also has a cMatrix _spriteattitude variable which is by default the
identity matrix. This matrix is used in addition to the cCritter member cMatrix

_attitude. We’ll say more about the sprite attitude in the following sections.

Sprites 199

Figure 9.1 Our cSprite child classes

The sprite Draw method

We’ll give the cSprite a draw method with the same arguments as the cCritter::draw.
The cSprite::draw manipulates the graphics matrices and calls a secondary helper
method cSprite::imagedraw.

Our graphics pipeline is set up so that before drawing the sprite of a critter,
the pipeline gets the critter’s _attitude which moves the zero vector to the
critter’s current position. In addition the _attitude transformation rotates the
sprite’s spatial ‘attitude’ to match that of the critter. We only need to multiply a
non-trivial _spriteattitude for cases where the sprite is to be positioned other
than in the most natural way.

We implement the ‘graphics pipeline’ as a cGraphics object which maintains
two cMatrix members. One of these matrices is called the projection matrix,
and the other is called the modelview matrix. At the time when the
CPopView::OnDraw calls on the cGraphics object to draw your sprite onto the screen,
the modelview matrix MV will typically have the form MV = V′ * Mc * Ms,
where Ms is the _spriteattitude, Mc is the critter’s _attitude, and V′ is the
inverse of the _attitude matrix of the cCritterViewer which views the scene.
(See Chapter 24: 2D and 3D Graphics for a bit more about this.) A given vertex
u of a sprite polygon will be drawn as being at the point u′ = P * MV * u, where
P is the projection matrix. In the case of a composite sprite the MV may incor-
porate subsidiary matrices for the individual sprite pieces and take on a form
like V′ * Mc * Ms * Msa, with Msa representing the location of a component of
the sprite relative to the spirite as a whole. (Look for instance at the code for
cSpriteBubble::setAccentPoly() in spritebubble.cpp.)

In order to right-multiply a matrix into the modelview matrix, we can use the
cGraphics::multMatrix method as indicated in the sequence diagram of Figure 9.2.
Note that in order to preserve the leading bits of the matrix for use by other
critters and sprites, we use pushMatrix and popMatrix calls. The push call saves
a copy of the current state of the modelview matrix in a stack, and the latter
call copies the saved state back out of the stack.

In terms of our equation MV = V′ * Mc * Ms, when we start at the top of
Figure 9.2, MV is simply V′. The first pushMatrix call saves this value of MV, and
the first call to multMatrix sets MV = V′ * _attitude. The second pushMatrix
call saves this ‘critter matrix’ value, and the second multMatrix call sets MV = V′
* _attitude * _spriteattitude. The two succesive popMatrix calls restore MV
back to the simple V′ state.

As we mentioned in Chapter 8: Critters, a critter’s call to draw(pgraphics,
drawflags) uses a Template Method pattern to do the following.

• Push (that is, save) the graphics pipeline’s current modelview matrix.

• Multiply the critter _attitude times the graphics pipeline’s modelview
matrix.

• Call _psprite->draw with the same arguments.

• Pop (that is, restore) the graphics pipeline’s current modelview matrix.

Software Engineering and Computer Games200

The cSprite::draw method uses the same kind of Template Method pattern,
again doing some standard things with matrices and passing the actual drawing
off to a subsidiary method, this time the cSprite imagedraw.

void cSprite::draw(cGraphics *pgraphics, int drawflags)

{

pgraphics->pushMatrix();

pgraphics->multMatrix(_spriteattitude);

imagedraw(pgraphics, drawflags);

pgraphics->popMatrix();

/* After the draw, tell the sprite that its current geometry has

now been drawn once. */

setNewgeometryflag(FALSE); /* This is for use by the

cGraphicsOpenGL for knowing when it may need to change any

display list id being used for the sprites.*/

}

Sprites 201

Figure 9.2 Sequence diagram of the draw cascade

In plain English, this is the following.

• Push (that is, save) the graphics pipeline’s current modelview matrix.

• Multiply the sprite _spriteattitude times the graphics pipeline’s model-
view matrix.

• Call _psprite->imagedraw with the same arguments.

• Pop (that is, restore) the graphics pipeline’s current modelview matrix.

The cSprite child class imagedraw methods make calls to special kinds of
cGraphics methods. For example

void cPolygon::imagedraw(cGraphics *pgraphics, int drawflags)

{

pgraphics->drawpolygon(this, drawflags);

}

The cSpriteIcon::imagedraw calls pgraphics->drawbitmap(this, drawflags). The
individual cGraphics child class can tell from the pointer argument pgraphics
what kind of graphics it is. How the graphics class draws a polygon or a bitmap
is up to the individual cGraphics child class. This is an example of the Bridge pat-
tern; the cGraphics child classes have different implementations of the key draw-
ing methods such as drawpolygon and drawbitmap.

The behaviors that we see when drawing the different kinds of sprites are
shown in Table 9.1.

The Animate method

During every update of the game, each critter calls a cCritter::animate(dt) method
that does two things.

• Make an updateAttitude(dt) call to
(a) match the critter’s _attitude to the critter’s current motion matrix if

the critter’s _attitudetomotionlock is TRUE, or, otherwise
(b) rotate the critter’s _attitude by dt*_spin or
(c) leave the _attitude alone if _spin is zero.

• Call a _psprite->animate(dt, this).

Software Engineering and Computer Games202

Table 9.1 How we draw the different kinds of sprite.

Class imagedraw behavior

cSprite Default: draw a hollow circle and radius
cPolygon Draw a polygon
cSpriteIcon Draw a bitmap in a rectangle
cSpriteLoop Draw the sprite for the current time
cSpriteDirectional Draw the sprite for the current direction
cSpriteBubble Draw a circle decorated with a rectangle
cSpriteBubblePie Draw a circle decorated with a pie slice

The default cSprite::animate(Real dt, cCritter* powner) doesn’t do anything. But
the cSprite::animate can be overridden to do various kinds of things. We might
look at the powner->recentlyDamaged() value and set a sprite accordingly (see
Exercise 9.10). Or you could use dt to increase and decrease the radius of the
sprite to give a ‘breathing’ effect. If we have a polygon-based sprite, we might
use dt to move some of the vertices of the polygon so as to make the image flex,
perhaps opening and closing its ‘mouth’ (see Exercise 9.7).

When we use a bitmap based sprite in the cGraphicsMFC, we need to actu-
ally change the bitmap being used for different directions (because unlike
cGraphicsOpenGL, cGraphicsMFC doesn’t rotate bitmaps). And in any graphics
implementation, you will need to flip through differing bitmaps if you want an
animation effect for the sprite.

In these situations we use the cSpriteShowOneChild composite sprite and let the
animate method set the _showindex used to determine the currently active
component sprite.

The cSpriteLoop::animate method ages a time counter and adjusts the _showindex
accordingly, while the cSpriteDirectional::animate adjusts the _showindex sprite
according to the current powner->tangent().

9.3 Polygons

Particularly in three dimensions, we very often want to represent our critters by
colored polygons, perhaps by just one polygon, perhaps by a few, or perhaps by a
whole mesh of them. Computer graphics systems draw polygons in an entirely
different way from how they draw bitmaps. A bitmap is based on discrete pixel-by-
pixel information, while a polygon is based on coordinates in continuous space.
In drawing a polygon, we convert its space coordinates into pixel coordinates, use
fill algorithms to color it in, and use line-drawing algorithms to draw its edges.

Windows has a built-in CDC::Polygon(POINT * vertices, int vertexcount) method
which makes it easy to rapidly draw polygons on the screen. Our cPolygon class is
designed to create polygon structures that can take advantage of this function call.

Initializing and decorating a polygon

We can create an empty polygon with the default polygon constructor cPolygon(),
and then we can put some structure onto it by using one of our special mutators.
Note that as usual you can leave out the trailing arguments which have default
values defined.

void setRegularPolygon(int vertexcount);

void setStarPolygon(int vertexcount, int step);

void setRandomStarPolygon(int mincount, int maxcount);

void setRandomRegularPolygon(int mincount, int maxcount);

void setRandomAsteroidPolygon(int mincount = 5, int maxcount = 30,

Real spikiness = 0.3);

Sprites 203

The setRegularPolygon and setStarPolygon mutators produce polygons with a
user-selected vertexcount. The step argument to the star polygon controls the
kind of star that is drawn. In general, choosing a step smaller than the vertex
count which has no divisors in common with the vertex count produces the
nicest stars. At present the stars look good in cGraphicsMFC, but cGraphicsOpenGL

still needs to be tweaked to draw them properly.
The setRandomRegularPolygon and the setRandomStarPolygon are methods for

randomly making a regular or a star polygon with its vertex count and its radius
within specified ranges.

The Spacewar game is something like the traditional Asteroids. So it will be
useful to have some setRandomAsteroidPolygon to create random irregular polygons.
To make the asteroid polygons look solid, we add their vertices in successive
counterclockwise order – if we add them out of order we’ll get something like a
star. Stars look nice if they’re regular, but an irregular star just looks like a scribble.
We use the spikiness parameter to control the difference between minimum
radius and maximum radius used for the various asteroid vertices.

Another approach, which we use when we want a particular shape, is to use
the cPolygon(n) constructor and then use n calls to setVertex (int n, cVector v) to
build up the polygon a step at a time. Note that by default, we assume we have
a closed polygon in which the last point is automatically connected to the
first point.

Once we have a polygon, we can adjust its interior with various mutators
that you find in polygon.h. One easy way to vary a polygon sprite is to call the
randomize method with the MF_ flags defined in polygon.h. For instance the
ppolygon->randomize(cPolygon::MF_COLOR) will randomize the ppolygon fill
color, and the cPolygon::MF_ALL flag will randomize everything.

We can adjust the lines around the edges of the polygon with the _edged and
_reallinewidth fields. The _reallinewidth field controls the ratio of the thickness
of the line to the polygon’s radius. A value of, say, 0.2 will give a fat line. We
state this quantity as a real number ratio rather than a pixel width so that the
polygon will still have the same appearance when drawn at different size scales.
But if the converted pixel width of the line would be less than one, we still
draw a line of pixel width one, assuming that _edged is TRUE. Drawing lines of
width greater than one slows the Windows Polygon function down inordinately,
so we recommend sticking to the default _reallinewidth of 0.0, which will pro-
duce a line one pixel in width, which is what Windows really ‘prefers’ to draw.
(spritepolygon.h also has a #define for a name for 0.0 to use in this ‘line width’
context: LW_ONEPIXEL.)

As a non-standard extra, we can also draw dots at our polygon vertices, using
the _dotted and _realdotradius fields. The _realdotradius field controls the ratio of
the radius of the vertex dots of the polygon’s radius. A value of, say, 0.2 will
give fat dots. We state this quantity as a real number ratio rather than a pixel
width so that the polygon will still have the same appearance when drawn at
different size scales. The dots look quite nice; they are drawn after the polygon
so they seem to sit on top of it. We have the option of filling the dots or not,
and of selecting their fill colors. Dots aren’t implemented for OpenGL.

Software Engineering and Computer Games204

A related class is cSpriteCircle, which is simply a cPolygon with some static int

cSpriteCircle::CIRCLESLICES number of sides. If you don’t make the ‘circles’
too big, a reasonable value for CIRCLESLICES is 16.

We could have implemented cSpriteCircle to have an imagedraw that calls
something like an ellipse method, but it was quicker and easier to just treat the
circles as many-sided polygons.

Polygons in 3D

There are some differences between the implementations of cGraphicsOpenGL

and cGraphicsMFC::drawpolygon. As of August, 2002, the dots only show up
with cGraphicsMFC, and the star-shaped polygons aren’t as nicely drawn in
cGraphicsOpenGL. These are ‘bad’ differences that could be fixed.

A ‘good’ difference between the two graphics implementations of drawpolygon

is that, to enhance the three-dimensionality of the view with OpenGL, the
cGraphicsOpenGL actually draws a polygon as a thick prism, that is, as a base poly-
gon with vertical sides extending upwards to an identical cap polygon. The
exact thickness of the prism can be controlled via the cSprite field Real _prismdz,
and this field can in turn be controlled either directly or by setting the cCritter

_defaultprismdz field before adding the sprite. By default the various child critter
classes use the following _prismdz values.

Real cSprite::WALLPRISMDZ = 0.75;

Real cSprite::PLAYERPRISMDZ = 0.5;

Real cSprite::CRITTERPRISMDZ = 0.3;

Real cSprite::BULLETPRISMDZ = 0.2;

Real cSprite::MAXPRISMDZ = 1.0;

Thus, if you open up Dambuilder in the 3D view, you’ll see the walls as taller
than the player, the player as taller than the other critters, and the bullets as
the thinnest of all.

9.4 Composite sprites

The cSpriteComposite holds an array of cSprite pointers called _childspriteptr. The
default cSpriteComposite::draw behavior is to walk the array and call draw for each
of the child sprites.

for (int i=0; i< _childspriteptr.GetSize(); i++)

_childspriteptr[i]->draw(pgraphics, drawflags);

We can make some nice shapes this way. We’ll consider two examples in this
section: the cSpriteBubble and the cPolyPolygon.

Sprites 205

The cSpriteBubble

The cSpriteBubble consists of a disk with a rectangular highlight on it, meant
to be mildly suggestive of the reflection of a window in the surface of a soap
bubble. We implement cSpriteBubble as a cSpriteComposite with two members: a
cSpriteCircle (that is, a many-sided polygon) and a cPolygon rectangle that we can
access as the cSpriteBubble::paccentpoly().

void cSpriteBubble::setAccentPoly()

{

Real side = 0.33 * (pcirclepoly()->radius());

cVector pverts[4] = {cVector(0.0, 0.0, 0.0),

cVector(2*side, 0.0, 0.0),

cVector(2*side, side, 0.0),

cVector(0.0, side, 0.0)};

cPolygon *prectpoly = new cPolygon(4, pverts);

prectpoly->setSpriteAttitude(

cMatrix::translation(cVector(side, 0.5*side, 0.1));

add(prectpoly); //Decoration rectangle.

setFillColor(pcirclepoly()->fillColor()); /* Make the accent color

match the circle. */

}

Software Engineering and Computer Games206

The PickNPoP game viewed in OpenGL 3D. On the left are cSpriteBubble and
cSpriteBubbleGrayScale, on the right are cSpriteBubblePie

Figure 9.3 is a picture of the construction.
The cPolygon constructor by default centers the rectangle on the origin,

which is why we need to set the rectangular accent polygon’s _spriteattitude
to cMatrix::translation(cVector(side, 0.5*side, 0.1)). This moves the
rectangle away from the origin and into the position shown. The 0.1 transla-
tion in the z slot is so that, when viewed in 3D, the accent rectangle sticks up
a bit out of the disk of the circle. You need to be careful not to draw faces of
polygons in the same plane in 3D as then they ‘z-fight’ with each other and
flicker in an ugly fashion.

Polypolygons

Now let’s say a bit about the cPolyPolygon class. A polypolygon is a cSpriteComposite

which consists of a base polygon plus a secondary ‘tipshape’ polygon at each
vertex.

The way we’ve implemented the polypolygons is to assume that a polypolygon
will have the same tipshape at each of its vertices. We use the cPolyPolygon

methods setBasePoly(cPolygon* pppoly) and setTipShape(cSprite* pshape) to set the
base and the tipshape information.

You can view a bunch of these guys by opening up the Spacewar game and
selecting Game | Polypolygons. Note that when the game reseeds itself, it reverts
to asteroid sprites; if you want a game that sticks with polypolygon sprites, you
need to code this fact into the constructors of the game’s critters.

In order to make a more symmetric image, we design the cPolyPolygon::draw

method so as to draw an image of the tipshape which is rotated slightly from
vertex to vertex; more precisely, if a polygon has n vertices, then we draw the
tipshape as is at the first vertex, and then rotate it by 2 * PI/n for each of the
successive vertices, rotating it back into starting position when we’re done.

Sprites 207

Figure 9.3 The cSpriteBubble composite sprite. Accent rectangle is translated away from
origin.

9.5 The cSpriteIcon class

The author did a lot of coding and encapsulating in order to come up with a
cSprite child class called cSpriteIcon. cSpriteIcon has a constructor cSpriteIcon(int

resourceID) which takes the ID of a bitmap resource as its argument. To make
things nicer, the cSpriteIcon will automatically make the background of the
image transparent. To give a critter a transparent-background sprite based on a
resource bitmap with an ID like, say, IDB_EARTH, we only need to add a single
line to the critter’s constructor.

setSprite(new cSpriteIcon(IDB_EARTH));

We also have the option of not having a transparent background at all. The
full prototype of the cSpriteIcon constructor looks like this.

cSpriteIcon(int resourceID, BOOL transparent = TRUE,

BOOL presetaspect = FALSE);

If we put a FALSE in the second argument to the constructor, we get a solid
bitmap.

The third cSpriteIcon constructor argument isn’t often used. This presetaspect
field of cSpriteIcon relates primarily to the cSpriteIconBackground, which sets it to TRUE.
The purpose of cSpriteIconBackground is to make a solid big icon suitable for use
as a background in a game. Its constructor is of the form cSpriteIconBackground(int

Software Engineering and Computer Games208

Polyploygons in the Spacewar game

resourceID, const cRealBox2 &borderrect), where the borderrect is ordinarily going to be
a wall of the 3D cRealBox that your game lives inside. When presetaspect has the
normal cSpriteIcon default value of FALSE, the sprite is proportioned to match the
shape of the resource bitmap specified by resourceID. When presetaspect is TRUE
we want to cover some definite fixed shape like a border rectangle with our bitmap.

When you want to make a new bitmap of yours into a cSpriteIcon you need to
be aware of the following points.

• First you have to save the bitmap in the *.bmp format. Most things you pull off
the Web will be *.gif or *.jpg. In order to convert to the *.bmp format, you need
to open the file in some reasonably powerful graphics tool such as a photo
editor, and then save it in the *.bmp format.

• Before saving the *.bmp, you should resize the image so that it is not much
larger than you expect it to be onscreen. It’s pointless to save a screen-sized
image of a face that you intend to use for a fingernail-sized icon. Not only is
it a waste of memory to use a big source bitmap for a small target, if you leave
it up to your system to dynamically squash your big bitmap down to a postage
stamp, you have no control of the exact way in which the squashing is done.
In the worst cases, the appearance of the small bitmap will seem to flicker and
change as the critter moves about. Take the time to cleanly convert your
bitmap into a size close to what you’ll be viewing it in. If some important
feature doesn’t show up in the small size, edit the image to make it look right.

Sprites 209

Some transparent background bitmaps in an OpenGL Pop display. Note that OpenGL can
rotate bitmaps to match the critter orientation. The Windows display doesn’t rotate them

• In order to make OpenGL handle your bitmaps smoothly, it is important to
adjust the pixel size of each source bitmap so that each each edge is a power
of two, such as 16, 32, 64, 128, 256, 512, etc. The bitmap can be rectangular,
that is, the edges don’t need to be the same, but both edges should be a
power of two. You can resize the bitmap in your image editor. In the case
where resizing would distort the bitmap, as with a face, you simply need to
add blank filler pixels along two edges; you can do this by copying the area
you want to keep, making a new bitmap with the desired edge lengths and
then pasting in the image area.

• There is one peculiarity of the cSpriteIcon constructor that you need to be
aware of. When you make a transparent-background icon, the constructor
will pick one color found in the resource bitmap and treat this color as if it is
transparent. Which color should it use? You might say ‘white,’ but it might
very well be that you want to have some white pixels inside your bitmap
icon. The rule which cSpriteIcon uses is to look at the color of the pixel in the
upper left corner of the bitmap resource and treat this color as transparent.
Thus, if you want to have white in your bitmap, fill in the background that
you don’t care about with some other color, say purple, and make sure that
the upper left hand corner pixel of your bitmap is purple. If you are using a
complicated photo-based bitmap you need to make doubly sure that the
upper left pixel is indeed the color which you want to have be transparent.

• In saving to the *.bmp format, you have the option of saving in ‘256 color
mode’ which is also known as ‘8 bit mode.’ This is as opposed to a ‘millions of
color mode’ or a ‘true color mode.’ The 256 color/8 bit mode will sometimes
make your image look less good, but it has the virtue of making the image file
smaller and allowing it to be put on the screen more rapidly. This is an issue
either if you have a lot of bitmap images or if you have a bitmap image which
is large (such as a background bitmap). Always try 256 color/8 bit first.

• Once you have the *.bmp, move it to the res subdirectory of the directory where
your game’s code lives. Now you can import this bitmap into your project as
a new bitmap resource. Use Project | Add Resource... | Import... and then navigate
to find your *.bmp file. The Resource Editor will open your imported bitmap.
[With Version 6.0, import a bitmap by using Insert | Resource | Bitmap | Import...

In Version 6.0, some bitmaps will not be viewable within the Resource
Editor, but this doesn’t mean they can’t be added to the project.]

It’s helpful to give your bitmap an easy-to-remember resource ID name
like IDB_HAPPYDOG instead of the machine-generated ID (like IDB_BITMAP1) it
will have received. To call up the Bitmap Properties dialog you can Alt+Enter

while the bitmap is open in the editor.

• Once you’ve done this, you can use the resource ID to make a new sprite
with a line like new cSpriteIcon(IDB_HAPPYDOG).

• It is perfectly all right to have several different critters use the same bitmap
and the same IDB_HAPPYDOG resource. But you must make a fresh cSpriteIcon

for each of them. (If two critters share the same sprite, there will be trouble

Software Engineering and Computer Games210

when the program ends, as the sprite will get deleted twice, which will cause
a crash.) If you write your code properly and create and install the sprite
inside the critter constructor this happens automatically.

• Don’t worry about having lots and lots of critters with cSpriteIcon images, as
our cGraphics implementations share resources among the cSpriteIcon objects
in a memory-efficient way.

• In OpenGL, if you have a large view of a small CSpriteIcon, the speed drops. The
CSpriteIcon is a texture pattern of squares derived from the bitmap pixels.
Projecting large images of those squares is costly.

9.6 cSpriteLoop and cSpriteDirectional

The cSpriteLoop and cSpriteDirectional sprites are arrays of other sprites. As
they inherit from cSpriteComposite they have an add method that adds new
sprites into the array. You can feed cSpriteComposite::add method either a cSprite*
pointer as an argument or simply an integer resource ID number as an argu-
ment – in the latter case the add(resourceID) method constructs a new

cSpriteIcon(resourceID) and then adds that sprite.
People often want to use sequences of bitmaps for their sprites. Suppose you

have three successive bitmaps for a walking man and that you’ve saved them as
resources with IDs of the form IDB_MAN1. To simplify things the Pop Framework
lets you pass in a resource ID as the argument to add. A cCritter constructor
could make and use such a sprite like this.

cSpriteLoop pmanwalk = new cSpriteLoop();

pmanwalk->add(IDB_MAN1);

pmanwalk->add(IDB_MAN2);

pmanwalk->add(IDB_MAN3);

setSprite(pmanwalk);

The cSpriteLoop::animate method ages a time counter and adjusts the active
sprite accordingly. The effect is that cSpriteLoop flips from one image to the next.
The default wait between images is a fifth of a second, or 0.2. You can change
this wait time with the cSpriteLoop::setFlipwait(Real flipwait) method.

Note that the flipping is based on the real time elapsed and not on the num-
ber of updates you’ve done. This keeps our program appearance from being
dependent on the speed of the processor. You never want to do anything on
basis of cycle-counts. Always use the time.

The cSpriteDirectional is initialized much like the cSpriteLoop. We create a new
cSpriteDirectional object and then use its add method, passing either cSprite*

pointers or bitmap resource ID numbers to the add.
The way the cSpriteDirectional picks which sprite to show is to look at the

direction the critter that owns the sprite is pointing in. It distinguishes as many
directions as the number of sprites that you added.

Sprites 211

The cSpriteDirectional::animate adjusts the active sprite according to the current
critterdirection. It uses the animate method to select one among several
directional bitmaps, as shown in Figure 9.4.

Use of the cSpriteDirectional gets around the fact that we can’t rotate bitmaps
on the fly in Windows graphics; a cSpriteDirectional can store various differently
rotated versions of a bitmap. This is not an issue in OpenGL graphics, however
the use of bitmaps does tend to slow OpenGL down more than is comfortable.

If you’re ambitious, you can make a cSpriteDirectional whose members are
cSpriteLoop animations. If you do this, don’t forget that you need to create fresh
sprite objects for each critter. It’s fine to reuse the same resource ID, but you
have to wrap them up in fresh sprites. To avoid having to write out the same
code more than once, you should create and install the sprite inside your critter
constructor. If you happen to have two different critters that will use the same
complicated sprite, you might save code writing by making a new cSprite child
class whose constructor carries out the complicated initialization.

As was mentioned above, the cGraphicsMFC and cGraphicsOpenGL allocate the
cSpriteIcon resources in a memory-efficient way. Note also that they automatic-
ally rescale the size of your cSpriteIcon bitmaps when you resize the window.

Review questions

A What is a cSpriteComposite?

B What are some of methods we have for creating standard polygon sprites?

C What are steps you take to load a *.jpg bitmap you’ve found into a cSpriteIcon?

D What does the cSpriteLoop::animate method do?

E What does the cSpriteDirectional::animate method do?

Exercises

Exercise 9.1: Making cSprite::draw non-virtual

If you don’t explicitly label a method as ‘virtual’ in the base class, then the child class
overrides will ignore it. Open up the Pop project file and remove the word ‘virtual’ from the

Software Engineering and Computer Games212

Figure 9.4 How the cSpriteDirectional picks the sprite with 2, 4, or N directions

line virtual void draw(cGraphics *pgraphics, int drawflags); at the bottom of
the sprite.h file. Build and run. You’ll see default base-class imagedraw methods for all the
sprites. They’ll be sprites that are drawn as hollow circles.

Exercise 9.2: What happens if you don’t initialize the sprites?

By default every critter gets a base class sprite. If you forget to initialize the sprites you’ll
see the same default sprite as in the last exercise. You can test this by going into the
gamestub.cpp file and commenting out the sprite initialization in the cCritterStubProp
constructor.

Exercise 9.3: Making your own polygons

Sometimes you’ll want to give a critter a sprite that has some particular polygonal shape
that you like. In this exercise you’ll make the player in the Game stub game be shaped like
a slender rocket-like pentagon instead of like a slender triangle.

Here’s an example of how we set a polygonal sprite shape taken from
cCritterBullet::initialize method inside the critterarmed.cpp. The purpose of the code is to
create a slender isosceles triangle and make this be the sprite for the cCritterBullet
making the initialize call.

cPolygon *ppolygon = new cPolygon(3);

/* Now make it a thin isosceles triangle, with the apex

at the 0th vertex. All that matters at first is the

tatops of the numbers, as we will use setRadius to

make the thing the right size, and center it on the

origin. */

ppolygon->setVertex(0, cVector(3.0, 0.0));

ppolygon->setVertex(1, cVector(0.0, 1.0));

ppolygon->setVertex(2, cVector(0.0, -1.0));

ppolygon->setRadius(cCritter::BULLETRADIUS); /* Call setRadius

after adding all the vertices! */

ppolygon->setFillColor(cColorStyle::CN_YELLOW);

setSprite(ppolygon);

The idea is that if you want a polygon with N vertices, you create a new polygon with
a new operator. Then give the new polygon as many vertices as you need with a call
like setRegularPolygon(N, cVector(0.0, 0.0), 1.0, 0.0), where only the first
argument really matters. Then you go down the list of vertices and set them one by one,
starting with 0 and ending with N − 1. Then you use a setRadius call to set the polygon
shape to whatever size you like. (The setRadius call has the side effect of centering the
polygon on the origin, so you may need to change the _spriteattitude if you want to
move the object back to some other location. If you have your vertices just where you
want, you don’t necessarily need to call setRadius at all. When in doubt, call it, though.)

Now how do you figure out what numbers to use in the setVertex lines? Draw a little
grid for yourself – or use some graph paper – and draw a picture of the shape you want.
Write the coordinates of each point on your sheet of paper (if you try and do this in your
head you’re likely to mess it up). Then use these numbers in the setVertex calls. Make
sure that the first vertex you put in – that is, the 0th vertex – is where you’d like the sprite
to point when it moves. In the case of the rocket, this would be the pointed tip. And only

Sprites 213

put the starting vertex in once because you don’t need to close the polygon back up by
putting the starting vertex in twice. The cPolygon will take care of that on its own.

Your picture doesn’t necessarily need to be centered on the origin; the setRadius call
will take care of that, automatically storing the polygon in origin-centered form. (You can
test this claim by putting the digits 10 in front of the x-coordinates in the code above to
shift everything 100 units to the right.) The size of the number also doesn’t matter, this is
taken care of by the setRadius call. (You can test this by putting the digit 0 after each
of the x and y coordinates to make the triangle ten times as big.) All that matters is the
relative positions and ratios of the points you choose.

Now make your player be shaped like a biting mouth. Once that works, try making it
be shaped like a fish. And then try a shape of your own invention. Remember that the
polygon will move with the 0th vertex in the lead, so pick this one towards the front.

Exercise 9.4: Fish-shaped polygons

Suppose we’d like to have a lot of fish. What you can do is make a child class cSpriteFish
: public cPolygon. Define the class in a file called polygonshapes.h. And then make a
polygonshapes.cpp class that implements a constructor to make the thing be a polygon in the
shape of a fish. The class doesn’t have any additional data members, so its constructor is
the only new piece of code you have to add. If we used a crude ten-point fish (see Figure 9.5),
the cSpriteFish constructor would call setRegularPolygon(10, ...) and then make ten
calls to setVertex. Don’t forget to put in the DECLARE_SERIAL and IMPLEMENT_SERIAL
macros; you can copy the way its done in the bubble.h and bubble.cpp files.

Make the class and test it in the PickNPop game by making the peanuts look like fish. So
now it’ll be an undersea treasure game! All you have to do is go into the gamepicknpop.cpp
and change the single line of the cCritterPeanut::cCritterPeanut() constructor to
read setSprite(new cSpriteFish()). Remember that for this to compile, you’ll have
to add an #include “polygonshapes.h” to the polygonshapes.cpp file, and the very first
thing in the file has to be an #include “stdafx.h”.

Exercise 9.5: Composite polygon shapes

Looking back at our fish problem, shouldn’t a fish have an eye? So maybe you better add an
extra cVector _vectoreyedot and cSpriteCircle *_pointeyedot to the cSpriteFish
definition and let the fish inherit from cSpriteComposite.

Think of some more shapes we might need and make more child classes that draw
them. A cSpriteRocket, a cSpriteBird, a cSpriteFootball, and a cSpriteUFO might all be useful.
Some of these would be better represented by several polygons – for a cSpriteRocket, for
instance, you might want to have the rocket’s fuselage (or fish’s body) be a different color
from its fins. Use the cSpriteComposite to have several polygons involved. Check the code
in spritebubble.cpp for inspiration.

Software Engineering and Computer Games214

Figure 9.5 A fish with vertex numbers

Exercise 9.6: Other kinds of polypolygons

You can use any kind of sprite you like for the tipshape of a polygon; in fact you could
nest and get polypolypolygons. Try to view some of these. You might look at the cGame
code for generating random polypolygons for inspiration.

We’ve experimented with both the two-level and the three-level polypolygons, which are
polypolygons whose tips are polygons whose tips are polygons. The runspeed gets pretty
low with these guys, but they’re interesting to look at once you tweak the various numbers
good values.

Exercise 9.7: Flexing polygons

Make a cPolygonFlex child class with a drift method to make the vertices move when
animate is called. Try and make a fish whose mouth opens and closes.

Exercise 9.8: Directional vs loop sprites

The Worms game is an example of how to use these multi sprites. By default the player
uses a cSpriteLoop. Go into the cCritterWormsPlayer::cCritterWormsPlayer() constructor in
gameworms.cpp and look at how this works. To see a directional sprite, go to the top of
the file and comment out the line #define PLAYERSPRITELOOP. Once you see how both
the kinds of sprite work, you might try changing the cCritterWormsPlayer constructor code
to use something different for the different individual sprites. See how the loop and the
directional sprite look with, say, four bitmaps.

Exercise 9.9: A loop sprite of polygons

If I wanted a critter’s constructor code to have a ppolygons animated sprite that would
cycle from triangle through hexagon, I could do it like this.

cSpriteLoop ppolygons = new cSpriteLoop();

ppolygons->add(new cPolygon(3));

ppolygons->add(new cPolygon(4));

ppolygons->add(new cPolygon(5));

ppolygons->add(new cPolygon(6));

setSprite(ppolygons); //Called by the cCritter whose constructor

contains this code.

Try giving the Prop critters a sprite like this in the cCritterStubProp constructor in
gamestub.cpp.

Exercise 9.10: A HappySad sprite

Suppose that you want to alternate between two kinds of sprites, depending on whether
or not the critter was recently damaged.

Derive a cSpriteHappySad from the cSpriteShowOneChild sprite, and overload its animate
method like this:

Sprites 215

viod cSpriteHappySad::animate(Real dt, cCritter *powner)

{

if (!powner->recentlyDamaged())

setShowIndex(0);

else

setShowIndex(1);

if (showindex != cBiota::NOINDEX)

childspriteptr[showindex]->animate(dt, powner);

}

When you use a cSpriteHappySad, you have to be sure to add at least two child sprites
to it, the first added will be the ‘happy’ sprite, the second addded will be the ‘sad’ or
‘recently damaged’ sprite.

Note that we currently have a default method of showing a critter’s damage by drawing
polygons in wireframe mode. For this exercise, turn off this behavior by commenting out
the #define SHOWDAMAGE line at the head of critter.cpp. (Also note that, in any case, the
wireframe mode doesn’t affect bitmap sprites.)

Now try giving the player in, say, the Worms game a cSpriteHappySad. You can use the
current loop sprite (as it currently is) when the player is healthy, and add in a bitmap
sprite for when the player is recently damaged.

Exercise 9.11: Three-dimensional sprites

The glshapes.* files in the Pop Framework provide some standard ‘glut’ methods for draw-
ing three-dimensional shapes. ‘Glut’ stands for ‘OpenGL Toolkit.’ Although the glut library

Software Engineering and Computer Games216

The Gamestub3D showing OpenGL sphere, teapot, torus, and some polyhedra. The cog-
like shapes are cPolyPolygon

includes a lot of useful high-level OpenGL methods, we only incorporate this one single
glut file into the Pop Framework at present, in part because glut is based on a non-
Windows framework that makes parts of it incompatible with MFC.

The glshapes files implement the following function calls, where GLdouble means the
same as double, and GLint means int.

glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

glutSolidCone(GLdouble base, GLdouble height, GLint slices, GLint

stacks);

glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius, GLint

sides, GLint rings);

glutSolidTetrahedron(void);

glutSolidCube(GLdouble size);

glutSolidOctahedron(void);

glutSolidDodecahedron(void);

glutSolidIcosahedron(void);

glutSolidTeapot(GLdouble scale);

For each ‘Solid’ function there is an analogous ‘Wire’ function, for instance, there is a
glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

The ‘teapot,’ by the way, is a standard test shape beloved of computer graphics pro-
grammers, and built up by using ‘Bezier patches.’ It’s sometimes called the ‘teapotahedron,’
and is jokingly viewed as the sixth Platonic solid!

The slices and stacks parameters used for the circular shapes can be thought of as
the number of north–south longitude and east–west latitude lines, respectively. That is, a
sphere is drawn as a vertical pile of stacks many slices-sided polygons. You need values
of at least 12 or so to make these shapes smooth-looking.

What you should do for this problem is to implement some or all of the classes
cSpriteSphere, cSpriteTeapot, cSpriteTorus, cSpriteCube, and so on. First do one, and get it
debugged, and then try a few more. You can try testing them out as sprites used by the
critters in cGameDefender3D.

Each of the classes should have a constructor that takes a Real radius argument with
a default value of 1.0. The circular sprites have additional int slices and int stacks
arguments with default values of, say 12, though these defaults ought to be statics. And
the torus and cone each have an additional Real parameter: the torus should also have a
Real innerradius argument and the cone also needs a Real height argument.

To draw the sprites, you could go one of two ways: many classes or one class.

Many classes
You could have each class emulate the behavior of cPolygon and cSpriteIcon and define, say,

void cSpriteSphere::imagedraw(cGraphics *pgraphics, int drawflags)

{

pgraphics->drawsphere(this, drawflags);

}

And you’d have to add a new drawsphere method to cGraphics, giving it a void or trivial
implementation for cGraphicsMFC and giving it an implementation in cGraphicsOpenGL that
calls glutSolidSphere or glutWireSphere depending on whether psphere->filled()
is TRUE.

Sprites 217

virtual void drawsphere(cSpriteSphere *psphere, int drawflags)

You’d need to override imagedraw and implement a differently-argumented variant of
cGraphics::drawsomething for each of the nine classes, which is a little boring to do.

One class
You could get by with slightly less typing by having all of these new classes inherit from a
catch-all cSprite3D class. We could prototype cSprite3D something like this.

class cSprite3D : public cSprite

{

protected:

int _slices, _stacks;

int _shapecode;

Real _extraparam;

public:

cSprite3D(int type = cSprite3D::SPHERE, Real radius = 1.0,

Real extraparam = 0.0, int slices = cSprite3D::SLICES,

int stacks = cSprite3D::STACKS);

virtual void imagedraw(cGraphics *pgraphics, int drawflags)

{pgraphics->draw3Dshape(this, drawflags);}

};

And then you’d only need to prototype and code a single cGraphics method.

virtual void draw3Dshape(cSprite3D *pshape, int drawflags);

The cGraphicsMFC version of draw3Dshape can just draw a circle, while the
cGraphicsOpenGL implementation will hold a big switch on pshape->shapecode(). Is the
cost of the switch something worth worrying about?

No. Although we didn’t raise this point earlier, the cSprite::draw method is constructed
so that it will avoid the switch after the first call to a given draw method for a cSprite3D by
using display lists.

You will need to do some work to implement a correct radius() method for these
sprites, and to have the value returned by radius() match the radius argument that
you feed in – and to match the visual appearance. If possible make radius() match the
number in the _radius field, it may be that cSprite3D needs to maintain a supplemental
Real _glutradius for the parameter that you actually feed into the glut call in
cGraphicsOpenGL::draw(..), or for the parameter that you perhaps use in a scaling
matrix. Compare our use of a Real _visualradius in the cSpriteIcon code.

The reason that radius is an issue is because you compute the distance from a cube’s
center to its corner one way, but you compute the distance from a tetrahedron or a cone’s
center to its furthest point another way. We care about the radius because in order for our
cheap and dirty collision code to look right, the ‘radius’ of a sprite needs to match the
radius of the smallest sphere that encloses it.

Software Engineering and Computer Games218

10Games

A computer game, or other kind of simulated world, will contain a number of
agents, or critters, each with its own sprite. It’s natural to have a Game base
class to hold the active array of critters. As well as being a container, the Game
class should take on some additional duties. When the play begins, the Game
object initializes the geometry of the world and adds in the critters. While the
play continues, the Game object repeatedly updates the critters and shows
them on the screen. At the same time, the Game object tracks the critters’ status
and decides when the world should be moved to a new level. And the play ends
when the Game object decides that it’s over.

We implement these design ideas as the cGame class that makes up the core
of the Pop Framework.

Remember that in an MFC program like Pop, the data for the program lives
in a CPopDoc document object, and the onscreen window display is controlled
by a CPopView view object. Except for one little extra bookkeeping variable, the
sole member that we put inside our CPopDoc class is a cGame* _pgame.

Why is it that we use a cGame* _pgame instead of a cGame _cgame? As we’ve
mentioned before, we do this because we want polymorphism to work! In C++,
a call like _pgame->seedCritters() will work polymorphically and figure out
the correct version of the method depending on what kind of cGame child class
object _pgame actually points to. But a call like _cgame.seedCritters() will
always just use the base class cGame::seedCritters. Always remember, in C++
pointer variables behave polymorphically, but instance variables do not. See
Chapter 22: Topics in C++ for more about this point.

10.1 The cGame class

The cGame and cCritter classes are the key classes for writing games using the
Pop Framework. In using the Pop Framework to write a game you will typically
define a few new child classes of cCritter and a new child class of cGame. Your
cGame child will include some new members and will override some of the base
class cGame methods.

The most significant member of the cGame is a cBiota *_pbiota object. The cBiota

object is a collection of pointers to all of the game’s active cCritter objects. The

name of this class cBiota is based on the fact that the class is meant to hold the
entire population, the ‘biota’ of the world of the game. This collection class is
implemented as a type-safe, serializable CArray, and it has some array-walking
methods: draw, move, update, animate, feellistener. Each of these methods calls the
method of the same name for each member critter. Thus, for example, update

acts like this.

void cBiota::update(CPopView *pactiveview, Real dt)

{

for(int i=0; i<GetSize(); i++)
GetAt(i)->update(pactiveview, dt);

}

There’s more information about cBiota and its methods at the end of this chapter.
The cGame also has a distinguished cCritter *_pplayer that represents the player.

In the Spacewar game, for instance, the _pplayer is the little ship shooting the
asteroids. To make our code easier to maintain we always assume that _pplayer
is some valid pointer (not NULL).

Usually _pplayer is a member of _pbiota, but in a few games, like the
PickNPop Game, we don’t have a visible player; in this case we use a default
critter for _pplayer and don’t add it to the _pbiota.

It may be that you’ll want to add some other distinguished cCritter pointers
to the cGame. Thus if, for instance, you want to have a goal to shoot at in the
Airhockey game, you might want to define a cCritterHockeyGoal class and give your
cGameAirhockey a cCritterHockeyGoal *_pmygoal member. We’ll return to this idea later.

cGame also has a cRealBox _border member to specify the size of the game as a
rectangle in the mathematical real-number plane or as a box in 3D space. We
can choose to have a square flat game world as in Spacewar, or a long thin flat
rectangle like in Ballworld. Alternately, _border can be like a solid aquarium as in
the 3D Game Stub game, or like a hallway as in the 3D game Defender.

It’s worth noting that the apparent sizes of the critters depends on the ratio
of their sprites’ radii to the size of the _border.

cGame has an integer _wrapflag to determine if the default behavior of its
critters should be to wrap around the edges, bounce, or possibly just stop at the
edges. (The codes for these three options are, respectively, cCritter::WRAP,
cCritter::BOUNCE, and cCritter::CLAMP.) The individual cCritter have _wrapflag

members as well, so this looks like an example of what we call a ‘forgery,’ that
is, of keeping the same data in two different places. But we want to allow for
the possibilities that different critters might have different wrap properties. The
cCritter(cGame *pownergame) constructor sets the new critter’s _wrapflag to match
the game’s _wrapflag, but then in the rest of the constructor you’re free to set
the critter’s _wrapflag as you like. The cCritterUFO constructor does this for the
Spacewar game, so that the cCritterUFO don’t wrap even if the other critters do.

cGame has an integer _seedcount to specify how many critters to seed with,
and it has an integer _maxscore that can be used to determine when a game is
over. Normally the cGame::score() accessor will return the _pplayer->score().

Software Engineering and Computer Games220

Another cGame member that we like to adjust is the CArray<HCURSOR, HCURSOR>
_arrayHCURSOR. This is used to specify which kinds of cursor tools the game will
use. If you run the Pop program and switch among the games, you’ll notice
that for different games, different sets of cursor tool icons are active in the
toolbar.

Another cGame member worth mentioning is the collection class cCollider

_pcollider, which holds pairs of critters that we want to check for possible
collisions. We’ll discuss this class in Chapter 11: Collisions.

10.2 The game’s timestep cycle

Probably the most important method in cGame is step(Real dt). This is the method
that controls the animation of the critters. First we’ll outline the order in which
step does things, then we’ll explain why we use this order, and then we’ll go
over the outline again.

Updating a simulation of multiple objects is a delicate thing. You need to do
things in the right order, and you need to try and have the objects being updated
in parallel, but all at the same time. For this reason, step is not a virtual method of
cGame; you are not supposed to override it. (All rules have exceptions, though.
If you really want to override it, change it to a virtual!)

Here’s what step does in brief.

• Adjust. Adjust game parameters. (Game over? Need to reseed? Change levels?)

• Listen. Pass recent user input to the critter feellistener methods, particularly to
the onscreen player critter. (Use keypresses, mouse actions.)

• Move. Call the critters’ move methods to keep physics working.

• Update. Call the critters’ update methods to let the critters react to their
environment.

• Collide. Check for and compute the collisions between pairs of critters which
are sensitive to touching each other.

• Clean up. Remove any critters ready to die, and add any new ones that have
been requested.

• Animate. Possibly animate the critters’ sprites. (Flip-book, rotate, morph, etc.)

• Draw. After each call to step, all of the critters get drawn to the active views.

Why does the Pop Framework use this particular order of doing things?
Adjust comes first. It’s reasonable to make any overall adjustments to the

game at the start of each step, as there’s no point continuing with a step if
we’re about the change the rules.

We want the onscreen player critter to have the most immediate possible
response to the user’s actions, so we do the move step right after the listen step.

After all the critters have moved, have them ‘look around’ and respond to
their new positions. The looking-around process has two phases, the update
phase and the collide phase.

Games 221

The update and collide methods can be overridden to tell critters to die, and
to tell critters to spawn off new critters. Once all these requests are in place, we
process them right away with the clean up stage. Certainly if some critters are
dead, we want to get rid of them right away before drawing them.

The animate step does some matrix work to bring the sprite’s appearance
into line with the critter’s latest orientation. Clearly we want to do this before
drawing, and we want to do it after having removed any dead critters and adding
any newborn critters.

Now let’s take a more detailed look at the sequence of events in the cGame::step

process.

• Adjust. The game parameters are adjusted, usually on the basis of the score
and the number of critters. Possibly the _gameover flag is turned on. Perhaps
the critter population needs to be reseeded, or the game should be switched
to a new ‘level’ mode.

• Listen. Before step was called, the CPopView passed any keyboard or mouse
messages to the cGame. The cGame has reacted by putting these messages into
a cController _pcontroller member. In addition, the timestep dt since the last full
update is fed into the step as an argument.

Any interested critters use feellistener to listen to any keyboard or mouse
messages. This may change the critters’ acceleration, velocity or position.
Commonly the only visible critter that has a non-trivial listener is the player.

• Move. Each critter does a move(dt). This changes the critters’ age, velocity,
position, and outcode.

• Update. Each critter updates itself by calling feelforce to react to its various
_pforcearray members. It may react to the other critters’ positions. The update
may change the critters’ acceleration or velocity. The critter may also make a
‘service request’ to be deleted or to create a new critter, as when a critter is
shooting bullets from a gun.

• Collide. Each pair of touching critters that has been registered to the game’s
cCollider object generates a call to a cCritter::collide(cCritter *pcritterother) method
which changes the position and velocity of the two critters involved.

• Clean up. The service requests from the update stage are processed, possibly
deleting some critters and constructing some new ones. The method used is
cBiota::processServiceRequests.

• Animate. Each critter and its sprite are optionally tumbled or animated in
some other fashion.

• Draw. And then the CPopView::OnDraw is called to draw the critters on the
screen.

Let’s draw a sequence diagram (Figure 10.1) for some of this. Keep in mind
that the cBiota is an array collection which holds some array walking methods.
In addition, cBiota holds a queue of ‘service requests’ posted during the update
phase. We don’t really put in any details about the collide process yet.

Software Engineering and Computer Games222

10.3 The virtual methods of cGame

Most of the coding you do involving the cGame class is going to involve extend-
ing the cGame constructor and overriding a few special methods called seedCritters,
initializeView, adjustGameParameters, and statusMessage.

Here are the main things determined by these methods.

Games 223

Figure 10.1 Sequence diagram of the cGame::step method

cGame::cGame

• The size of the game world.

• What colors to use for the edges and background of the world.

• What bitmaps, if any, to use for your backgrounds.

• Whether the world is wrapped or has edges.

• What class of player critter you’ll use.

• What ‘permanent’ critters you’ll use.

cGame::seedCritters

• What ‘temporary’ critters you have.

• Arrangement of the critters in the world.

cGame::initializeView

• The background image, if any, to use.

• The cursor tool to start with.

• Start in zoomed-in mode?

cGame::initializeViewpoint

• Where to place the viewer critter relative to the world and the player.

cGame::adjustGameParameters

• How the game is to change during play.

• When the game is over.

cGame::statusMessage

• What to write in the status bar line.

The cGame constructor

In a recent build, the default cGame constructor looks, in part, like this.

cGame::cGame():

_seedcount(COUNTSTART),

_gameover(TRUE),

_maxscore(MAXSCORE),

_scorecorrection(0),

_wrapflag(cCritter::WRAP),

_cursorpos(0.0, 0.0),

_autoplay(0),

_level(1),

_newgame(TRUE)

{

//Allocate the pointer variables except for the player.

_pbiota = new cBiota(this);

_pcollider = new cCollider();

Software Engineering and Computer Games224

_pcontroller = new cController(); /* This is a structure used to

store key and mouse info. */

_plightingmodel = new cLightingModel(); /* Can be used in 3D

games to specify the lights. */

//Set the border size.

_border.set(14.4, 9.6, 0.0); /* A flat rectangle that happens to

seem good. */

//Set the border colors.

_border.pcolorstyle()->setFillColor(cColorStyle::CN_WHITE);

_border.pcolorstyle()->setLineColor(cColorStyle::CN_YELLOW);

_border.pcolorstyle()->setLineWidthWeight(0.01);

//Set the background bitmap AFTER setting the size of the _border

setBackgroundBitmap(IDB_BACKGROUND); /* Sets the

_pbackgroundbitmap field. */

//Initialize the player AFTER setting the size of the _border.

setPlayer(new cCritterPlayer(this)); /* Use the setPlayer accessor

rather than setting _pplayer by hand. */

}

When you derive a game such as cGameSpacewar as a child of cGame, you
write a cGameSpacewar:: cGameSpacewar constructor. Keep in mind that a child
class constructor works by first calling the parent class constructor, and by then
calling its own code. In other words, all of the code and initializations of the
cGame constructor will have taken place by the time you get inside the first left
bracket { of your cGameSpacewar constructor.

The cGameSpacewar needs to make the following changes (among others) to
what the default constructor does.

• Change the dimensions of the _border to a square.

• Change the fillcolor of the _border to black. (This serves as the game’s back-
ground color when no background bitmap is being shown.)

• Change the player by constructing a new cCritterArmedPlayerSpacewar and using
the cGame::setPlayer mutator method to install it into the _pplayer field.

Here’s the three lines you’d add to the cGameSpacewar constructor to do this.

_border.set(20.0, 20.0);

_border.pcolorstyle()->setFillColor(cColorStyle::CN_BLACK);

setPlayer(new cCritterArmedPlayerSpacewar);

We do allow the possibility for having a game in which the _pplayer is ‘off-
screen.’ This means the player is not a member of the _pbiota array of the critters
being moved and displayed. This is what you might do it if you were designing,
say, a pinball game, a game in which the player is not represented as visible
object on the screen. We do this in the PickNPop game for example. To add an
offscreen player, use a line like the following.

Games 225

setPlayer(new cCritter(), FALSE); /* Put dummy player offscreen, not

in pbiota. */

Seeding the game

Once the constructor has been called and the view initialized, the cGame still
needs to populate its _pbiota with more critters than just the _pplayer. This is
what the cGame::seedCritters method does. And when we want to restart or reset
a game, we call the seedCritters method again.

By the way, you can also create critters inside your overridden cGame con-
structor. The general rule of thumb is that any critter that you expect to have
around for the whole game you can create inside the constructor. Any critters
that will come and go should be defined in seedCritters. These include the
critters that you would need to reseed when you reset the game or move to a
new level.

Some examples.

• In the Spacewar game, the player gets added in the constructor, the asteroids
get added in the seedCritters call, and the UFOs are added one at a time by
the adjustGameParameters call.

• In Airhockey, the player, the puck, the goals, and the rival player are all
added in the constructor. Nothing is added in the seedCritters call.

• In Ballworld, the player and the basket are added in the constructor. The
balls are added in seedCritters.

• In Dambuilder, the player and the walls are added in the constructor. The
other critters are added in seedCritters.

There are three different situations in which seedCritters is called.
Firstly, when you start the program or use the Game menu to select a new game

type, the new game’s seedCritters is called by the cPopDoc::setGameClass(CRuntimeClass

*pruntimeclass) method. The argument to the setGameClass method is the ‘name’ of
the game class we want. Thus, for instance, the CPopDoc constructor has a call to

setGameClass(RUNTIME_CLASS(cGameSpacewar)).

It’s probably a good idea to pause here and mention that the CRuntimeClass

holds a string with the name of the class, the size in bytes of the class objects,
and information about the class’s parent class, if any. There is more discussion
of this in Chapter 22: Topics in C++. Now back to the discussion of the first way
in which seedCritters can be called.

The purpose of the setGameClass call is to:

• construct a new game object of the required type and put it into the _pgame

field of the CPopDoc;

• seed the new game;

• tell the documents’ views to adjust their display for the new game.

Software Engineering and Computer Games226

Here’s how the setGameClass code looks.

void CPopDoc::setGameClass(CRuntimeClass *pruntimeclass)

{

/* Create a new pointer with the MFC CreateObject method. Even

though we cast the new game into a cGame* pointer for the

return, it “really” remains whatever kind of child class is

described by the pruntimeclass variable, and will use the

child class’ overrides of any virtual methods. */

delete _pgame; /* It’s OK to delete a NULL, as happens at

startup. */

_pgame = (cGame*)(pruntimeclass->CreateObject());

_pgame->seedCritters();

UpdateAllViews(NULL, CPopDoc::VIEWHINT_STARTGAME, 0);

}

The only way we ever construct a cGame is via the setGameClass method
which always calls seedCritters right after the constructor. This means that a
game class constructor should not make a call to seedCritters. If you call it your-
self in the constructor, you’ll actually be calling it twice, which can waste time
or, worse, have the effect of giving you too many critters. The reason we separate
out the seedCritters from the constructor is because you want to initialize the
permanent members of your game in the constructor and only initialize the
temporary members in seedCritters.

The second situation where the Pop Framework calls seedCritters is when you
press Enter to start a new game, either because you want a fresh start or because
the current game session has ended. Pressing Enter generates a call to the
cGame::reset method which calls seedCritters.

On the subject of the reset method, we should mention that this call also resets
the player’s health and score to their starting values and returns the game’s
_level parameter to the starting value of 1. See Exercise 10.2 for an example of
how to use the _level.

The third way to have a call for seedCritters is that a game may automatically
call seedCritters from within its adjustGameParameters method. A game might do
this to keep the number of onscreen critters from getting too low.

As an example, here’s the seedCritters call from the Spacewar game.

void cGameSpacewar::seedCritters()

{

/* Get rid of any asteroids and bullets, but if there are

UFOs, leave them alone. */

_pbiota->purgeCritters(RUNTIME_CLASS(cCritterBullet));

_pbiota->purgeCritters(RUNTIME_CLASS(cCritterAsteroid));

for (int i=0; i < _seedcount; i++)
new cCritterAsteroid(this);

}

Games 227

The purgeCritters calls are used to get rid of leftover critters you might want.
The thing is, we allow the user to call for a restart at any time during game play.
So it may be that there’s some critters we need to get rid of. In the Spacewar
game, the adjustGameParameters call may also call on seedCritters, in the event
that it’s time for a fresh wave of asteroids.

Inside the seedCritters method, we often use one or more loops to create new
critters. We feed the current cGame* argument into the cCritter constructors
as the this pointer. When you pass a game pointer to a critter constructor, the
critter is automatically added into the game’s _pbiota array, and the critter
is then able to use its pgame() accessor to get information about the game, in
particular, to get information about the size of the game world and whether its
edges wrap. The critter constructors assign sprites to the critters, position them
within the game world, and initialize their velocities.

How the game adjusts itself

The next method to discuss is cGame::adjustGameParameters. This method gets
called once per game update (from within the cGame::step method). We don’t
necessarily make this method do much work. The default is for it to do nothing.
The cGameStub::adjustGameParameters is fairly general.

void cGameStub::adjustGameParameters()

{

// (1) End the game if the player is dead-------------------------

if (!health() && !_gameover)

//Player’s been killed and game’s not over.

{

_gameover = TRUE;

pplayer()->addScore(_scorecorrection);

// So user can reach _maxscore

playSound(“Tada”);

return;

}

// (2) Perhaps reseed the screen if rivals and props are gone.------

int othercrittercount = pbiota()->count(RUNTIME_CLASS(cCritter))

– pbiota()->count(RUNTIME_CLASS(cCritterBullet)) – 1;

/* Number of critters minus bullets minus player equals other

critters. */

if (!othercrittercount) //Player is alone with bullets

seedCritters();

// (3) Maybe check some other conditions. ---------------------------

}

See the description of the Spacewar game in Chapter 14: 2D Shooting Games
for an example of a more complicated adjustGameParameters method.

Software Engineering and Computer Games228

Initializing the view

Depending on which game you’re playing, there are all sorts of things you might
want to adjust about your view. Does it use a background bitmap? Does it use the
2D cGraphicsMFC or the 3D cGraphicsOpenGL? What kind of cursor tool do you have?
From what viewpoint do you look at the world? Is it zoomed in? And so on.

One initial point to make is how we think of our x-, y- and z-axes. We use
the same default orientation in both our 2D and 3D computer games. We think
of the x-axis as running from left to right across the screen, and we think of
the y-axis as running vertically from bottom to top. And we often think of the
origin of the axes as starting at the center of the screen. The z-axis is thought of
as pointing out from the screen. Normally by default we would be looking
down at the world from somewhere out on the positive z-axis, say at a point
with coordinates (0.0, 0.0, 5,0), looking down at the origin point (0.0, 0.0, 0.0).
Depending on the game, we may want to adjust which point we look at the
world from, and which point of the world we are looking at.

The game itself is data that lives inside a document. When you start up a
new game, how does the document manage to reach out and make changes to
the view? Actually it’s the other way around. The view reaches out and finds
its document, gets the game out of the document, and then asks the game to
initialize the view.

What prompts the view to do this? A CPopView::OnUpdate call with the integer
code CPopDoc::VIEWHINT_STARTGAME in the OnUpdate call’s lHint argument.

When you first start up the Pop program a direct CPopView::OnUpdate call is
made by the CPopView::OnCreate method. And when the Pop program is running
and you have a view already in place and you use the Game menu to select a
new kind of game, the CPopDoc::setGameClass method document passes the static
integer code CPopDoc::VIEWHINT_STARTGAME as the lHint to an UpdateAllViews

call. As we discussed in both Chapter 5: Software Design Patterns and Chapter 6:
Animation, the CPopDoc::UpdateAllViews(CView* pSender, int lHint, CObject* pHint)

method generates calls to the CPopView::OnUpdate(CView* pSender, int lHint, CObject*

pHint) method for each open view, passing on the same arguments.
However we call it, the relevant block of the CPopView::OnUpdate code looks

like the following.

if (lHint == CPopDoc::VIEWHINT_STARTGAME)

{

pgame()->initializeView(this);

pgame()->initializeViewpoint(_pviewpointcritter);

pgraphics()->installLightingModel(pgame()->plightingmodel());

//And now go on and call Invalidate to show the game...

}

In these lines the CPopView uses its pgame() accessor to reach out and get a
pointer to its game from its owner document. (The MFC framework provides a
CView::GetDocument() method via which a view can always get a pointer to its

Games 229

owner document.) Once a Pop Framework view has a pointer to its owner
game, the view asks the game to initialize it in three different ways.

• Initialize the view’s settings with initializeView.

• Initialize the location and direction of the viewpoint with initializeViewpoint.

• Initialize the lighting model used by the view’s graphics with installLightingModel.

At this point you might wonder why initializeView and initializeViewpoint are
separate methods. Why have separate view and viewer initialization methods?
The Pop Framework does it this way so the games will behave smoothly as you
use the menu to switch on and off the various View menu options. If we were
only writing one game with one kind of view this wouldn’t be necessary; the
complexity is a result of the code being usable as a flexible framework to build a
variety of changeable games.

Here is the code in the base class cGame version of initializeView. As well as the
standard calls, you’ll notice a number of possible additional calls. The com-
ments explain them pretty clearly.

void cGame::initializeView(CPopView *pview)

{

pview->setCursor(((CPopApp*)::AfxGetApp())->_hCursorArrow);

pview->setUseBackgroundBitmap(FALSE);

//Default doesn’t use bitmap background

pview->setUseSolidBackground(TRUE);

//Use a solid rect background.

pview->setGraphicsClass(RUNTIME_CLASS(cGraphicsMFC));

pview->pviewpointcritter()->setTrackplayer(TRUE);

//Do not track player.

}

When you override initializeView, it’s a good idea to put a call to the base class
cGame::initializeView(pview) in the new method, lest you leave out some default
call that the base class initializeView makes. A complicating factor in developing
the Pop Framework demo program has been that the user is free to use menus
to change the game type or the graphics mode or various other things without
actually changing the identity of the view. So unless you are careful to reset
everything in initializeView, there may be some left-over settings from the last
game that you don’t want.

Here’s an example listing some ways you might override the method for an
imaginary cGameSomeChild class.

void cGameSomeChild::initializeView(CPopView *pview)

{

cGame::initializeView(pview); //Always call the baseclass method.

//Some possible additional calls:

pview->setUseSolidBackground(FALSE);

//For no background at all, faster in 3D.

Software Engineering and Computer Games230

pview->setCursor(((CPopApp*)::AfxGetApp())->_hCursorPlay);

/* To use the crosshair cursor for shooting with mouse

clicks. */

pview->pviewpointcritter()->setTrackplayer(TRUE);

/* To scroll after the player critter if it moves off

screen. This can be confusing, but is useful if you plan

to use a zoomed in view. */

pview->setGraphicsClass(RUNTIME_CLASS(cGraphicsOpenGL));

//For 3D graphics

pview->pviewpointcritter()->setListener(

new cListenerViewerRide());

//To ride the player; this only works in 3D.

}

Now let’s talk about the initializeViewpoint(cCritterViewer *_pviewpointcritter) method.

Initializing the viewpoint critter

Let’s set the scene by printing the default cGame::initializeViewpoint code.

void cGame::initializeViewpoint(cCritterViewer *pviewer)

{

/* The two args to setViewpoint are (directiontoviewer,

lookatpoint). Note that directiontoviewer points FROM the

origin TOWARDS the viewer. */

if (pviewer->is3D())

pviewer->setViewpoint(cVector3(0.0, -1.0, 2.0),

_border.center());

//Direction to viewer is down a bit

else //2D case.

pviewer->setViewpoint(cVector::ZAXIS, _border.center());

}

To get the point of this, you need to understand that each view of your
game has an associated ‘viewpoint critter.’ More precisely, the CPopView class
has a cCritterViewer *_pviewpointcritter member as well as a cGraphics *_pgraphics

member. The viewpoint critter and the graphics object work together in the
CPopView::OnDraw method, which includes these three steps.

• Use the viewpoint critter’s zoom and perspective settings to set the projec-
tion method used by the graphics object.

• Use the viewpoint critter’s position and orientation to set the view matrix
used by graphics.

• Use the graphics to draw the world and the critters as seen by the viewpoint
critter.

Games 231

Clearly the view we see is going to depend upon the direction the viewpoint
critter is looking in. A convenient way to set position and orient to the view-
point critter is to use our cCritterViewer::setViewpoint(cVector toviewer, cVector lookat-

point) method, where we can think of toviewer and lookatpoint as illustrated
in Figure 10.2.

In three dimensions you might ask how far out along the toviewer vector do
we move the viewpoint critter? The setViewpoint call will position the viewpoint
critter itself just far enough away from the world so that every corner of the
world’s _border box is visible.

In other words, a call to cCritterViewer::setViewpoint(cVector toviewer, cVector

lookatpoint) computes an appropriate seethewholeworld_distance for the cur-
rent zoom setting and then has the caller viewpoint critter execute lines to the
following effect.

moveTo(lookatpoint + seethewholeworld * toviewer);

lookAt(lookatpoint);

If you would prefer to see a smaller part of the world, you follow the
setViewpoint call with a call to the cCritterViewer::zoom(real zoomfactor) method.

In three dimensions we can think of the zoom as being a field of view angle
that ranges from wide-angle to telephoto. With a call like zoom(2.0), the critter
will use a telephoto effect to see only half the world, or if we call zoom(0.5), it
will use a wide-angle effect to see a space twice as big as the world’s border.

In two-dimensional worlds, all of this is simpler. The toviewer direc-
tion is always just the z-axis, as in a two-dimensional world you can always
just imagine the viewer as hovering over the world staring straight down at
it. But even in a flat world, we do need to think about which point we are to
hover over, that is, the lookatpoint still matters. And in two dimensions we
also need to think about how much we want to zoom in on – or away from –
the world. The analogy to telephoto and wide-angle lenses doesn’t make as
much sense for the two-dimensional worlds; here it’s easier to just think of a
call like zoom(2.0) as making things look bigger and zoom(0.5) as making them
look smaller.

In designing your game, rather than agonizing over the exact quantitative
meaning of the zoomfactor numbers, it’s easier to just experiment with a few till

Software Engineering and Computer Games232

Figure 10.2 Setting the viewpoint

you get the look that works the best. Here’s how we use zoom in the long, thin
world of the Ballworld game for instance. At startup the player is positioned
not at the _border.center() but rather near the _border.locorner(), that is,
the lower left-hand corner of the long, thin game world. We want to position
ourselves right over the critter, looking down at it, and we want to zoom in a
bit rather than trying to fit the whole long, thin world onto the screen.

void cGameBallworld::initializeViewpoint(cCritterViewer *pviewer)

{

if (!pviewer->is3D()) //2D case

{

pviewer->setViewpoint(cVector::ZAXIS, pplayer()->position());

pviewer->zoom(1.5);

}

else

//Do something slightly different in the 3D case...

}

By the way, how does the Pop Framework know when CPopView::is3D is TRUE?
It looks at the kind of cGraphics currently being used by the view. If the graphics
is cGraphicsOpenGL (or maybe, one of these days, cGraphicsDirectX) the view is 3D,
and if it’s cGraphicsMFC, the view isn’t 3D. The dimensionality of the view is
independent of the dimensionality of the game’s _border box. Even though our
Ballworld game is in a two-dimensional world, we can still fancy it up with a
three-dimensional view. When we go to a three-dimensional view we actually
enhance the sprites and give many of them a cosmetic z-axis thickness deter-
mined by the cSprite::_prismdz factor mentioned in Chapter 9: Sprites.

We can do fancy things with the viewpoint when we start thinking about
three-dimensional views. Here’s something we do for the three-dimensional
viewpoint in the Airhockey game, so as to bring the viewer around behind the
player’s goal.

void cGameAirhockey::initializeViewpoint(cCritterViewer *pviewer)

{

if (pviewer->is3D())

{

pviewer->setViewpoint(cVector3(-2.0, 0.0, 1.0),

_border.center());

//These args are the (directiontoviewer, lookatpoint);

pviewer->roll(PI/2.0);

//rolls the viewer to right orientation.

}

else //2D case just copies base class.

pviewer->setViewpoint(cVector::ZAXIS, _border.center());

}

Games 233

Still on the subject of three-dimensional views, there’s an installLightingModel

a call to initialize a new 3D graphics with the game’s plightingmodel(). But, at this
point, we aren’t doing much with this model other than using it to turn the
lighting calculations on or off in cGraphicsOpenGL. By default the lighting calcu-
lations are on in all the games except for PickNPop, simply because our default
lights don’t happen to look good on those particular shapes. Oddly enough,
OpenGL graphics may run faster when you turn on the additional calculations
of a lighting model! Perhaps this is because the OpenGL hardware on graphics
cards is optimized to run best with lighting on.

The status message

The last method of the cGame which we’ll discuss here is a method it has
for generating a string to put into the status bar at the bottom of your Pop
window. The active CPopView window repeatedly undergoes an MFC frame-
work call named OnUpdate, and we have this method in turn use the active
game’s status message by a somewhat arcane line of the form cMainFrame
->SetMessageText(pDoc->pgame()->statusMessage()).

It’s common to speak of methods that return useful objects as ‘factory methods.’
The statusMessage is a kind of factory method that creates a CString object. The
default cGame behavior tailors the message to report the score and health of
the player critter, the number of critters onscreen, and the number of cycles
per second that the Pop program is currently running at. Recall that the Pop
Framework is designed in such a way that it will never run at faster than the
refresh rate of the graphics card, so if we’re near that, we just say ‘Near Max.’

Thanks to the richness of the MFC CString methods, it’s pretty easy to make
the status bar string. Here’s a recent version of the default statusMessage code.
Clearly this is something you want to override to give the most useful and
relevant information for your particular game.

CString cGame::statusMessage()

{

CString cStrStatusBar;

int nUpdatesPerSecond;

CString cStrUpdatespersecond;

CString cStrHealth;

CString cStrCount;

CString cStrScore;

CString cStrCollisionCount;

if (!gamepaused())

{

nUpdatesPerSecond = int(((CPopApp*)::AfxGetApp())->

_timer.updatesPerSecond());

if (!nUpdatesPerSecond)

cStrUpdatespersecond.Format(

“Less than one update per second.”);

Software Engineering and Computer Games234

else

cStrUpdatespersecond.Format(“Updates per second: %d.”,

nUpdatesPerSecond);

if (((CPopApp*)::AfxGetApp())->_timer.runningNearMaxSpeed())

cStrUpdatespersecond += “ (Near Max)”;

}

else

cStrUpdatespersecond.Format(“Animation is paused.”);

cStrScore.Format(“Score: %d.”, score());

cStrHealth.Format(“Health: %d.”, health());

int crittercount = _pbiota->count(RUNTIME_CLASS(cCritter));

int bulletcount = _pbiota->count(RUNTIME_CLASS(cCritterBullet));

crittercount -= bulletcount;

if (visibleplayer()) /*Subtract off 1 for player as well. */

crittercount -= 1;

cStrCount.Format(“Other Critters: %d.”, crittercount);

cStrStatusBar = cStrScore + “ “ + cStrHealth + “ “ + cStrCount +

“ “ + cStrUpdatespersecond;

return cStrStatusBar;

}

In line with our usual policy of not keeping the same information in two
different places, we use a cBiota::count method to walk through the active critter
array and count up the kinds of objects on the spot – this is in place of trying to
maintain an integer that holds the count value in it. It costs a (very small) bit of
speed to walk through the array once to recompute the number each time you
need it, but the simplification to your code seems worth it.

The randomSprite factory method

Let’s conclude by mentioning a factory method that cGame has. A factory
method constructs an object of a certain kind and returns a copy of it or, more
commonly, a pointer to it.

cSprite* randomSprite(int spritetypeindex);/* A factory method to

return one of the various kinds of sprites. */

The kind of sprite that randomSprite returns depends on the argument you
give it. These are statics defined as follows.

const int cGame::ST_SPRITETYPENOTUSED = -1;

//Indicates you will put in sprites by hand.

const int cGame::ST_SIMPLEPOLYGONS = 0;

//Simple triangles, squares, pentagons.

const int cGame::ST_FANCYPOLYGONS = 1;

//Diverse regular and star polygons.

Games 235

const int cGame::ST_ASTEROIDPOLYGONS = 2;

//Polypolygons that have polypolygons at their tips.

const int cGame::ST_POLYPOLYGONS = 3;

//Polypolygons that have polygons at their tips.

const int cGame::ST_BITMAPS = 4; //cSpriteIcon bitmaps.

const int cGame::ST_BUBBLES = 5; //balls of various kinds.

const int cGame::ST_TRIPLEPOLYPOLYGONS = 6;

//Polypolygons that have polypolygons at their tips.

When a cCritter child needs a random sprite of a certain type, we can get one
with the randomSprite factory method like this.

cCritterAsteroid::cCritterAsteroid(cGame *pownergame)

{

if (pownergame)

setSprite(pownergame->randomSprite(cGame::ST_ASTEROIDPOLYGONS));

//Etcetera

}

The randomSprite is a fairly generic method that hardly needs any members of
the cGame class, but you might sometime want to override it. The randomSprite

explicitly looks at another cGame member only when called with the
cGame::ST_BITMAPS argument. In this case, the cGame::randomSprite chooses a
resource ID for a bitmap from a cGame member array _bitmapIDarray. The
_bitmapIDarray gets initialized in the cGame constructor, by the way. You can
check the game.cpp file for details.

Also see Exercise 14.4: A Graphic Theme for Your Game for an example of
how we might want to change bitmapIDarray in a game constructor override.

10.4 Arrays of critters: the cBiota class

One of the key members of the cGame class is a cBiota *_pbiota field. The
cBiota class is a collection class that holds an array of pointers to cCritter objects.
The cBiota object is based on an MFC array template, with a few special methods
added. We encapsulate these methods into the cBiota rather than having them
in cGame as part of the OOD strategy of not giving any one class too many
responsibilities.

Some readers may be wondering why we have to use a collection of cCritter*

pointers. Beginning programmers have a fear of pointers and their burdensome
requirements of being initialized with new and removed with delete. Why not
just a collection of cCritter objects? Once again, this is because we want poly-
morphism to work. In C++, a call like _pcritter->update(. . .) will work poly-
morphically and figure out the correct version of the method depending
on what kind of cCritter* child class _pcritter actually is. But a call like
_ccritter.update (. . .) will always just use the base class cCritter::update.

Software Engineering and Computer Games236

Now let’s think about which kind of collection to use; an array or a linked
list. This type of decision depends on what you plan to do with your collection,
so let’s think about what we’ll do with the critters in a game.

Typically there will be 10–50 critters in action. As we step the game, we will
repeatedly iterate through the collection of critters, updating them, moving
them, drawing them, and so on. Now and then we will want to add new critters
to the collection or delete old ones. Should we use a list or an array for our
collection of critter pointers? Well, iterating through an array is faster than
iterating through a list, but deleting objects is faster with a list than with an
array. The cost of deleting something from the middle of an array is noticeable
because then all of the higher-indexed array members need to be moved down
one position in the array. On the whole, we expect more of our computation
time to involve iterations than object deletions, so we’ll use an array.

MFC provides a range of useful array templates. The particular template we
use here is called CTypedPtrArray. This is what’s known a serializable type-safe
array. There’s a bit about these templates in Chapter 22: Topics in C++, and
Chapter 30: Serialization explains why the CTypedPtrArray is useful for saving and
loading parameter files.

Because we may need arrays of critter pointers elsewhere in the program, we
define a simple critter pointer array class cCritterArray and derive cBiota from that.
We’ve drawn the diagram (Figure 10.3) so as to display the additional fact that our
cGame class is going to hold a single cBiota object and we’ve also included some
navigation arrows. Recall that we use the composition diamond symbol to indicate
when an object (the object with the diamond) holds one or more objects of the
class type at the other end of the line leading from the diamond.

A cBiota object is an array of cCritter* pointers which also holds a cGame

*_pgame pointer and a special bookkeeping array of simple objects called
cServiceRequest. The member fields of cBiota can be seen in this partial listing of
the prototype from biota.h.

Games 237

Figure 10.3 Class Diagram of the cBiota

class cBiota : private cCritterArray

{

public: //Statics

static const int NOINDEX;

// -1, impossible index, For use by cBiota::_index().

protected:

//Non-serialized helper members;

cGame* _pgame;

CArray<cServiceRequest, cServiceRequest> _servicerequestarray;

//Constructor

cBiota(cGame *pownergame);

//Etcetera...

};

The cBiota uses its _pgame field to get to a particular cGame object, and the
cGame uses its _pbiota field to get to a particular cBiota object. But the roles of
the two pointers are different: the former is simply a navigational aid, the latter
is an example of composition.

When a cGame object is deleted, its _pbiota object is deleted as well. This is
knows as a ‘cascading delete.’ The _pbiota member of cGame is a composed
object, and it is typical for a delete to cascade to a composed object.

When you delete a cBiota object you don’t cascade the delete to the member
_pgame. The _pgame member of cBiota is simply a navigational aid that is put in
place by the cBiota(cGame *pownergame) constructor.

One reason why we want the cBiota to navigate to the cGame is so that the
cCritter objects can go through the cBiota to get at cGame information. Thus, the
cCritter class has a pgame() accessor that’s defined as _pownerbiota->pgame().

We populate a cBiota by using its Add method, which is an override of the
standard CTypedPtrArray::Add. We override the method so that it won’t let you
accidentally add the same thing twice; also it sets the added critter’s _pownerbiota

field.
A cBiota object is responsible for deleting all of its members. That is, the

cBiota destructor calls the destructor for each of the critters in the array.
The most important methods of the cBiota class are its ‘array-walking’ methods.

It has draw, move, update, animate, render, and listen methods, each of which simply
walks its array and calls the corresponding method for each member of cCritter.
Thus, for instance, the cBiota::move looks something like this.

void cBiota::move(Real dt)

{

for(int i=0; i<GetSize(); i++)

GetAt(i)->move(dt);

}

The place where almost all the cBiota array-walking methods get called is
inside the CGame::step method, which is careful to call them in a certain order

Software Engineering and Computer Games238

so as to make the program’s behavior as parallel as possible. The draw method,
however, gets called by CPopView::draw.

It’s worth mentioning that the cBiota::draw walks the array in reverse order.
This is because it’s convenient to think of the critters early in the array as being
visually on top of the others. But when you draw the critter sprites on the screen,
the first drawn is going to have the other sprites drawn on top of it. The first shall
be farthest, as it were. In graphics programming, this fact is called ‘the painter’s
algorithm.’ Usually our player is the first member of the cBiota array, and we
like to have our player on top. So we walk the array in reverse order.

This consideration only matters in two-dimensional graphics, of course, as in
three dimensions we would have the critters located at different depths, and
use our current viewpoint to determine which order to draw them in.

Some of our games, such as PickNPop, or Dambuilder, allow us to use a pick
or a drag cursor to select critters, and we store this information in the game by
setting a cGame::_pfocus pointer to point to the critter being specially handled.
One other special thing that cBiota::draw does is to put a highlight around the
sprite of a critter that happens to be the ‘focus critter’ of the game. If you don’t
like this feature, either don’t use the pick cursor or comment out the feature
from the cBiota::draw code.

Service requests: the Command pattern in action

The cBiota class has a CArray<cServiceRequest, cServiceRequest> _servicerequestarray.
The cServiceRequest class is a simple utility class that holds two fields, cCritter

*_pclient and a CString request.
The purpose of the _servicerequestarray is to queue up requests from the

critters. The reasoning goes like this. Suppose that during its update process a
critter notices that its health is 0. Now the critter wants to do the right thing
and die. If it’s to die, then we should delete it from the simulation; if you’re
shooting hundreds of bullets it wouldn’t do to keep all the bullets around after
they hit something and ‘die.’ To get rid of a cCritter *pcritter we need to do
at least two things:

• Call delete pcritter.

• Remove the invalid pcritter pointer from our cBiota array.

These are not actions that you’d want to take inside the middle of an i loop
that’s walking along a cBiota array. First of all it seems problematic to ask a
cCritter to delete itself, and secondly it’s not a good practice to change the size
of an array you are currently walking through.

Our solution is to let a cBiota store up requests to do things: to delete critters,
add critters, replicate critters, change the array location of critters, etc. And this
is what we use the _servicerequestarray for.

One more point. It would mess up our cGame code if the current _pplayer
ever actually got deleted. So if you were to look into the cBiota code, you’d find
that even if a player makes a delete_me request, when the cBiota processes the
service requests it doesn’t actually call delete on the player.

Games 239

Review questions

A Name three important members of the cGame class.

B What is the sequence of actions performed by the cGame::step(dt) method?

C Which of the game’s fields are normally set in the cGame constructor?

D What is the seedCritters method used for, and when is it called?

E What are two things that are typically checked for in adjustGameParameters?

F What aspects of the game are set in initializeView and in InitializeViewpoint? Why are
these methods separate?

G What is the viewpoint critter?

H How can you control the status bar message of a game?

I What class does cBiota inherit from?

J Why does the Pop Framework use the cServiceRequest class? What software pattern
is this an example of?

Exercises

Exercise 10.1: Starting in a zoomed-in mode

Comment in the last line of the cGameDambuilder::initializeView, rebuild and run the
Pop program, and switch to the Game | Dambuilder. Note that it is in a zoomed-in mode.
Is it still zoomed-in if you switch back to Spacewar? Why not?

Exercise 10.2: A multi-level game

Often people like to write games which have more than one level. To get you started the
Pop Framework provides an int _level member of cGame which is initialized to 1 in the
constructor (not everything has start counting with 0)! The reset method returns _level
to 1 in case it’s changed.

To use level, in your adjustGameParameters you’d look for some trigger condition,
such as score > 100, and have a block of code like this:

if (_level == 1 && score() > 100)

{

_level = 2;

setBackgroundBitmap(IDB_BACKGROUND_LEVEL2);

seedCritters();

}

An alternate way in which you might switch to level 2 would be to have the player critter
trigger the change inside its update method if some condition happened; for instance if
the player were to reach the far right edge of a long Mario-style world.

If you’re using levels, your seedCritters should have a switch on _level to change
the way in which you seed the world.

If you change the bitmap when you go to the new level you need to remember to change
it back when you call reset to return to level 1. This might best be managed by writing a new
setLevel accessor for your game to not only set _level but to set the appropriate bitmap.

Software Engineering and Computer Games240

11Collisions

By now you will have noticed that the critters in most of our games bounce off
of each other. Collision-handling is a somewhat advanced technique used in
coding computer games, or any other kind of physical simulation.

If the objects in your game or simulation have complicated shapes, getting
them to collide properly can become exceedingly difficult. In games, of course,
total physical accuracy isn’t necessary, so we take some shortcuts to enhance
our speed. One shortcut that we use in the Pop Framework is that, except for long
thin wall critters, we collide our critters with each other as if they were little
spheres. Another shortcut – that we didn’t happen to implement here – is to cut
the time spent on collisions by not calculating the collisions between objects
that aren’t presently in the field of view.

Let’s start with how the individual critters collide, and then work our way up
to how a game orchestrates all of the relevant collisions.

11.1 The critter Collide method

The cCritter class has a virtual BOOL collide(cCritter *pcritter) method. This method
does the following: (a) check if pcritter is touching the caller, and if not,
return FALSE, and (b) if pcritter is touching the caller, then execute a collision
with pcritter, possibly changing the health, position, and velocity of both
pcritter and the caller, and when you’re done return TRUE.

There are three points to get straight right way.

• First of all, our collide might better be called ifTouchingDoACollision. But that
seems a bit too unwieldy.

• Second, to avoid wasting time, and to keep our physics symmetric, we
only want to call collide once for each pair <pcritteri, pcritterj>. That
is, we intend for the collide code of a call pcritteri->collide(pcritterj)
to have a physically symmetric effect affect on pcritteri and pcritterj.

• Third, as a result of the second consideration, given a pair <pcritteri,
pcritterj> we’re going to need some logical way of deciding whether to call
pcritteri->collide(pcritterj) or to call pcritterj->collide(pcritteri).

The standard cCritter::collide method implements (a) the law of conservation
of momentum, (b) the law of conservation of energy, and (c) the law that two
objects can’t be in the same place at the same time. The standard collision
method is also based on the assumption that the critter behaves like a sphere.
We’ll say more about the physics later in this chapter.

We override the collide method for cCritterWall, as the narrow rectangular
walls are not at all like disks. And other child critters may override collide by
adding on additional refinements; bullets, for instance, may damage the other
object and explode. A typical collide override like this can have the following
form.

BOOL cCritterChild::collide(cCritter *pcritter)

{

BOOL collided = cCritter::collide(pcritter);

if (collided)

//Do something additional to this caller and/or to the pcritter

return collided;

}

So a typical override of collide might call the base class version of collide

to handle the physics, and then do something extra if a collision took place.
When we’re done we return the BOOL that tells whether or not a collision took
place.

Here are some examples of how collide gets overridden. First let’s look at what
we do with the cCritterArmedPlayer that we commonly use for the game player.
In some games, such as our Spacewar game, we want to penalize the player
critter each time that it bumps into an enemy critter, such as an asteroid. To
enable this, the framework gives the cCritterArmedPlayer a BOOL _sensitive flag and
codes the collide like this.

BOOL cCritterArmedPlayer::collide(cCritter *pcritter)

{

BOOL collided = cCritter::collide(pcritter);

if (collided && _sensitive &&

!pcritter->IsKindOf(RUNTIME_CLASS(cCritterWall)))

damage(1);

return collided;

}

Let’s look at a different way of extending collide, which is used by the basket
in the Ballworld game. We want the basket to be like a black hole – things that
fall into it disappear. Here we have the collide code and simply check if the
argument pcritter is entirely inside the radius of the caller critter, as tested by
a contains method.

Software Engineering and Computer Games242

BOOL cCritterBasket::collide(cCritter *pcritter)

{

if (contains(pcritter))

//disk of pcritter is wholly inside my disk

{

pcritter->die();

return TRUE;

}

else

return FALSE;

}

The cCritterBullet overrides collide to handle target critters in one way and
other kinds of critters in the base class way. The method depends on the fact
that we give our cCritterBullet class a BOOL isTarget(cCritter *pcritter) method which
decides if a given pcritter is something that the bullet is willing to damage. We
won’t print the code for BOOL cCritterBullet::collide(cCritter *pcritter) here, but the
basic idea is the following.

• If pcritter is one of your target critters and you’re touching it, damage pcritter

and die.

• If pcritter is a target and you’re not touching it, do nothing.

• If pcritter isn’t a target critter, collide with it normally.

As mentioned above, a cCritterWall overrides collide in a completely different
fashion to reflect the fact that a wall isn’t shaped like a sphere.

Clearly we’re going to need a way to figure out which critter controls a given
collision! We’ll get to this soon. But first let’s look at the broader issue of which
pairs of critters we’re going to test for collision at all.

11.2 Collision-handling

Here’s an overview of how the Pop Framework handles collisions.

(1) Make a utility class for holding pairs of critters, and let this class specify
which critter has the priority to control the behavior of a collision.

(2) Maintain a collection of all pairs of critters that might meaningfully collide.

(3) During each game step, iterate through this collection of candidate pairs.

(4) For each candidate pair, collide the critters by letting the higher priority
critter call its collide method on the other.

(5) A critter’s collide(pcritter) method checks if it’s touching pcritter, and if so,
changes the two critters’ velocities and positions in a physically reasonable
fashion. Child classes may override collide to alter the behavior.

Collisions 243

We said a bit about (5) in the last section. In this section we’ll figure out how
to take care of steps (1) to (4).

The N-squared problem

If we have N critters, it would seem like there are N2 pairs of critters we might
consider. But we can easily cut this by a little more than half, down to N *
(N − 1) / 2. This is because, first of all, we don’t have to worry about a critter
colliding with itself, and, secondly, if we write our collision code symmetrically,
then once A collides with B we don’t need to turn around and carry out code
for having B collide with A.

That is, if we think of listing the critter pairs in N rows of N columns each,
we need only consider those (row, column) pairs for which the row number is
strictly less than the column number. This way we cut down to a bit less than
half of N2. This is shown in Figure 11.1.

Of course half of N2 is still too big for many simulations – remember that in
the analysis of algorithms, any multiple of N2 is viewed as ‘order of N2,’ which is
not considered to be a scalable kind of algorithm.

If we want to be able to run somewhat more complicated kinds of games, we
need to find a way to prune down the collisions that we consider. Suppose,
for instance, that you are running a PacMan-style game in which you have
five active critters moving about in a maze made up of 45 walls. The possible
collision pairs group like this.

• Active critter to active critter (5 * 4) / 2 = 10 pairs

• Active critter to wall (5 * 45) = 225 pairs

• Wall to wall (45 * 44) / 2 = 990 pairs

If you ignore the wall–wall pairs, you have a quite feasible 235 possible
collision pairs to consider per update, otherwise you have a taxing 1225 pairs.
Although 235 sounds like a lot, the Pop Framework does fine up to about
500 pairs, but if you get into the thousands of pairs, the performance suffers
noticeably.

Software Engineering and Computer Games244

Figure 11.1 Halving the possible collision pairs

Our solution is to maintain a collection that holds only the pairs of critters
whose collisions we actually want to check. To further speed things up, we’ll
structure these pairs so that they automatically tell us which critter is to control
the collision.

A collision-handling architecture

In this section we’ll talk about the two new classes the Pop Framework uses to
limit our collision-checking to the pairs that matter to us. The new classes are
cColliderPair and cCollider. Figure 11.2 is a UML class diagram of their relationship
to cGame and cCritter.

And here’s how these classes realize the first three steps of the collision-
handling process we outlined above.

(1) The cColliderPair class has two cCritter* members called _pcrittercaller

and _pcritterarg. We have a cColliderPair::collideThePair method that calls
_pcrittercaller->collide(_pcritterarg).

(2) The cCollider class holds a collection of cColliderPair objects. The cGame has a
cCollider _pcollider object. Whenever you add a cCritter* pcritternew to
the game, the cCollider::smartAdd method looks at all possible pairs that
include the new pcritter and an existing critter in the game, creates
appropriately ordered cColliderPair object for those pairs that matter, and
adds the new cColliderPair objects to the _pcollider collection. Whenever
a cCritter* pcritterdying is deleted, its destructor calls _pcollider->
removeReferencesTo(pcritterdying) to remove all pairs that mention
pcritterdying.

Collisions 245

Figure 11.2 A collision-handling architecture

(3) In each update step, the cGame::collideStep method calls _pcollider-
>iterateCollide(). The cCollider::iterateCollide() method calls the collideThePair

for each cColliderPair.

Note that we didn’t explain yet how smartAdd decides which pairs matter
and how it decides, for these pairs, which critter should be the caller and which
should be the argument for an eventual collide call. This is the topic of the
following subsection.

Collision priority

As already discussed, the individual cCritter child classes have their own virtual
collide(cCritter *pcritter) methods to determine whether the pair is touching,
and what to do if they are touching. Given a pair (pA, pB), should I call
pA->collide(pB), or should I call pB->collide(pA)? Or should I not even try
and collide the critters?

Our solution is to give the cCritter class a Real _collidepriority field and to give the
cCritter class a collidesWith(cCritter *pcritterother) method that uses the _collidepriority

information of the two critters involved. By ‘priority’ we mean that if pB has
higher priority than pA, then, when we consider the pair (pA, pB), we will call
pB->collide(pA) instead of the other way around.

The default _collidepriority values are real numbers that have default values
that are set for the various kinds of critters in the following (descending) order.

• Walls

• Bullets

• Player

• Other critters

The reasons for our priorities are roughly this. The cCritterWall has a special
collide method which correctly bounces things off the sides and corners of a
rectangular wall. Ordinarily we would not expect a wall to be damaged by a
bullet. As was mentioned above, the cCritterBullet has a special collide which
checks if an object it touches is in the category of a target for the bullet. If it is a
target object, the bullet damages it and then dies. Otherwise the bullet carries out
a normal cCritter::collide. And the normal cCritter::collide is designed to correctly
simulate the physics of colliding disks. The cCritterArmedPlayer has a special collide

method that can call damage if a player is sensitive to collisions.
We also need to account for the fact that some pairs of critters aren’t

meant to collide at all. To handle all this, we give the cCritter class a virtual int

cCritter::collidesWith(cCritter *pcritterother) method that can return the following
values.

• cCollider::DONTCOLLIDE = 2;

• cCollider::COLLIDEASCALLER = 1;

• cCollider::COLLIDEASARG = -1;

• cCollider::COLLIDEEITHERWAY = 0;

Software Engineering and Computer Games246

The basic cCritter::collidesWith method compares the _collidepriority values
and returns an appropriate code number. The cCritterWall::collidesWith(cCritter

*pcritterother) is overridden to return DONTCOLLIDE if pcritterother happens to
be a cCritterWall.

Finally, the cCollider::smartAdd method is implemented as follows.

void cCollider::smartAdd(cCritter *pcritter, cCritter* pcritterother)

{

int collideswith = pcritter->collidesWith(pcritterother);

int othercollideswith = pcritterother->collidesWith(pcritter);

if (collideswith == cCollider::DONTCOLLIDE || othercollideswith

== cCollider::DONTCOLLIDE)

return; /* Don’t collide if either

one is unwilling, even if the other was willing. */

if (collideswith == cCollider::COLLIDEASCALLER || collideswith

== cCollider::COLLIDEEITHERWAY)

AddTail(new cColliderPair(pcritter, pcritterother));

else //(collideswith == cCollider::COLLIDEASARG)

AddTail(new cColliderPair(pcritterother, pcritter));

//ASSERT(collideswith == -othercollideswith);

/* We chose the collision type codes to make this ASSERT

likely at this point, but it might not always be true. Only

comment it in for testing. Do note that we bail before we

hit it if either type is DONTCOLLIDE. */

}

Note that smartAdd will only add the necessary pairs, and that it will add
them ordered in the right way, with the caller first and the argument second.

Array or list? An N-cubed issue

It remains to discuss how we iterate though the collection of pairs in a cCollider

collection. This depends on whether we implement the cCollider collection as
an array or as a linked list. Which is to be preferred? As you will already have
noticed if you looked enough to see the ‘AddTail’ in the block of code just
above, we’re going to use a list.

For most programmers, the natural inclination is to use arrays, simply
because lists have a reputation for being hard to use. Some of us have acquired
a lingering fear of lists and hash tables from a formative bad experience in a
data structures course! But, thanks to templates and collection classes, the more
sophisticated data structures are easy and safe to use, and we can afford to pick
the correct data structure for any given situation.

As it turns out, you want to use a list and not an array for the collection that
holds your set of possible collision pairs. Here’s why. Say you have N critters
– for purposes of discussion let’s say N is 20 – and let’s suppose that each critter
wants to collide with all of the others, making roughly 200 collision pairs (N2 / 2).

Collisions 247

Now say you want to delete one of the critters. This means deleting roughly N
member pairs from an array of N2/2 members; that is, deleting 20 members
from a 200 member array.

Now, when you delete something from the beginning of an array, you typic-
ally have to move down all of the higher-indexed elements. In other words,
removing the first member of a 200 member array requires about 200 steps and
removing the first member of an array of size N2/2 takes about N2/2 steps.
Removing 20 members from a 200 member array could take roughly 4000 steps,
and removing N members from an array of size N2/2 takes on the order of
N3/2 steps.

You realize, of course, that an order-N3/2 algorithm is very bad news! For
40 critters, you’d have an order of 32,000 steps – all this just to delete one sin-
gle critter. Why, again, does it make so much work? Because you have to delete
every pair the critter was involved in, and if the pairs are in an array, then every
time you delete a pair from the array you have to move all of the higher-
indexed array members.

With a list you don’t get into this problem, because deleting a member from a
list is an operation of a small, constant expense, no matter where in the list the
member occurs. It’s just a matter of fixing up a couple of ‘next’ and ‘previous’
pointers.

So we implement the cCollider as a linked list; specifically we let it inherit
from the MFC class CPtrList – well, actually, we use a type-safe template variant
of CPtrList called CTypedPtrList<CObList, cColliderPair*>. If you’ve ever implemented
a linked list, you’ll recall that you have to be a little careful about not corrupt-
ing the next and previous pointers – by using the built-in MFC List template we
avoid having to worry about getting these details right. This is a good example
of why, in object-oriented software engineering, we like to use classes that we
don’t have to write ourselves.

One last thought. We iterate through the entire cCollider list with every
update, and iterating through an array is slightly faster than iterating through
a list. Would it be better, after all, to have used an array? Well, no. The thing
is, you want your game to run in a uniform fashion. You don’t want it to race
along and then suddenly slow down every time you shoot something. The
(actually all but undetectable) slowdown of doing a single iteration sequence
per update as a list instead of as an array is a fair price to pay for not having the
game lag when a critter’s destroyed.

11.3 Colliding spheres

Let’s say a bit about how the standard void cCritter::collide(cCritter *pother) method
should work. Before thinking about the code, we need to think about the
physics. Consider the collision of two objects a and b with masses ma and mb
and velocities va and vb which our collision is to convert into new velocities
newVa and newVb. According to physics, (a) the total momentum is conserved
and (b) the total energy is conserved. This means the following two conditions
should hold, where we write |v | to mean the magnitude of a vector v.

Software Engineering and Computer Games248

(1) Ma × newVa + Mb × newVb = Ma × Va + Mb × Vb

and

(2) (1/2) × (Ma × | newVa |2 + Mb × | newVb |2) =
(1/2) × (Ma × | Va |2 + Mb × | Vb |2)

The newVa and the newVb quantities are our unknowns, and the old Va and
Vb are like constants fed into the equations. Geometrically speaking, condition
(1) describes a ‘line,’ while condition (2) describes an ‘ellipse.’ The intersection of
a line and an ellipse gives two solutions: the pre-collision and the post-collision
solution.

To find them, you can replace (1) by two linear equations in the x and y
components and replace equation (2) by a single quadratic equation in the x
and y components. These equations can be solved by hand, though what the
author did was feed them into the Mathematica symbolic computation program
to come up with the two solutions, the pre-collision solution, newVa = Va and
newVb = Vb, and the post-collision solution, in which some of the energy and
momentum have been exchanged:

newVa = (Ma × Va − Mb × Va + 2 × Mb × Vb) / (Ma + Mb)
newVb = (2 × Ma × Va − Ma × Vb + Mb × Vb) / (Ma + Mb)

If we divide both numerators and denominators by Ma, and call Mb/Ma
massratio we get

newVa = (Va − massratio × Va + 2 × massratio × Vb) / (1 + massratio)
newVb = (2 × Va − Vb + massratio × Vb)/ (1 + massratio)

Simplifying a little more, we get

newVa = [(1 − massratio) × Va + 2 × massratio × Vb] / (1 + massratio)
newVb = [2 × Va + (massratio − 1) × Vb] / (1 + massratio)

Note that if massratio is 1, then this is simply newVa = Vb; newVb = Va,
which is the standard billiard-ball collision that one first thinks of. The case
where the masses aren’t the same is the less obvious case; this is the case we are
doing all the work for. And if a has a huge (infinite) mass compared to b, then
massratio is about 0 and we get newVa = Va; newVb = 2Va − Vb, which, if a is
motionless, amounts to b simply bouncing off of a, which is another standard
kind of collision example.

A third thing that needs to be taken into account is that we shouldn’t have
two objects in the same place at the same time. Usually when two critters are
touching, they will actually be overlapping. We add code to our cCritter::collide

so as to move the pair of critters apart along the line connecting their centers,
moving them just far enough so they don’t overlap.

Collisions 249

A final issue in writing this algorithm is that we need to avoid having a
collision move any critter that has its _fixedflag set to TRUE; such a critter might
appear as a bumper in a pinball game or as an obstacle in a maze game. You can
look at the full code in the critter.cpp file.

11.4 Colliding walls

One weak point in our standard cCritter::touch and cCritter::collide methods is that
they always treat the critters as disks centered on the critter’s position. This is only
slightly problematic when we have, say, a triangular critter, but it is unworkable
if we have a long thin critter such as one might use for a rectangular wall.

In more advanced kinds of game programs, collision detection usually uses a
sphere-based collision detection to see if a collision is possible, and then switches
to a slower and more detailed algorithm that looks at bounding boxes or indi-
vidual vertices of the objects being tested for collision. In the Pop Framework
we presently only do this for one particular kind of shape: a rectangular ‘wall.’

So we have a special cCritterWall class. We normally create our walls with a
call to the constructor: cCritterWall::cCritterWall(const cVector &enda, const cVector

&endb, Real thickness).

The enda and endb arguments in the constructor are the midpoints of what
we consider to be the short ends of the wall (see Figure 11.3).

In the Dambuilder game, for instance, we add a bunch of walls in the con-
structor with lines of the following form. If you don’t specify the thickness, the
default cCritterWall::THICKNESS of 0.2 is used.

add(new cCritterDamWall(cVector(-4, 2), cVector(3, -2)));

add(new cCritterDamWall(cVector(1.5, -2), cVector(6, 0.3)));

If you play with the Dambuilder game, you’ll notice you can drag the walls
around and you can use the Copy cursor to copy them. You can ‘build dams’!
Our standard critter’s behavior when being dragged is to keep the velocity of
the drag; this lets us ‘pick up and throw’ critters if we like. But we normally
don’t want walls to drift around, so the cCritter::dragTo is overridden to prevent a
wall from acquiring velocity by being dragged.

Ordinarily a critter thinks of its shape as being a disk. If a wall thinks of
itself as a disk, then you are prevented from putting two vertical walls near
each other, as the imaginary disks would seem to overlap. A similar issue can arise
with trying to put a vertical wall near a vertical edge of the screen when the wall’s
wrap mode is set to cCritter::BOUNCE. Overriding the clamp method partly solves

Software Engineering and Computer Games250

Figure 11.3 Constructing a cCritterWall

the problem. (We did a quick ‘kludge’ fix of the BOUNCE problem by overriding
cCritterWall::setWrapflag to do nothing, so that in fact you can’t put a cCritterWall into
the BOUNCE mode. This is unimportant, but we note it here in case you are ever
puzzled about why you can’t get walls to bounce off the edges of the screen.)

The main effort in coding the cCritterWall went into the override for collide. One
needs to consider eight cases; whether a colliding critter is impacting a wall on
one of its four corners or on one of its four sides. Another complicating factor
is to try and avoid the case where a rapidly moving critter might seem to move
‘through’ a thin wall by being on one side, and then at the next move step being
on the other side, without ever overlapping the wall. We deal with this problem by
looking at a critter’s ‘outcode’ relative to the wall; where, as already mentioned
in Chapter 8: Critters, an outcode is a flag value reflecting a position relative to
a rectangle: inside, to the right, to the right and top, to the top, and so on.

Our cCritterWall::collide(cCritter*pcritter) compares the pcritter’s current outcode
relative to the wall to its previous position’s outcode relative to this wall, and
in this way we can tell whether it jumped over the wall. And if it’s hitting the
wall, we can tell which region it came from. You can look at the gory details in
critterwall.cpp if you’re interested.

Review questions

A What does the default cCritter::collide method do? Which quantities does it conserve?

B How many pairs of critters can be found in a set of ten critters? In a set of 100 critters?

C What is the meaning of the cCritter _collidepriority field? How is it used in the
cCritter::collidesWith method? And, finally, where is the collidesWith method used?

D Where does the Pop Framework keep a cCollider *_pcollider object? What is the purpose
of this cCollider object?

E Why does the Pop Framework choose to implement cCollider as a linked list instead of
as an array?

F How does the cCritterWall::collide differ from the normal cCritter::collide?

Exercises

Exercise 11.1: Turn off asteroid–asteroid collisions in Spacewar

Turn off the asteroid-to-asteroid collisions in the Spacewar game. To do this, override the
cCritterAsteroid::collidesWith(cCritter *pcritterother) method. You’ll need to prototype the
method in gamespacewar.h and implement it in gamespacewar.cpp. The implementation
code should have these two lines.

if(pcritterother->IsKindOf(RUNTIME_CLASS(cCritterAsteroid)))

return cCollider::DONTCOLLIDE;

return cCritter::collidesWith(pcritterother);

Collisions 251

Does this make the game run faster? Compare speeds before and after, using the
Game popup menu to change the number of critters. When you compare the speeds of
builds always make sure that both are Debug builds or both are Release builds.

Exercise 11.2: Compare performance of cCollider using list and array

(a) Run the Spacewar game on your machine and notice if it lurches when you shoot
some critters. Note the updates per second with a huge number of critters. (b) Now go
into collider.h, comment out the line #define USECOLLIDERLIST, to switch from a list
to an array for the cCollider. Rebuild the program, making sure to use Build | Set Active
Configuration to the Release build if the build you checked in step (a) was also a
Release build. Compare performance. On some machines you won’t notice a difference
and on some you will. At one point a tester saw some freeze-ups of the program when
using the array build, though maybe the bug was only a transient coincidence.

Exercise 11.3: Sequence diagrams for adding and deleting critters

Recall that a sequence diagram’s column really represents one individual object’s behavior.
In the case where there’s only one object of the type under consideration we only write the
class name instead of the name of the object; in the case where we’re discussing more
than one object of a given type, we write a class name with a colon and an object name.
In doing parts (a) and (b) we may want to check the Pop Framework code for details or,
even better, use the debugger to step through the sequence of events when you add or
delete a critter.

(a) Draw a sequence diagram with columns for cGame, cColliderPair, cCritter:pa, cCritter:pb,
cCollider and possibly cBiota to map the functions called when you add pa to the game,
assuming that pb is a critter already in the game that pa is interested in colliding with.

(b) Draw a sequence diagram with the same columns to show what happens when pa is
deleted.

Software Engineering and Computer Games252

12Listeners

In this chapter we talk about how we move our onscreen player sprite with the
mouse and keyboard.

12.1 How the critters listen to the user input

The cController utility class

The Microsoft void CView::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags) method
is triggered whenever a key is pressed. The nFlags argument is a collection
of bitflags designed to tell you whether the Ctrl, Alt, and/or Shift keys are
down, and whether this is a repeated typematic keypress. The nRepCnt is also
supposed to hold the number of repeated typematic messages that a key press
has generated, where ‘typematic’ refers to the feature that has most keys trigger
additional OnKeyDown messages if you continue to hold them down. In point of
fact, the nFlags and nRepCnt arguments don’t reliably behave as Microsoft’s
documentation says they do, so we work around them, as you can see if you
check the CPopView override of the OnKeyDown method.

To give clean access to the user input, we have a class called cController that
serves to hold the current state of the keyboard and mouse and allow the pro-
grammer to access this information with some conveniently designed accessor
methods. The various possible keys are represented by integer keycodes, ordin-
arily the keycode for any key has a name of the form VK_???, such as VK_A,
VK_LEFT, VK_SPACE, and so on. Check Appendix A for a complete list of the
VK_ code names used in the Pop Framework. Under the current versions of
Windows, there are 166 distinct recognized keys; we #define this number to be
VKKEYCOUNT.

The cController maintains an unsigned integer keystate for each key; the
keystate uses bitflags to represent if the key is depressed, and whether the Shift

or Ctrl keys were down when the key was first pressed. Also we maintain some
bitflags that enable us to tell when a key has been down for more than one
cycle of the cGame::step call. Here’s a partial listing of its prototype.

class cController : public CObject

{

protected:

UINT _keystate[VKKEYCOUNT];

Real _keystateage[VKKEYCOUNT];

public:

cController();

virtual void update(Real dt); /* cController uses update to

check for when keys are no longer depressed and for when

keys have been made available to the listeners more than

once. */

BOOL keyon(int vkcode);

BOOL keyonplain(int vkcode);

BOOL keyoncontrol(int vkcode);

BOOL keyonshift(int vkcode);

BOOL keyoncontrolshift(int vkcode);

/* The following *single accessors only return TRUE once per

keypress, useful for impulse controls. */

BOOL keyonsingle(int vkcode)

BOOL keyonplainsingle(int vkcode);

BOOL keyoncontrolsingle(int vkcode);

BOOL keyonshiftsingle(int vkcode);

BOOL keyoncontrolshiftsingle(int vkcode);

/* Sometimes, as when using an arrow key to spin a player, it

is useful to know how long a key has been depressed. */

Real keystateage(int vkcode);

};

It’s worth mentioning that there is a VK_LBUTTON as well; we use this to signal
when the left mouse button is depressed. And the same is true for the right button.
In other words, we can treat the mouse buttons like keyboard keys. A complicat-
ing factor with the mouse is that one often needs to know the mouse’s current
cursor position; we deal with this by having the cGame maintain a cVector _cursorpos

that gets updated by the active view within its CPopView::OnSetCursor call. Windows
forces an OnSetCursor call in the window underlying the current mouse cursor
position during or before every call to OnIdle.

The sequence from keypress to critter

In order to play the game, we need for the player critter to be able to take
input from the keyboard and/or the mouse. We get at the input in a somewhat
indirect fashion.

• When you press a key, an OnKeyDown message goes to the active CPopView.

• The CPopView::OnKeyDown message handler sends a cGame::onKeyDown message
to the active cGame object.

Software Engineering and Computer Games254

• The cGame object stores the key information in its cController *_pcontroller

member.

• The cGame::step method calls cCritter::feellistener for the player.

• The player critter’s cListener* _plistener member calls the cListener::listen(Real

dt, cCritter *pownercritter) method.

• The cListener::listen uses the pcritter->pgame()->pcontroller() accessor to get at the
cController *_pcontroller to see which keys are down, whether the Ctrl

and Shift keys are also down, how long the keys have been down, whether
the mouse buttons are down, and so on.

• Depending on the keystates, the cListener::listen may do something like using
cCritter::setAcceleration to change the player’s acceleration.

The reason the flow is so indirect is because we want for a given keystroke to
be available to any critter in the game that has a listener – this would be a factor
for two-person games, for instance. In addition, rather than processing keystrokes
immediately as they happen, we want for the processing to happen at a certain
predictable spot within the cGame::step cycle – otherwise we may have trouble
keeping up the illusion that our critters are behaving in a parallel fashion.

We have a little more about the interaction between the keyboard and the
controller in the Keyboard section of Chapter 28: Mouse, Cursors and Keyboard.

We can sketch the flow in a sequence diagram as shown in Figure 12.1.
If this complexity bothers you, don’t worry about it; the whole point of all

this framework coding was to give the programmer an unobtrusive and reliable
interface to the user’s keyboard and mouse input. In the next section, we’ll talk
about how the cListener objects use this interface.

12.2 The listeners

As we mentioned in Chapter 8: Critters, a critter uses the Strategy pattern to farm
out the task of listening to its cListener *_plistener member with a call to feellistener.

void cCritter::feellistener(Real dt)

{

_plistener->listen(dt, this);

}

We pass the pointer this to the listener so that it can change the fields of this
calling cCritter as required. Because a cListener takes a cGame* argument to its listen

method, we can say that the cListener can ‘navigate’ to a cGame. The caller critter’s
pgame() holds the cController object that stores all of the keys and mouse actions
you need to process.

We pass a dt argument to the plistener->feellistener because the mouse-based
listener cListenerCursor needs to know the dt so as to appropriately set the critter’s
velocity to match the critter’s motion from one cursor position to the next.

Listeners 255

The feellistener method gets called inside the cGame::step. The successive calls to
cGame::step generate calls to feellistener(), move(), update(), feellistener(), move(), update(),
feellistener(), move(), and so on. In other words, after startup, the process for an
individual critter is this.

• Call update() and, within update, call feelforce().

• Call feellistener() and possibly add in some more acceleration.

• Use the _acceleration in move().

Software Engineering and Computer Games256

Figure 12.1 Sequence diagram for a key press

Now let’s start to look at what the different kinds of listeners do in their
listen methods. To begin with, here’s a class diagram of some of our listeners
(Figure 12.2).

The listen(Real dt, cCritter *pcritter) method checks the current state of the keys
as indicated by the pcritter->pgame()->pcontroller(). The cListenerArrow::listen

code looks like the following.

void cListenerArrow::listen(Real dt, cCritter *pcritter)

{

cController *pcontroller = pcritter->pgame()->pcontroller();

/* Note that since I set the velocity to 0.0 when I’m not

pressing an arrow key, this means that acceleration forces

don’t get to have accumulating effects on a critter with a

cListenerScooter listener. So rather than having some very

half-way kinds of acceleration effects, I go ahead and set

acceleration to 0.0 in here. */

pcritter->setAcceleration(cVector::ZEROVECTOR);

if (!pcontroller->keyonplain(VK_LEFT) &&

!pcontroller->keyonplain(VK_RIGHT) &&

!pcontroller->keyonplain(VK_DOWN) &&

!pcontroller->keyonplain(VK_UP) &&

!pcontroller->keyonplain(VK_PAGEDOWN) &&

!pcontroller->keyonplain(VK_PAGEUP)

)

{

pcritter->setVelocity(cVector::ZEROVECTOR);

return;

}

/* If you get here, you’ve pressed an arrow key. First match

the velocity to the arrow key direction, and then match

the attitude. */

if (pcontroller->keyonplain(VK_LEFT))

pcritter->setVelocity(- pcritter->maxspeed() *

cVector::XAXIS);

Listeners 257

Figure 12.2 The cListener class diagram

if (pcontroller->keyonplain(VK_RIGHT))

pcritter->setVelocity(pcritter->maxspeed() * cVector::XAXIS);

if (pcontroller->keyonplain(VK_DOWN))

pcritter->setVelocity(-pcritter->maxspeed() *

cVector::YAXIS);

if (pcontroller->keyonplain(VK_UP))

pcritter->setVelocity(pcritter->maxspeed() * cVector::YAXIS);

if (pcontroller->keyonplain(VK_PAGEDOWN) &&

pcritter->in3DWorld())

pcritter->setVelocity(-pcritter->maxspeed() *

cVector::ZAXIS);

if (pcontroller->keyonplain(VK_PAGEUP)&& pcritter->in3DWorld())

pcritter->setVelocity(pcritter->maxspeed() * cVector::ZAXIS);

//Now match the attitude to the motion, if locked.

if (pcritter->attitude to motion lock ())

pcritter->copyMotionMatrixToAttitudeMatrix();

/* If pcritter is cCritterArmed*, its

listen does more.

}

There are a couple of things to point out. The cListenerArrow::listen has its
effects on the critter by setting the critter’s velocity. Since I’m directly setting
the velocity at each game step, the acceleration will not be able to have any sig-
nificant effect on the velocity; a line of the form _velocity += dt*_acceleration
will have a negligible effect since we keep resetting the velocity in each call of the
cListenerArrow::listen. So we have this listener set the acceleration to the zero vector.

Another thing to notice is that we use the cController::keyonplain accessors
to see which keys are pressed. This is so that we can use Ctrl+Arrow keys or
Ctrl+Shift+Arrow keys for other purposes, such as moving the viewpoint.

A third thing to observe is that the cListenerArrow::listen will set the listening
critter’s attitude to match the current motion of the critter, if locked. This gives the
expected effect of having the critter face left when you press the Left Arrow, and
so on.

A final thing to notice is that cListenerArrow::listen is designed to work for
critters in 3D worlds as well as for critters in 2D worlds. But we are careful not
to impart 3D motion to a critter unless it satisfies the is3D() condition. This
condition checks if the critter’s _movebox has a non-zero z size.

The cListenerScooter also has an effect of directly setting the magnitude of
a critter’s velocity, so here we again set the acceleration to the zero vector.
cListenerScooter changes the critter’s motion vector in one of two ways; by
changing the magnitude velocity, or by rotating the critter’s motion vectors in
various ways.

In order to fully describe the possible rotations in three dimensions, we need
to think in terms of the critter as having a trihedron of three perpendicular unit
vectors called the tangent, the normal, and the binormal. These three vectors
make up the first three columns of the critter’s ‘motion matrix.’ This is shown
in Figure 12.3.

Software Engineering and Computer Games258

Listeners 259

Figure 12.3 The trihedron of a critter

We can summarize the effect of cListenerScooter::listen as follows. In testing
this, be aware that in the Pop program, the cListenerScooter is chosen with the
Player | Scooter Controls selection. ‘Scooter’ makes sense as a name for this
listener because, as with a scooter that only rolls while you kick it, cListenerScooter

only moves a player as long as a key is held down.

• The Up key sets the critter’s velocity to its maxspeed times its current tangent
direction.

• The Down key sets the critter’s velocity to the opposite, that is, the maxspeed
times the negative of the critter’s tangent direction. In this case we do not set
the critter’s attitude to match its motion, that is, we leave its tangent pointing
in the same direction as before and let the critter be moving ‘in reverse.’

• The Left and Right Arrow keys ‘yaw’ the critter by rotating its tangent around
the z-axis or, in 3D, around the critter’s binormal.

• In 3D, the Pageup and Pagedown keys ‘pitch’ the critter by rotating its tangent
around its normal.

• In 3D, the Home and End keys ‘roll’ the critter by rotating its normal around
its tangent.

• When we rotate a critter we do update its visible attitude to match the new
orientation of the motion matrix.

In order to make the game more responsive, it’s better to have two turn-
speeds for your player, a fast turnspeed for whirling around to shoot something
that’s sneaking up on you, and a slow turnspeed for accurately aiming your
fire so as to hit a small or distant object. We choose the correct rotation speed
by using a helper turnspeed method inside the cListenerScooter::listen method. Our
cListener::turnspeed function looks at the cController::keyage of a key to determine
how large a rotation to return.

The cListenerSpaceship and the cListenerCar do not change the critter’s speed
directly. Instead they add or subtract from the critter’s acceleration. The difference
is that the cListenerSpaceship adds an acceleration whose direction is determined
by the critter’s current visual attitude, and the cListenerCar adds an acceleration
whose direction is determined by the critter’s current motion.

The cListenerSpaceship and the cListenerCar rotate the critter in the same way as
the cListenerScooter controls. The difference is that the cListenerSpaceship rotates
the critter’s attitude, while the cListenerCar rotates the critter’s motion.

Both of these listeners are compatible with having forces act upon the critter.
The cListenerCursor moves the critter with the mouse. This is done

by setting the critter’s acceleration to the zero vector and setting the critter’s
velocity to be whatever velocity is necessary to move the critter to the
pcritter->pgame()->cursorpos() in the allotted dt time slice that is fed into
the cListenerCursor::listen(Real dt, cCritter *pcritter) call. If you move the mouse
rapidly this means that the critter will in fact move at an extremely high
velocity; when a critter has a cListenerCursor we disable the customary condition
that limits a critter to moving less rapidly than the value of its maxspeed().

The reason we choose to have the cListenerCursor move the critter by chang-
ing its velocity rather than by simply calling a direct moveTo is that we want to
be able to ‘hit’ things with a critter that we move with the mouse, and in order
for a critter to collide properly with something, we need for its velocity to
match its perceived motion.

Code for these listeners can be found in listener.cpp.

12.3 Shooting with the listeners

As well as moving our critters around, we also want to be able to make them shoot
bullets or, if you will, eject objects. We will allow two shooting input methods:
pressing the spacebar or clicking the left mouse button while the cursor is in a
view that uses the _hCursorPlay cursor. You select this cursor by clicking on
the crosshair button in the toolbar or by selecting View | Shoot Cursor.

The framework checks on the cursor type in the CPopView::OnLButtonDown.
This method only stores a left click in the game cController object in the case
where the cursor type is indeed the _hCursorPlay.

We derive any critter that shoots from the critter child class cCritterArmedPlayer.
We’ll discuss cCritterArmedPlayer in some detail in the next chapter; for now
it suffices to know that this class has a BOOL _bshooting member, and when
bshooting is TRUE the cCritterArmedPlayer::update method can shoot a bullet.

Rather than putting shooting code into each of our listeners, it’s more
efficient to put it into the feellistener method of the cCritterArmedPlayer itself.
Leaving out a few complications, the method looks basically like this.

void cCritterArmedPlayer::feellistener(Real dt)

{

cCritter::feellistener(dt);

_bshooting = (pgame()->keystate(VK_SPACE) == cController::KEYON);

if (pgame()->keystate(VK_LBUTTON) == cController::KEYON)

/* shoot with left mouse click

The controller will only have turned VK_LBUTTON on if you

left clicked the Shoot Cursor; left clicks with other

cursors will be ignored by controller. */

Software Engineering and Computer Games260

{

_bshooting = TRUE;

aimAt(pgame()->cursorpos());

}

}

Using the shooting cursor makes a nice interface for many games. As it turns
out, users have trouble using complicated listeners to move the player. Much of
the challenge of Asteroids (or our Spacewar) is that the cListenerSpaceship is so
hard to use. The cListenerCar is in fact only practical for things like car races
around an onscreen track. Ordinarily, users will prefer either the cListenerScooter

or even the lowly cListenerArrow.
One of the drawbacks of a cListenerArrow for a shooting game is that the

critter seemingly can only shoot in the cardinal directions: East, North, West, and
South. But if you use a Shoot mode cursor, that is, the _hCursorPlay, with the
cListenerArrow, then you can shoot in any direction by left clicking. An interesting
side-effect (that you could of course code out if you don’t like it) is that when
you press the Up Arrow and hold down the left mouse button, a critter with the
cListenerArrow will continuously move towards the cursor location.

12.4 Viewer listeners

Each CPopView has a cCritterViewer *_pviewpointcritter member that is used to set
the projection matrix and the view matrix inside the CPopView::OnDraw call. We
discuss the details of this process in Chapter 24: Two- and Three-dimensional
Graphics. But the basic notion is simple: a view shows the game world as seen
from the viewpoint of its _pviewpointcritter.

The user changes the appearance of the view by moving or rotating the
_pviewpointcritter. It’s also possible to change the magnification scale, or
field of view angle, by making a pviewpointcritter->zoom(zoomfactor) call.

In order to let the user change the viewpoint, the CPopView code can attach a
listener to the viewer with a call like _pviewpointcritter->setListener(new
cListenerViewerOrtho()). The cListenerViewerOrtho is one of the three specialized
cListener child classes that the Pop Framework provides for use with the viewers.
Let’s say a few words about the three kinds of viewer listeners.

• cListenerViewerOrtho is always used as the _pviewpointcritter listener for
two-dimensional worlds. This listener reacts to Ctrl+Arrow key combinations
to move the _pviewpointcritter back and forth parallel to the XY plane,
and it causes the Ins and Del keys to generate zoom calls.

• Either cListenerViewerFly or cListenerViewerRide are always used as the _pview-
pointcritter listener for three-dimensional worlds. cListenerViewerFly reacts
to the Ctrl+Arrow key combinations to move the _pviewpointcritter along
its intrinsic axes, that is along its tangent, normal, and binormal directions.
The Ctrl+Shift+Arrow key combinations rotate the _pviewpointcritter
around its intrinsic axes, and the Ins and Del keys zoom the viewpoint.

Listeners 261

• cListenerViewerRide is used in three-dimensional worlds to let the viewer ‘ride’
upon the game’s pplayer(). That is, this listener maintains a fixed cVector

_offset, keeps the _pviewpointcritter always at this offset from the player’s
position, and adjusts the _pviewpointcritter attitude to change along with
the player’s attitude. (Rather than exactly matching the player attitude to
look parallel to the player, we have the rider tilt a bit to look at a point slightly
ahead of the player.) The Ctrl+Arrow keys can be used to change the viewer’s
fixed offset from the player.

Here as an example is the cListenerViewerOrtho::listen code.

void cListenerViewerOrtho::listen(Real dt, cCritter *pcritter)

{

cController *pcontroller = pcritter->pgame()->pcontroller();

// Use the Control + (Arrow keys, Insert or Delete) to translate.

if (pcontroller->keyoncontrol(VK_LEFT))

pcritter->setVelocity(pcritter->maxspeed() * cVector::XAXIS);

if (pcontroller->keyoncontrol(VK_RIGHT))

pcritter->setVelocity(- pcritter->maxspeed() *

cVector::XAXIS);

if (pcontroller->keyoncontrol(VK_DOWN))

pcritter->setVelocity(pcritter->maxspeed() * cVector::YAXIS);

if (pcontroller->keyoncontrol(VK_UP))

pcritter->setVelocity(- pcritter->maxspeed() *

cVector::YAXIS);

if (!pcontroller->keyoncontrol(VK_LEFT) &&

!pcontroller->keyoncontrol(VK_RIGHT) &&

!pcontroller->keyoncontrol(VK_DOWN) &&

!pcontroller->keyoncontrol(VK_UP))

pcritter->setVelocity(cVector::ZEROVECTOR);

// Use the Insert, Delete keys to zoom.

cCritterViewer *pcritterv = (cCritterViewer*)(pcritter); /* Need

the cast to use zoom

ASSERT(pcritterv); //To make sure the cast didn’t fail. */

if (pcontroller->keyon(VK_INSERT))

pcritterv->zoom(cCritterViewer::DEFAULTZOOMFACTOR);

if (pcontroller->keyon(VK_DELETE))

pcritterv->zoom(1.0/cCritterViewer::DEFAULTZOOMFACTOR);

}

Note that the Ctrl+Left combination moves the _pviewpointcritter to the
right, which gives an effect of the visible world moving to the left. Users tend
not to think in terms of there being a separate _pviewpointcritter (and why
should they?), so it makes for a better interface to move the visible world in the
direction of the arrows.

Software Engineering and Computer Games262

In most of our games both the player and the _pviewpointcritter will have
a listener, and at every full update of the game, each of them gets a chance to
‘listen’ to the key information in the game’s cController object.

12.5 How a listener initializes its owner critter

A final thing to mention about our cListener class is that it has a virtual void

install(cCritter *pcritter) method. We attach a listener to a critter with the
cCritter::setListener(cListener *plistener) method, and the setListener code calls
plistener->install(this) to give the listener a chance to make any necessary
adjustments to the critter that is going to start using it.

The default behavior of cListener::install(cCritter *pcritter) is simply to match
the pcritter’s motion matrix to its attitude matrix to get things off to a good start
– this match will not automatically be TRUE, as we normally do not lock the
player critter’s attitude to its motion. One other use for install is to temporarily
set a critter’s maximum speed to a very high value when it uses a cListenerCursor.

In the case of the viewer listeners, the install methods also set the cCritterViewer

_perspective field to FALSE for the two-dimensional cListenerViewerOrtho and to TRUE
for the three-dimensional cListenerViewerFly and cListenerViewerRide. A final wrinkle
is that the cListenerViewerFly locks the viewer critter’s attitude matrix to its motion
matrix – as here we are effectively flying a camera around; while cListenerViewerOrtho

does not lock the viewer critter attitude to its motion – because we want this
viewer always to be staring down the z-axis at the world, even if we are moving
it to the left and right. More details can be found in the listener.cpp file.

Review questions

A Given a cController *pcontroller object, how would you find out if the Left
Arrow key is being pressed?

B What software pattern is embodied by the critter’s use of a cListener object?

C How does the cListener::listen method get called?

D How does a critter respond to keys when it uses the Arrow listener? The scooter?

E What does the cListenerCursor do to a critter that uses it?

F What are the three kinds of viewer listeners the Pop Framework uses?

G What is the difference between a critter’s attitude matrix and its motion matrix?

Exercises

Exercise 12.1: Spaceship listener with friction

Note that a player with the cListenerSpaceship is still able to feel forces such as gravity.
Try giving the player friction in the Spacewar game and see if this makes it more pleasant
to use the spaceship keys.

Listeners 263

Exercise 12.2: Move the world or move the viewer?

Test out the effects of Ctrl+Arrow and Ctrl+Shift+Arrow in some 2D and 3D views. The
visual effect of these keys is that you are moving the world. Now open the listener.cpp file
and find the line #define MOVEVIEW 1. Read the comment on this line and change the
line to #define MOVEVIEW -1. Now test the same Arrow keys in some 2D and 3D views.
The visual effect of the keys is now to move the (invisible) viewer rather than the world.
Which interface do you like better? Which do you think will be preferred by most users?

Software Engineering and Computer Games264

13Shooters and bullets

We want for critters to be able to spawn off additional objects. The most
common use of this is for shooting games in which the critters shoot at the
player and the player shoots back. Do keep in mind that a game with this
pattern can in fact be given a non-violent framing story. The critters might be
dropping jewels that you want to pick up. Or you might be throwing food at
them. Perhaps you’re on a safari taking pictures, and you’re firing flashbulbs.
This said, let’s go ahead and speak in terms of shooting bullets.

In order to prevent the player from drowning the screen in bullets and
having the game be too easy, we will allow only some limited number of player
bullets to be active at one time. Suppose you want to allow the player to have
at most eight bullets active at one time. When there are already eight bullets
present and the user presses the shoot control, what happens then?

There are two alternatives. One approach is to have the shoot control go
dead until one of the eight active bullets hits something or dies of old age. This
is not satisfying as then, if the player is menaced by some approaching enemy
and all the bullets are in use, the player is left defenseless. A better approach is
to have the shooting of a ninth bullet remove the oldest bullet from the screen.
This specification-level decision will affect our design.

13.1 High-level design for cCritterArmed and cCritterBullet

We make a new class called cCritterArmed to encapsulate shooting behavior, and
derive a cCritterArmedPlayer from it. We’ll also have a cCritterArmedRobot that will
have the feature of always automatically aiming at whatever cCritter* is stored in
its _ptarget field. This is illustrated by Figure 13.1.

Table 13.1 lists some of the key new methods and overrides of cCritterBullet

and cCritterArmed.
And Figure 13.2 is a sequence diagram showing the flow of method calls

involved in having an armed critter shoot a bullet at another critter.

13.2 The cCritterArmed

The cCritterArmed has the ability to shoot bullets; this is what its shoot method does.
To begin with, let’s explain how the cCritterArmed::shoot gets called. The call is the

responsibility of the cCritterArmed::update method, which checks if (a) the critter’s
_armed flag is on, meaning that it is allowed to shoot at all, and (b) the critter’s
_bshooting flag is on, meaning that it is supposed to shoot right now. When we
use a cCritterArmed as a player, the _bshooting flag is something we normally turn
on and off by pressing the space bar or the left mouse button. When we have
a self-running ‘robotic’ cCritterArmedRobot child of the cCritterArmed class as a rival
in our game, the _bshooting flag will often be continually on, with the _waitshoot

time interval preventing the cCritterArmedRobot from shooting perpetually.
Here’s a slightly simplified version of our cCritterArmed::update code.

void cCritterArmed::update(CPopView *pactiveview)

{

//(1) Call base class update to apply force.

cCritter::update(pactiveview);

Software Engineering and Computer Games266

Figure 13.1 Diagram of the cCritterArmed and cCritterBullet classes

Table 13.1 The special classes used for shooting.

Class New methods Overrides

cCritterBullet initialize update
isTarget collide

collidesWith

cCritterArmed aimAt draw
shoot update

//(2) Align gun with move direction if necessary.

if (_aimtoattitudelock)

setAimVector(attitudeTangent()); /* Keep the gun pointed in

the right direction. */

/* (3) Shoot if requested, and if enough time has elapsed since last

shot. */

if (_armed && _bshooting && (_age – _ageshoot > _waitshoot))

{

shoot();

_ageshoot = _age;

}

}

Shooters and bullets 267

Figure 13.2 A sequence diagram for shooting a bullet

To make the aim direction of the gun visible, we override and extend
cCritterArmed::draw to draw a little line segment under cCritterArmed’s sprite to
represent the direction of the gun.

Now let’s say something about what the cCritterArmed::shoot method does.
We want to allow for different cCritterArmed child classes to use different kinds
of bullets, so there is a CRuntimeClass *_pbulletclass variable to specify the kinds
of bullets used. This means that we don’t need to override the shoot method.
Instead we just change the _pbulletclass. The CRuntimeClass *_pbulletclass variable
is set by default in the constructor to RUNTIME_CLASS(cCritterBullet). You can
find out more about the CRuntimeClass type in Chapter 22: Topics in C++.
Basically it holds a string with a name of the class as well as an integer giving
the size in bytes of the class instance objects.

The way _bulletclass gets used hinges on an interesting OOP feature, which
allows us to create an instance of a class object from the name of the class. That
is, there is a general CRuntimeClass::CreateObject method which will return an
object of the type specified by the caller CRuntimeClass object.

The cCritterArmed::shoot() does the following.

• If the shooter has more than _maxbullets active, delete the oldest one.

• Create a pbullet with pbulletclass->CreateObject().

• Call pbullet->initialize(this), with a pointer to the shooter as an
argument.

The reason we need both the second and the third step is that the
CRuntimeClass::CreateObject() doesn’t take an argument; in effect it always calls a
no-argument constructor. So we need the extra initialize call to feed in informa-
tion from the shooter.

13.3 The cCritterBullet

As mentioned in the last section, when a cCritterArmed fires a shot, its shoot

method is called, and a new bullet gets initialized in two stages. First the bullet’s
no-argument constructor cBullet() is called. The constructor does the following.

• Sets the bullet’s _collidepriority to the relatively high value
cCollider::CP_BULLET. Since this value is higher than cCollider::CP_CRITTER,
this means that when a bullet hits a normal critter, the bullet invokes the
collide method as the caller instead of as the argument.

• Tells the bullet to have a limited lifetime by setting _usefixedlifetime to TRUE
and setting the size of _fixedlifetime to cCritterBullet::FIXEDLIFETIME,
which happens to be set to 3.0 seconds. (Note that you can do this for other
critters, too if you like, although the default behavior is for critters to be
‘immortal’ with _usefixedlifetime set to FALSE.)

• Assigns the bullet a yellow isosceles triangle to be its default sprite.

• Sets the bullet’s speed, its _maxspeed, and its _hitstrength.

Software Engineering and Computer Games268

In the second stage of a bullet’s initialization, the cCritterBullet::

initialize(cCritterArmed *pshooter) is called with the shooting critter as the pshooter

argument. The reference to pshooter allows the bullet to set its target according
to the preferences of the pshooter.

The default cCritterBullet constructor gives the bullet a yellow isosceles triangle
for its sprite. The default cBullet::initialize method does the following.

• Matches the bullet’s attitude to the shooter’s.

• Positions the bullet at the tip of the shooter’s gun.

• Sets the direction of the bullet’s velocity to match shooter’s _aimvector,
using the speed that the bullet acquired in its constructor. The result gives
us what we might call a ‘muzzle velocity.’ It would be physically correct to
then set the bullet velocity equal to this muzzle velocity plus the shooter’s
velocity – but in practice this gives unattractive game behavior. So we don’t
normally add in the shooter’s velocity. We’ll say more about this in the
section on cCritterArmedPlayer below.

• Attaches copies of the shooter’s physics forces such as gravity and friction to
the bullet.

• Copies the shooter’s _movebox to the bullet.

• Gives the bullet the same _ptarget as the shooter.

The cBullet::update method is written to call the base class cCritter::update and
to kill off the bullet if it has touched an edge of the world and its _dieatedges flag
is on. The way that update can tell if a critter has touched the edges of the world
(wrapped or bounced from the edge on its last move) is to look in its _outcode,
which is set by the cCritter::move method to be non-zero if the critter touches the
border. The cBullet::update code looks like this.

void cCritterBullet::update(CPopView *pactiveview)

{

cCritter::update(pactiveview); /* Feels force, also checks _age

against _lifetime. */

if (_outcode && _dieatedges)/* _outcode nonzero means near an

edge. This keeps bullets from bouncing or wrapping, but it

also makes the critters unable to fire when they are really

near an edge. */

{

delete_me();

return;

}

}

The _dieatedges flag is TRUE by default for the cCritterBullet and the
cCritterBulletSilver. The reason for having it normally be TRUE is that the game
tends to look confusing if too many bullets wrap or bounce, so we normally kill

Shooters and bullets 269

them whenever they hit the edge. But you can optionally turn this behavior off
by setting the _dieatedges flag to FALSE. The cCritterBulletRubber constructor and
the cCritterBulletSilverMissile constructors both set _dieatedges to FALSE, in the first
case because it’s fun to watch the rubber bullets bounce around, and in the
second case because we want to make the silver missiles particularly lethal and
hard to escape.

Also remember that since a bullet has its _usefixedlifetime flag on, the base
cCritter::update call will kill off the bullet if it’s older than the age _fixedlifetime,
which is normally going to be three seconds.

The most characteristic part of a bullet’s behavior is to damage things, and this
code is in the cCritterBullet override of the cCritter::collide(cCritter *pcritter) method.
We don’t put the damage-other-critters-when-you-touch-them code into the
cCritter::update because bullets hitting things is about the interactions between
pairs of critters. It makes more sense – and is more time-efficient – to handle this
inside the collide method which is already in place to look at each pair of critters
that you think you might be interested in.

The bullet collide code goes like this.

BOOL cCritterBullet::collide(cCritter *pcritter)

{

if (isTarget(pcritter)) //If you hit a target, damage it and die.

{

if (!touch(pcritter))

return FALSE;

int hitscore = pcritter->damage(_hitstrength);

delete_me(); /* Make a service request, but you won’t go

away yet. */

if (_pshooter) //Possible that _pshooter has died, is NULL.

_pshooter->addScore(hitscore);

return TRUE;

}

else //Bounce off other critters in a normal fashion.

return cCritter::collide(pcritter); /* Bounce off non-target

critters */

}

Given that the bullet’s collision behavior is more complicated than a
standard critter’s collision behavior, the Pop Framework gives a bullet priority
in calling the collide method. As mentioned above, we do this by setting the
bullet’s _collidepriority to a higher value than ordinary critters have. In
addition, we override the int cCritterBullet::collidesWith(cCritter *pcritter) method
to return cCollider::DONTCOLLIDE if pcritter is (a) the bullet’s shooter or
(b) another bullet from the same shooter. Condition (a) is fairly obvious. We
need (b) because sometimes if you are moving in the direction that you’re
shooting, your bullets may be overlapping each other, and you don’t want

Software Engineering and Computer Games270

them to destroy or to bounce off of each other. You can check Chapter 11:
Collisions to review the details about how collidesWith is used for adding collision
pairs to the game’s cCollider list of collision pairs.

The BOOL cBullet::isTarget(cCritter *pcritter) tells whether a given pcritter is some-
thing that the bullet wants to damage. The default isTarget method returns TRUE
for every pcritter except for critters of the type cCritterWall.

The cCritterBulletSilver overrides the isTarget method to only target one par-
ticular critter. What makes these bullets ‘silver’ is that they are targeted for one
thing and one thing only, in analogy to the silver bullets of legend with which
one is supposed to be able to shoot a werewolf. For these guys, the isTarget

method is simplicity itself.

BOOL cCritterBulletSilver::isTarget(cCritter* pcritter)

{

return pcritter == _ptarget;

}

An example of a use of cCritterBulletSilver occurs in the Spacewar game,
in which the enemy UFO critters are shooting silver bullets at the player.
We want the player to be able to fend off these bullets by shooting at them.
You might think the player’s bullets would blow the silver bullets up in any
case, as the default cCritterBullet::isTarget would return TRUE for these bullets. But
remember that when we have a pair (pa, pb) we only call pa->collide(pb)
or pb->collide(pa), but not both. If pa and pb are both bullets; we might be
unsure about which one gets to control the collide; indeed this could simply
depend on where they happen to be listed in the _pbiota array, which in turn
depends on exactly when you pressed the spacebar to shoot your bullet relative
to when the UFO shot its silver bullet. Seemingly it could happen that when
your bullet hits a silver bullet, it is the silver bullet’s collide method which is in
control.

In order to avoid this bad state of affairs, we have the cCritterBulletSilver

constructor set the silver bullet’s _collidepriority to a value cCollider::CP_
SILVERBULLET which is slightly less than cCollider::CP_BULLET. This means
that only correctly ordered bullet-to-silver-bullet collision pairs will be added to
the game’s collider list.

13.4 damage and draw

When a bullet hits a critter, it gets damaged. We have a cCritter method for this.

int cCritter::damage(int hitstrength)

{

/* If we have our shield on, or were just hit, then don’t

allow a hit. */

Shooters and bullets 271

if (_shieldflag || recentlyDamaged())

return 0;

_lasthit_age = _age; /* Save age for use by the recentlyDamaged()

accessor. */

_health -= hitstrength;

if (_health <= 0)

{

_health = 0; //Do not allow negative health.

die(); /* Make a delete_me service request, possibly make

noise or more. */

return _value; //The reward for killing this critter.

}

return 0; //Not killed yet.

}

As you can see, damage does nothing if _shieldflag is on, or if you’ve
been recently hit. By default _shieldflag is FALSE, and normally only the
cCritterArmedPlayer sets the _shieldflag to TRUE. (This is done by the user mak-
ing the Player | Shield menu selection.) I might mention here that commercial
game designers almost always include a flag like _shieldflag to make their player
invulnerable so that they can test out game scenarios without having to worry
about the player getting killed. Many released games still have a secret ‘cheat’
switch for turning on your player’s _shieldflag. The colorful expression ‘God
mode’ is often used for this state of player invulnerability.

Also note that a critter won’t sustain damage if it was recentlyDamaged(). This
inline cCritter method is defined in critter.h as BOOL recentlyDamaged(){return

(_age – _lasthit_age) < cCritter::SAFEWAIT;}. The default size of SAFEWAIT is
0.3 second. The reason we use the recentlyDamaged() check is that it’s not good if
a critter can get damaged rapidly twice in a row. You don’t want your player,
for instance, to lose three health points simply from bumbling around near an
enemy for a fraction of a second. And if you shoot a fusillade of bullets at an
enemy, it’s more reasonable to only let two nearby bullets manage to inflict one
hit of damage.

In general, a single call to cCritter::damage can kill a critter, since the default
_health is only 1. But the player usually starts higher.

The cCritter::damage is often overridden to make a sound as well. We could
also override it to move the player critter to the center of the screen, as is done
in some computer games.

In the Spacewar game, we start each cCritterAsteroid object’s health out at 2,
and we override cCritterAsteroid::damage to split a health-two critter into two
smaller health-one critters.

As we mentioned above, we use the recentlyDamaged() method to prevent
a critter from being damaged too rapidly twice in a row. It’s useful to display
this ‘temporarily unavailable for damage’ state. We do this with a line in
cCritter::draw in critter.cpp. The DF_WIREFRAME flag causes polygons to be drawn
unfilled, but it has no effect on bitmaps.

Software Engineering and Computer Games272

void cCritter::draw(cGraphics *pgraphics, int drawflags)

{

if (recentlyDamaged())

drawflags |= CPopView::DF_WIREFRAME;

/* Draw yourself as a “shadow of yourself” if dead or

recently damaged. */

//More code...

}

13.5 Armed players and armed robots

In this section we discuss the cCritterArmedPlayer and cCritterArmedRobot child
classes of cCritterArmed.

The cCritterArmedPlayer objects shoot when the user presses the spacebar
or left-clicks the mouse. We implement this by deriving our players from the
cCritterArmedPlayer class and letting cCritterArmedPlayer override the feellistener(Real dt)

method so as use the left button or the spacebar to fire its gun. That is, as we
already mentioned in Chapter 12: Listeners, we’ll have an override something
like this.

void cCritterArmedPlayer::feellistener(Real dt)

{

cCritter::feellistener(dt);

_bshooting = (pgame()->keystate(VK_SPACE) == cController::KEYON);

if (pgame()->keystate(VK_LBUTTON) == cController::KEYON)

/* shoot with left mouse click. The controller will only have

turned VK_LBUTTON on if you left clicked the Shoot Cursor;

left clicks with other cursors will be ignored by

controller. */

{

_bshooting = TRUE;

aimAt(pgame()->cursorpos());

}

}

The cCritterArmedRobot objects, on the other hand, have their _bshooting flag
permanently set to TRUE, so they shoot as often as they can, that is, whenever
_waitshoot seconds have elapsed. To prevent a boring ‘firing-squad effect’
of having all the armed robots shoot in synchronization, we put a little age-
randomizing trick into an override of the cCritterArmedRobot::setWaitShoot(Real

waitshoot) method; you can check this and other details in critterarmed.cpp.
As we mentioned above, a bullet has a muzzle velocity given by the shooter’s

aim direction and the bullet’s maximum speed. We normally take the bullet’s
velocity to simply be the muzzle velocity, without adding in the shooter’s velocity.
This is a good idea, in particular, for the moving cCritterArmedRobot critters, as we

Shooters and bullets 273

want to make it easy for them to aim and shoot directly at the player without
having to worry about computing ‘windage’ compensation for their velocity
relative to the player.

When it comes to the player, however, it makes the game feel a little more
realistic if we do go at least part way towards adding the player velocity to the
bullet muzzle velocity. Otherwise when you’re moving forward and shooting,
the bullets seem to pile up on each other. And, given that the player is con-
trolled by a thinking human being instead of by two or three lines of computer
code, it might be perfectly alright if the player’s aiming process is made slightly
more difficult.

But experimentation and beta-testing shows that directly adding the player
velocity to the muzzle velocity gives effects that confuse some users. Remember
that we aren’t necessarily after complete physical accuracy here; the bottom
line is to make an enjoyable game with controls that feel natural. So we actually
only add in whatever component of the player’s motion is in the direction the
bullet is already moving. Provided that the bullet’s default speed is less than
its maximum allowable speed, this means that when a moving player shoots a
bullet straight ahead it goes a little faster. We don’t reciprocate by slowing down
a bullet that the player shoots opposite to its direction of motion as this could
lead to the visually confusing phenomenon of very slowly moving bullets.

cCritterBullet* cCritterArmedPlayer::shoot()

{

cCritterBullet *pbullet = cCritterArmed::shoot();

#ifdef PLAYERBULLETSPEEDUP

/* A simple pbullet->addVelocity(_velocity), gives unattractive

results. Use dot product operator % */

Real bulletspeedup = _velocity % pbullet->tangent();

if (bulletspeedup > 0.0)

pbullet->addVelocity(bulletspeedup * pbullet->tangent());

//So bullets don’t stack up.

#endif //PLAYERBULLETSPEEDUP

return pbullet;

}

Some of the additional features of the cCritterArmedPlayer class are as follows.

• The constructor calls setAttitudeToMotionLock(FALSE) so the player can turn
its sprite independently of its motion, and calls setAimToAttitudeLock(TRUE)
so the player will align its gun with the attitude of its sprite.

• The constructor installs a default red isosceles triangle as the armed player’s
sprite.

• The class overrides damage to make a noise so the user knows something bad
has happened.

• The class overrides draw to draw a circle around the player’s sprite; this is to
make it stand out from the other critters.

Software Engineering and Computer Games274

• The class adds a BOOL _sensitive field and overrides collide so that if _sensitive
is TRUE, the armed player calls damage each time it touches another non-wall
critter. This is useful for an Asteroids-style game. Since cCritterArmedPlayer has
its own override of collide, the constructor sets its _collidepriority to
cCollider::CP_PLAYER which is slightly higher than cCollider::CP_CRITTER,
but less than cCollider::CP_BULLET.

13.6 The two-way cCritterArmed/cCritterBullet association

This optional subsection has some information about the somewhat tricky issue
of how we maintain a two-way association between objects that can be deleted
at any time.

As we mentioned at the start of the chapter, we will allow only some limited
number of player bullets to be active at one time. If a player has shot, say, eight
bullets and wants to shoot another, what we’ll do is to remove the oldest of the
bullets when we shoot a new one. (Of course the number doesn’t have to be
exactly eight; you can set it as cCritterArmed::MAXBULLETS.) This design means
that the player needs to maintain an array of bullets. We choose an array rather
than a list, because we traverse the collection a lot, and its not going to be big
enough to make removing items from it a burden.

So a cCritterArmed object has an array holding pointers to the bullets that it
has shot. And we do this for two reasons.

• If an armed critter wants to shoot more than some limited number of bullets,
it should delete its oldest bullet in order to make space for a new one.

• When an armed critter is deleted it needs to tell its bullets that it’s gone.

The reason the armed critter needs to tell its bullets when it’s gone is because
each bullet needs to know who shot it. That is, a cCritterBullet has a cArmedCritter

*_pshooter pointer to the ‘shooter’ critter that fired it. This for the following
three reasons.

• A bullet should not collide with or damage its shooter.

• When the bullet damages something it should award points to its shooter.

• When the bullet dies is it needs to tell its shooter that it’s gone.

We often have a situation where an object A has a member pB which is a
pointer to an object B. Now if B is not ‘doing anything’ independent of A, this is
quite safe. We simply let A create and destroy the B in, respectively, its constructor
and destructor. But if there is a chance that B might go off and get deleted ‘on its
own,’ then we need to make sure that B tells A that its pB is no longer useable.

In the case of the bullets and the shooters, each of them is doing things on its
own, and may be deleted while the other one is still alive. Since the shooter has
pointers to its bullets, when a bullet dies, the bullet’s destructor needs to tell the
shooter to get rid of the soon-to-be invalid bullet pointer. Conversely, since a bullet
has a pointer to its shooter, when the shooter dies, its destructor needs to tell
each of the shooter’s bullets to get rid of its soon-to-be invalid shooter pointer.

Shooters and bullets 275

Let’s take a look at the two relevant destructors, first the bullet’s, and then
the shooter’s.

cCritterBullet::~cCritterBullet()

{

if (_pshooter) /* The cCritteArmed destructor sets _pshooter to

NULL in its destructor. So if _pshooter isn’t NULL, then it’s

still a good pointer. */

_pshooter->removeBullet(this);

}

The removeBullet method looks to see if the bullet is in fact in the _bulletarray,
and if it is it takes out that entry from the array and shrinks the array by one,
moving any higher positions down one slot.

And here’s the cCritterArmed destructor.

cCritterArmed::~cCritterArmed()

{

/* It could cause a crash if any surviving cCritterBullet still

has a _pshooter pointer to this deleted cCritterArmed. So I

set all the _bulletarray bullets’ pshooters to NULL,

and everywhere in the bullet code where I might use a

pshooter, I always check that it isn’t NULL. */

for (int i=0; i<_bulletarray.GetSize(); i++)

_bulletarray.GetAt(i)->_pshooter = NULL;

}

Review questions

A Draw a UML diagram to show the relation between the classes cCritter, cCritterArmed,
and cCritterBullet.

B How does the cCritterArmed::update method know when to shoot a bullet, and how
does it prevent you from shooting the bullets too close together?

C What steps take place when cCritterArmed::shoot is called?

D Why do we need a cBullet::initialize method in addition to the cBullet constructor?

E How does cBullet::collide make use of the cBullet::isTarget method?

F Why do bullets by default have a higher _collidepriority value than regular critters?

G How does the cCritter::damage method avoid having a critter getting damaged two
times in a row by two nearby bullets?

H What causes a cCritterArmedRobot to keep shooting, and what controls how long it
waits between shots?

I What are the default values for the cCritterArmedPlayer fields _attitudetomotionlock
and _aimtoattitudelock? Why does the Pop Framework use these values?

Software Engineering and Computer Games276

Exercises

Exercise 13.1: Adding player velocity to the bullets

Open up the critterarmed.cpp file and find the cCritterArmedPlayer::shoot method. This
shoot method is a compromise between adding in the player’s velocity and not adding in the
player’s velocity; it only adds in velocity that’s in the shooting direction. To see the effect
of not adding in any velocity at all comment out the line #define PLAYERBULLETSPEEDUP
at the start of the file. Run the program and look what happens in the Spacewar game if
the player shoots while moving forward. Now, with the #define still switched off, check the
effect of adding in the velocity by adding the line pbullet->addVelocity(_velocity)
to the cCritterArmedPlayer::shoot method. (Be sure to type in this line outside the
scope of the #ifdef.) Now look how the game behaves if you move the player around while
shooting. Note that if you shoot perpendicular to the player’s current motion, the bullets
won’t be aligned with the player, which is something most users find too confusing. And
look what happens if you shoot in the reverse of the player’s motion direction.

Exercise 13.2: Increasing the bullet velocity

Open up the gamestub.cpp file and edit the cCritterStubRivalBullet constructor to have the
two lines setMaxSpeed(100.0), setSpeed(100.0). Then run the game and look how
fast the enemy’s bullets move.

Shooters and bullets 277

142D shooting games

14.1 The Spacewar game

Let’s write up a description of the Spacewar game with sections similar to what
one might use for a presentation or homework project about a program’s
specification and about its design.

The name ‘Spacewar’ was chosen as an homage to the very first graphical
computer game ever. The original SpaceWar was developed for the PDP-1 com-
puter at MIT in 1962! If you do a web search you’ll find that modern versions
of the classic SpaceWar abound. The game that we are calling Spacewar in the
Pop Framework actually resembles the old Asteroids rather than being like the
classic SpaceWar, which is a two-player game taking place in the gravity field of
a central star. We’ve left turning our Spacewar into a ‘real’ SpaceWar game as an
open-ended exercise.

Specification

A specification should include (S1) a concept, (S2) a picture (hand-drawn is
okay when you’re starting out) of the game screen’s appearance, (S3) a summary
of the user controls, and (S4) an outline of the game play.

(S1) Concept
The concept behind this game is to make something similar to the traditional
arcade and home game Asteroids. A ship on the screen tries to avoid polygonal
asteroids and bullets and missiles fired by occasional UFOs. The ship can shoot
back; some targets split in two and must be shot again.

To make the game a bit fresher, we make the asteroids run away from the
bullets fired by the ship. To make the game more physically interesting, we
have the asteroids bounce off each other.

(S2) Appearance

(S3) Controls
We use the traditional Asteroids ‘Spaceship’ controls. The Left and Right Arrow

keys rotate the ship, and the Up and Down Arrow keys accelerate the ship
forward or backwards along its current direction. The spacebar fires bullets in
the direction the ship points. We also allow the user to aim the ship and fire by
left-clicking the mouse.

(S4) Game play
Whenever you kill all the asteroids, a fresh wave of them appears, and the new
asteroids move faster than the last wave. You lose a health point whenever an
asteroid bumps you or a UFO bullet hits you. Your own bullets can’t hurt you.

You don’t get any points when you first shoot an asteroid or a UFO and split it
in two; you only get the score when you shoot the smaller pieces and remove them
from the screen. Your score value for killing various creatures is the following.

2D shooting games 279

The Spacewar game with two UFOs attacking

• Asteroid 4

• UFO 6

• Green enemy bullet 4

• Blue enemy missile 8

Your player’s health is improved by one point for every additional 100 score
points you accumulate.

Every time you accumulate 40 more points, a new UFO will appear, provided
that no UFO is currently present. The UFOs are randomly chosen to be either
regular UFOs which have polypolygon sprites and shoot straight-moving green
bullets or smart UFOs which have bitmap sprites and shoot smart missiles that
track you. The UFO bullets will bounce off of asteroids they run into.

Design

For a design description we want (D1) a UML diagram and (D2) a draft version of
the header file to show the method overrides and the additional class members,
if any.

(D1) UML diagram
As it often turns out, our UML diagram will not in fact include every possible class
or class relationship that we could mention. A characteristic thing about UML
diagrams is that it’s hard to fit them on a page! One can of course go to a white
board or to a UML design program in order to draw a bigger UML diagram. But
it can be self-defeating to make a UML too complete; always remember that the
purpose of these images is to communicate the structure of the program in the
form of a comprehensible overview. If you have too much information to fit into
a single UML diagram, it’s a good idea to use more than one of them. A general
rule of thumb is that if your UML has any pairs of intersecting lines, then you
should split it into more than one diagram.

Our UML class diagram for the Spacewar game appears in Figure 14.1. As is
our custom, we use the diamond-ended composition line. Recall that the mean-
ing of this line is that objects of the class type at the ‘diamond’ end have as
members some objects of the class type at the other end of the line.

(D2) Draft of header file
Here’s a simplified version of the Spacewar game header spacewar.h to show
which method overrides and which additional members (in this case one) our
classes have.

class cCritterArmedPlayerSpacewar : public cCritterArmedPlayer //Our

player.

{

public:

cCritterArmedPlayerSpacewar(cGame *pownergame = NULL);

void reset();

};

Software Engineering and Computer Games280

2D shooting games 281

Fi
gu

re
 1

4
.1

U
M

L
di

ag
ra

m
 f
or

 t
he

 S
pa

ce
w

ar
 c

rit
te

rs

class cCritterAsteroid : public cCritter

{

public:

cCritterAsteroid(cGame *pownergame = NULL);

virtual int damage(int hitstrength);

};

class cCritterUFO : public cCritterArmedRobot

{

public:

cCritterUFO(cGame *pownergame = NULL);

virtual int damage(int hitstrength);

virtual void update(CPopView *pview); /* override to keep turning

wrap flag off. */

};

class cCritterUFOSmart : public cCritterUFO

{

public:

cCritterUFOSmart(cGame *pownergame = NULL);

};

class cGameSpacewar : public cGame

{

private:

int _lastinvasion score;

public:

cGameSpacewar();

virtual void Serialize(CArchive& ar); /* Override for

_lastinvasionscore. */

virtual void reset();

virtual void adjustGameParameters();

virtual CString statusMessage();

virtual void initializeView(CPopView *pview);

virtual void seedCritters();

};

The Spacewar code

At this point, you may want to look at the gamespacewar.cpp code inside Visual
Studio. Let’s discuss some of the highlights.

The cGameSpacewar constructor makes the _border square and gives it a black
background. A cCritterArmedPlayerSpacewar is used so that we can make special
adjustments to the player’s _health, _newlevelscorestep, _newlevelreward, and so on.
Also we want to make sure that our player’s sprite uses white lines so as to show
up well against the game’s black background. The _lastinvasionscore is initialized
to 0.

Software Engineering and Computer Games282

The cGameSpacewar::seedCritters gets rid of any asteroid or bullet critters, leav-
ing any UFOs alone, and adds _seedcount cCritterAsteroid objects with this line.

for (int i=0; i < _seedcount; i++)

new cCritterAsteroid(this);

The reason we made the decision to not have seedCritters remove the UFOs
was as follows. Suppose you have two asteroids left and you kill one. Killing this
asteroid raises your score enough to start up a UFO. If you kill the one remain-
ing asteroid, the program will call the seedCritters method to start a new wave
of asteroids. Should you at this time wipe out that one remaining UFO? Our
design decision was to leave it, so as to make the game a bit harder for the player.
As always, of course, any decision like this needs to be tested by user play.

The game is in the cGameSpacewar::adjustGameParams. The method does three
things.

• Ends the game if the player’s health is gone.

• Reseeds the screen with asteroids if all asteroids and UFOs are dead; also
speed the game up when you do a reseed.

• Adds a new UFO each time the player gets a certain amount of additional score.

Here’s the full code for how it works.

void cGameSpacewar::adjustGameParameters()

{

// (1) End the game if the player is dead

if (!health() && !_gameover) //Player’s been killed and game’s

not over.

{

_gameover = TRUE;

pplayer()->addScore(_scorecorrection); // So user can reach

_maxscore playSound(“Tada”);

return;

}

// (2) Reseed the screen if all the asteroids are gone (There may

// still be UFOs present)

if (_pbiota->count(RUNTIME_CLASS(cCritterAsteroid)) == 0)

{ //If the crittercount – bulletcount = 1, then player’s alone,

//and the enemies are all gone.

cCritter::MAXSPEED *= SPEEDMULTIPLIER;//Speed the critters up.

if (cCritter::MAXSPEED >

cGameSpacewar::CRITTERMAXSPEEDLIMIT)

cCritter::MAXSPEED =

cGameSpacewar::CRITTERMAXSPEEDLIMIT;

seedCritters();

}

2D shooting games 283

// (3) Attack with a UFO if enough score has elapsed and there aren’t

// any other UFOs

if (score() – _lastinvasionscore > cGameSpacewar::UFOATTACKSCORE

&& //More score brings more UFOs

!_pbiota->count(RUNTIME_CLASS(cCritterUFO)))

//Don’t start a new UFO till old ones are gone.

{

playSound(“TaDa”); //Warning sound.

if (cRandomizer::pinstance()->

randomBOOL(cGameSpacewar::SMARTUFOPROBABILITY))

new cCritterUFOSmart(this);

else

new cCritterUFO(this);

_lastinvasionscore = score();

}

}

One trick is that at each new level we generically allow all the critters to move
more rapidly by changing the static cCritter::MAXSPEED value. This is about as
close as object-oriented programming comes to using a global variable.

Now let’s say a bit about the critters. The cCritterArmedPlayerSpacewar is almost
the same as a cCritterArmedPlayer. We only have a special child class for it so that
we can put some specific initialization code into the constructor (for instance of
the _health).

The constructors for the cCritterAsteroid, the cCritterUFO, and the cCritterUFOSmart

do more work. They select special sprites and they attach some forces so as
to make the creatures into livelier opponents. The sprites used are, respectively,
a cPolygon, a cPolyPolygon, and a cSpriteIcon. Here’s what the cCritterAsteroid

constructor looks like.

cCritterAsteroid::cCritterAsteroid(cGame *pownergame):

cCritter(pownergame)

{

setHealth(cCritterAsteroid::HEALTH);

/* One more than the number of times it splits. Splitting is

also capped by the cCritterAsteroid::OVERPOPULATIONCOUNT,

which might be about 10; if there are more than this many

asteroids they don’t split when you shoot them. */

setValue(cCritterAsteroid::VALUE);

if (pownergame) //Just to be safe.

setSprite(pgame()->randomSprite(pownergame->spritetype()));

/* Let the game pick the current default sprite. */

randomize(cCritter::MF_VELOCITY | cSprite::MF_RADIUS);

psprite()->setLineColor(cColorStyle::CN_WHITE); /* White edges as

we use black background. */

addForce(new cForceClassEvade(cCritterAsteroid::DARTACCELERATION,

cCritterAsteroid::DARTSPEEDUP, RUNTIME_CLASS(cCritterBullet),

FALSE));

Software Engineering and Computer Games284

/* cForceClassEvade is an all purpose evading force used

for evading any class I like.

The third argument says which class to evade, and

the fourth argument says whether to evade objects

that are of classes that are child classes of the

class to evade. Putting FALSE means I don’t evade

cCritterBulletSilver and CritterBulletSilverMissile

(as that would be a waste of energy since these

can’t hurt me.)

*/

moveToMoveboxEdge();

if (pownergame) /* Then we know we added this to a game so

pplayer() is valid. */

addForce(new cForceObjectSeek(pplayer(),

cCritterAsteroid::CHASEACCELERATION));

/* Force for accelerating towards a critter. */

}

Although we really just want the asteroid sprite for this critter, we allow the
user to set the game sprite type and have the asteroids use that kind of sprite.
This feature is present partly because this lets you test out different versions of
the game, and partly because it might be interesting later on to change the
asteroid’s sprites at different game levels.

The only differences between the cCritterUFO and the cCritterUFOSmart are that
(a) they have different sprites, (b) a call to setMaxspeed(2*cCritter::MAXSPEED)
lets Smart UFOs move twice as fast so they’re harder to shoot, and (c) the Smart
UFOs shoot cCritterBulletSilverMissile bullets that steer towards the player. The
cCritterBulletSilverMissile type was defined in the critterarmed.cpp file; unlike other
bullets, these SilverMissiles don’t die when they hit the screen edges.

A new style of override for cCritter::damage is used by our enemy critters.
The asteroids and the UFOs split in two when hit. The way we work this is
to have the damage method shrink the critter and make a copy of it. It would be
too confusing to split more than once, so we peg the splitting to the _health

value of the critters and start their _health out at 2. Here’s how it works for the
asteroids.

int cCritterAsteroid::damage(int hitstrength)

{

if (_shieldflag || recentlyDamaged())

return 0; /* Bail out right here if you were just damaged or

if you were just replicated from a just-damaged guy.

Otherwise a newly replicated critter hit by one of a

fusillade of bullets that split its parent will get

split as well. */

int deathreward = cCritter::damage(hitstrength); /* This is

_value (typically nonzero) you get for killing off the

critter if you did that here. */

2D shooting games 285

playSound(“Ding”); //Signal the hit.

if (_health) /* If not dead yet, let’s replicate unless there’s

too many cCritterAsteroid. */

{

setRadius(radius()/sqrt(2.0));

mutate(cCritter::MF_NUDGE); //Crude way to show a hit.

if (pownerbiota()->count(RUNTIME_CLASS(cCritterAsteroid)) <

cCritterAsteroid::OVERPOPULATIONCOUNT)

replicate(); /* Ask cBiota to make a copy in next

updateServiceRequests call. */

}

return deathreward;

}

The effect of the replicate call is to make a copy of the critter and, when
the copy is made, to have it also call a mutate(cCritter::MF_NUDGE), which has
the effect of randomizing its angle, and of moving it a slight random amount.

14.2 The 2D Game Stub

The gamestub.* files are meant to be a possible starting point for your games.
Alter the gamestub.* files freely. The basic idea is to have five kinds of critters:
the player, the player’s bullets, a rival armed critter, the rival’s bullets, and a
prop critter that can act as a kind of food or health-pack for the player. This
means that six classes are prototyped in gamestub.h: cGameStub, cCritterStubPlayer,
cCritterStubPlayerBullet, cCritterStubRival, cCritterStubRivalBullet, and cCritterStubProp.
There’s some more discussion of these classes and a UML diagram (Figure 3.11)
of them in the last section of Chapter 3: The Pop Framework.

The cGameStub has an int _rivalcount field in addition to the int _seedcount
field it inherits from cGame. These are used in the seedCritters method as follows.

void cGameStub::seedCritters()

{

pbiota()->purgeNonPlayerNonWallCritters();

/* Clean out any old non-player non-wall critters. Although

we don’t have walls yet, you might want to put some

in. */

/* Note that I can have some switch behavior in here depending

on _level. */

for (int i=0; i < _seedcount; i++)

new cCritterStubProp(this);

for (i=0; i<_rivalcount; i++)

new cCritterStubRival(this);

}

Software Engineering and Computer Games286

The health-pack behavior of the cCritterStubProp is implemented by overriding
the cCritterStubPlayer::collide method. The player controls the collision interaction
since the default _collidepriority of a child of the cCritterArmedPlayer class is
cCollider::CP_PLAYER = 200.0 and the default _collidepriority of a child of
cCritter class is cCollider::CP_CRITTER = 100.0.

BOOL cCritterStubPlayer::collide(cCritter *pcritter)

{

BOOL collideflag = cCritter::collide(pcritter);

/* We can sometimes do more stuff here if collideflag is

TRUE. In the code below, for instance, we have the

player “eat” cCritterStubProp critters, that is,

increasing the cCritterStubPlayer health and killing the

cCritterStubProp when they touch. */

if (collideflag &&

pcritter->IsKindOf(RUNTIME_CLASS(cCritterStubProp)))

{

setHealth(health() + 1);

pcritter->die();

}

return collideflag;

}

Another feature of the 2D Game Stub game is that it uses a world that’s larger
than the screen. We talk about the details of how this is done in Exercise 14.2
below.

14.3 The Worms game

The Worms game isn’t so much a game as it is a wacky-world testing ground for
a bunch of tricks.

The most obvious new wrinkle is that, we have ‘worms’ that are made up by
linking together cCritterWormSegment objects with cForceObjectSpringRod forces.

Another visually striking feature is that we’re using a cSpriteLoop for the player’s
sprite; this means that the sprite changes appearance every third of a second. If you
comment out the line #define PLAYERSPRITELOOP at the start of the gameworms.cpp

file and recompile, the player sprite will now use a cSpriteDirectional that changes
its color to match the direction it’s pointing in.

The Worms code does some other things. The cCritterWormsRivalBullet objects
run away from the player, and they don’t view any critters as targets, so they
never damage anyone. In fact we want them to act as health-packs, so we
change the cCritterWormsPlayer::collide to get health from eating them.

In order to have the player control the collision with the rival bullets,
we need to lower the _collidepriority of the rival bullets, so we add
this line to the cCritterWormsRivalBullet constructor: _collidepriority =

cCollider::CP_CRITTER;.

2D shooting games 287

We play another trick with collidepriority here as well. We want the
cCritterWormsRival objects to be reduced in size and possibly killed (when they
get too small) by bumping into the cCritterWormSegment objects. So to let the
cCritterWormSegment control the collisions, we give them a _collidepriority of
cCollider::CP_CRITTER + 1, which is higher than the priority of the worm
segments and the rival bullets, but lower than the priority of the player or the
player’s bullets.

In the Worms game we also manipulate the size of the cCritterWormsRival

objects. The cCritterWormsRival critters grow when hit by the player’s bullets,
until they reach a certain size and sustain the standard base-class damage
(which in fact kills them since their _health is only 1).

int cCritterWormsRival::damage(int hitstrength)

{

setRadius(radius()*1.3);//Let’s swell when hit by a bullet.

if(radius() > 2.0) //Pop when you get too big!

{

playSound(“Pop”);

return cCritter::damage(hitstrength); //Default behavior.

}

else

return 0;

}

Software Engineering and Computer Games288

The Worms game

As yet another variation, in the Worms game, the cCritterWormSegment::damage

method reduces the number of sides the polygonal sprite has until it runs out
of sides and dies.

Exercises

Remember that, when tweaking one particular game mode, it saves time to have the Pop
program start up in the game mode that you want to play with. The way to control this is
to edit the CPopDoc constructor in popdoc.cpp. Do it now, it’ll save you a lot of clicking
later on.

Exercise 14.1: Put the sprites into the UML

Go ahead and complicate the Spacewar UML diagram (Figure 14.1) by adding in the sprite
classes used by the various critters. This would include the cPolygon, cPolyPolygon, and
cSpriteIcon classes. Can you find a way to do it without having any pairs of crossing lines?
If not, then show these classes in a separate UML diagram. Are there any other important
classes peculiar to the Spacewar game that we’re leaving out?

Exercise 14.2: A larger world

You may have already noticed that the 2D Game Stub has a world larger than what you
see on the screen. In this example we look at how to change Spacewar to use a larger
world as well. You can check the gamestub.cpp file for code examples as well.

You can make the world of the Spacewar game larger by changing the initialization
value of the cGameSpacewar::WORLDSIZE to a larger number, say 80.0 instead of 20.0.
Alternately, and probably better, you can make the change directly to the arguments of the
_border.set(xsize, ysize) call in the cGameSpacewar constructor.

One thing to keep in mind is that whenever you change the size of the _border you need
to immediately call setBackgroundBitmap(...) so as to make sure that the game’s
cSpriteIconBackground bitmap object ‘knows’ the shape of the world whose background it
is supposed to cover. Another point to mention here is that you will get better results if
the visual aspect (that is, the y-size-to-x-size-ratio) of your background bitmap matches the
aspect of the _border.

Okay, so now suppose you’ve changed the _border and alerted the background
bitmap. By default the view will show the whole world, which isn’t really what you want.
The idea is to have a world that extends beyond your current view. To make the view
smaller, edit the cGameSpacewar::initializeViewpoint code to include a line like
pviewer->zoom(3.0). The exact value of zoomfactor to use is something you have to
experiment with.

What will happen now is that you see your player and part of the world, but if the player
goes off one edge it disappears. Either you can require the user to use a Ctrl + Arrow
keys to keep looking at the player or, which is more agreeable, you can make the view
automatically track the player. To do this, find the cGameSpacewar::initializeView
code and add the line pview->pviewpointcritter()->setTrackplayer(TRUE);
//Always look at the player.

2D shooting games 289

Exercise 14.3: Change the sprites with the level

Edit the cGameSpacewar::adjustGameParameters() so that it changes the game’s
_spritetype at certain score levels.

Exercise 14.4: A graphic theme for your game

You can fairly painlessly make an original-appearing game simply by taking the Gamestub
game and giving it a uniform graphical theme. Select as a graphic theme some subject
such as farming or hunting or ancient Egypt or the jungle or underwater diving or student
life, etc. Now do the following steps. (a) Accumulate the bitmaps and get them into usable
form. (b) Adjust their sizes and crop them as appropriate. (c) Import them into your project.
(d) Set a large theme bitmap as your background. (e) Set some smallish theme bitmaps
to be the sprites, the rivals and the props in this game.

(a) Get a theme and scout around for bitmaps. If you can’t find bitmaps on a theme,
change the theme. If your bitmaps are in a format other than *.bmp, such as *.gif or
*.jpg, you will need to convert them to *.bmp. You can do this by loading the bitmap
into some image-manipulation software like PhotoShop and then saving it as *.bmp.
If they’re already a *.bmp, you can manipulate it with the Windows Accessory | Paint
program. If it doesn’t degrade the color too much, try saving your bitmaps as 256-
color bitmaps, as this makes the files considerably smaller. Save your bitmaps as
*.bmp files in the res subdirectory of your project code directory.

(b) Looking ahead towards steps (d) and (e), adjust the sizes of the bitmaps. The size of
the background bitmap you will use as your cSpriteIconBackground doesn’t need to be
as large as the screen; the Pop Framework code will stretch (or shrink) the bitmap to
fit. It is important, however, that the proportions, or y-to-x-aspect, of the bitmap should
approximately match the proportions of the world you plan to use it in.

The sizes of your critter icon bitmaps that you will use as cSpriteIcon for the
critters should be about the same size in pixels as the critter images you expect to
see. The critter images will adjust their shape to match the size of these bitmaps, so
you don’t really need to worry about these aspects. Do note these points: (a) crop
the image so that there is not much extra blank space around it, (b) make sure the
pixel in the upper left hand corner is the color that you wish to treat as transparent
when you show this image on the screen, and (c) use powers of two.

(c) Now import the new *.bmp files into your code as bitmap resource. Use Resource... |
Insert... and then navigate to find your *.bmp file. The Resource Editor will open your
imported bitmap. [With Version 6.0, import a bitmap by using Insert | Resource |
Bitmap | Import... In 6.0, some bitmaps will not be viewable within the Resource
Editor, but this doesn’t mean they can’t be added to the project.]

It’s helpful to give your bitmap an easy-to-remember resource ID name like
IDB_HAPPYDOG instead of the machine-generated ID (like IDB_BITMAP1) it will have
received. To call up the Bitmap Properties dialog you can Alt+Enter while the bitmap
is open in the editor.

(d) Change your background by putting a line like setBackgroundBitmap(IDB_UNDER-
SEALEVEL1) after the _border.set(..) call in your constructor.

(e) You can use specific character bitmaps by having lines like setSprite(new
cSpriteIcon(IDB_BLUEFISH)) in your critter constructors.

Software Engineering and Computer Games290

Alternately you can arrange things so that a critter constructor call to
setSprite(pgame()->randomSprite(cGame::ST_BITMAPS)) will automatically pick a
random bitmap from some interesting new set of theme bitmaps you want to use. To do this,
change the list of default bitmap IDs that your game keeps in the array _bitmapIDarray.
You could do this by putting code like this into your game’s constructor.

bitmapIDarray.RemoveAll();

bitmapIDarray.Add(IDB_BLUEFISH);

bitmapIDarray.Add(IDB_STINGRAY);

bitmapIDarray.Add(IDB_CUTTLEFISH);

bitmapIDarray.Add(IDB_HUMUHUMUNUKUNUKUAPUAA);

bitmapIDarray.Add(IDB_MAGURO);

Exercise 14.5: Walls

You can always enhance a shooting game by adding walls for the critters to hide behind
and bounce off of. Look at the cGameDambuilder constructor code in gamedambuilder.cpp
to see how to add walls into a world. We discuss walls some more in Chapter 18:
Interesting Worlds.

Exercise 14.6: More levels

Look at Exercise 10.2: A Multi-Level Game that deals with using the game’s _level
parameter. Give some thought to a comprehensive series of level changes. Things that
could change with the levels include the sprite type used by the critters (as mentioned in
the last exercise), the background bitmap, the speeds of the critters, the sizes of the para-
meters in the forces the critters use to chase and avoid things, the radii of the critters,
the size of the world, the number of critters, etc.

So as to facilitate tweaking, it’s not a bad idea to store these level parameters in arrays,
so that you have all the constants side by side for comparison. You’ll probably want new
members of your game class for these arrays. Also you ought to implement a setLevel
method which will plug in all of the constants for you.

Exercise 14.7: A two-and-a-half dimensional game

Go to the cGameSpacewar::initializeView(CPopView *pview) implementation in
gamespacewar.cpp and find these lines.

// pview->setGraphicsClass(RUNTIME_CLASS(cGraphicsOpenGL));

//Start in 3D

// _plightingmodel->setEnableLighting(FALSE);

//Try no light in 3D: ugly, slow.

If you comment in the first line, your game will start out in a 3D view. The default lighting
model is to use lights, which is usually faster and better-looking. But you can try com-
menting in the second line as well to see how the world looks without lights.

2D games that are shown in a 3D view are sometimes called two-and-a-half dimensional
games. You can beef up the effect here by making the critters have more thickness in the

2D shooting games 291

z-axis. This thickness is controlled by the sprite’s _prismdz parameter. The best way to
change this is with a call to the cCritter::setPrismDz method inside your critter con-
structors. Default values for the prismdz are specified by statics of the form ???PRISMDZ
in the sprite.cpp file.

Exercise 14.8: Make a better shoot method

In Spacewar, the cCritterBulletSilver that the cCritterUFO shoot at the player never hit the
player as long as the player is moving. Give cCritterUFO an override of the virtual void

aimAt(cCritter *pcritter) method that’s a little smarter. Instead of aiming at where
the pcritter is now, have the new method aim the gun at where the pcritter will be when
the bullet gets there. Figuring out this algorithm is a non-trivial calculus problem. If you
can’t solve it, consider at least improving your aimAt with a rough guess. You might, for
instance, estimate the approxdt time your bullet will travel to be the current distance to
the target divided by the bullet speed, and then aim at where the pcritter will be after
approxdt seconds. (Getting the approxdt estimate exactly right is where the calculus
would come in!)

Exercise 14.9: Switching between different guns

Games often allow the player to have several different guns, which effectively means
shooting different kinds of bullets. You might have a few high-test bullets that have a
larger _hitstrength, for instance. Or missile or bomb bullets.

There are two things to do to give the player multiple guns. First we need an array of
the allowable kinds of CRuntimeClass *_pbulletclass field, as well as a method for
moving through this array. Second we need something to trigger the change to a different
gun.

One option is to let the user change guns with the mousewheel or an accelerator key.
This would mean changing the OnMouseWheel method of CPopDoc to act differently if the
_pgame() is of your cGameSpacewar class. That is, the mousewheel should scroll among
gun types instead of among cursor types. Alternately you might add a Bullet menu and
then add some accelerator keys for the types of bullet in the menu. If you do this, use
some accelerator keys that aren’t currently taken, but try and make the keys easy to find
and to remember.

So that the user doesn’t always just use the best gun, you need some feature to limit
the use of the ‘good’ bullets. Perhaps put a strict limit on how many times they can be
used, and make the user pick up an ammo pack to replenish them.

Exercise 14.10: A round world

If you look at our online Java version of the Asteroids game at www.mathcs.sjsu.edu/
faculty/rucker/asteroids/asteroids.htm, you’ll see that it uses a round game world border,
with the objects able to bounce off this edge in a natural fashion (bouncing as if at each
point on the circumference the edge were the same as its tangent line). Implement a
round world for the Spacewar game. You can find hints in the source code of our Java
asteroids online. Implementing the new world shape in a proper object-oriented way will
involve some preliminary OOA and OOD. Think about what kind of base class you might
use to serve as a container (if you use composition) or parent (if you use inheritance) for
both a box world or a round world object.

Software Engineering and Computer Games292

Exercise 14.11: The real SpaceWar

Do a little web research on the classic SpaceWar game. This is often played as a two-player
game. See if you can implement it within the Pop Framework. You would need to have two
player critters. And you’d need to write a new listener similar to the cListenerSpaceship,
but tune this second listener so that it is controlled by, say, the D, E, S, X, and B keys in
place of Right, Up, Left, Down, and Space.

2D shooting games 293

A round Asteroids-style Java game

153D shooting games

When you go into a 3D world it’s very common to have the user’s viewpoint be
attached to a player who’s immersed in that world. In this chapter we’ll look at
one particular game like this, our Defender3D.

15.1 The Defender3D specification and design

Specification

As in the section on the Spacewar game in Chapter 14: 2D Shooting Games, we
describe: (S1) the concept, (S2) the appearance, (S3) the controls, and (S4) the
game play.

(S1) Concept
Although the inspiration for the game was the old 2D Defender game, the
current implementation is more like a 3D Space Invaders. Polygons rush at
you, and you have to shoot them before they pass you and hit the back wall
of your world.

(S2) Appearance
In the screen capture of Defender3D, the circle at the center is the player; the
viewer rides directly behind the player and looks ‘through’ it. The marks near
the middle of the player are bullets the player recently shot. The thick polygons
are the onrushing flying critters the player is trying to shoot, while the disks on
the bottom of the space are bouncing fragments resulting from the critters that
have already been shot. The lines indicate the limits of the world. A sky bitmap
covers the far wall.

(S3) Controls
The Arrow keys move the player Left/Right and Up/Down. The player can also
move forward and backwards a bit with PgUp/PgDn. Spacebar fires bullets
straight forward. It’s also possible to play in more of a Doom mode by leaving the
player in the middle of the screen and left-clicking or left-dragging the mouse
to shoot in different directions. The Arrow keys mode seems to be more fun.

(S4) Behavior
You try to shoot all the polygons, each one that you hit adds ten points to your
score; each one that gets past you costs you one health point. When you shoot
a polygon it releases a shower of coins, that is, disks that bounce towards you
along the bottom of the world. You can gain health points by bumping the
player into a coin – a bump kills the coin and adds a point to player’s health.
The coins evaporate after three seconds, so you have to shoot a critter that’s not
too far off if you hope to eat its coins.

Design

UML diagram
The class design is fairly simple. Our cGameDefender3D class has a player, player
bullets, props, and prop frags. Although we don’t show it in Figure 15.1, the
cGameDefender3DProp and cGameDefender3DPropFrag inherit from cCritter.

3D shooting games 295

The Defender3D game. Round objects are the ‘prop frags’

We won’t bother printing any header file information here, as the headers
are similar to what we already saw for the Spacewar game.

15.2 The Defender3D code

cGameDefender3D

The overrides for cGameDefender3D are fairly routine. In the constructor, we
have _border.set(19, 19.0, 41.0) to give the world a z-thickness. We think
of the z direction as running down into the screen. We give the game a
cCritterDefender3DPlayer, and the seedCritters calls a simple loop to populate the
world.

for (int i=0; i < _seedcount; i++)

new cCritterDefender3DProp(this);

The adjustGameParameters code is also quite simple; if there are less than _seedcount
props, it replenishes the count.

In order to have our games behave smoothly as we use the menu to switch
on and off the various View menu options, we need to have two separate view
and viewer initialization methods. If we were only writing one game with one
kind of view this wouldn’t be necessary; the complexity is a result of the code
being usable as a flexible framework to build a variety of changeable games.

The initializeView(CPopView *pview) call sets the viewer (that is, the pview-
>pviewpointcritter()) to use a cListenerViewerRide listener. This means that the
viewer is by default attached to the player.

The initializeViewpoint(cCritterViewer *pviewer) tweaks the viewer (that is, the
pviewer) in various ways, depending on whether the viewer is using the default
rider listener or whether you have possibly switched the viewer to use a Scooter
type control that’s not locked to the player. In the case where we are riding the
player, this call positions the viewer directly behind the player so that we can
look along the player’s shooting direction.

Software Engineering and Computer Games296

Figure 15.1 UML diagram of the Defender3D Classes

Here you can see why the Pop Framework has separate view and viewer ini-
tialization methods? It’s so the games will behave smoothly as you use the
menu to switch on and off the various View menu options. If you turn off the
Ride Player, then the code calls initializeViewpoint to reset the viewer to some rea-
sonable position, and if you turn Ride Player back on, initializeViewpoint gets
called again. We set the viewer to use the Ride Player option in initializeView, as
this is the call that gets made when we start up a view.

Now let’s discuss the overrides of the critters, which accounts for the bulk of
the new defender game code.

cGameDefender3DPlayer

Let’s talk about the cGameDefender3DPlayer constructor first. The constructor
begins by giving the player a new kind of listener.

Since this is something like a Space Invaders game, we want to use some
kind of Arrow key control. But rather than using a cListenerArrow, we use a
cListenerArrowAttitude. The difference is that where the cListenerArrow uses Left/

Right, Up/Down, and PgUp/PgDn to move the critter along the x-, y-, and z-axes
respectively, the cListenerArrowAttitude uses Left/Right, Up/Down, and PgUp/PgDn to
move the critter along its normal, binormal, and tangent directions, respectively.
The latter is more flexible for a wide range of orientations.

We want our player critter’s sprite to maintain a fixed attitude, basically
acting as a gun sight. Here’s the code to do this from the cGameDefender3DPlayer

constructor.

setAttitudeToMotionLock(FALSE); /* don’t turn your sprite with the

motions. */

setAimToAttitudeLock(FALSE); //Don’t turn your attitude with the gun.

setAttitudeTangent(-cVector::ZAXIS); //point down into the world.

setAimVector(-cVector::ZAXIS);

setSprite(new cSpriteCircle());

psprite()->setFilled(FALSE); /* So I can see through the center of the

disk. */

psprite()->setSpriteAttitude(cMatrix::yRotation(PI/2.0));

//To face the user.

The purpose of the code above is to carry out these steps.

• Turn off any coupling between the attitude and the motion or the aim
direction.

• Point the critter and its gun down the negative z-axis.

• Remove its filling so we can see through it.

• Rotate the sprite up out of the plane of the critter’s tangent and normal.

3D shooting games 297

The rotation step isn’t quite obvious, and in fact the author got it by a little
trial and error. In retrospect it seems right because the critter’s intrinsic x-axis is
its tangent, which now points towards the negative z-axis (into the screen) and
the critter’s intrinsic y-axis is its normal which points towards the negative
x-axis (to the left of the screen), so the plane of these two is edge-on to the
viewer. A 90° rotation about the y-axis is just what’s needed!

It turns out to be pretty hard to effectively aim at a moving object in three-
dimensional space. So we smarten-up our player’s shooting skills by (a) having
cGameDefender3DPlayer::shoot pick out the critter closest to the gun’s current aiming
line to be the target critter and (b) shoot at this chosen target critter by attaching
to the bullet a cForceObjectSeek force that seeks this particular target.

cCritterBullet* cCritterDefender3DPlayer::shoot()

{

playSound(“Gunshot”);

cCritterBullet *pbullet = cCritterArmed::shoot();

cCritter* paimtarget =

pgame()->pbiota()->pickClosestAhead(cLine(position(),

aimvector()), this);

// Find critter closest to your aiming line but ahead

// of you (“this”).

pbullet->addForce(new cForceObjectSeek(paimtarget, 20.0));

return pbullet;

}

Another significant override of a player method is the collide. We want the
player to view the coin-shaped cCritterDefender3DPropFrag as health food.

BOOL cCritterDefender3DPlayer::collide(cCritter *pcritter)

{

BOOL collideflag = cCritter::collide(pcritter);

if (collideflag && pcritter->

IsKindOf(RUNTIME_CLASS(cCritterDefender3DPropFrag)))

{

playSound(“Ding”);

setHealth(health() + 1);

pcritter->die();

}

return collideflag;

}

In order to make sure that the player collides with these frags as the caller,
but to avoid having to compute a prohibitively n-squared-type number of frag
collisions, we override the cCritterDefender3DPropFrag::collidesWith so as to have
frags only bother colliding with the player.

Software Engineering and Computer Games298

int cCritterDefender3DPropFrag::collidesWith(cCritter *pcritterother)

{

if (pcritterother == pplayer())

return cCollider::COLLIDEASARG; //so Player can eat them.

else //to keep the speed up, don’t do other collisions.

return cCollider::DONTCOLLIDE;

}

cGameDefender3DProp

We want our props to be thick, tumbling polygonal prisms that fall towards the
viewer. So that they can tumble, we unlock the attitude from the motion and set
a spin. So that they move towards the viewer, we give them a gravitational force
in the z direction. Here are some relevant lines from the cGameDefender3DProp

constructor.

setAttitudeToMotionLock(FALSE); /* don’t turn your sprite with the

motions, instead let it tumble. */

randomizeSpin(1.0, 5.0);

addForce(new cForceGravity(30.0, cVector::ZAXIS));

Note that cForceGravity lets you specify the direction of the gravitational pull in
the second argument.

Another issue with the cGameDefender3DProp is to start them out at the far end
of the world, that is, at a location near the ‘low corner’ with the minimum
z value. The constructor uses this line to pick a position in the far 20% of
the _movebox. Note that since we fed the owner game in as an argument to the
constructor, the critter’s _movebox has already been set to match the game’s
_border.

randomizePosition(cRealBox(_movebox.locorner(),

_movebox.hicorner() – (1.0 – 0.2)*

_movebox.zsize()*cVector::ZAXIS));

Whenever a cGameDefender3DProp hits the closest wall of the world, we want
to (a) penalize the player, and (b) kill off this prop critter. To accomplish this,
we override the cGameDefender3DProp::update to check the condition (_outcode &

BOX_HIZ), using a bitwise AND to check if the flag is set. Alternately, we could
directly look at the position().z() value. If the condition holds, we have the
prop critter penalize the player and disappear (see also Exercise 3.10.5).

void cCritterDefender3DProp::update(CPopView *pactiveview)

{

cCritter::update(pactiveview); //Always call this first

if (_outcode & BOX_HIZ) /* use bitwise AND to check if a flag is

set. */

3D shooting games 299

{

playSound(“Bonk”);

pplayer()->damage(1); //punish the player

delete_me(); //tell the game to remove yourself

return;

}

}

Finally there is the matter of having the prop burst into a shower of coins
when you shoot it. We do this by overriding its die method, which carries out
some exciting frills instead of immediately calling delete_me.

void cCritterDefender3DProp::die()

{

playSound(“Explosion”);

//Make some new tumbling fragment critters.

for (int i=0; i< cCritterDefender3DProp::FRAGCOUNT; i++)

new cCritterDefender3DPropFrag(this); //custom constructor

//Change the prop sprite

_age = 0.0; //Use age for a time of the “dying act”

setUseFixedLifetime(TRUE);

setFixedLifetime(cCritterDefender3DProp::EXPLOSIONDISPLAYTIME);

setShield(TRUE); //so you don’t die again.

setAttitudeToMotionLock(FALSE); /* In case this happened to be

on, turn it off here so you’re free to set the attitude as

you like. */

setSpin(0.0); //Stop tumbling

setVelocity(cVector::ZEROVECTOR); //Stop moving

setAcceleration(cVector::ZEROVECTOR);

clearForcearray(); //Stop falling

psprite()->setFilled(FALSE);

psprite()->setEdged(TRUE); //show as skeleton

psprite()->setLineColor(psprite()->fillColor());

}

If you look at Exercise 15.1, you’ll find that we have an alternate method of
showing the prop damage by using a cSpriteLoop animation of an explosion.

To finish off, let’s print the cCritterDefender3DPropFrag constructor.

cCritterDefender3DPropFrag::cCritterDefender3DPropFrag(cCritter

*pcritterprop)

{

if (pcritterprop->pgame())

pcritterprop->pgame()->add(this); //Sets moveBox.

setSprite(new cSpriteCircle());

psprite()->setEdged(FALSE);

Software Engineering and Computer Games300

psprite()->setFillColor(pcritterprop->psprite()->fillColor());

setRadius(pcritterprop->radius()/3.0);

setMaxspeed(10.0); //Very fast

randomizeVelocity(); //3D velocity

setAttitudeToMotionLock(FALSE);

//don’t turn your sprite with the motions.

randomizeSpin(1.0, 5.0); //Tumble

setShield(TRUE); // So you don’t get shot.

setUseFixedLifetime(TRUE); //So you die off pretty quickly

setFixedLifetime(cCritterDefender3DPropFrag::FIXEDLIFETIME);

//3 seconds

moveTo(pcritterprop->position());

addForce(new cForceGravity(100.0,

0.05*cVector::ZAXIS-cVector::XAXIS));

//Fall visually “down” but also towards the viewer.

addForce(new cForceDrag(0.1));

}

Exercises

Exercise 15.1: Bitmap loop sprites

Open the gamedefender3d.cpp file and comment in this line

//#define LOOPEXPLOSION

Also search down for LOOPEXPLOSION and take a look at the code to see what you’re
commenting in. Then recompile and shoot some props and see what happens. You get a
nice cSpriteLoop that flips through three bitmaps.

Also watch what happens to your updates per second in the status bar when you shoot
something. To check if this is due to the bitmaps or to the cascade of prop fragments,
you can comment the LOOPEXPLOSION back out, run it again, shoot something and watch
the updates per second.

It turns out that, at least the way the Pop Framework currently implements them,
bitmap sprites are a little slow in the OpenGL graphics. The slowdown for bitmaps in the
Pop Framework is especially strong if the bitmaps happen to be close to the viewer and
take up a lot of the screen.

Exercise 15.2: A very long world

Let’s change the game so it’s a long world that you’re moving through. Instead of the
enemies coming at you, you are flying through them.

To do this, go to the cGameDefender3D constructor and change the third argument to
the call _border.set(19, 19.0, 41.0); put in something big like 400. Then comment
out the line in the cCritterDefender3DPlayer constructor that begins setMoveBox.
Instead we’ll be letting the player have its default movebox be the same as the _border.

If you run this version, you’ll see that the prop critters are too far away. What we can do
about this is to change the cCritterDefender3DProp constructor to position the new

3D shooting games 301

props at a random location ahead but not too far away – at a distance of, say, 30–40 units
down the z-axis from the player()->position(). This means plugging in new locorner and
hicorner arguments for the randomizePosition call based on player()->position().

Another good change here would be to have the props die as soon as they are behind the
player, rather than waiting for the BOX_HIZ flag to appear in a prop critter’s _outcode.

It would also make more sense not to penalize the player when a prop gets by. Instead
just penalize the player when a prop or a bullet hits the player. This move of course makes
it too easy for the player, so we’d better put in some cCritterDefender3DProp critters
to shoot at the player.

You might also want to put some kind of furniture on the ‘floor’ of the world, some fixed
critters by which you can judge your motion. In addition, you could have the appearance of
the sprite and rival critters change as you move further into the world.

Yet another change to consider would be to use some variation on cListenerCar or
cListenerSpaceship so that you can ‘drive’ your player in a somewhat realistic fashion,
with gravity having an effect upon it.

Software Engineering and Computer Games302

16Sports games

There are plenty of games that don’t involve shooting. Many of these games
involve controlling the motions of balls or other objects. Tennis, airhockey,
basketball, volleyball, golf, pinball, and Pachinko come to mind (Pachinko is a
Japanese game similar to pinball but with dozens of balls at once).

In this chapter we’ll talk about a ball game provided with the Pop sample
code: Airhockey. And in the exercises, we’ll show how to make it into a basketball
game.

16.1 The Airhockey game

Specification

(S1) Concept
The Airhockey game is inspired by the table game of the same name. The user
slides the player piece around and tries to knock the puck into the opponent’s
goal. The opponent, which is run by the computer program, tries to knock
the puck into the player’s goal. In order to make the game more challenging,
neither the player nor the opponent can move across the center line of the
playing field.

(S2) Appearance
We show a picture of it below. The ball with the triangular tail is the player, this
critter is controlled by moving the mouse. The puck is the round critter, and
the enemy is a robot player with an icon based on a photo of the author’s face.

(S3) Controls
Simplicity itself: the user moves the player piece with the mouse and uses the
player piece to bump the puck. The faster you move the mouse the harder you
can bump the puck.

(S4) Behavior
The robot is aware of the puck, and accelerates towards it. The user or the
opponent gets a point for each goal. The game is over when the player or
opponent reaches seven points.

Design

We represent the class design by the following UML diagram (Figure 16.1),
which shows that the cGameAirhockey owns five special instances of the classes
above it, that is, a cCritterHockeyPlayer, a cCritterHockeyRobot, a cCritterHockeyPuck,
and two cCritterHockeyGoal instances.

A non-obvious trick we use is to have each goal be a critter that uses its
_ptarget field to be aware of which of the two competing players wants to
knock the puck into it, and it awards that player a point whenever a puck goes
into it.

Software Engineering and Computer Games304

The Airhockey game. ‘Robot’ sprite is a picture of the author

We could draw navigation lines from each critter class to the cGameAirhockey,
but this would clutter the picture a little too much. We do, however, draw a
navigation line from cCritterHockeyGoal to cCritter to emphasize the fact that each
goal is going to use its _ptarget field to track the identity of the player who is
shooting at it.

The Airhockey code

One special thing we do in this game is to set up all the game’s critters inside
the cGameAirhockey constructor. We construct the critters in a certain order,
making the player first, as is our habit, and then being sure to make the puck
before the hockey robot, and being sure not to define the goals until after the
player and the hockey robot. The relevant part of cGameAirhockey::cGameAirhockey

looks like this.

//Define _pplayer.

setPlayer(new cCritterHockeyPlayer(this)); /* Sets the _pplayer

field. */

//Define _ppuck

_ppuck = new cCritterHockeyPuck(this);

//Define _phockeyrobot. Need to define _ppuck before _phockeyrobot.

_phockeyrobot = new cCritterHockeyRobot(this);

//Define _pmygoal. Need to define _phockeyrobot before _pmygoal

_pmygoal = new

cCritterHockeyGoal(cVector(_border.lox()+GOALOFFSET,

-GOALRADIUS), //Low point

cVector(_border.lox()+GOALOFFSET, GOALRADIUS), //High point

GOALTHICKNESS, this); //Thickness

_pmygoal->setOpenside(BOX_LOY);/* cCritter wall views the two

points you give it in the constructor as the neg and pos

sides of the x axis, so it works out that “LOY” in this

system is right on the screen. */

_pmygoal->setTarget(_phockeyrobot);/* The guy who gets points when

puck goes in pmygoal. */

Sports games 305

Figure 16.1 UML diagram for the Airhockey game

//Define _probotgoal. Need to define _pplayer before _probotgoal

_probotgoal = new cCritterHockeyGoal(cVector(_border.hix()

-GOALOFFSET, -GOALRADIUS),

cVector(_border.hix()-GOALOFFSET, GOALRADIUS), GOALTHICKNESS,

this);

_probotgoal->setOpenside(BOX_HIY); /* cCritter wall views the two

points you give it in the constructor as the neg and pos

sides of the x axis, so it works out that “HIY” in the this

system is left on the screen. */

_probotgoal->setTarget(pplayer());/* The guy who gets points when

puck goes in probotgoal. */

cCritterHockeyRobot will be the computer-operated opponent for the
Airhockey game. Most of its behavior will be produced by adding a
cForceObjectSeek(_ppuck), but in its update we’ll add another condition: that
it move towards its own goal if the puck is between it and its goal.

The cCritterHockeyGoal will inherit from cCritterWall so as to bounce things off
its corners and sides in a reasonable way. We will specify that one side of it is
‘open’. In the cCritterHockeyGoal::collide, we call cCritterWall::collide, but also do
something special if the colliding critter is the puck. If it’s the puck we move
the puck to the center with a reset call, and we also add a score to the player
who is shooting for this goal. We use the _ptarget field of cCritterHockeyGoal to
keep track of the identity of the team who is shooting for this goal.

The gameairhockey.h file has some fairly detailed comments on how the code is
implemented, so you might want to read that for more information.

The Robot opponent

A key part of a sports game is having a computer-operated opponent that plays
at an appropriate level. The robot player should be beatable, and it’s better if it
appears a bit erratic so that you can’t easily predict and outsmart it.

In the Airhockey game, we have the cCritterHockeyRobot constructor give the
hockey robot a basic urge to go towards the puck with this line.

addForce(new cForceObjectSeek(ppuck, ROBOTACCELERATION));

But this alone isn’t enough. A robot that blindly charges the puck is (a) likely
to knock the puck into its own goal, and (b) unlikely to accurately aim the puck
at the opponent’s goal. So the cCritterHockeyRobot::update has some more com-
plicated tricks in it.

void cCritterHockeyRobot::update(CPopView *pactiveview)

{

cCritter::update(pactiveview); /* This sets _acceleration on the

basis of the cForceObjectSeek(_ppuck) you added in the

constructor. We ALWAYS call the base class update. */

Software Engineering and Computer Games306

cGameAirhockey *phgame = (cGameAirhockey*)(pgame());

/* This gives us access to all the fields of the game. Note

that we need the cast, as pgame() returns a cGame*. */

cCritter *ppuck = phgame->ppuck();

cCritterHockeyGoal *probotgoal = phgame->probotgoal();

Real puckx = ppuck->position().x();

Real robotgoalx = probotgoal->position().x();

Real pucky = ppuck->position().y();

Real robotgoaly = probotgoal->position().y();

cVector togoal = directionTo(probotgoal);

cVector topuck = directionTo(ppuck);

/* If the puck is between robot and the goal go towards the goal,

while avoiding hitting the puck into the goal yourself. */

if (_position.x() < puckx && puckx < robotgoalx &&

(_position.y() > pucky && pucky > robotgoaly ||

_position.y() < pucky && pucky < robotgoaly)

)

{

_acceleration = ROBOTACCELERATION * togoal;

//Head for the goal

if (togoal % topuck > COSINESMALLANGLE &&

tangent() % topuck > COSINESMALLANGLE)

_velocity.turn((1 & _personality)?PI/2:-PI/2);

/* If puck, my goal and me are in a line,

and I’m moving towards the puck,

then veer left or right. */

}

}

This code represents only a second-level approximation to good play; with
more thought you might think of some better strategies.

Exercises

Remember that, when tweaking one particular game mode, it saves time to have the
Pop program start up in the game mode that you want to play with. The way to control this
is to edit the CPopDoc constructor in popdoc.cpp. Do it now, it’ll save you a lot of clicking
later on. So make your startup game be cGameAirhockey or, if you’ve taken the trouble
to make new files and change the names, cGameBasketball.

Exercise 16.1: Better hitting and other tweaks

It feels a bit cumbersome hitting the puck with the player. It would probably be easier if you
make the player smaller. Try using a setRadius call in its constructor to make it smaller.
In doing this you reduce the mass of the player (normally equal to the density times the
radius cubed), so to keep this up, increase the density as well, using a setDensity call.

Sports games 307

It would be nice have a sound effect when you hit the ball. You can do this by overrid-
ing the player’s collide method similar to the way in which we override it in the Gamestub
code, though here all we want to do is make a noise when colliding with the puck and not
change health or score in the collide.

It might be better to have the game world a little bigger.
Make sure you have the maximum speeds and the frictions tweaked to good values.

Exercise 16.2: More players

How about giving your game another opponent, call it, say, *_phockeyrobot2. See how
this works. You should initialize them to start at different positions, and to go to different
positions in any reset calls, otherwise they may stay on top of each other.

Really it would be better to have the teammates’ behaviors be quite different. One could
guard the goal, say, while the other pressed forward. One way to do this would be to have
the phockeyrobot2 be an instance of a different class called, say, cCritterHockeyRobot2,
perhaps a child class of cCritterHockeyRobot and to give it a different update method.
Another approach might be to make the robots’ behavior depend on a nicely packaged set
of parameters; rather than having several separate parameters, we could encapsulate
them in a cRobotParam helper class.

In any case, as you add players, you will probably want to make the _border larger so
the hockey robots have more room. Can you have more than two of them? How about
adding some hockey robots to your own team?

Let’s do a series of exercises to turn the Airhockey game into a Basketball game. You
can either change the Airhockey game, or if you want to keep that one around, you can copy
the gameairhockey.* files to gamebasketball.* files, adding the new files to the project, and
then going through and changing the various capitalization forms of ‘airhockey’ to ‘basket-
ball’ in the two files as was discussed in Exercise 3.7: Renaming a game.

For the purposes of the following exercises, we’ll assume you took the easier route
and are working directly on the Airhockey game.

Exercise 16.3: Position the goals like baskets

Change the cGameAirhockey::cGameAirhockey constructor code. Make _border have a
larger y size than before. And position the two cCritterHockeyGoal objects so that they’re
higher up, horizontal, and with their open sides facing up.

Exercise 16.4: Another kind of basket

If the wall-type baskets are too hard to get a ball into, make a new kind of Basket class
which overrides its collide method to use a contains(pcritter) call so as to only
report a collision when the pcritter is entirely inside it. So as to let this Basket control the
collisions, give it a higher _collidepriority than the puck or ball. Test to see which
kind of basket makes for better game play, that is, play poised at the interesting border
between too easy and too hard.

Exercise 16.5: Add gravity and friction

Now add gravity and friction so that it’s harder to hit the ball up into the goals. See how the
game works if you give your player a cListenerCar or cListenerSpaceship, so that it’s sensitive
to the gravity (the other kinds of listeners zero out any forces acting on the player). The
following lines have been tested to good effect in another game.

Software Engineering and Computer Games308

setMaxspeed(40.0); /* For Scooter and Car to be able to WHACK the

balls. */

setListener(new cListenerSpaceship()); //Or use ...Car());

setListenerAcceleration(80.0); /* So Car or Spaceship can overcome

gravity. */

addForce(new cForceGravity()); /* Uses default gravity strength 25.

Gravity won’t affect player using cListenerCursor, but will with

cListenerCar. */

addForce(new cForceDrag(2.5)); /* Stronger than default friction

strength 0.5. Have such big friction to make player less hyper. */

setBounciness(0.9); /* Not 1.0 means it loses a bit of energy with

each bounce. */

setRadius(cCritter::PLAYERRADIUS/2.0);

/* Lets make radius half as big so it can dig under guys better.

But then we better make the density 8 times as big, so that its

volume mass stays the same. */

setDensity(8.0 * density());

Also be sure to use something like setBounciness(0.9) on the puck, otherwise it
bounces around too much.

How does the robot player perform with gravity? Change its update method to make it
play better.

Exercise 16.6: Basketball

Now try having more players as discussed in Exercise 16.2. You may find it frustrating to
try and hit the basketball just with a spherical player. What if you have your player inherit
from cCritterWall? You could then either always adjust the wall to be at right angles to the
current direction of motion, or you could create a richer kind of listener that lets you rotate
the wall. A good combination might be to use the mouse to move the player and to use
the left and right mouse buttons or Left and Right Arrow keys to rotate the player.

Exercise 16.7: Make a tennis game

Make a player that is a child of cCritterWall and which hits things like a paddle. Give it a
listener that makes it possible to rotate the paddle with the Arrow keys or with left/right
mouse clicks. Put a short vertical wall in the middle for a net.

Sports games 309

17Selection games

A selection game is a game that you play by clicking and dragging on things.
Memory is an example of this, that is, a game in which you try and click on
covered-up icons that you’ve seen once. Many educational games are selection
games, as when you try and click on the right word to complete a sentence.
In this chapter we discuss the PickNPop game, which is a very easy selection
game.

17.1 PickNPop specification and design

Specification

(S1) Concept
A race against the clock to unpack jewels from a box. We show a mixture of
white bubbles and colored bubbles. Think of the colored bubbles as valuable
jewels, with the white bubbles being disposable Styrofoam packing peanuts.
The image of the Pop game is of someone unpacking a box filled with precious
baubles packed in plastic peanuts. You want to pop the peanuts and keep the
baubles. Another way of thinking of it, perhaps, is of an archaeologist digging
up valuable relics. The idea is to get rid of all the dirt and not harm the treasure.

(S2) Appearance
Below is a screen capture of how the game looks.

(S3) Controls
We use the mouse control. The mouse uses one of two kinds of cursor tool, a
popping tool and a dragging tool. Use the mouse wheel or the toolbar to select
which cursor tool.

(S4) Behavior
There are two kinds of disks on the screen. Some are like bubbles that the user
has to pop, and some are like jewels that the user wants to save. The screen is
divided into two parts; at the start all the disks are on the left, and the user has
to drag the jewels to the right.

Assign the score so that a perfect game gives you 1000 points. You get a
positive score for popping a bubble or for dragging a jewel to the right-hand
box. You get a negative penalty if you pop a jewel.

Design

As usual, most of our design is inherited from the Pop Framework. The new
design we do for PickNPop involves two things: add some new cCritter children,
and add a new cGamePicknpop.

As this game doesn’t have a visible player, we’ll give the new game an off-
screen player, which will be used as a place to accumulate the game score.

We’ll also give the game two cGraphicRealBox2 objects, a _packingbox and a
_targetbox, with the peanuts and jewels starting in the _packingbox, and the play-
er’s task to move the jewels into the _targetbox.

We’ll make a new kind of critter for each of the game elements: the peanuts,
the jewels, and the promoted or ‘unpacked’ jewels.

Each critter will have a characteristic appearance that we set by picking a
special kind of sprite in the critter constructor. In terms of a class diagram, we’ll
do it as shown in Figure 17.1.

We override the constructors of these critters so as to give them the appro-
priate sprites. We’ll also set their _value fields.

In terms of methods to override, we’ll override the cCritter::die() method for
all three of these child critters. In each case, we’ll have this method make a

Selection games 311

PickNPop in a 2D Windows graphics display. For a 3D view, see the plate on page 482

sound and add a number based on the _value to the game player, that is to
_pownerbiota->pgame()->pplayer().

One other method to override is the cCritterJewel::update. This method
will be responsible for noticing if the critter has been moved into the targetbox.
If so, the critter will have to replace itself with a cCritterGoodJewel.

Regarding the sprites, we’ll have a cSpriteBubble sprite designed for drawing
circles, with the cSpriteBubbleGrayscale and cSpriteBubblePie inheriting from it. The
cSpriteBubble will in turn inherit from cPolygon, which is a child of cSprite to be
discussed in the next chapter. Although a circle really isn’t a polygon, it’s con-
venient to derive cSpriteBubble from cPolygon, because the polygon class already
has all the fields, mutators, and accessors for setting things like the colors and
the edgewidths. We will view a circle as a ‘one-gon’ polygon characterized by a
center and a single vertex, which lies on the circumference of the circle.

17.2 The PickNPop implementation

A lot of the work of designing software goes into improving the way that the
program looks onscreen. Software engineering is a little like theater, or like
stage-magic. Your goal is to give the user the illusion that your program is a
very solid, tangible kind of thing. Getting everything in place requires solid
design and a lot of tweaking.

One thing differentiating PickNPop from Spacewar and Airhockey is that we
chose to make the _border of the world have a non-zero z size so that the

Software Engineering and Computer Games312

Figure 17.1 The cGamePicknpop critters and sprites

shapes can pass above and below each other when we show the game in the
OpenGL 3D mode.

Making the score come out even

Though not all games must have a numerical score, if you have one, then it
should be easy to understand. On the one hand you might require that your
game events have simple, round-number score values assigned to them. On the
other hand you might require that your maximum possible game score total be a
round easy number like 100, 1000, or even 1,000,000. If you are able to control
the number of things that can happen in your game, then you can satisfy both
conditions. If not, then you have to settle for one of the conditions: round-
number values or round-number maximum score.

In PickNPop, we allow for varying sizes of worlds, and, since the game might
still be developed further, we allow for recompiling the program with different
values of JEWEL_PERCENT. So it’s not possible both to have round-number values
and to have a round-number max score.

Our decision here was to go for the round-number maximum score. In the
CPopDoc::seedBubbles(int gametype, int count) method we figure out how
many jewels and peanuts to make, and then we figure out how much they
should be worth, and finally we calculate a _scorecorrection value that we add in
at the game’s end to make it possible for the user’s score to exactly equal the
nice round number MAX_SCORE.

In cGamePickNPop::seedCritters() we compute the peanutstoadd peanuts and
jewelstoadd jewels needed, and then bury the jewels ‘under’ the peanuts by
adding them in second. The default behavior of cBiota is to draw the earlier
array members after the later array members. When using the two-dimensional
cGraphicsMFC, this causes a ‘painter’s algorithm’ effect of having the later-listed
critters appear behind the earlier-listed ones. When using the three-dimensional
cGraphicsOpenGL, the critters are actually sorted according to the z-value of their
_position values. The cheap and dirty cGame::zStackCritters() call gives the critters
different z-values, again arranging them so the earlier-listed critters have larger
z-values than the later-listed critters’ z-values and end up appearing on top in
the default view from up on the positive side of the z-axis.

void cGamePickNPop::seedCritters()

{

/* First we’ll set the _bubble array to have room for count

bubbles. Then we’ll add jewels and peanuts, randomizing their

radii, positions, and colors as we go along. In the case of

PGT_3D, we go back and change the radii at the end. */

int i;

int jewelstoadd, peanutstoadd;

Real jewelprobability = cGamePickNPop::JEWEL_WEIGHT;

int jewelvalue(0), peanutvalue(0);

cCritter *pcritternew;

Selection games 313

/* I use the jewelprobability to decide how many jewels and how

many peanuts to have. These are the jewelstoadd and

peanutstoadd numbers. We think of randomly drawing from this

supply and adding them into the game. I want my standard game

score to be MAX_SCORE, with JEWEL_GAME_WEIGHT portion of the

score coming from the jewels and the rest and from the

peanuts. The scores have to be integers, so it may be that the

total isn’t quite MAX_SCORE, so I will give the rest to the

user as game-end bonus. */

//----------Get the counts and the scorevalues ready----------

jewelstoadd = int(jewelprobability * _seedcount);

peanutstoadd = _seedcount – jewelstoadd;

jewelvalue =

int(_maxscore*cGamePickNPop::JEWEL_GAME_SCORE_WEIGHT)/

(jewelstoadd?jewelstoadd:1);

peanutvalue = (_maxscore –

jewelvalue*jewelstoadd)/(peanutstoadd?peanutstoadd:1);

_scorecorrection = _maxscore – (jewelstoadd*jewelvalue +

peanutstoadd*peanutvalue);

/* We’ll add this in at the end, so that user’s maximum

score is the same as the targeted _maxscore). */

//--------------------Renew the _bubble contents ----------

_pbiota->purgeNonPlayerNonWallCritters();

// Need to delete any from last round

/* Regarding the stacking, it’s worth mentioning that

cBiota::draw draws the critters in reverse order, last

index to first, so the first-added members appear on top

in 2D. We want the peanuts “on top”, so we add them first.

Of course in 3D, the zStackCritters is going to take care

of this irregardless of what order the critters are drawn. */

for(i=0; i<peanutstoadd; i++)

{

pcritternew = new cCritterPeanut(this); /* White bubble that

we call a “Peanut”, can’t move out of _packingbox */

pcritternew->setValue(peanutvalue);

}

for (i=0; i<jewelstoadd; i++)

{ /* Make a pcritternew and then add it into _bubble at the

bottom of loop. */

pcritternew = new cCritterJewel(this); /* Colored bubble

that we call a “Jewel”, can move all over within

_border.*/

pcritternew->setValue(jewelvalue);

}

zStackCritters();

}

Software Engineering and Computer Games314

The world rectangles

In PickNPop we want to try and fit our game as nicely as possible into our
window. We give the CDocument a cGraphicRealBox _packingbox and _targetbox

field. These are to be rectangles that fit nicely inside the _border. Rather than
setting their values with brute numbers, we set their values as proportions of
the _border. The cRealBox::innerBox function returns a cRealBox slightly inside the
caller box. And we give them some nice colors and edges.

Converting a critter

One of the parts of the code the author initially had trouble with was in the
cCritterJewel method where we react to moving the critter inside the _targetbox.
Here we have to replace one class of object by a different class of object, while
still having the object be in some ways the ‘same.’ It turns out that you can’t
do this with something so simple as a type-cast of the sort you’d use to turn
an int into a float. Class instances carry too much baggage for that. What
we do instead is to create a brand-new object which copies the desired prop-
erties of the object that you wanted to ‘cast.’ We do this by means of a
cCritterUnpackedJewel copy constructor.

void cCritterJewel::update(CPopView *pactiveview)

{

cGamePickNPop *pgamepnp = NULL;

//(1) Apply force if turned on.

cCritter::update(pactiveview); //Always call this.

cVector safevelocity(_velocity); /* To be safe, don’t let any z

get into velocity. */

safevelocity.setZ(0.0);

setVelocity(safevelocity);

//(2) Check if in targetbox, and if so, replace yourself with a good

// jewel.

if (pgame()->IsKindOf(RUNTIME_CLASS(cGamePickNPop)))

/* We need to do the cast to access the targetbox field, and to

be safe we check that the cast will work. */

pgamepnp = (cGamePickNPop*)(pgame());

else

return;

cRealBox effectivebox = pgamepnp-

>targetbox().innerBox(cGamePickNPop::JEWELBOXTOLERANCE*radius());

if (!effectivebox.inside(_position))

return;

//Reaction to being inside _targetbox.

playSound(“Ding”);

cCritterUnpackedJewel *pcritternew =

new cCritterUnpackedJewel(this); //Copy constructor

pcritternew->setMoveBox(pgamepnp->targetbox());

Selection games 315

pcritternew->setDragBox(pgamepnp->targetbox());

delete_me(); /* Just tell cBiota to just remove the old critter.

Don’t use the overridden cCritterJewel::die to make a noise

and subtract _value from score.*/

pcritternew->add_me(_pownerbiota); //Tell cBiota add new

critter.

pgamepnp->pplayer()->addScore(_value);

}

The delete_me makes a service request to the _pownerbiota cBiota object.
The add_me makes a service request as well, but since pcritternew isn’t yet a
member of _pownerbiota, we need to pass this pointer into the add_me method.

17.3 Other selection games

A weakness in the PickNPop game is that playing it requires so little thought.
A simple type of game that requires thought is the Memory style game. In this
kind of game, the user tries to click on some desired shape that is hidden by
some more generic shape. The classic Memory game uses a set of pairs of cards
with pictures, with all cards turned face down, and the player turns over one
card and then tries to turn over a card with a matching image. If two matching
cards are found they’re removed, a point is scored, and the player gets to con-
tinue the turn. If a non-matching card is found, the cards are turned face down
again, and the player’s turn ends. Either an opponent (possibly a robot) gets a
turn then, or the original player gets a new turn, with the point of the game
being to get all the cards with as few separate turns as possible. As the turns go
by, the player learns the location of some of the cards, and presumably can
remember these so as to do better on the following turns.

In a Memory game, you might use a cCritterMemory that has a BOOL _showcon-
tents field and which has an extra sprite field cSprite *_pspritehide. You
would need to take care of initializing this field in the constructor and deleting
it in the destructor. The draw method could then be overridden like this, or see
Exercise 9.10 for a more object-oriented solution.

void cCritterMemory ::draw(cGraphics *pgraphics, int drawflags)

{

if (_showcontents)

cCritter::draw(pgraphics, int drawflags)

else

{

pgraphics->pushMatrix();

pgraphics->multMatrix(_attitude);

_pspritehide->draw(pgraphics, drawflags);

pgraphics->popMatrix();

}

}

Software Engineering and Computer Games316

There are many other selection game possibilities. One type is puzzles where
one slides things around. For some good examples of puzzle games see the
website of the master puzzler Scott Kim, www.scottkim.com.

Exercises

Remember that when you get into tweaking one particular game mode, it saves time to
have the Pop program start up in the game mode that you want to play with. The way to
control this is to edit the CPopDoc constructor in popdoc.cpp. Simply comment in exactly
the one setGameClass line corresponding to the game you want to play. If you make a new
game class, add a line for it.

Exercise 17.1: Have the popped bubbles shrink

A general principle in designing games is that things shouldn’t happen abruptly. When an
object is destroyed it shouldn’t instantly disappear; instead it should show itself dying.
Change Pop so that when you pop a bubble, it puts on a ‘dying act.’ You might do this by
overriding the die methods by turning on a BOOL _dying flag instead of calling delete_me
right away. And now override the animate(dt) method to shrink the bubbles. We might
think of the bubbles as losing volume at some constant negative rate dV/dt called
LEAKRATE. Since radius is proportional to the cube root of the volume, a little calculus
reveals that dr/dt should be proportional to LEAKRATE/(r*r). So we do something like
setRadius(radius() – dt*LEAKRATE/(radius()*radius())) inside animate(dt).
And when a bubble’s radius gets below 0.0, then you actually call its delete_me method,
so do a check something like if (radius() <= 0.0) delete_me. Call the base
cCritter::animate (dt) too.

Exercise 17.2: Use polyhedra

Show your jewels as spheres in the OpenGL graphics. Perhaps make the peanuts a 3D
shape as well, maybe cubes. Do some OOA and OOD before you start coding, in particular,
it would be a good idea to do Exercise 9.10: Three-dimensional sprites first.

Exercise 17.3: Add a jewel-popping deathstar

What if we had a fourth kind of critter in our game? Let’s say we have a small, slow-moving
deathstar critter that bursts any jewel that it gets close to, but doesn’t harm the peanuts.
Maybe the deathstar should have a sprite like a star-shaped polygon. The place to have it
kill the jewels would be inside the cGamePicknpop::collide code. Maybe make the
deathstar non-draggable by overriding its draggable() to return FALSE.

Exercise 17.4: Make the critters run away

Make the game more challenging by having the bubbles move away from the cursor. Do
this by giving them a cForceObjectSeek with a negative acceleration. Add a static Real
cGamePickNPop::FLEECURSOR multiplier to adjust the strength of the flight effect.

To keep them from getting too hyper you should probably use a cForceDrag as well.

Selection games 317

Exercise 17.5: Memory

Complete a Memory game as outlined above. To make it more interesting, allow the separate
cCritterMemory to have _pspritehide that look slightly different from each other, and
have the critters slowly move about.

Exercise 17.6: Board games?

Can you make a checkers game? Laying out the board and putting on the men should be
easy enough. A little work would let you drag a man only to a legal position. The tough
thing here is figuring out code to make the computer play back. See if you can find some
easier kinds of board games to try and program.

Software Engineering and Computer Games318

18Interesting worlds

In this chapter we’ll discuss some ways of enriching a game by changing the
world. We’ll discuss these four additions to a world.

• Side-scroller. Make the world long and thin and have your player move
through it.

• Gravity. Put in gravitational forces.

• Walls. Put walls into the world.

• Trails. Use color to mark out a trail the player can move on.

18.1 The Ballworld side-scroller game

Specification

(S1) Concept
This is a game like the Mario side-scroller games. Your player moves to the right
through a long world, that is, a world with a big x size and a small y size.
Objects come towards you and you avoid letting them hit you.

(S2) Appearance
Below is a screen capture of how the game looks.

(S3) Controls
The player uses the Hopper Controls. The idea is to hop over the balls and
maybe land on top of them. The Hopper Controls move the player left and right
with the Left and Right Arrow keys. The Up Arrow key hops the player up into the
air, but continuing to depress the Up key will not produce a continued hopping
effect. You need to tap the Up key repeatedly if you want to add a hop to a hop.

(S4) Behavior
Your player starts at the left end of the world. Your goal is to use the Arrow keys
to move your player to the right end of the screen and jump into a hoop you’ll
find there.

There are balls bouncing along the bottom of the world from right to left.
When you collide with a ball, the effect on you depends on your height relative
to the ball. If the player’s low edge is higher than the ball’s center, the player
gets a score point. But, if the player’s position is lower than the ball, the player
loses a health point. In either case the ball is destroyed. Every time a ball is
destroyed a new one is added to the world to the right of the player.

At the right end there is a hoop that gives you extra score when you jump
into it. After you jump into the hoop, the player is moved back to the left end
of the world.

Design

We call _border.set(100.0, 12.0, 0.0) in the constructor to make the world
long and thin. In order to zoom in, we have a call to pviewer->zoom(4.0); in
cGameBallworld::initializeViewpoint(cCritterViewer *pviewer). In order to
keep the player in view, we have a call to pview->pviewpointcritter()

->setTrackplayer(TRUE) in cGameBallworld::initializeView(CPopView

*pview).

A final tweak regarding the view of a side-scroller world is that we add this
line to the header of the cGameBallworld.

virtual int worldShape(){return cGame::SHAPE_XSCROLLER;} /* Need this

to signal the cCritterViewer to not wobble up and down when

_trackplayer is on. */

Software Engineering and Computer Games320

The Ballworld game

If we were creating a long thin vertical world, we’d want to return
cGame::SHAPE_YSCROLLER.

A fair amount of experimentation went into developing the cListenerHopper

and tweaking the cCritterBallworldPlayer constructor so that the player has good
hopping behavior with the cListenerHopper.

The collide methods of both cCritterBallworldPlayer and cCritterTreasure are over-
ridden to control the interactions between the critters.

The method used to make the ball-shaped cCritterBallProp critters move to
the left is to give them a gravity force that points slightly to the left, with this
line in the cCritterBallProp constructor. addForce(new cForceGravity(25.0,

cVector(-0.03, -1, 0.0)));. As always, more detail can be found in the source
code: gameballworld.cpp.

An essential part of both the Ballworld and the Dambuilder games is that
they use gravitational forces on the players. It’s worth mentioning that when you
have gravity, in general (a) you want drag or friction forces to keep the objects from
speeding up too much; (b) don’t have wrap, otherwise the objects go around
and around the y-axis faster and faster; (c) if you don’t want things to bounce too
much off the bottom edge, you can use setBounciness(0.9) to make them lose
energy with each bounce, alternately you can use setWrapflag(cCritter::CLAMP)
to make them not bounce at all.

18.2 Games with walls

In many games, like PacMan, the critters are limited to move within the corridors
of a maze. How can we implement this?

The simplest approach is to just put in a number of cCritterWall objects and
let the critters bounce off the walls. Use as few walls as possible so as to keep
down the number of pairs that you’ll be processing in your collision-checking –
that is, use one long wall in preference to two short walls butted together end
to end.

The speed of the Pop Framework is indeed sufficient to handle worlds with
little wall mazes such as PacMan.

The Dambuilder sample game isn’t really a game, it’s more of a starting
point. We’ll have a couple of exercises on it below (Exercises 18.1 and 18.2).

For a more Doom-like adventure game experience, you want a world with
halls, doors, and rooms. It would be reasonable to make a slightly sophisticated
cMaze object which contains some other classes (like perhaps cRoom) that use
cVector points to specify a maze. To implement a particular maze, you’d first
draw it on graph paper marked off to be the same size as your _border, and then
you’d have your game constructor make a cMaze based on these numbers. And
then in the seedCritters call you could perhaps call a cMaze::install(cGame *game)

method that would place cCritterWall objects in place to match the coordinates
of the maze. You might find a way to use the cMaze to cut down on the number
of critter-to-wall collisions you worry about.

Interesting worlds 321

It’s possible to make a completely different kind of wall game based on the
traditional wooden game known as Labyrinth. In this game, you have a ball in
a maze that has holes here and there in the floor. Your task is to gently roll the
ball through the maze without falling into one of the holes. To design this
game, you need a cCritterHole class and you need a new cListenerTipper listener for
the player that lets you adjust the acceleration in the x or y directions by using
the arrow keys. More about this in Exercise 18.8.

Software Engineering and Computer Games322

The Dambuilder game in 2D view

18.3 Sniffing a trail

Suppose you want to program a car-racing game in which you look down at a
track from above and use the controls to steer your car along the track. Lining
the track with lots of little walls is an option, but in this section we’ll talk about
a different approach. The idea here is to lay down a trail that your critter can
move along.

The cCritter::update method takes a CPopView *pactiveview argument. The
reason we have this argument is so that the update can feed the pactiveview into
the method COLORREF cCritter::sniff(const cVector &snifflocation, CPopView *pactive-

view). The sniff return value tells you the color of the pixel of the onscreen view
corresponding to a given location.

The way to use sniff would be to make the track that you want your critter
to stay on be some one particular color, say cColorStyle::CN_WHITE. And then, in
that critter’s update code, you could have it look ahead and see if it was about
to move off the track, and if so, look for a better direction to move in.

A good strategy in looking for a better direction would be to successively try
turning left or right by greater and greater amounts. Here’s an untested example
of how you might do it.

Interesting worlds 323

Dambuilder in 3D view and Ride the Player mode can serve as starting point for a
first-person shooter game

#define LOOKAHEAD 1.1 /* Maybe 1.1 is not the best value to use,

maybe should depend on speed. */

#define SNIFFTURNSTEP PI/90.0 /* Radians for 2 degrees. Can make

larger if this runs too slow. */

cCritterSnifferCar::update(cPopView *pactiveview, Real dt)

{

cCritter::update(pactiveviewdt);

COLORREF sniffcolor = sniff(_position + LOOKAHEAD * radius() *

tangent(), pactiveview);

//sniffcolor is the color of a pixel a just a bit ahead of me.

COLORREF whitecolor = cColorStyle::CN_WHITE;

if (sniffcolor == cColorStyle::CN_WHITE || //all clear ahead

sniffcolor == -1)

/* The “-1” color means your pixel is offscreen or not

in clipping region */

//Else you try to turn till you see a good spot.

Real sign = 1.0;

Real angle = SNIFFTURNSTEP;

cVector originaltan = tangent();

int whilecount = 0; /* Never go into a while loop without making

sure you get out! */

while(sniffcolor != cColorStyle::CN_WHITE) /* Waggle back and

forth till you see a good spot */

{

setTangent(originaltan);

yaw(sign * angle);

sniffcolor = sniff(_position + LOOKAHEAD * radius() *

tangent(), pactiveview);

angle += SNIFFTURNSTEP;

sign *= -1.0;

if (++whilecount > 90) //Fuhgeddaboutit and bail

{

setTangent(originaltan);

break;

}

}

}

All this said, sniffing pixels may not the best method to use to follow a trail.
It won’t work well if you switch to the OpenGL 3D view, although you could
perhaps handle this by sniffing a 2D map of the world that you keep in a
cMemoryDC instead of sniffing the screen.

In André LaMothe, Tricks of the Windows Game Programming Gurus (Sams,
2001), you will find a more robust trail-following technique called waypoint
pathfinding.

Software Engineering and Computer Games324

Exercises

Exercise 18.1: Time the flow in Dambuilder

Let’s go back to the original inspiration for Dambuilder. It has this name in memory of the
childhood activity of making dams in little streams. The goal in building dams like this is
to make the water move through the system as slowly as possible, but without the water
getting stuck in any one place (and overflowing one of the dams).

You can use the cursor tools to make new walls and move them. Click with the Equals
cursor to copy, prick with the Pin cursor to delete, drag with the Hand cursor to move. This
is how you ‘play the game’.

How do you tell how well you’re doing in Dambuilder? We need to have a score that
calculates the average time that it takes a critter to fall from the top to the bottom of the
screen. We reset the critters’ ages when they wrap bottom to top.

And we need some kind of penalty if a critter gets stuck for too long. Perhaps if a
critter’s age gets larger than some MUSTBESTUCK time value, then the critter explodes
and destroys everything near it, including the dam that it’s stuck behind. So your goal is
to get the critters moving along as slowly as possible just short of being stuck and
destroying the dams.

Exercise 18.2: Rotate the walls

Add a tool that lets you rotate the walls of the dams. The cCritterWall might need some
special override of the turn code for this. An easy way to call this method would be to give
the cCritterWall a scooter-style listener that turns it provided that the wall is currently the
pfocus() of its owner.

If you feel more ambitious you could make a new cursor tool that uses the left click to
rotate left and the right click to rotate right.

Exercise 18.3: Make a maze game

If you remove the gravity forces from the critters in Dambuilder and start with a
cGraphicsOpenGL preference and set the critter viewer to ride the player, you get a fairly
effective-looking first-person shooter game. But rather than changing Dambuilder, you might
simply add walls to the GameStub game, which is already set up with enemies and health-
packs. Note that this exercise is basically similar to Exercises 14.5 and 14.7 combined.

Exercise 18.4: Make a Pinball game

The hardest thing about pinball is making flippers. You would probably have cCritterFlipper be
a child of cCritterWall. See if you can make a cCritterFlipper and put it into the Dambuilder
game. You will also need to write a listener that uses the Left Arrow and Right Arrow to
rotate the flipper around one of its ends.

Exercise 18.5: Make a Pachinko game

First get Pinball working, then find out what the popular Japanese arcade game Pachinko
looks like and emulate that. Quite briefly, Pachinko is like a pinball game in which you
have dozens of balls active at once. But there’s more to it than that. Like pinball, many
Pachinko machines are quite beautiful.

Interesting worlds 325

Exercise 18.6: PacMan

We all have a pretty clear idea of what PacMan looks like. Let your player be a
cCritterPacman with a standard cListenerArrow. You can use cCritterWall objects.

Students have indeed written this game using the Pop Framework, and one issue is
that in PacMan we have 100 or so cCrittterPowerpellet objects which are little yellow dots
lining the maze paths. If you aren’t careful, having so many critters can drastically slow down
your program’s execution speed. Make sure to set the _fixedflag to TRUE for these critters,
and make sure that the various collision-controlling parameters are set so that the game’s
cCollider will ignore all Powerpellet collisions except those featuring a cCritterPowerpellet
and a cCritterPacman. And in these collisions, have the cCritterPowerpellet get eaten: calling
delete_me and adding some score to the cCritterPacman.

Another thing to keep in mind if you’re worried about speed is that the Release build will
run very noticeably faster than the Debug build. If the speed were still to be unacceptable,
you could use a different approach for eating power pellets. Rather than having the PacMan
check its distance from each and every power pellet at every update, you could use a sniff
method and make the power pellets a distinctive color.

The biggest difficulty students find in making PacMan style games is in having the player’s
enemies be good at chasing the player or, if they are to be victims, be good at running
away from the player. We discuss this in the next exercise.

Exercise 18.7: Smarter enemies for maze games

Suppose you write an adventure game in which the enemy critters use a cForceObjectSeek
to run towards the player. Suppose also that your game has cCritterWall walls in it – think
of something like a PacMan game in which the ghosts chase the player (or, if the player is
powered-up, run away from the player).

If you use a simple cForceObjectSeek, the enemies will often get stuck pushing against
a wall they can’t get through. The easiest way out is simply to provide more enemies and
expect that some of them will manage to be a threat.

But really you’d want to create a ‘smarter’ kind of seeking force. Let’s discuss three
increasingly sophisticated ways in which we can try and improve the situation.

(a) A simple, but somewhat effective thing you could do instead is to create a
cForceObjectSeekImpatient. The idea is that this is a seek force that will sometimes
turn itself off in the hope that the enemy might then happen to bounce into a better
location. We’ll think of the default, non-seek-force motion as a ‘cruise’ motion. By a
cruise motion we mean a force-free motion in which the critter simply moves along in
straight lines bouncing off the walls.

Give the class these fields and initialize as suggested:

int _frustration;//Start at 0

int _maxfrustration;

//Try 1 to start with and then try making it larger.

Real _oldsatisfaction;

//Start at a large negative number like -1000000.0

Real _cruisetime; //Some time in seconds, like 3.0

BOOL _cruising; //Start FALSE

Real _resumeage //A scratch-paper field we can initialize to 0.0

Now use a cForceObjectSeekImpatient force coded something like this.

Software Engineering and Computer Games326

cVector cForceObjectSeekImpatient::force(cCritter *pcritter)

{

if (_cruising)

{

pcritter->setSpeed(pcritter->maxspeed());

//Keep moving fast

if (pcritter->age() >_resumeage)

_cruising = FALSE;

else

return cVector::ZEROVECTOR;

}

Real_newsatisfaction = -pcritter->distanceTo(_pnode); /* Use

minus so the bigger the distance to the target, the lower

your satisfaction is. */

if (newsatisfaction <= oldsatisfaction)

_frustration ++;

else

_frustration—-

if (frustration <= 0)

_frustration = 0;

if (frustration > _maxfrustration)

{

_cruising = TRUE;

_resumeage = pcritter->age() + cruisetime;

_frustration = 0;

}

return cForceObjectSeek::force(pcritter);

}

(b) For a more sophisticated solution, you would want to use a cMaze class that inherits
from CArray<cCritterWall *, cCritterWall*>. As we add the cCritterWall
objects to our world, we also put them into the cMaze.

It will be useful to give the cMaze class a BOOL blocks(const cVector&

start, const cVector& end) method, which walks through the array of member
cCritterWall, checks the value of cCritterWall::blocks(start, end) for each
wall, and returns TRUE if any of the member walls blocks the path.

In addition, we’d want to give the cMaze a CArray<cVector, cVector&>_waypoint
member, and as we added in the cCritterWall objects to the maze, we’d want to fill
_waypoint with points corresponding to significant points in the maze’s passageways.
In particular, you’d want to have a waypoint at each corner, and before and after
each gap or doorway in the maze.

Once you have the cMaze in place, you could create a
cForceObjectSeekImpatientMaze which has a cMaze *pmaze member. When ‘frustrated’
the force could direct the caller critter to proceed towards the nearest waypoint of the
maze. We can measure frustration as before, or simply become frustrated right away
if the cMaze blocks the path from the enemy position to the player position.

(c) The truly correct thing to do would be to use a cMaze as in (b), but to have a
cForceSolveMaze which would determine the proper sequence of waypoints to follow
in order to get to the critter being sought. This involves considering the tree of all non-
repeating arrays of waypoints one might visit, starting with the nearest waypoint. We

Interesting worlds 327

will only consider those waypoint sequences in which the maze doesn’t block the path
between any two successive waypoints. And our goal will be to reach a waypoint W such
that the maze doesn’t block the path from W to the target critter. If you know a little
about AI, you would probably want to use a so-called A* search strategy; otherwise a
simple breadth-first search will work well enough, provide your maze isn’t too big.

To keep the speed of the program up it might suffice to only recompute the current
path of cForceSolveMaze after every ten or twenty updates.

Exercise 18.8: A labyrinth game

There’s a popular wooden maze game in which you move a ball by manipulating two
knobs on the sides of the box. The knobs tilt the top surface of the game east/west or
north/south. On the board is a ball-bearing, some little walls, and about 50 holes. There’s
a path drawn on the top, and your goal is to manipulate the knobs so that the ball rolls
along the path from beginning to end, missing all 50 of the holes.

To implement this as a cGameRollingMaze, we’ll have a cCritterRollingball as our
player. We can use cCritterWall objects for the pieces of the maze. We should have some
cCritterHole objects for the balls to fall into: make them fixed critters with perhaps a black
cBubble for their sprite, and override their collide method so that when they collide with a
pcritter they (a) add an acceleration to pcritter which points towards their center if the pcritter
isn’t fully inside (the way a ball speeds up towards a hole when it’s partly over one edge) and
(b) the call pcritter->delete_me() if the pcritter is inside. Well, actually doing a delete_me
on a game’s _pplayer has no effect (because all hell breaks loose if you have NULL player,
and cBiota has a ‘foolproofing’ feature of ignoring delete requests on active players). But we’d
like to keep the delete_me for the cCritterHole as we might sometime want to reuse the
holes. What we really want to happen when the player falls in the hole is that the player goes
back to the starting position. So you should override your cCritterRollingball::delete_me to
call an overridden reset() which will indeed put the ball at the starting gate.

Whenever you have a lot of critters, you want to be careful not to try and compute
unnecessary collisions as this will make the program run too slow. Regarding the many
cCritterHole objects, the only kind of collisions we’re interested in is between a hole and
the player. And since we’ve overridden the cCritterHole::collide method for the special
behavior, we want to call these collisions in the form phole->collide(pplayer). So
set the relevant _collidepriority or collidesWith methods accordingly.

How about the knobs? Probably you can use a cListenerTipper listener that increments
or decrements the acceleration in the x and y directions with the Left/Right Up/Down
keys. You will want to put a good amount of friction on the ball’s motions and/or give it a
low _maxspeed so it doesn’t get out of control.

How best to add all the cCritterHole and cCritterWall objects to the world? We might
consider something like the cMaze object described in Exercise 18.7.b. Call it a
cRollerBoardlayout. But, on second thought, maybe our class cRollerBoardlayout needn’t
hold critters as in 18.7b. Maybe it should just have geometrical information. It could store
the coordinate information for the various walls and holes, and have a constructor like,
perhaps, cRollerBoardlayout(int wallcount, Real wallthickness, Real[] wallenda, Real[] wal-
lendb, int holecount, Real holeradius, Real[] holecenter). And it could have an all-important
putBoardInGame(cGame *pgame) method to create and add the desired cCritterHole and
cCritterWall objects to pgame. So then our code could have some easily tweaked Real
numbers WALLCOUNT, WALLTHICKNESS, HOLECOUNT, HOLERADIUS and three Real
arrays WALLENDA, WALLENDB and HOLECENTER as statics or #define at the top of the
cgamerollingmaze.cpp. And the cGameRollingMaze constructor would construct a temporary

Software Engineering and Computer Games328

cRollerBoardlayout layout(WALLCOUNT, WALLTHICKNESS, WALLENDA, WALLENDB,

HOLECOUNT, HOLERADIUS, HOLECENTER WALLENDS, HOLES)ü and then call

layout.putBoardInGame(this).

Exercise 18.9: Slot Car Racer

Use the trail-sniffing technique to make a car-racing game. Have your race course be a
bitmap with a track marked in pure white pixels, give your player a cListenerCar listener,
and make a robot car to race with you.

You can count on the update with the sniff method to keep the robot on the track, but how
do you keep the robot going in the right direction? Assuming your track is roughly a closed
curve around the origin you might try giving the robot a reasonably strong cForceVortex to
keep it going in generally the right direction.

Rather than using sniffing, you may find it works better to keep your player on the track
simply by lining the track by cCritterWall. If you are careful not to use too many walls (use
a few long ones rather than a lot of short ones), the speed will be okay.

Whether or not you use use sniffing, you will need a reliable method to make your
robot driver opponent do a good job. What works the best is to use a cForceWaypoint as
described in Exercise 7.2.

Once you get this working you may want to tweak the listener controls to make the
driving experience better. It should be possible to have a world larger than you see on the
screen, provided you set the track player option so that the player is always on a visible
part of the screen.

Try implementing a two-player mode, and have the other player car have a listener
that’s controlled by some letter keys, such as VK_S and so on.

Exercise 18.10: Feeding

Make a game in which you can feed the critters. One approach would be to have a player
who scatters new cCritterFood when you press, say the left mouse button. Basically the
player could be like a cCritterArmed that shoots bullets that don’t move. In fact cCritterFood
could be a child of cCritterBullet. And maybe in your feeding process you are trying to lure
the critters into a pen. Like catching chickens.

Exercise 18.11: Flocking

Make a cCritterBoid class and give its members a cForceClassFlock force which makes
the ‘boids’ do the following.

• Collision avoidance: avoid collisions with walls and nearby flockmates.

• Velocity matching: attempt to match velocity with nearby flockmates.

• Flock centering: attempt to stay close to nearby flockmates.

Now for a few words on each of these behaviors.

• Collision avoidance: each boid keeps track of some optimal cruising distance that
it would like to maintain between itself and its nearest flockmates. If a boid’s nearest
visible neighbor is at a distance less than this cruising distance, then the boid is in
danger of colliding with its neighbor. The boid avoids the collision by slowing down if
the too-near neighbor is in front of the boid, and by speeding up if the too-near neighbor
is behind the boid.

Interesting worlds 329

As well as trying not to get too close to the nearest neighbor boid, a boid also
tries not to get too far from the nearest visible boid. That is, if you’re a boid and the
nearest visible neighbor boid is farther than the optimal cruise distance, you speed up
if that boid’s in front of you, and slow down if it’s behind you.

Note that these adjustments to cruising distance are done solely by changing the
boids’ speeds, rather than by changing their direction vectors. The phrases ‘in front
of’ and ‘behind’ for boids are used to stand for computing the angle between a boid’s
direction and a given object and deciding if the angle is within a specified range.

• Velocity matching: each boid tries to fly parallel to its nearest neighbor. This is done
by adjusting the boid’s direction vector to match the direction vector of its nearest
neighbor. This does not change the boid’s speed.

• Flock centering: each boid tries to be surrounded by other boids on every side. This is
done by having each boid compute the average position or centroid of the other boids,
and try and move towards the centroid. To do this, a boid computes the unit vector
that points towards the centroid, and then turns its own direction vector to match this
unit vector. This does not change the boid’s speed.

Here’s some pseudocode for the process.

--------------------Boid Motion Algorithm--------------------

Boid Motion:

BEGIN

// Avoid the walls

IF (The world is in walled mode and you are within

NearWallDistance pixels of a wall)

THEN (Add to Direction components of size VeerWeight

pointing away from the walls that are too near);

// Copy your neighbor.

Do Collision Avoidance and Velocity Matching with Nearest Boid;

// Head towards centroid of the Boid positions.

Direction = Direction + CenterWeight * ToCentroid;

END

To make the process work, we actually need to compute some kind of weighted
average of the four actions: avoid wall, avoid hitting closest neighbor, match neighbor,
head towards flock center.

More information can be found off the page on the author’s website dealing with
his Artificial Life Lab program: www.mathcs.sjsu.edu/faculty/rucker/boppers.htm.
And, above all, see Craig Reynolds’s wonderful Java-based boids pages at
http://www.red3d.com/cwr/boids/

Software Engineering and Computer Games330

19More ideas for games

19.1 Commercial games

Once you start working on writing even a simple computer game, you get a new
appreciation for what goes into commercial arcade games. Even the crudest,
oldest games can have an incredible playability factor. It’s not about animated
texture-mapped three-dimensional characters, it’s about game design. While
your game is in the early design stages, spend some time playing a similar arcade
game – and look at some arcade games again when you do your final tweaks.

It’s not necessarily convenient to go out to a game arcade, and there aren’t
all that many of them left anymore, but many classic arcade games can be
played at home.

Emulators

An emulator is a shareware software package that allows your computer to
emulate old arcade video games. One of the best-known emulators is MAME,
which stands for Multiple Arcade Machine Emulator. It’s available for free
download at www.mame.net.

In and of itself, MAME doesn’t show video games, in order for it to show a
specific game, you need to provide it with the code for the game. These code
packages are called ROMs, and many arcade game ROMs can be found online.

A word of explanation about the name ‘ROM.’ Rather than having hard
drives which contain their programs, arcade games have their program code on
read-only memory chips, or ROMs. Although it looks like a piece of hardware, a
ROM is really software. The code for a given video game is gotten by extracting
the code from its ROM to get what’s called a ‘ROM image’ or simply (by extending
the meaning of the word) a ROM.

Although emulators such as MAME are legal, ROMs are illegal unless either
you own the game program in question, or the ROM has been made public
domain. The ROMs for most arcade games are copyrighted software still belong-
ing to video game companies such as Williams, Midway, Bally, and CapCom.
This means that most ROMs you can find on the web are in fact illegal, pirated
code. So be careful only to download legal, public domain ROMs and, above all,
don’t get involved in redistributing illegal ROMs.

This said, all of the classic arcade computer games do exist as illegal ROMs.
Having seen some of these ROMs running on the machines of less scrupulous indi-
viduals, the author can say that they’re quite inspiring fodder for a game developer.

To run an arcade game emulation by using MAME follow these steps.

• Download the MAME emulator in zipped form from a site like www.mame.net.

• Unzip the emulator into a directory like c:\mame.

• Download some ROMs in zipped form, being sure only to get legal, public
domain ROMs.

• Don’t unzip the ROMs; simply copy them into the roms subdirectory which
the MAME unzip will have put into its mame directory.

• Get a DOS prompt in the c:\mame directory. To load a ROM game, run a com-
mand of the form mame [ROMname], for instance mame somepublicdomaingamename.

• The game will run in a DOS full-screen mode.

• Usually the arrow keys move the player and the Ctrl and Alt keys act as the
game buttons for actions like firing. You can get additional info about the
controls by pressing Tab.

• Esc will exit a MAME game.

Game consoles

If you own a game console, take some time to closely study how your games
work. Think about dimensionality, about viewpoint, about the listeners, and
about the forces and the artificial intelligence that controls the game critters.
Think about the graphics: about the background and foreground, about the
resolution, and about the lighting. Now that you know a bit about programming
games, you may well see things in a new light.

An inexpensive way to get to look at some reasonably low-level games is to
get hold of one of the various Nintendo GameBoy machines with a cartridge of
the classic arcade games.

Online games

A third way to look at arcade games is to search the web for online games, some
of which are written in Java and some using alternate tools such as Shockwave.
You might think these games wouldn’t run fast enough, but many of them are
quite good. Keep in mind that the actual computation is being done client-side
on your machine by the downloaded Java applet or Shockwave code. The URLs
of online games change so rapidly that it’s not a good idea to try and list them
here. As usual, using a search engine is the way to go.

19.2 The Pop Framework games hall of fame

Here are the names and concepts of some of the computer game projects that
student teams have done using earlier versions of the Pop Framework in the
author’s software engineering class over the last few years. Almost all of these

Software Engineering and Computer Games332

games are two-dimensional games, because only with Fall, 2001, did the Pop
Framework begin to offer support for three-dimensional games. In the two-
dimensional games, the user is normally looking down at a world from above,
moving the player critter with the arrow keys or the mouse, similar to the
games Asteroids or PacMan.

They’re listed here in chronological order. Virus-checked executables and
help files (but not the source code) for some of these are available online at the
book website. If you make a game project with the Pop Framework that you’re
proud of, check on the book website to see about posting it there.

Fall, 1999

Body Defense. Germs fall down the screen shaped like an artery, and the player
shoots them with an inoculation gun. Beautiful graphics, but a bit weak as a
game, in that the player has only one degree of freedom in left/right motion. So
it’s a little too close to Space Invaders.

Brick Bugs. Player pounds a way out of an encircling wall of bricks, while
little brick bugs shoot things. Numerous kinds of brick bugs; meaner ones are
attracted by the ‘noise’ of the player pounding away bricks (which disappear
after a few hits as in the arcade game Breakout). An original idea.

More ideas for games 333

The Brickbugs game

Garden. Player feeds plants with water and tries to protect them with poison
spray from attacking bugs. Water and poison sources are on ladders on either
side of the screen. This was one of the first projects to use animated sprites.

Grammar. Player picks a floating disk with the correct word to complete a
sample sentence. An effective educational game based on PickNPop.

Software Engineering and Computer Games334

The Garden game

The Grammar game

Lunatic. One of many Spacewar-style shooting games. Player’s vehicle takes
on varying properties as different enemies attack.

Olympod. Car racing game in which cars go around on an oval track and the
player needs to back up if a car runs off track. The cars use the ‘sniff’ method to
look at the background pixel color at their location so as to detect when they
have run off the track.

Paratrooper. Player jumps out of a helicopter moving across the screen, must
shoot or avoid birds on the way down, tries to land in a rowboat at the bottom.
Cleverly done.

Safari. Player rides in a jeep on a road going across the screen. Multiple
screens. Player ‘shoots’ a camera to send light bulbs out to ‘capture’ critters that
move by. A non-violent spin on a shooting-type game.

Shepherd Boy. Player herds sheep around, who are repelled by him, tries to
herd them into a pen. Wolves come to eat the sheep, player can throw rocks at
them. Good physics and playability in this one.

More ideas for games 335

The Shepherd Boy game

Spring, 2000

Airstrike. A game like Spacewar, enhanced by having some moving clouds in the
sky and by having critters explode into fragments when you shoot them. The
bitmaps aren’t handled very well here, that is, the background bitmaps are so
intense that its hard to see the critters on top of them.

Amazing Mouse. A game like PacMan, with the player as a mouse eating
pieces of cheese, and the enemies as cats. Each piece of cheese (or food-pellet)
was a critter, the speed was kept high by not checking collisions for the cheese
critters.

BB Rampage. A game that’s actually ‘two- and a-half-dimensional,’ that is,
it’s a two-dimensional game laid out to look three-dimensional. Player uses a
variety of weapons to kill off cute dolls that have taken over their factory and
run amok. Player must also press buttons in a certain order to turn the machinery
off. Quite professional in execution.

Deer’s Revenge. Player is an armed deer critter shooting at hunters. The world
is larger than a single screen, and the background scrolls to keep the player
in the center. Icons are animated, and they change appearance to match the
motion direction of their critters. Both of these features were big achievements
at the time, as player-tracking and animated icons weren’t yet built into the
Pop Framework.

Labyrinth Roller. Interesting game modeled on the wooden Labyrinth game
in which player tilts the board this way and that to lead a heavy ball through a
partially walled maze without falling into pitfall holes (see Exercise 18.8).

Software Engineering and Computer Games336

The Amazing Mouse game

More ideas for games 337

The Deer’s Revenge game

The Labyrinth Roller game

Pixie Quest. A three-level game based, like many other projects, on the Pop
Framework Spacewar game. Beautiful background bitmaps make this game a

stand-out, and rather than shooting bullets, the player is spreading pixie dust to
neutralize opponents like wasps and bees.

Treasure Hunt. A multiple level game where player first gets past a wave of
attacking fish, then lands on an island and avoids tigers by shooting them until a
barrel of gold is found. Shooting an elephant by accident reduces player’s score.

Fall, 2000

City Hunter. A world larger than one screen. Player moves around, looking for
enemies to shoot, sometimes hiding behind tree and house critters when the
enemies shoot back. There is a moving car critter the player can jump into and
drive.

Climber. Player is climbing up an office building. The windows keep opening
with critters throwing objects out. Player must avoid the open windows and the
falling debris, which included typewriters and pianos! This is nice. It’s really a
kind of vertically oriented side-scroller.

Dash 2000. A car-driving game with a track shaped to go all around the
border of a map of the United States. The sniff method was used to detect going
off the track. There was some difficulty getting the view to zoom in, though
this should be possible now with the latest Pop Framework.

Four Pieces of Fate. An Egyptian-themed game with four levels. On each level
the player picks up a key, avoiding enemies and moving among walls.

Software Engineering and Computer Games338

The Pixie Quest game

More ideas for games 339

The Climber game

The Four Pieces of Fate game

LifeSaver. A tank game where player uses the arrow keys to drive a tank
around a world you view from above. In the world are other tanks and walls.
They shoot and player shoots back, aiming the gun with the mouse. There are
health-packs and an imprisoned critter to be rescued. Second level player is in
the water in a submarine, doing the same kind of thing.

Pinball. A pinball game with several levels. These students got the physics
of the flippers to work correctly, which was a non-trivial task. The game still
doesn’t quite nail the problem of making a really good pinball game.

Robonator. An impressive game with scads of animated icons. Little robots
attack relentlessly as player moves from board to board, using arrow keys to
move and mouse click to shoot. Inspired by Robotropolis.

Soccer. Two five-man soccer teams fight it out. The user’s control shifts
to whichever of the onscreen players is closest to the ball, which is an inter-
esting solution to the problem of how to control a team of players – shift the
listener to whoever has the ball! User has the option to dribble the ball along
or to kick it.

Software Engineering and Computer Games340

The Pinball game

More ideas for games 341

The Robonator game

The Soccer game

Spring, 2001

Alien Invaders. A game similar to the arcade game Defender. Player is limited to
the left half of the screen, and shoots to the right. Enemy critters stream in
from the right. The game has a moving star-field background, regenerated by a
series of little Line calls for each update.

Foosball. A nice game modeled on the physical Foosball game. This is a game
with sliding rods and plastic soccermen mounted on them. Player moves the
rods, trying to make the soccermen block a ball from going into the goal. A
major weakness is that the player can’t ‘spin’ his rod to make his players kick,
they act only like blocks.

Lost Crown. A nice side-scroller game in which player collects treasure and
avoids monsters.

Triangle Stacker. A game similar to Tetris, using triangle-shaped pieces. Why
not do real Tetris? Students are discouraged from doing the real Tetris game, as
the code for this is so well known. This version isn’t quite as solid as it could be,
though.

Fall, 2001

3D Blaster. An enhancement of the Defender3D game. You fly your player
forward for quite a long time, with waves of different kinds of enemies coming
at you. In a way, the game is a kind of first-person-shooter sidescroller. Slightly
rough in appearance, but runs at a good speed. An effective 3D experience.

Software Engineering and Computer Games342

The Foosball game

More ideas for games 343

The Lost Crown game

The 3D Blaster game

Software Engineering and Computer Games344

AntiVirus. A well-crafted maze game where player tries to kill off enemy critters
on a series of levels. Interest is added by the fact that you have different colored
power-levels, selectable by an extra toolbar.

Bermuda. A basic Game Stub-type game with shooting enemies, power packs,
and walls. World is larger than the visible screen, and is themed with marine
bitmaps.

3D Jewel Hunter. An OpenGL view of a two-dimensional maze game, with
three-dimensional creatures in it. The power-packs are spheres and, which is
what makes this project impressive, the enemy critters are animated 3D mesh-
shapes covered with graphical texture ‘skins.’ The shapes and skins are read in
from standard Milkshape 3D files [a recent address for the shareware Milkshape
3D modeler’s home page was http://www.swissquake.ch/chumbalum-soft/, and if this
no longer works, search for ‘Milkshape 3D.’] This is one of the few projects for
which we’ll place the source code on the book website.

The 3D Jewel Hunter game

More ideas for games 345

The AntiVirus game

The Bermuda Triangle game

Ghostcastle. An excellent copy of the classic came Star Castle. Player shoots
at a central mother ship that’s surrounded by three rings of walls. Each of the
wall-rings is an octagon made up of eight cCritterWall objects. The walls are
kept rotating by a cForceVortex.

GoFishing. An original game idea. You move the player back and forth along
the top edge of the screen, and use the Up/Down keys to lower and raise a
fishing line. In the ‘water’ that fills most of the screen are fish and crabs. If a
crab touches your line you lose a health point. If the hook at the end of your
line touches a fish, you catch the fish and get a score point. Program has a bug
that occasionally sets the crabs to multiplying uncontrollably.

TequilaWorm. A maze game inspired by Slithereens. Your player moves about
in a maze trying to eat (from the tail-end first) some enemy worms. The worms
are constructed as in the Pop program Worm game, as critters linked together
by rod and spring forces. A good job.

Software Engineering and Computer Games346

The Ghostcastle game

More ideas for games 347

The Go Fishing game

The Tequila Worm game

Spring, 2002

3D Bug. Based on Defender3D, but you aren’t riding the player. You use a cross-
bow to pop bubbles which contain bugs (bad) or butterflies (good). These flap
over to a row of trees behind you, either eating the tree or producing fruit. Each
critter has a ‘brother’ critter that acts as its shadow; the shadow critter copies its
brother’s (x,y,z) position, but sets y (which is ‘up’ in this world) to the low
value of the border box.

3D Rat Race. Based on the GameStub with a cGraphicsOpenGL view to give a 3D
effect. A maze-style game. The player has a nice-looking rat-like cSpriteComposite

icon made up of circles and triangles. There are enemy birds that have their
_spriteattitude set with a z-axis component that makes them appear to float
above the board (even though their collisions are still computed as if they were
down on the board with the other critters). The enemy birds have composite
sprites consisting of a body and two wings, with the notable feature that the
animate method adjusts the wing _spriteattitude matrices so as to make the
wings flap.

Software Engineering and Computer Games348

The 3D Bug game

JumpSport. A side-scroller with moving platforms that your player hops onto.
Nicely executed with attractive backgrounds.

More ideas for games 349

The 3D Ratrace game

The Jump Sport game

KillTime. A simple level-based 2D game with lots and lots of enemies chasing
you. Tweaked for good playability.

Pop Rally. A car race game using the waypoint technique to enable the rival
cars follow the track. (see Exercise 7.8) The player is kept on track by walls with-
out having to use the sniff method.

Software Engineering and Computer Games350

The KillTime game

The Pop Rally racer game

Smart Cat. A maze-style game with dogs chasing the player cat which chases
mice. Nice animated icons.

More ideas for games 351

The Smart Cat game

Part II

Software Engineering and
Computer Games Reference

Overview

This part of the book covers background topics that will be useful for working
with the Pop Framework and for making your own projects. Look over the table
of contents to get a general idea of what’s in here, and then use the sections as
you need them.

20Using Microsoft Visual
Studio

20.1 Navigating with Windows Explorer

In order to make this book as helpful and self-contained as possible, we’re going
to include some information that many readers will already be familiar with.
This section is a prime example of something you may already know: it’s about
how to look at files and directories in Windows. Feel free to skip it.

Windows Explorer is a tool for exploring the files and directories on your
hard disk and on your local network. It has nothing to do with the bundled
web browser that Microsoft calls Internet Explorer. The similarity of the two
names may well have been part of the Microsoft strategy to tie Internet Explorer
to the Windows operating system and ‘cut off Netscape’s air-supply,’ as one
Microsoft exec put it in the 1990s. Note also that the exact name ‘Windows
Explorer’ varies among the different versions of Windows.

Opening Windows Explorer

When you left-click the Start menu you find on your Windows taskbar, you get
a structured menu that has a partial listing of the programs that are on your
machine. The Windows Explorer utility can be found under the Programs selec-
tion of the Start button. A common way to talk about this is to write a vertical |
to indicate a step down to a lower menu level. So what we’re saying is that the
utility we’re looking for has a name like Start | Programs | Windows Explorer.

If you have a Microsoft-style keyboard with the special Windows Logo Key
on it, you can very quickly open Windows Explorer by the key combination
Windows Logo Key + E.

An alternate way to access Windows Explorer is to put a permanent shortcut for
it on your desktop (or toolbar). You can do this by opening the Start | Programs

menu and right-dragging Windows Explorer to the desktop (or to the toolbar)
and then choosing Create Shortcut Here from the context menu that pops up.

Viewing and opening directories and files

Anyway, once you start Windows Explorer, it opens up a Windows Directory
window which may either be in the Classic Style view or the Web Style view; you

can select between these on the View | Folder Options | General controls. You can
also choose a mix of the two called Custom, and adjust this using the Settings
dialog. You can really customize the Explorer view quite extensively. It takes a
certain amount of playing with it to find the settings you like the best. Some more
of these are under View | Folder Options | View menu of the Windows Explorer.

In any case, Windows Explorer will show you two panes: in the left will be
a list of directories; on the right will be a list of the directories and files in the
directory that’s currently selected on the left. You use the left pane to navigate
to the directory you are interested in.

The right pane shows the files in the directory, when they were last changed,
and what their size is. That is, it will show all this information assuming that
you check the Windows Explorer menu option View | Details. You should also
make sure that the box labeled Hide File Extensions for Known Types is not checked,
as it is useful for a programmer to see the file extensions. This box will be in a
submenu or dialog, depending on which version of Windows you have.

If you click on one of the files in the right window, Windows will try to
‘open’ the file. Traditionally a double-click was required. If you do a lot of pro-
gramming, double-clicking can get quite tiring, even to the point of promoting
repetitive stress disorder, so it’s really worth avoiding having to do it. Explorer
will be set so that a single-click activates a file or opens a directory if you are
using the Web style view. If you are not using the Web style view, you can still
open files with a single-click by selecting View | Folder Options | Custom Style

and then clicking the Settings button to get to a dialog where you can choose
single-click instead of double-click.

If the file is an executable, ‘opening’ it means running it, while if it is a text
file it will be opened up in an application like WordPad. If the file is source
code, Windows is likely to start a session of your compiler and open the file up
inside of that. If Windows doesn’t know what application to use to open the
file, it will ask you what to do.

Copying directories and files

Windows Explorer is also useful for creating new directories. If you right-click
in the right-hand part of the window you get a menu in which you can select
New, and then you can select Directory and name the new directory. Or you can
use the File | New | Directory selection from the Windows Explorer menu.

Note that you can repeatedly open Windows Explorer sessions (for instance
by repeatedly pressing Windows Logo Key + E), so that you can have several of
these windows open. Generally it’s convenient to keep one or several Windows
Explorer sessions open at all times. You can minimize them into your task bar
when not using them.

You can use the Explorer windows to move or to copy files. You can move a
file by dragging it from one Explorer window to another. If you want to copy a
file without removing it from the source directory, hold down the Ctrl key
while you do the drag. A less stressful method is to select the files to copy or
move and to then use the keyboard shortcuts Ctrl+C for copy or Ctrl+X for cut
in the source directory, followed by Ctrl+V for paste in the target directory.

Software Engineering and Computer Games Reference356

There are other methods as well. For the sake of your body, you should try to
learn to do what you want in the least physically stressful way.

Avoiding a Visual Studio gotcha

When you are working on a project, you should maintain an Explorer window
that shows what is in the directory where you are keeping your source code.
This is so you don’t lose track of which files you are working on. Make sure you
can see the time and date stamps for the files, and reassure yourself that these
match the time and date when you are doing the changes.

In Microsoft Visual Studio the ‘Solution Explorer’ window (Workspace
window in Version 6.0) does not show the directory paths of the files you are
working on, so if you’re not careful you can end up editing the wrong copy of a
file, especially if there are several copies of the files with the same name.

If you open your files with the File | Open | File... dialog [which is just File |

Open... in Version 6.0], you will in fact see a directory path name in the top of the
dialog, but it’s quite easy to overlook this information. And it sometimes happens
that when you ask Visual Studio to open a file it will by default go to the most
recently used directory rather than to the directory where your active project lives.

One bad thing that can happen is that you keep changing code and the project
keeps building without errors, but the behavior never changes: this is because you
are editing files in a different directory from the directory you are building from.

A different bad thing that can happen is that, after working in Visual Studio for
a while and closing it, you may think that the files you just worked on are in, say,
C:\MyProject\Version1, when in fact all along they were in J:\Program Files\Hidden\Bogus\

Version1, and when you copy the files from the first directory to hand in for your
homework or to share with a friend, you find you’ve copied the wrong thing.

As with most programming mistakes, everyone does this at least once. The
secret of becoming an expert programmer is to grow and to learn, so that you
don’t make the same mistakes over and over again. And keeping an Explorer
window open onto your project code helps make this error less likely.

20.2 Which version?

One key part of a project’s software requirement is deciding which operating
system you want to develop for, and which compiler you are going to use.

It is customary to develop any substantial program within a graphically
interfaced environment where you select your compiler and linker settings
from dialog boxes, edit your code with word-processing tools, and edit your
resources with graphics tools. An IDE (Integrated Development Environment)
is also expected to have online help and a full array of debugging tools.
Sometimes people also call an IDE a compiler, though really it’s more than that.

We are going to write code which can be used to build programs for the
ever-more-numerous Microsoft Windows platforms: Windows 95, Windows 98,
Windows NT, Windows 2000, Windows Millennium Edition, Windows XP, and
so on.

Using Microsoft Visual Studio 357

Which compiler?

In order to build the kinds of Windows applications we’re going to discuss, you
need a C++ compiler which has libraries for implementing the many special
Windows functions. These special functions are called the Windows API.
The standard compiler for this purpose is the compiler from Microsoft, which
their marketeers have variously called Visual C++, Visual Studio, and Visual
Studio.NET. Visual Studio.NET can also be called Visual Studio, Version 7.0.

Various smaller companies give Microsoft some competition in this market,
but the Microsoft compiler has overwhelmingly become the industry standard.
If you’re serious about wanting to write Microsoft Windows programs you
should use the Microsoft compiler. Writing Windows programs is not the place
for anti-monopolistic scruples. The competing compilers tend not to be so
well tested and supported as is Visual Studio. And if you ever want a job as a
Windows programmer, it’s going to be Visual Studio your employer expects you
to know. Time spent wrestling with other manufacturers’ compilers for the
Windows platform is time down the drain.

Visual Studio versions

Microsoft often releases different versions of Visual Studio at different price
levels. Sometimes the less-expensive packages will in fact be an older release;
you need to look at the fine print on the box to see what’s actually in there. For
the purposes of the code in the Pop Framework, any version from the older
Version 6.0 or the newer Version 7.0 (also known as Visual Studio.NET) is
acceptable. If you are working with a team, you will improve your code com-
patibility by all using the same release.

One issue to keep in mind is that Visual Studio.NET makes more hardware
demands upon your machine than does Visual Studio, Version 6.0, so it may
not be possible for you to run Visual Studio.NET until you eventually get a
more powerful computer.

Visual Studio.NET is marketed in the following increasingly expensive
editions: ‘Academic,’ ‘Professional,’ ‘Enterprise Developer,’ ‘Enterprise Architect.’
For the purposes of working with the C++ code of the Pop Framework we
discuss in Software Engineering and Computer Games, all of these editions are
equivalent. In particular, note that the Academic edition is exactly the same as
the Professional edition, but with some additional sample code. The Enterprise
Architect comes with some UML modeling tools that could be useful. The
Academic version may only be readily available at college and university book-
stores to students with valid student IDs.

[Visual Studio 6.0 was marketed in a ‘Learning’ version, a ‘Professional’ version,
and an ‘Enterprise’ version. Here the Learning version was ‘crippled,’ that is, it
lacked two commercially important features. (a) The Professional and Enterprise
versions included more code optimization features, so that you could better instruct
it to build a faster, or smaller, version of your program. And (b) the Professional
and Enterprise versions allowed you to build programs with either the static
MFC library or the dynamic MFC library, while the Learning version only offered

Software Engineering and Computer Games Reference358

the dynamic MFC library. The ability to use the static MFC library has the effect
of making programs able to run on a wider range of Windows platforms. We’ll
explain more about this point later. Feature (a) is important if you write a program
where you want to get as much speed as possible, and feature (b) is important if
you plan to give (or sell!) your program to others, or plan to run it on a variety
of machines. Note again, however, that in the case of Visual Studio.NET, the
Academic edition does have both feature (a) and feature (b), in other words the
Visual Studio.NET Academic edition is not crippled.]

All this varies from release to release and from year to year, so you may need
to study the fine print on the box to be sure exactly what you’re getting.

At commercial software stores there is a substantial (hundreds of dollars)
price difference between the different versions of Visual Studio. It may not be
worth the extra money to get anything other than the least expensive version if
you’re just starting to learn programming.

Another factor to be aware of is that, as mentioned above, many college and
university bookstores sell lower cost versions of Visual Studio. The Academic
version of Visual Studio.NET seems at this time to be a good choice in terms of
being a complete and non-crippled package. But if your store has a higher-end
version for the same or only a bit more money, you may want to get that.

Another option available at some college or university bookstores is for
registered students to rent the install disks for some version of Visual Studio for
a few days at some fairly low price, with the understanding that the rental gives
them a Microsoft-authorized license to install and register the software on a
computer.

Microsoft Foundation Classes

As well as being a C++ compiler, the Microsoft Visual Studio includes a special set
of classes called the MFC. The purpose of using these classes is to make it easier
to develop full-featured Windows programs. We’re going to use MFC in all the
programs in this book. In principle we could avoid using MFC, but MFC makes the
programmer’s life a bit easier and gives you a bit more leverage over the code.
Code size is isn’t as much of an issue as it used to be – at least not for personal
computers. Of course if you were to write a game for a very small platform such
as a cell phone, then you’d need to strip things down as much as possible. And
some game companies prefer not using MFC because they perceive it as adding
unnecessary complexity.

Speaking of MFC, note that Microsoft allows competing compiler manu-
facturers to distribute the MFC libraries and documentation, so theoretically you
can also make MFC Windows programs with a non-Microsoft compiler. But, as
already mentioned above, this isn’t a wise investment of your time and energy.

Dealing with change

Deciding which compiler and which libraries to use is something that can be
debated very intensely at the beginning of a team software project. A reality is that

Using Microsoft Visual Studio 359

people are usually going to push to use the compiler that they are familiar with.
If you need to switch to a new compiler or a new version, do it quickly and
quietly instead of wasting energy fighting the inevitable. It’s not necessary to be
the first to upgrade to the new version of Visual Studio as soon as it comes out,
as it will be buggy. But some six months after the first release of the compiler,
the customary Service Patch 1 will be out, and the worst bugs will be fixed. This
is the time to upgrade and get it over with for a year or two. Always remember
that change is a fact of life in software engineering. Being a software engineer is
like being an athlete who has to continually train to stay in shape.

At some point in your programming career you will not only have to switch
compiler packages, you’ll have to switch to a completely new operating system
as well – maybe Linux will take over next, or maybe something else. The best
strategy is to get to work and just do it. When switching compilers or operating
systems, try and find a person you can talk to face to face and ask the inevitable
‘dumb questions’ that somehow fail to be addressed in any of the available
documentation. A fair amount of software engineering knowledge seems to be
transmitted orally, rather than being communicated in any written form.

Remember that if you act enthused about the change rather than resentful or
depressed, people will be more likely to help you. People who resist and grumble
about change are correctly viewed as losers. The essence of being a software
engineer is this: grow or die.

Visual Studio, Version 6 versus Visual Studio.NET, Version 7

The author has worked a fair amount with Visual Studio.NET, Version, 7.0 now,
and would like to advise the reader that there is in fact no pressing need to
switch to this product from Visual Studio, Version 6.0.

First and foremost, Version 6.0 is more stable. As of spring, 2002, one can
expect any prolonged session with Visual Studio.NET to end in a crash. This is
because Version 6.0 has been out for a long time and now has five service
patches. Once enough service packs for Visual Studio.NET are available, it too
will be stable.

Visual Studio.NET lacks some nice features that came with Version 6.0. In
particular there is no Profiler. And, to the author’s eyes, the .NET Properties
dialogs for resources aren’t as nicely designed, nor do they include as much
useful help. But switching to .NET is inevitable.

A galling negative about Visual Studio.NET is the following gotcha. Any exe-
cutable built with Visual Studio.NET must be able to find the oleacc.dll file on the
host computer, or it will not run. And, unlike the situation with the MFC libraries
that you can link in, linking in the oleacc.lib to your project file will not remove
this problem! Older machines don’t have oleacc.dll, and your executable won’t
run on them.

The oleacc.dll has to do with ‘Object Linking and Embedding Access.’ This file
will be on computers with newer versions of Windows, and on computers with
older versions of Windows that have appropriate upgrade patches installed. You
won’t have a problem on newer machines.

Software Engineering and Computer Games Reference360

Given that the Pop framework doesn’t use OLE, it’s annoying to have the
Visual Studio.NET compiler produce an executable that demands it. In a few
years, this problem won’t matter much, because by then there won’t be
many machines left with old, unpatched versions of Windows. But for now,
if you want to distribute an executable that will painlessly run on everyone’s
Windows machines, build it with Version 6.0, and not with Visual Studio.NET.

20.3 The Visual Studio user interface

If you haven’t done so yet, use Windows Explorer to find the Pop code, and
click on the pop.sln file to start up Visual Studio if you are using Visual
Studio.NET [or the pop.dsw file if you are using Version 6.0].

Note that Appendix C summarizes information about specific Visual Studio
controls in Visual Studio.NET, Version 7.0, and Visual Studio, Version 6.0.

Appearance of the interface for Visual Studio.NET, Version 7.0

You’ll see several windows inside the Visual Studio window, as illustrated in
the screenshot. The largest window is a Document window for showing your
code. There will eventually be tabs along the top of this window with one tab
corresponding to each code file that you have open. We’ll refer to a horizontal
(or vertical) bar upon which tabs rest as a tab group.

Using Microsoft Visual Studio 361

The new Visual Studio.NET

There will probably be an Output window near the bottom, where you
can view such things as compiler and linker messages. If this window isn’t
immediately present, it will appear once you build your code. Or you can open
it with View | Other Windows | Output Window.

Other windows may also appear near the bottom of the screen. And there
will be a tab-select bar along the bottom of the screen with tabs in order to keep
track of which of these windows is currently ‘on top.’

There may also be a number of windows along the right- or left-hand side of
the main window. The View menu will open up more of them.

The multiple windows along the edges are attached to vertical tab groups,
one on the left and one on the right.

The tabs on the vertical tab groups shrink to button size when their asso-
ciated window is not the active window. You can change the active window
on a vertical tab group by moving your mouse over the buttons on the tab
group.

On the horizontal tab groups at the bottom and top of the screen, you
select a window by clicking on its tab rather than simply moving the mouse
over the tab.

Each of the windows along the sides and bottom of the Visual Studio.NET
interface has a ‘pushpin’ button that you can use to either make the window
stay open (pin pointing down) or to have the window only appear when you
move the mouse over the window’s tab in the toolbar (pin pointing sideways).
The document viewing windows don’t have the pushpin feature.

One special window you generally want to have open is the Solution
Explorer, which makes it possible to easily access your code and to change the
project settings. Use View | Solution Explorer in order to open this window so we
can investigate some of the files in the Pop framework.

[Appearance of the interface for Visual Studio, Version 6.0]

[You’ll see two or maybe three windows inside the Visual Studio window. On
the upper left will be the Workspace window, on the upper right will be a
Document pane where you can view help files or source-code files, and on the
bottom there may be an Output window where you can view such things as
compiler and linker messages. You can also open and close these two windows
by using the View | Workspace and View | Output menu selections.

The Workspace and Output windows are usually ‘docking’ windows, meaning
that they stay stuck to the sides of your main window. (Windows that aren’t
docked are called ‘floating.’)

The Workspace window has three tabs at the bottom, so you can select the
Class View, the File View, or the Info View. The first shows the structure of the
classes used in your project, the second shows the files, and the third shows a
list of the Microsoft help books currently available to you.

Click on the File View tab of the Workspace window so that we can investi-
gate some of the files in the Pop Framework.]

Software Engineering and Computer Games Reference362

Toolbars

There will be one or several toolbars at the top of the Visual Studio window.
Sometimes Visual Studio may open up more toolbars than you want, thus eating
up too much of your screen area, so you may want to close some of them down.
You can control which toolbars are visible by right-clicking in the toolbar area
and checking or unchecking various boxes.

Exploring the project files

Suppose now that you are looking at the Solution Explorer window in Visual
Studio.NET [or at the File View of the Workspace (Version 6.0)].

Whenever you see an entry with a plus sign next to it, that means you can
click it to see more. You’ll see source files, header files, resource files and some
free-standing *.wav sound files.

Look into the source and header files folders. Whoah! There’s so many of
them! How are you ever going to learn to use MFC and the Pop Framework?

Stay calm. Don’t panic. In order to build on other people’s code you need to
be comfortable with a certain level of ignorance. You need to accept that the
Pop Framework has given you this big stack of files and you may never get
around to looking at all of them. This is a typical situation when you go

Using Microsoft Visual Studio 363

The tried and true Visual Studio, Version 6.0

to work at a company with an established code base. In the case of the Pop
Framework, most of the files don’t directly impinge on your near-term goal of
building your own computer game project.

To get a quick overview of what the files are like, try double-clicking on a
few of them. This opens them up in a text-editor in the document window, and
you can scroll through them. One file worth looking at is ReadMe.txt, which has
some short descriptions about what the special MFC files are all about. But at
this point these short descriptions won’t make much sense to you.

Sometimes you need to have *.obj or *.lib files as part of a project, for
instance to support OpenGL or to support sound. We don’t include these files
in the File View. Instead we select the project and use the View | Property Pages...

| Linker | Input | Additional Dependencies line [this is the Project | Settings... | Link

| Object/Library Modules box in Version 6.0.]
One bad feature of the File View that you see in Solution Explorer [or in the

File View of the Workspace pane (Version 6.0)] Studio Workspace window
is that it doesn’t state the directories where the files listed live. This can be
dangerous if you have several versions of a file with the same name, as you can
easily include a file from the wrong directory.

In Visual Studio.NET, you can check the directory for a file by highlighting
it and using View | Properties Window to look at the Full Path field. Note that
you don’t want to use View | Property Pages to view the Full Path; the similarly
named Properties Window and Property Pages are different dialogs.

[In Version 6.0, there is only one kind of Properties dialog for a file and
it has a File Name field that shows the path. You can open this dialog by right-
clicking the file and selecting Properties from the little menu that appears, or by
pressing Alt+Enter. Note that in Visual Studio.NET, these actions will open
Property Pages but not Properties.]

Output window messages

Once you’ve taken a look at some of the files which come with the Pop Frame-
work, use the Build | Build Pop.exe selection to build Pop.exe. As the file builds
you’ll see a few messages down in the bottom of the screen in the Output pane
that look something like the following. Depending on the processor speed of
your machine and, more importantly, on how rapidly your machine can write
intermediate files to its hard drive, the full build might take anywhere between
a few seconds or several minutes.

Here’s a copy of the output generated a while back, by building Pop version 21.

------------------Configuration: Pop – Win32 Debug------------------

Compiling resources...

Compiling...

StdAfx.cpp

Compiling...

biota.cpp

ChildFrm.cpp

Software Engineering and Computer Games Reference364

colorstyle.cpp

[Lots more file names come here...]

Compiling...

VectorTransformation.cpp

Generating Code...

Linking...

Pop 21(Debug Build).exe – 0 error(s), 0 warning(s)

Yay! 0 errors, 0 warnings is what you want to see.
If this doesn’t work for you, look at the Correcting Compiler and Linker Errors

subsection 20.5 below. If this does work for you, use the Build | Execute Pop.exe

selection to get the program to run.

20.4 The Visual Studio help files

As well as special types, Windows MFC programming uses a lot of special
classes, all of whose names start with uppercase C. There are scores of these
classes, and they own perhaps thousands of function methods, and every time
Windows is upgraded more of them are born.

A quick way to find help on some particular Windows expression such as a
class or function name is to click on it in your code and then press F1. Another
way is to select Help | Index and type it in. If you use Help | Search you will often
get a lot more references than are practical to sift through, but if you need some
really obscure kind of information, this is the way to go.

We should mention that, unless you have installed the documentation
from your distribution CD onto your hard drive, you will only be able to access
these reference books if the compiler package’s distribution CD is in your CD
ROM drive. If you have a lot of hard disk space and don’t want to keep the CD
in your drive, it’s really worthwhile to install the help, also known as the
‘Developer Library,’ to your hard drive.

Visual Studio.NET comes with a nice help browser called Document Explorer.
You’ll find a shortcut to Document Explorer in the main Windows popup Start |

Programs | Visual Studio.NET. The shortcut is a round blue circle with a question
mark and is labelled Microsoft Visual Studio.NET Documentation. It’s useful to
drag or copy the shortcut to your desktop for easy access.

You can still open the help inside Visual Studio with the Help selection, but
being able to access the help with a separate application is more convenient in
terms of screen-space usage. Another issue is that (at least in early releases) the
help system seems somewhat prone to crashing, so if you are running the help
off in a separate application, you are less likely to drag down your session of
Visual Studio as well.

Never try to do serious programming without having the help available.

Using Microsoft Visual Studio 365

Windows is so big and shaggy that nobody can possibly know it all. Get in
the habit of using the help a lot. Every time you use it, you’re likely to find out
something you didn’t know.

If you are on a network, the online help is only going to be available if your
sysop has installed it on the server and has correctly tweaked your compiler’s
directory configuration. If the online help doesn’t work, keep nagging your
local authorities until it does work. Let’s repeat it again:

It’s a brutal waste of time to try and program without having help available.

As mentioned above, the easiest way to find help on some particular class or
function name is to highlight it and press F1 or to type it into the Help | Index

dialog. One word of caution here. When you do Help | Search for a function
name, the bottom of the dialog will show several possible places to look for
help. If you search for ‘ellipse’, for instance, you’ll see two entries like this.

CDC::Ellipse Microsoft Foundation Class Library and Templates

Ellipse GDI : Platform SDK

And for some other keywords you’ll see more kinds of entries. The various
Microsoft Foundation Class entries are the ones we’ll be interested in here.

20.5 Correcting compiler and linker errors

What if nothing seems to happen when you try to build and run your version
of the Pop program? First make sure you can see the Output window, which is
where your compiler errors are listed. If you can’t find it, use a Windows | Other

Windows | Output to open it [Windows | Output (Version 6.0)].
Then resize the Output window so you can see what’s in there. Double-

clicking on a compiler error will call up the Source-Code window with the
cursor on the line where the error is. Locate the erroneous line and see if there’s
an obvious typo.

If not, go back and look at the error message. Read all of the error message. Think
about what it says. Believe it or not, the message is trying to help you. In its
own way, it’s saying ‘try this,’ and not just, ‘you’re wrong.’ If the message doesn’t
make sense to you, click on the error message and press F1 to get information
about it.

Go back to the Source-Code window and look at the line with the error again.
If you’re unsure about the usage of any of the API functions there, highlight
them and press F1 to get their documentation.

One thing that happens sometimes is that an error early in a code module
causes a cascade of many more error messages further down. Generally, you
should start trying to fix the errors from the beginning. If you fix a few errors
and get to errors that don’t seem to make sense, try to rebuild the program
and/or recompile the module and see if some of them go away.

Software Engineering and Computer Games Reference366

If you have an error that refuses to go away, skip over it and fix some of the
later errors if you can. Maybe while you’re working your subconscious will
figure out what was wrong up above.

Let’s repeat the key teaching we have to impart here:

When fixing an error, READ the error message and THINK ABOUT what it says.

One tends to not want to read an error message, as it’s bad news, but this is
a mistake. The message is trying to help you! An error message is not your
enemy, it’s your friend. It’s trying to save you from your own mistakes!

If you get a zillion error messages saying things aren’t found, that means
there are some files missing from your project file or from the directory where
your project lives. Not being able to find windows.h, for instance makes a lot of
errors. You may need to check that the directory setting is correct.

Sometimes when working in a lab with the compiler on a remote server, your
machine can’t find the place on the server where the standard include files live.
This may be what’s going on if you get the zillion ‘file not found’ messages.

Microsoft Visual Studio keeps the information about which directories
it searches on the Tools | Options... | Projects | VC++ Directories sheet [this is the
Tools | Options... | Directories sheet in Version 6.0]. These settings are not part
of your project file, they are part of the individual compiler installation. The
all-important Include directories setting is found by selecting Include Files in
the Show Directories for combo box on this sheet. Make sure that one of the
selections here corresponds to where your compiler has its include subdirectory.
If you are working in a lab, your compiler may be on a remote drive with a
funny letter name like K: or M:. You can use Windows Explorer to go out across
the network and find where the Visual Studio Include directory lives.

Even if you have the directories right, you will get a ‘not found’ linker error
if there is some function you prototyped but forgot to add the code for. Look at
the error closely to figure out which function is missing. The function name
will be in a ‘mangled’ format, so it can be a little hard to decipher.

Once in a while Visual Studio will get confused or lose track of what you’ve
been doing, and even though you have properly defined all of your functions, it
will say that it can’t find one of them. This can happen if for some reason Visual
Studio doesn’t realize that it needs to recompile some files. The way to fix this
situation is to use the Build | Rebuild All option to force a rebuild of all files.

Invoking Build | Rebuild All can also help if Visual Studio seems unable to
find a resource that you’re fairly sure you’ve put in place. If the rebuild doesn’t
fix things, then the problem is probably you; that is, you need to recheck what
you think you’ve done.

20.6 Release and Debug builds

In Visual Studio, you have the option of building two different versions of
your executables: the Debug or the Release version. You can switch between the

Using Microsoft Visual Studio 367

one and the other using the combo box in the Build toolbar (if this toolbar
is visible), or by using Build | Configuration Manager [this is Build | Set Active

Configuration with Version 6.0]. The default setting is for Visual Studio to build
the Debug version.

The difference between the Debug and the Release version is that the Debug
executable includes debugging information, which makes the *.exe considerably
larger.

What is debugging information anyway? Well, when you make the binary
version of a program, things like the English names of variables get thrown
away, not to mention the text of the source code. But you need to be able to get
back all this stuff if you are debugging the program.

When you debug a program it actually runs inside another program, the
debugger itself. If your program crashes, the debugger will normally highlight the
line where the crash happened. Note that programs do run a bit slower inside
the debugger. But while you are developing a program you never know when it
will crash, so it is usually best to be inside the debugger.

Ordinarily you want to build the Debug version while you are developing
the program, and once you start to distribute it to other people, you will want
to use the Release version. The reason why you want to distribute the Release
version is that (a) it will be a smaller file than the Debug version, and (b) the
Release version will run faster, sometimes as much as 30% faster.

If you look in your source-code directory after a build, you’ll notice that
there will be some subdirectories in addition to the res subdirectory: the Debug

subdirectory and/or the Release subdirectory. The res subdirectory, of course,
has the necessary resource files and was part of the source code. The Debug sub-
directory and/or the Release subdirectory are put there by Visual Studio when
you build the Debug and/or Release versions. In building these executables,
Visual Studio makes a number of intermediate files that are stored in the
corresponding subdirectories.

By default, Visual Studio will put the Debug and Release executables in the
corresponding Debug and Release subdirectories. But the author has edited the
project file so as to put the executables in the same location as the source code.

You can control the name and location of your output file by first opening
View | Solution Explorer and making sure the Pop project is highlighted and
then editing the View | Property Pages... | Linker | Output File line. [In Version 6.0,
this is the Project | Settings | Link | Output File Name edit box.] The default might
be Debug\Pop.exe, but if you want the code for the Debug executable to be with
your source, you might enter something like Pop 25_5(Debug Build).exe.

How would you change the name and location of the Release executable to,
say, Pop 25_5(Release).exe? Look at the upper left-hand corner of the Property
Pages dialog box you just opened [called the Settings dialog box in Visual 6.0].
There is a little Configuration combo box that you can set to Debug, Release, or
All Configurations. [The combo box is called Settings for in Version 6.0.] When
you switch this selection between the Debug and the Release selection, you’ll
notice that the entries in the dialog box change. Changing this combo box
changes which configuration’s settings are being shown and possibly altered by
the project Property Pages dialog box [called Settings dialog box in Version 6.0.]

Software Engineering and Computer Games Reference368

By the way, you might think that by changing the active configuration set-
ting for the combo box, you might change which configuration was being built.
This is not the case! The only way to change which version is being built is by
using the completely separate dialog box Build | Configuration Manager [called
Build | Set Active Configuration in Version 6.0].

20.7 Use MFC in static library or use MFC in shared DLL?

There are actually four different versions of the executable you might build. As
well as choosing between the Debug and the Release build, you can either bind
the *.lib version of the MFC code into your executable, or you can have your
executable look for the *.dll version of the MFC code run time.

To control this, open View | Solution Explorer and make sure the Pop project
is highlighted. Then select View | Property Pages... | General. [In Version 6.0,
simply select Project | Settings... | General.] And then you can edit the Use of MFC

field to be Use MFC in a Static Library or Use MFC in a Shared DLL. The DLL
option is the Visual Studio default.

If you look at the Pop project settings, you’ll notice that we’ve chosen to
build the Release version with the static library option and the Debug version
with the shared DLL option. What do these decisions mean, and why are they
reasonable?

When you are using MFC, a lot of the code used by the program lives in
external libraries. In Windows a library can have one of two forms, a *.lib file or
a *.dll file. Code from a *.lib file gets linked into your executable, which makes

Using Microsoft Visual Studio 369

The Link project settings dialog in Visual Studio.NET

your executable bigger – about 1 Meg bigger in the case of an MFC program.
Code from a *.dll file is left out of your executable, and when the executable
starts up, it looks on the host computer’s hard drive for a copy of the *.dll file it
needs, and loads this code into RAM at that time.

Software Engineering and Computer Games Reference370

The General project settings dialog in Visual Studio.NET

The Link project settings dialog in Visual Studio, Version 6.0

If you have an MFC program that expects to find the MFC code in a DLL,
when it tries to start up, it will be looking for a file with a name like MFC40.DLL

or MFC42D.DLL or maybe MFC42.DLL. Now, Microsoft regularly changes the
particular version of the MFC???.DLL distributed with Windows, so there is a
very good chance that when you move your executable from your Windows
machine to somebody else’s Windows machine, your executable is not going
to find the *.dll file it needs, and instead of running it’s going to show the user
a cryptic error message. And even if you give the user a copy of the missing
*.dll file, you’ll usually find that then there’s yet another missing *.dll file that
your program needs. And so on. Trying to distribute all the necessary *.dll is in
fact too complicated to be practical.

It would seem, therefore, that you’d always want to use the MFC in a static
library. But, as we already mentioned, using the static library makes the *.exe

bigger. As an illustration, Table 20.1 shows the comparative sizes of the four dif-
ferent builds on the June 21, 2001, version of Pop code.

Using Microsoft Visual Studio 371

The General project settings dialog in Visual Studio, Version 6.0

Table 20.1 Four ways to build an MFC executable.

Build configuration Use MFC as Size of exe

Debug DLL 693 K
Debug LIB 1917 K
Release DLL 452 K
Release LIB 744 K

You will be making lots of Debug builds on your machine as you develop the
code, so it will make less work for the linker, and use less space on your hard
drive, to use MFC as a DLL for the Debug builds. The Release build, on the
other hand, is the ‘distributable’ version of your code that you plan to show
others. For this version, you should use MFC as a LIB.

So, once again, your approach should always be

Work with the Debug configuration using the MFC as a DLL while developing
the product, and use the Release configuration using the MFC as a LIB when
distributing the product.

When you navigate to the project’s Use of MFC control as outlined above, the
Project Settings dialog box you are using will have in its upper left-hand corner
a Configuration combo box [called the Settings For combo box in Version 6.0].
You can first select the Debug configuration and set Use MFC in a Shared DLL, and
then select the Release configuration and set Use MFC in a Static Library. From
then on when you switch between the two configurations of the workspace,
your preferred choice for the Use MFC field will be used. These settings are already
in place for the Pop project.

[When using the Learning edition of Version 6.0, you don’t have access
to the Use MFC in a Static Library option. If you plan to distribute your *.exe

to other people, you need to have either a ‘Professional’ or better edition of
Version 6.0 or any version of Visual Studio.NET. Visual Studio.NET supports the
Static Library feature across all of its editions.]

20.8 Cleanup

When you get through working on a program, you want to clean up the direct-
ories. The directory with your source code will have some files you don’t need.

The *.opt, *.ncb and *.plg files (just to mention some examples) are what one
might call ‘mystery garbage files.’ The Microsoft documentation doesn’t seem
to talk about the mystery garbage files. They reappear every time you compile
the program. Bottom line is this: you can delete the *.opt, *.ncb and *.plg (and
certain other garbage files) with impunity at the end of a day’s programming.
These files are just wasting disk space and will be automatically regenerated the
next time you build the program. Do be sure to keep your source code, your
*.dsw, and your *.dsp.

In addition, the Debug and/or Release directories in particular are going to
have a lot of files in them that you don’t need. First of all, they’ll have a huge
‘precompiled header’ file with the *.pch extension, the intermediate *.obj files,
and some additional junk files.

One way to clean up is to use the Build | Clean selection (its full name
is Build/Clean Solution in Visual Studio.Net). If your configuration is set to
Debug, this command will remove all the files in the Debug directory; If your

Software Engineering and Computer Games Reference372

configuration is set to Release, this command will remove all the files in the
Release directory. But Build | Clean will not get rid of the various kinds of addi-
tional intermediate or support files that Visual Studio will write into your basic
source-code directory.

Depending what kind of building, debugging, profiling, and so on you’ve
been up to, there are a variety of these extraneous files that may be present.
And you might as well delete the Debug and Release subdirectories once they’re
empty. Unfortunately, Build | Clean doesn’t do all of this for you.

Instead of using the Build | Clean file selection, the author prefers to do
a more thorough job of deleting things by using a batch file clean.bat that he
keeps in the current project directory. You will find a copy of it in the Pop
source-code directory.

If you double-click on this file in Windows Explorer it will run in ‘console
mode’ (formerly known as DOS mode) and get rid of the extra files. Here’s the
contents of a typical version of the clean.bat file. You won’t always have all of
these kinds of files present, but depending on what you’ve been doing, any of
them can occur.

REM Delete Garbage Files

del *.aps

del *.ilk

del *.map

del *.ncb

del *.opt

del *.plg

del *.pbi

del *.pbo

del *.pbt

del *.pdb

del *.tmp

del *._xe

REM Delete hidden archived garbage files, first changing their

REM attributes.

attrib -h -a *.gid

del *.gid

REM Optional: Delete Visual Studio Solution user options, which can be

REM useful to keep.

REM attrib -h -a *.suo

REM del *.suo

REM Delete Garbage Directories

del enc temp folder*.*

rmdir enc temp folder

del DEBUG*.*

rmdir DEBUG

Using Microsoft Visual Studio 373

del RELEASE*.*

rmdir RELEASE

REM Optional: delete the executables that the project has written

REM to root.

REM del *.exe

In case you can reuse clean.bat for other projects, note that it’s designed for the
case where your *.exe files aren’t saved in the Debug and the Release subdirec-
tories (but are being saved in the source directory as pop.dsw is set to do).

Somewhat annoyingly, the del DEBUG*.* and del RELEASE*.* will pause
and ask you in a DOS window if you really want to delete those files. You need
to press y and Enter. Windows 98 has a deltree command that lets you do this
in one step, but Windows NT doesn’t support deltree.

Note that as the clean.bat paths are directory-relative, you need to put a copy
of it into each of the new source-code directories that you work in.

The Pop project is set to put its *.exe builds into the same directory as the
code. Although clean.bat could remove the executables with the del *.exe line, by
default we comment this behavior out with the letters REM. The assumption is
that you may want to cut and paste the *.exe to another location before zipping
your directory.

20.9 Building blocks of a complete program

Now that we’ve talked about the mechanics of building a program, let’s say a
little more about the kinds of component files that go into making a Windows
program.

First come the files which are involved in building the code of the main
Windows executable.

• Project file: *.sln and *.vcproj [*.dsw and *.dsp in Version 6]

• Source-code files: *.cpp and *.c

• Header files: *.h

• Object code files: *.obj

• Static library files: *.lib

• Executable file: *.exe, and dynamic link library files: *.dll

Next come the files which are used for specifying the graphic user interface of
the program.

• Resource files: *.rc, and compiled resource files: *.res

Finally we want to mention the files that are involved in creating the standard
Windows help file.

• Help project files, source text files, and help files

Let’s say a few words about each of these kinds of files.

Software Engineering and Computer Games Reference374

Project files: *.sln and *.vcproj [*.dsw and *.dsp (Version 6.0)]

As we mentioned in Section 3.3, in order to build an executable file from a
collection of source code and resource files, we need a project file to orche-
strate how the files are to be combined. A Visual Studio project is described by
two levels of files, a primary higher-level project file originally called a
workspace file, and one or more secondary lower-level files simply called project
files. Generically any or all of these kinds of files may occasionally be termed
‘project files.’

Microsoft changed the standard file extensions for their project and workspace
files when they replaced the Visual Studio, Version 6.0, by Visual Studio.NET,
also known as Version 7.0. The older *.dsp and *.dsw are now *.vcproj and *.sln

(see the table summarizing this in Section 3.3). Also Microsoft has replaced
the word ‘workspace’ with ‘solution.’ But for the rest of this section, we will
simply use ‘workspace’ file to mean either the older *.dsw file or the newer
*.sln file.

Whenever you are building a program which uses more than one file, you
need a project file to list the names of the various code modules that you will
use. In addition to keeping a list of the component modules, a project file saves
a rather large number of compiler and linker settings. These settings control
such decisions as whether or not to include debugging information, whether
to optimize the code for smaller size or for faster speed, how many kinds
of warnings to display, and so on. The Microsoft project and solution [or
workspace] files are in fact simple text files, and you can open them in your
word-processor to see what’s in there. Occasionally you can clear up a persistent
problem more easily by a direct edit like this than by trying to get at the project
files through the Visual Studio interface.

Source-code files: *.cpp and *.c

Source code files are ASCII text files which your C++ code compiler processes into
binary object code.

Beginning programmers tend to want to put all of their code into one large
module. It is in fact better to use many small modules. Generally you want to
put all the functions of one type into one module together; this makes things
easier to find. Another gain of using multiple modules is that, when you change
something in your program, you only need to recompile the single, small
module that you changed. Another reason not to use only one module is
that, sooner or later, this module will get so big that the compiler will refuse
to handle it.

The C++ language contains all of the C language. This means that any C
code can also be regarded as C++ code. The convention is to use *.cpp (for ‘C
Plus Plus’) as the file extension of C++ code modules. If you have a *.c module
of C code, you can simply change the file’s extension to *.cpp and then your file
will be compiled as C++ code. In this book, we are only going to use C++ files,
so from now on we’ll assume that all of our source code files are *.cpp.

Using Microsoft Visual Studio 375

A peculiarity of MFC is that when you are doing an MFC build, every single
*.cpp file must have as its very first line the line

#include “stdafx.h”

If you leave out this line, you will get a confusing error message.

Header files: *.h

A header file is a file which is included into another file by lines like this.

#include “types.h”

#include <windows.h>

If the file name after #include is in quotes, the compiler will look for the file
in the directory where the project file lives; and if the include file is in pointy
brackets, the compiler will look for the file in whatever directories the project
file has set to be places to look for include files – typically the standard location
for include files is the INCLUDE subdirectory of the directory where the compiler
lives, but sometimes you will want to add other directories to the standard
search path.

The #include directive is a preprocessor directive; it tells the compiler to do
something before running. What the #include directive tells the compiler to
do is to replace the #include “whatever.h” line with a full, exact copy of the
Whatever.h file, just as if you had used your text editor to block copy the whole
Whatever.h file and paste it in.

Note that the compiler is not sensitive to the case of the letters used in the
names of the include files.

In general any line of C++ that starts with # is a preprocessor directive; we
have more information about these in Chapter 22: Topics in C++.

In C++, we put the definitions of our classes in header files with extension
*.h, and we put the code implementing the classes’ methods in *.cpp files. Some
programmers like to use the file extension *.hpp for these files, but this practice
is discouraged by the Microsoft compiler and is not very common.

Another use for header files is to #define some macros or compiler switches in
a header file, and to include this in many different files. We also sometimes
typedef type variables in a header. And headers can also be used to #define labels
for things such as buttons in dialog boxes.

Many headers include header files themselves. For each header file, we
list the names of the header files which are included by a line like #include
“critter.h” as well as the names of the classes that are declared by a forward
class declaration like class cGame. The best practice is to only include a header
in a header when we really have to, for instance if the header mentions an
instance or method of a class that’s defined in another header. If the header
only mentions a pointer to a class instance, then just a forward declaration
will do.

Software Engineering and Computer Games Reference376

There are two problems you can get when we #include header files: the circular
include and the double include.

The circular include happens like this. If A includes B and B includes A, then
A includes A, so the compiler will go into an endless loop when it tries to com-
pile A. Let’s go over this again. Suppose you have a circular.h file whose first line
is #include “circular.h”. When the preprocessor tries to handle this, it will
get into an endless regress. It must replace the first line of the file with a copy of
the file in which it must replace the first line by a copy in which, etc. Usually,
of course, a circular include isn’t quite this obvious. You might for instance
have a chicken.h file that starts out with the line #include “egg.h” and an egg.h

file that starts out with the line #include “chicken.h”. But the same infinite
regress will arise. When you have a circular include the compiler will give you
some odd error messages, but it won’t flat-out tell you that a circular include is
your problem.

The way to avoid circular includes is to be very stingy about putting include
statements. Don’t use them unless you really have to. If possible, put your
include statements into the *.cpp files rather than into the *.h files. If all you
need is a pointer to a class called, say, SomeClass, you can just put the line class

SomeClass; into your header file rather than a full #include “someclass.h”.
The line class SomeClass; alerts the compiler that you will eventually define a
class with this name without specifying yet what it will look like. And you can
put the #include “someclass.h” into the *.cpp file where you actually need to
use the inner details of SomeClass.

The double include happens if you happen to include the same header
file twice. This can cause problems because if, for instance, a class is defined in
the included header file, then including the file twice means you have two
definitions of the same class, and the compiler won’t allow this. To avoid double
includes, we use the #define and #ifdef as discussed in Section 22.15.

If any *.cpp file happens to include some header file twice, you’ll get a lot of
error messages. The compiler will be upset because you are ‘redefining’ things
that you’ve already defined. To prevent this from happening, you should make
a habitual, automatic practice of including two standard lines at the start of
each header file, and one standard line at the end. The lines to use in, for
instance, ANYHEADER.H, should be as follows.

//--------------------ANYHEADER.H START------

#ifndef ANYHEADER_H

#define ANYHEADER_H

...

#endif //ANYHEADER_H

//---------------------ANYHEADER.H END------

The idea is that the first time you hit ANYHEADER.H it gets included, and if you
try and include it again, ANYHEADER_H is already defined so then the code gets
skipped over.

Using Microsoft Visual Studio 377

As a matter of interest, you may be wondering how it could happen that
you would include the same *.h file twice. It could happen like this: your main
module might use two classes, a cWorld class and a cCritter class, and it could be
that there is a special cVector class which is used both in the definition of the
cCritter class and in the definition of the cWorld class. You would put definitions
for these classes in, respectively, a World.h, a Critter.h, and a Vector.h file. And your
Critter.h and your World.h files might each have this line:

#include “Vector.h”

When the preprocessor goes over Critter.h or over World.h, it will actually replace
that line by a full copy of the Vector.h file.

Meanwhile, your View or Doc module will have these lines:

#include “World.h”

#include “Critter.h”

Now, when the preprocessor works on theses two lines it replaces the first
#include line by a copy of World.h, and replaces the second #include line by a
copy of Critter.h. But, as mentioned above, the World.h file includes a full copy of
the Vector.h file, and so does Critter.h. So your main module gets two full copies of
Vector.h. And then the compiler complains because it looks as if your cVector

class is getting defined twice. This is why the #ifndef trick is needed!
One specific header file which is used by every MFC program is called StdAfx.h.

You might do well to open up and look at the StdAfx.h in the Pop Framework;
there are some useful comments in there.

Any normal program is going to have lots of different files, and it’s important
to be including the same version of, say, afxwin.h in all of the different modules.
It’s a wise practice to have the #include afxwin.h line inside of a StdAfx.h file that
everyone includes, so that everyone will have the same switch settings turned on
before the #include afxwin.h and other include lines. As we mentioned above,
when we use MFC, every single anyfile.cpp in the MFC is actually required to start
with #include “stdafx.h”.

A note on precompiled header files
Many of your files include the same header files as other files. Visual Studio
speeds up the build process by saving off a ‘precompiled header file’ with the
*.pch extension, writing this to either the Debug or the Release subdirectory.
Having the precompiled header file available avoids having to recompile code
for each lines of the form, say, #include stdafx.h.

The *.pch file is quite large (on the order of ten megabytes), so it’s important
not to leave old *.pch files on your hard drive. Be sure and run our clean.bat file
to remove it when you’re done or use the Build | Clean Solution [which is Build |

Clean in Version 6.0].
If you are running MFC over a network, be sure to copy your code and pro-

ject files to the local machine’s hard drive (perhaps the C:\Temp drive if you’re

Software Engineering and Computer Games Reference378

in a lab). Build your program on the local hard drive only. When you are done
for the day, close Visual Studio, clean your code, and copy it back up to your
network drive.

The reason you want to build on the local drive is that doing an MFC build
involves writing that ten megabyte precompiled header file someplace, and you
don’t want that place to be at the other end of a (possibly slow) network wire.

Object code files: *.obj

Your compiler package has a C++ Code compiler which converts your text *.cpp

files into binary *.obj executable code files. Once all your modules have been
compiled to make *.obj files, your linker combines these *.obj files and some *.lib

files together to make an executable *.exe file.
There are three alternative ways you can ask your compiler to compile a file.

You can Compile, Build or Rebuild All. You’ll find these options on the Build

menu for both Visual Studio .NET and Visual Studio Version 6.0.
We summarize these options below.

• Compile current.cpp. Compile only the file currently in the edit window. The
Developer Studio helpfully puts the name of this file right into the menu
selection; here we write ‘current.cpp’ to stand for the name.

• Build current.exe. Compile all *.cpp source code files whose *.obj files are out
of date, and link these together into a new executable. Again, the Developer
Studio fills in the name of the current target executable.

• Rebuild All Compile all *.cpp files in the project list, whether or not they are
out of date, and link these together into a new executable.

To understand the distinction between the second two selections, you need
to understand the idea of a *.obj file being ‘out of date.’ A compiled *.obj file is
said to be out of date if (a) it doesn’t exist yet, or (b) you have recently made
any changes to the source code files used for this particular compiled file. The
source-code files used to make, say, current.obj, will include not only current.cpp,
but also any header file which current.cpp accesses by means of a #include. The
#include relation is transitive; that is, if current.cpp has #include “critter.h”

and Critter.h has #include “point.h”, then both Critter.h and Vector.h are viewed as
source-code files used to make current.obj. If you change Vector.h, then current.obj

becomes out of date.
How exactly does the compiler package tell if a *.obj is out of date? The

compiler’s text editor affixes a fresh date and time stamp to a file every time
you change it. In addition, the compiler affixes a date and time stamp to each
compiled *.obj or *.res file. By comparing source code files like current.cpp,
Critter.h, and Vector.h to the compiled object version current.obj, the compiler can
see if the source code, or one of its include files, has a date and time later than
the date and time of the compiled file of the same name. If this is the case, then
the *.obj file is out of date and needs to be recreated by a compile operation.

Using Microsoft Visual Studio 379

When you ask for a compile or a build, the C++ compiler will save all open
files, and check dates on the header #include files. It expects to find them
either (a) in the directory where your current project file lives, or (b) in the
INCLUDE subdirectory of the directory where your compiler lives.

A problem that most programmers will run into at least once a year is that
somehow one of your source code files will get a bad date on it, a date which is
off sometime in the future. Every time you go to build your program, the com-
piler will look at that file and say, ‘This source file has a date stamp later than
the date stamp on my most recent *.obj file based on it, therefore the source
file must have changes in it, so I have to recompile and make a fresh *.obj.’ If
the file with the bad date happens to be a header file that’s included in a lot
of other files, then all of those files will be rebuilt as well. This is mystifying and
time-consuming. When you work on a team, there will sometimes be one par-
ticular team member whose machine puts bad dates on your source files; this
can be because this individual has carelessly let his or her machine’s calendar
get set to some crazy year date like 2100.

The fix for the bad date problem is, first of all, to get the right date onto your
files by opening them, making a trivial change (such as typing a space and then
deleting it) and then saving the file. (Or you can do this from the outside if you
happen to have access to the Unix touch utility.) Second of all, try and eliminate
the source of the bad date problem. Make sure that all your team members have
computers set to the correct date, and check the time too, as a bad time can
sometimes cause the same kinds of problems.

If your compiler can’t find the include files you will get a lot of error
messages at the compile stage; usually the first one will say something like
‘windows.h not found.’ This is might happen, for instance, if you are running
your compiler over a network. To fix this problem, you need to explicitly tell
your project where to find the INCLUDE subdirectory of the directory where
the compiler lives.

In Microsoft Visual Studio, you can set the INCLUDE directory by opening the
Tools | Options dialog and going to the Directories tab. On the Show directories

for... drop-down box, select Include files. Then type in the correct drive and
directory. If you’re not sure what the correct directory is, minimize the com-
piler package and use Windows Explorer (File Manager in Windows 3.1) to find
out where the compiler package lives.

Static library files: *.lib

Once your C++ compiler has turned your source code modules into *.obj files,
these files need to be linked together to make up a full executable *.exe file. The
tool that accomplishes this is called the linker, and it is part of your compiler
package.

The linker needs more than what it will find in your *.obj files. It also needs
the definitions of all the various standard C and Windows functions that you
used without writing code for. These function definitions are found in *.lib files
that come with your compiler package.

Software Engineering and Computer Games Reference380

You don’t need to specifically list the names of the necessary *.lib files in
your project file listing; in fact usually you won’t know these names by heart.
The linker will go out and look for the *.lib files it needs on your hard drive.
Ordinarily it expects to find them in the LIB subdirectory of the directory where
your compiler lives.

If your linker can’t find the libraries you will get a lot of “Unresolved

external...” error messages at the link stage, saying that various functions are
not defined. As with the INCLUDE directory, this is most likely to happen if you
are running your compiler package over a network, for instance in a student
lab. To fix this problem, you need to explicitly tell your project where to find
the LIB subdirectory of the directory where the compiler lives.

Note, however, that if you only get one or two “Unresolved external...”

message this probably just means that you forgot to put code for some of your
methods.

In Microsoft Visual Studio, you can edit the directory paths as described
in the table in Appendix C. Once you have the Directories dialog open, you can
select Library files. On the Show directories for... drop-down box, select Library

files. Then type in the correct drive and directory. As before, if you’re not sure
what the correct directory is, minimize the compiler package and use Windows
Explorer to find out where the compiler package lives.

Executable files: *.exe, and dynamic link library files: *.dll

When you build a Windows project, there are actually two successive *.exe files
that get made. First is the ‘usual’ kind of *.exe that is gotten by linking together
the *.obj and *.lib files. Then a ‘special’ *.exe is made by adding in the resource
code, as we describe in the next subsection.

Before doing that, let’s say a little about *.dll files (for ‘Dynamic Link Library’).
Instead of putting shared function code into each *.exe file, you can leave it in
a *.dll file on your hard drive and hope that your *.exe can find the *.dll when-
ever it needs one of the functions whose code is in them. It’s common, for
instance, for programs to use standard Windows *.dll code for managing the
dialog boxes used to open and to save files. When all goes well, this is painless
and invisible.

Ordinarily the *.dll files will be found in your Windows directory or in the
System or System32 subdirectories of your Windows directory. But sometimes they
are not found, and the program dies at start-up with something like a ‘file not
found’ message.

When you use the MFC, there are a number of special function implementa-
tions which you can bind into your *.exe as *.lib files. An alternate approach is to
let the *.exe dynamically look for the function code on the host computer at run
time. In this alternate case, your *.exe will look for the missing code among the
computer’s various dynamic link libraries, which have the *.dll extension. It is
not a good idea to distribute code that looks for MFC libraries in *.dll files. The
reason is that many poeple will have the latest MFC *.dll files on their computer
and an exe that depends on these dynamic link libraries will be unable to run.

Using Microsoft Visual Studio 381

For distribution, always bind in the *.lib files rather than expecting your users to
have the right *.dll. Testing your release on a range of other machines will point
out this issue if you’ve forgotten about it.

A completely different topic regarding *.dll files is that you can arrange it so that
users of your package can create their own *.dll files so as to add on pieces of
code to your program, and make your product more programmable. See the SJSU
Capow code for an example of this, at http://www.mathcs.sjsu.edu/capow.

Resource description files: *.rc and compiled resource files *.res

Like a C++ file, a *.rc resource description file is an ASCII text file. The resource
compiler turns a *.rc file into a binary file that represents such graphical user
interface features as: menus, dialog boxes, bitmaps, and program icons.

The compiled version of a *.rc file is called a *.res file. This is analogous to
the way in which the C++ compiler turns a *.cpp text file into a binary *.obj file
of machine code.

Once you have the *.res file, the resource compiler can then be called again,
and this time it performs a linker-like task and attaches the *.res file to the
executable *.exe file to make a new *.exe file that includes the desired resources,
the dialogs, menus, bitmaps, etc.

The resource compiler is called RC.EXE and it comes with your compiler
package. Normally your *.rc file is part of your project file list, and the resource
compiler gets called automatically when you build your program using, for
instance, the Build | Build or Build | Rebuild All selections in the Visual Studio.

To design your *.rc file, you use a tool called a Resource Editor which comes
with your compiler package. This tool is of the WYSIWYG (for ‘What You See
Is What You Get’) variety – you create the dialog boxes and so on for your
*.rc file by dragging around buttons, checkboxes, edit boxes, scroll-bars and
the like.

If you open a *.rc file by double-clicking on it, the compiler package will run
the *.rc file through the resource compiler and give you the WYSIWYG view.
Once in a while you may want to edit a *.rc file as a text file. To do this, you need
to use the File | Open dialog to open the *.rc file, and you have to select the Text

option in the Open As combo box at the bottom of the box. This is a good idea
if you want to check up on exactly how your resources are being defined, or if
you want to quickly makes copies of a large number of items.

Your *.rc resource file will define a lot of buttons and menu items. Each of
them has an identifier number that is associated with a mnemonic ID that
normally starts with ‘IDR_’. There are a lot of #define statements that associate
the IDs with the integers, and these statements live in a header file which is
usually called Resource.h. Rather than looking into the Resource.h file directly,
you usually use View | Resource Symbols... to work with it. Due to the way MFC
treats messages, you usually don’t really need to worry too much about the ID
symbols in any case. The reason is that you usually use MFC to add a ‘message
handler’ function for each menu item or button without having to actually
know the name or value of the associated ID.

Software Engineering and Computer Games Reference382

Help project file: *.hpj, rich text files *.rtf, and help files *.hlp

As well as the C++ code compiler and the resource compiler, there is a third kind
of compiler, the help compiler. The help compiler is used to build help files, which
have the extension *.hlp. The help compiler is invoked through a Windows
interface called the Help Workshop. The help compiler needs a help project file
to work on. The result of a successful help project compilation is a help file
Myprog.hlp.

In the Help Workshop, you can create, select and edit your *.hpj file. The
help project file lists the names of the document files you are using to make
the target *.hlp file. The help project file can also include special information
relating to the hypertext structure of your help file.

The ‘source-code’ files used by the older help compiler are text files in the
special *.rtf (‘rich text format’) format. A high-end word-processor such as Word
Perfect or Microsoft Word for Windows can convert an ordinary formatted *.doc

file into a *.rtf file. The newer HTML help files are based on *.html.

20.10 Profiling with Visual Studio, Version 6.0

Visual Studio, Version 6.0, came with a useful profiler tool for finding out how
much time you are spending inside each of your functions. Unfortunately,
Microsoft has removed this utility from the Visual Studio.NET, Version 7.0
release. It’s almost worthwhile keeping a copy of Version 6.0 around just for the
profiler! Otherwise you will need to get a third-party profiling tool to use with
Visual Studio.NET.

In any case, let’s briefly describe the use of the Visual Studio, Version 6.0,
profiler. The Version 6.0 profiler is useful in figuring out how to make your
program run faster. To get a dialog for starting the profiler, select Build | Profile...

• Because the profiler is basically a command-line utility, it will only work if
the directory-name for your program has no spaces in it.

• The Version 6.0 profiler only works if the project is built in Version 6.0
with the Project | Settings... | Link | Enable profiling selection checked in
the Version 6.0 project file. The default Pop Framework *.dsw settings for
Version 6.0 have profiling enabled for the Debug build and not enabled for
the Release build, but you may need to recheck that this selection is really
turned on, particularly if you’ve used Visual Studio.NET first. [The Enable
profiling selection doesn’t exist in Visual Studio.NET.]

• The Profile dialog allows you to set the profiler to check various things such
as speed and coverage. In order to check for speed, good settings to use are
to select Profile Type | Function Timing and to type into the Advanced settings:

box the parameters

/AT /STACK 1

Using Microsoft Visual Studio 383

• The program runs fairly slowly while in profiling mode. Let it run for a while
so as not to have your data swamped by the statistics of the functions called
during the (anomalous) startup period. Thus, if you don’t wait very long,
you’ll see CWinApp::DoMessageBox as the most time-consuming call of a Pop
program run – this originates from the message box that asks you to press
Enter. When you’ve let the program run for a bit, terminate it normally.

• The output of the profiler appears in your Output window of Visual Studio.
Scroll the window up to the top so you can see the more frequently called func-
tions, which are the ones you care about. Don’t wait for the output to finish
listing all of its info before you scroll, otherwise the important information
at the start may get truncated.

Check the Help menu in the Profile dialog for more suggestions.

Exercises

Exercise 20.1: Using Visual Studio help

Use help to look up the ‘macro function’ COLORREF RGB(BYTE bRed, BYTE bGreen, BYTE
bBlue). (A macro function is a global function that has a short inline code definition that
is actually substituted for each call to the function.) Now use help to look up something
more elaborate. Look at the documentation on CDC.

Exercise 20.2: Putting a version number into the name of the executable

Even though your successive versions of your program are going to live in separate directories,
it’s a good idea to put a number after the name of each executable, and to include the date.
Change your Pop project settings so that the names of your Debug and Release output
files will include today’s date. For information about the controls to use, look at the table
in Appendix C. (Although we already discussed this in Exercise 3.4, it’s important enough
to go over it again.)

Exercise 20.3: What happens if you forget some includes?

When you are making new class files you’ll sometimes forget to put in a necessary
include. In this exercise we look at the kinds of error messages you get so that when you
see them again you may hopefully remember that the problem is a missing include file.
First, try commenting out the line #include “force.h” in the critter.cpp file. If you build,
you get error messages similar to ‘cForce’ : no appropriate default constructor

available. Put the line back in. Second, try commenting out the line #include
“game.h” in the same file. This time you’ll get messages like use of undefined type

‘cBiota’. As it turns out, the game.h file has an #include “biota.h” in it, so when
we lose game.h, we lose biota.h as well. Put the line back. Third, try commenting out
the line #include “randomizer.h” at the start of the header file critter.h. When you
try and build you get more than 80 error messages. Some of them say things like left

of ‘.randomReal’ must have class/struct/union type. This kind of line can be
seem cryptic to a beginner. The compiler is trying to say that you are using an object that
belongs to a class that you haven’t defined by including the proper header file for it.

Software Engineering and Computer Games Reference384

Exercise 20.4: Browsing in the afxwin.h include file

Use the Start | Find command to find afxwin.h. On the author’s computer it lives in
C:\Program Files\Microsoft Visual Studio\VC98\MFC\Include. Click on the file to open it
inside of Visual Studio, and if this doesn’t work, start a Visual Studio session and open the
file using the File | Open command. Look through the file, and press F1 on any words or
symbols you wonder about. Note that CPoint is defined in here.

Using Microsoft Visual Studio 385

21Tools for software
engineering

Often when you encounter a new software engineering tool, you may feel like
learning how to use the tool is more trouble than doing your task in some older
and simpler way. Once in a while this is really true, but more often than not,
the new tool is worth mastering. We’re not out to make poor-but-honest, hand-
pinched, wood-baked clay pots here. We’re using incredibly powerful machines
building cutting-edge, full-featured, high-technology computer programs and
we need all the help we can get!

21.1 File names and directory structure

In this section we describe a manual method for keeping track of the version
number of your code.

In general, you should change the output file name (as described in Exer-
cise 3.4 or in the table in Appendix C) to put a version number to the name of
your executable. It’s also a good idea to put this information into the caption
in the top bar of the program window, you might put both the current pro-
gram version number and its build date there. Thus, the caption ought to
say something like ‘Your Name, MyApp, Version 2 – March 22, 1999.’ The date
is helpful because sometimes you’ll be in a process of making minor changes
to your program without assigning a fresh new version number to its direct-
ory, and then the date can keep you informed about which build of the
version you’re really looking at. There’s nothing more frustrating than build-
ing a great new version and then having your co-workers mix it up with the
old version!

Build directories

In terms of directories, a good way to organize things is to have a MyProject direc-
tory, and to have MyApp1, MyApp2, MyApp3, . . . subdirectories of MyApp. Although
some files may in fact stay the same from version to version, the simplest
approach is to go ahead and have all the files needed for building each version
N inside each MyAppN directory, even if some files end up being duplicated.
We will normally have our program’s source code in MyAppN along with a res

subdirectory with resource files and often a hlp subdirectory with the source for
your help file.

Numbering and dating your build directories
With regard to numbering, you will also end up doing multiple revisions of the
source-code modules that you write to implement special purpose classes of
your own. These modules will go through numerous revisions. You need to log
the revisions inside the code modules, putting your name and the date when-
ever you make a change. This is so other programmers can tell which version of
the module they are using.

What would be so bad about using the wrong version of a code module? The
worst thing that can happen is that you find a bug in, say, some class method,
laboriously fix the bug, and then your fixed file gets replaced by an old unfixed
file, and a few days or weeks later you notice that the bug you thought you
fixed is still there.

If you always keep all your code modules inside the numbered project direct-
ory and hand off a full copy of it you are reasonably sure of getting the latest
version of the module.

Don’t use a common files directory
In a stable build situation where everyone is using the same directory structure,
you might conceivably leave your common files out in some kind of a Common

Files directory and tell your projects to look for some of their files out there. You
can use the Visual Studio Tools | Options | Directories tab to set additional paths
to use for Include files and for Source files. This seems like a good practice,
because then as you improve your common files, each new build of all the
versions of the program will use the improved versions.

But there is a big problem with having each project use paths to the same
files in a Common Files directory, and this is that one tends to have difficulty
in keeping the directory paths straight on a variety of machines. It makes the
code less portable. If your directory names don’t match mine, then when you
build our project on your machine, Visual Studio may not be able to find all
the files it’s supposed to. This problem is particularly acute in a situation like
distributing the Pop Framework, where each user is likely to have his or own
particular file setup.

A second kind of problem with using a Common Files directory is that, as
time goes by, you may change the common files, and you’d rather not have
to go back and fix all the older builds if the new common files break the
old builds.

So we will copy the necessary files from each build into each new pro-
ject directory. This has the nice consequence that each of our project build
directories will be completely self-contained, holding all the files necessary for
a build.

Best practice for directory maintenance
The best practice is to do the following.

Tools for software engineering 387

• Work in a numbered and/or dated directory till you like the code.

• Run clean.bat to get rid of the junk.

• Make a new numbered and dated directory, using no spaces in the directory
name.

• Copy the old directory contents to the new directory.

• Start building your next release.

Recall that clean.bat is a batch file we supply with the Pop Framework; you
should always keep a copy of it in your source-code directory. For clean.bat to
work, the directory where it lives shouldn’t have spaces in the directory name.

Your directory structure might look like Figure 21.1 after you’ve done working
with MyApp1 and have started in on MyApp2. Since you’ve already run clean.bat in
MyApp, you don’t have the Release and Debug subdirectories under MyApp1.

Note that if you can start up a new directory even when you aren’t ready to
change version numbers, you can equally well put a date into the directory name.
You might want to do this whenever you are about to make some risky series of
changes that might ruin everything. That way, if you suddenly ruin the program
in some mysterious way, you can still get back to the code that worked.

WinZip files

One final point is that its good to make *.zip compressed files containing all the
code of successive builds. These files are good for giving to other people with
whom you might be developing your code. They also serve a compact and more
secure way of storing old builds. Always remember to (a) clean out the extra
junk with clean.bat, and (b) include the res subdirectory in the *.zip so that the
code is buildable.

To shrink the size of your source code, you can use the indispensible WinZip
utility (available from www.winzip.com). Make your build directory into a Zip
file as follows. Right-click on the directory with your code and select WinZip |

Add to Zip File.
Choose Maximum Compression and don’t check Save Full Path Info. When

you zip a directory, WinZip will automatically include a directory’s subdirectories,
such as res and hlp, which is important, as you will need the res files in particular
to be able to build the project. See the screenshot of WinZip version 8.1 below.

Software Engineering and Computer Games Reference388

Figure 21.1 Directory structure

21.2 Using the Visual Studio debugger

A typical debugging situation you face is that your program crashes. Your first
problem is to find the line in your code which precipitates the crash.

First of all, make sure to press F5 so as to run the program in the debugger
with all the debugging tools turned on. (In order to run outside the debugger to
see how fast it can run, you use Ctrl+F5.) Breakpoints won’t work, for instance,
unless you are running a Debug build with the debugging tools turned on. Note

Tools for software engineering 389

The Add dialog for WinZip, Version 8.1

that a simple Build | Execute will not invoke all the debugging tools, even if you
are running the Debug build. You can use the F5 key to invoke the Debug | Run

when you want to run your program and have it notice the breakpoints.

Finding the problem after a crash

When you are running the Debug version of your program and it crashes, the
screen will sometimes – though not always – highlight the offending line that
caused the crash, and you can fix your bug almost right away. But often the
thing that causes your crash will be a small error that causes some complica-
tion later on, and then the ‘crash line’ your screen shows you may be some
innocent-looking piece of code or, even less helpful, some assembly language
from one of the Windows library functions.

In this case, the way to find the line of your code that caused the crash is to
use the Call Stack window. This window will normally open automatically in
Visual Studio.NET, and if you don’t see it, look for its tab in the tab group at the
bottom of the screen. [With Version 6.0, you may need to open the Call Stack
window with View | Debug Windows | Call Stack.] The Calls Tack window will
show a list of function calls, with the most recent call at the top, the previous
call below that, and so on. As you work down the call stack list, you are work-
ing backwards through time. Often the first few calls in the call stack list will be
mysteriously named functions that are internal to the MFC libraries. Scan down
the list to find the first function name that you recognize as one of your own
code’s functions. Double-click on this name, and a window will open, high-
lighting the line of this function which set off the calls higher up in the stack.
This is the line that is breaking your code.

Students never seem to remember this, so let’s say it again in bold capitals!

WHEN YOUR PROGRAM CRASHES, OPEN THE CALL STACK WINDOW TO
FIND THE LINE OF YOUR CODE THAT MADE IT CRASH.

If you place the cursor over any variable in this line, a little onscreen window
will show the value of the variable. You can get a more comprehensive view of
the variable values by using a Watch window.

Visual Studio pops up some Watch windows automatically for you when
you are in the debugger. There are several kinds of variable Watch windows,
and possibly the variable you want to look at isn’t showing up. If the variable
you want isn’t in the Watch window, look for the Watch window that has a
tab at the bottom saying Locals. And let’s repeat that, when execution is paused
in the debugger, placing the mouse over a variable in the code near the current
execution point will pop up (after a second or two) a tiny label stating the
current value of that variable.

You won’t always see the values for the watch variables you’re interested in.
Which variables are accessible depends on which function you are currently
inside. Note also that you sometimes need to mouse around a little in order

Software Engineering and Computer Games Reference390

to see the fields and subfields of some complex object. Clicking on a pointer
(such as this) will open up extra watch lines showing the values of the fields in
the structure. You may need to click down through several levels before you
find the variable you care about.

If you’re lucky, you’ll find an obviously bogus value in one of your vari-
ables. A bogus floating point number usually has an extremely large positive or
negative exponent, so that it looks like, say, 1.234098009809809e-123. A bogus
pointer value will very often be the hexadecimal value 0000000c; other times
it may be cdcdcdcd. These bad pointer values are what happens to get put
by default into an uninitialized pointer, and this will often be some noticeably
regular pattern. Usually a good pointer will have a messy-looking value.

Having a bad pointer value is a very common kind of problem. This happens
if there is some pointer in your program that you’ve forgotten to initialize.
When an uninitialized pointer gets dereferenced by a call like pbadpointer-
>x(), the program typically crashes inside an MFC library function, and looking
at the call stack leads you to a line holding pbadpointer. A good pointer value
will be a more random-looking hexadecimal number. Chaos is health.

Breakpoints

Once you find a bad value in one of your variables you need to figure out how
the bad value got there. Think about where this variable gets set or gets
changed and find that spot in the code. It’s useful now to get the program to
run to this spot and stop. You can do this by setting a breakpoint. You set a
breakpoint by right-clicking on a line of your code and using the context menu
that pops up. Or you can just press F9 to set a breakpoint. A line with a break-
point will have a special mark at its left end.

It’s worth knowing that if you want to stop at the very end of a function to
examine what happened inside it, you can set a breakpoint at the function’s
closing bracket }.

Remember that you can only set breakpoints and debug if you are working
with the Debug build and not the Release build; you switch between this with
the Build | Set Active Configuration... dialog. Also remember to use Build | Debug |

Run, because if you simply use Build | Execute, the program won’t stop at the
breakpoints.

Now you can run the program up to the breakpoint. This means that the
execution stops right before executing the line with the breakpoint. Usually
it’s a good idea to set the breakpoint before the troublesome bits of code and
step through the code. When you are in the debugger, there are three ways to
run your program: you can step into, step over, or run to the next breakpoint. The
Visual Studio shortcut keys for these are F11, F10, and F5.

• To step into with F11 means to execute one line of code and stop, then the
next line, then the next and so on. If you step into a loop, you will find
yourself repeating the loop over and over, and you’ll lose patience. The step
out control gets you out – use the Visual Studio Shortcut key Shift+F10.

Tools for software engineering 391

• If you use the step over with F10 option, you go a line at a time, but you
don’t go into loops and you also don’t go into the code of subfunctions that
you call. This moves you forward faster, although sometimes you’ll end up
stepping over the piece of code you need to test.

• If you use the F5 run to the next breakpoint option then you simply run to
the next breakpoint, wherever it is. If you happen to be stuck tracing inside
a loop or a subfunction, you can set a breakpoint past the loop code and use
F5 to run the debugger up to that breakpoint. Or you can step out. And,
again, if you’re interested in seeing what the end result of a function is, you
can set a breakpoint at the function’s closing bracket.

Getting familiar with a debugger takes some time, and of course the debugger
interfaces change from release to release of the compilers. The basic things to
understand are, as we just mentioned: call stack, watch variables, breakpoints, step
into, step over, step out, and run.

TRACE statements

One other debugging technique that can be useful is a TRACE statement. TRACE

uses exactly the same syntax as the C printf statement, but it dumps its output
into the standard Debug output, which in Visual Studio will be one of the sheets
in the little Output window at the bottom of your Visual Studio screen.

This is useful in a situation where some function gets called over and over,
but only now and then does it encounter a bad value – not bad enough to
crash the program, but bad enough to cause a malfunction of some kind. You’re
interested in figuring out exactly what triggers the malfunction, and you don’t
want to set a breakpoint and keep having to restart the program over and over.
If, for instance, you were interested in comparing a local variable distance to,
say, the radius value inside some structure pointed to by pshooter, you might
have a line like the following.

TRACE(‘distance = %f, radius = %f \n”, distance, pshooter->radius());

And then you’d press F5 to run your program in Debug mode, adjust the sizes
of your program and the Visual Studio window so that you could see them both
onscreen, and do things in your program window while watching the values
scrolling by inside the Visual Studio window.

When you build the Release version, all the TRACE commands are turned off,
so you don’t necessarily need to remove them, though you might as well
remove or comment them out when you’re done using them.

Finding memory leaks

Another useful feature of the debugger is that a fair amount of good information
is output to the Debug sheet of the Output window. In particular, if you have
any memory leaks, then messages about these will appear when you terminate

Software Engineering and Computer Games Reference392

a program that you’ve been running inside the debugger. Normally, leak
information will not tell you where the leak came from, so it’s not so helpful.
There is, however, a not-too-well-known trick you can use to make Visual
Studio tell you the origin of any memory leak. The trick is to add the following
line to your stdafx.h file. See the Pop Framework stdafx.h file for a comment with
more information about this.

#define new DEBUG_NEW

Testing

It’s a good idea to let your program run for a time and see if anything bad
happens to it. The Player | Autorun feature in Pop was designed with this in
mind.

One point about testing to keep in mind is that you should test both the
Release build and the Debug build after each new version of your program. The
reason for this is that if you have broken the Release build, you need to find
this out and fix it before developing any further.

Normally you are going to want to distribute the Release build of the program
rather than the Debug build. Be sure and test the Release build as well as the
Debug build. When the behaviour of your Release and Debug builds differs, this
often means that you have some uninitialized variables inside your program.
Why?

When you don’t initialize a variable, whatever random bytes happened to be
at that RAM location end up getting used for the correct data that you should
have put there. If the bytes happen to be all zeroes, often things will run
smoothly. But if your random crud happens to be there, the program will crash
in an ugly way. A number that should be 0 will instead be something like 1.03
times ten to the 17th power. When you run a program over and over it may
be that some uninitialized variable positions keep landing in a ‘good’ part
of the RAM that happens to get wiped to all zeroes before each run. But when
you switch from a Debug build to a Release build, the size of your program
changes and it occupies a different ‘footprint’ on the RAM. So now maybe the
unitialized variables are getting loaded with junk.

The catch with having a bug that only occurs in the Release build is that you
can’t pop up the debugger to see what’s wrong! What you can sometimes do,
however, is to save off the bad situation as a parameter file, start up the Debug
build and load the misbehaving parameters, and now use the various Debugger
windows to find the problem. If you come across a variable that has an odd
value, this is where your trouble is coming from.

In order to find all the bugs in your program, you need to test it a lot.
A testing trick that can be useful is to build a function into our program
which randomizes all of our program’s parameters upon request. This ‘monkey
on a typewriter’ testing will often turn up bugs that might have escaped your
notice.

Tools for software engineering 393

In addition, you need to actually use your program a lot to find bugs – or
to find bad aspects of your user interface. If you create, say, a game program,
you should be willing to spend an hour playing with your program to see if it
works!

Coding defensively

A basic principle for avoiding bugs is to code defensively. Be paranoid and take
into account that some of the parameters fed into a routine might have bad
values. Never, for instance, write a line like the following without first checking
that x is not zero.

y = 1.0/x;

One way to check that x is not zero is to use the assert macro, and insert a line
like the following before any line that tries to divide by x.

assert (x);

The advantage of using assert is that it’s easy to do; the disadvantage is that
if an assert statement fails while the program is running, then the program
terminates with an error message which will frighten and mystify the user,
something like this.

assertion failed in line 666 of trouble.cpp

By default assert always carries out the check (although you can turn it off,
see the documentation on it). MFC has a version of the macro called ASSERT

that we use more commonly in the Pop Framework. ASSERT only carries out the
check in the Debug build of your program. This is a good thing if you plan to do
plenty of testing before release, as it may be that checking the ASSERT condition
takes up valuable time. If you want an assertion check that is also made in the
Release build, you can use the standard C macro assert.

In the Debug mode, if an ASSERT line fails, the program halts with an error
message. In the Release mode, an ASSERT line is ignored.

To make a solidly usable program, we test thoroughly for ASSERT failures
in the Debug mode, and find ways to code in some reasonable non-program-
terminating fallback course of action to take when an ASSERT might otherwise be
triggered. If you really do want to check for the condition even in the Release
version you can use the assert macro, but this is generally a fairly user-unfriendly
thing to do. You really do want to find and work around any bad conditions
while still coding.

By way of illustration, let’s look at how you might avoid problems with division
by zero. As a programmer you should never ever divide by something before
making sure that it’s not zero. Whenever you see a division in your program, do
something about it. When you divide by zero the program crashes. To make life

Software Engineering and Computer Games Reference394

a little more confusing, a Windows program that crashes after division by zero
will often as not give you an error message saying ‘Square root of a negative
number.’ You don’t want your users to see that.

So if, say, x and y are real numbers and n is an integer, instead of writing a
line like x = y/n; you might write a line like

x = y/(n?n:1);

(A?B:C is the ‘compactified C’ question mark and colon syntax for an if-then-
else statement. If A is true the value is B, otherwise the value is C.)

If the number you are dividing by is a real number u, then we need to avoid
dividing by something very close to zero as well as dividing by zero. The problem
is that dividing by something very close to zero can also produce a floating
point error. To give a nice smooth fallback strategy, we might write something
like the following in place of x = y/u.

#define SMALL_REAL 0.000001

if (fabs(x) < SMALL_REAL)

x = (x>=0.0)?(SMALL_REAL):(-SMALL_REAL);

y = 1/x;

The double fabs(double v) is the floating point absolute value function. You
should not accidentally use the int abs(int n) integer absolute value function
instead, because calling this function will round off the argument to an integer;
for instance, abs(1.5) is 1 and abs(0.9) is 0.

Another technique for writing more bug-proof code is that you can handle
bad parameter values with the more sophisticated C++ approach known as
exception-handling, which uses the try, catch, and throw commands. But we
won’t cover exception handling in this book.

21.3 Windiff and merging code

In the old days it was customary to use the Unix diff or the DOS fc utilities for
this. Now it is more common to use a graphically interfaced tool that comes
with your compiler.

Windiff

Microsoft Visual Studio has a utility called Windiff which is pretty easy to use.
The tool is still shipped with Visual Studio.NET, but in a default installation,
Windiff will normally not be installed, so you may need to run through Visual
Studio setup process to select this particular tool to be added onto your
machine. It is part of the group of tools added by selecting Visual C++ Tools |

Win32 Platform SDK in the Setup dialog.
As Windiff is an older program, it may not appear on your Start | Programs |

Microsoft Visual Studio | Tools popup menu. If not, you can find it with Windows

Tools for software engineering 395

Explorer or with the Windows Search utility. It will typically reside in the
directory C:\Program Files\Microsoft Visual Studio\Common\Tools.

Once you open Windiff, you can ask it to compare two individual files or,
which is usually more useful, all the files in two different directories. If you
compare directories, Windiff gives you a list of the differing files, and then you
can compare these pair by pair. When comparing two files, Windiff has a very nice
and unique user interface. It’s really a classic of good user interface design. A
bar on the left shows a map of the two files with the differing places marked in
red and yellow, with red meaning there’s extra code in the one file, and yellow
meaning there’s differing code in the other file. Clicking on the bar jumps you
to the location of the file in question. Practice with Windiff a little till you learn
how to use it, and don’t forget to take a look at the help file.

Once you have found the places where the programs differ, you need to
merge the two together. This may work best if both programmers are present –
although if they are prone to arguing (and many programmers are) this may
not be such a good idea. Ideally the merge is being done by a person in authority,
by the team leader or the chief engineer.

Suppose the two programmers are called Ann and Bob. To merge their files,
make notes of where they differ (or leave them open in Windiff). And to edit the
files open them up in Visual Studio as separate windows (you can’t edit files
within Windiff). If there are any windows open besides the two files to edit, close
them. Select Window | New Horizontal Tab Group [or Window | Tile Horizontal in
Version 6] so you can see both files. Decide which file you want to ‘merge into,’
Ann’s or Bob’s. The idea is that you should merge into the file that has the
largest amount of new code in it. By talking about the files and/or by exploring
them with Windiff, you can decide which has the most new code. Let’s say that
Ann’s file has substantially more differences from the original commonly shared
starting-point code than does Bob’s. Fix in your mind which file is which in the
editor window; you might for instance make sure that the file you are merging
into is the upper file on the screen.

Now what you need to do is to scroll through the different files in Windiff,
and look at all the places where Bob’s code differs from Ann’s. Where Bob’s
code is simply adding on a good feature or fixing something, you want to copy
that piece of Bob’s code into Ann’s code, replacing Ann’s code with Bob’s.
Where Bob’s code has the old version which Ann has already changed, you
want to just leave Ann’s code as it is. If there are some places where Bob and
Ann do the same thing in two different ways, you need to try and decide which
approach is better. If you can’t quickly agree, then use an #ifdef to incorporate
both versions. That is, you can use a construction like this:

#define BOB_WAY

#ifdef BOB_WAY

//Put Bob’s code here

#else //not BOB_WAY means Ann’s way.

//Put Ann’s code here

#endif //End of the Ann’s way part of the BOB_WAY switch

Software Engineering and Computer Games Reference396

Merging

Once you get the program to start building again, you can try turning the
BOB_WAY switch on and off (by commenting it in or out), so that you can tell
which *.exe runs better. At that point you would probably want to remove the
less-good code, as keeping it in the file will make your file hard to read.

Often there is a temptation to make the merge process ‘faster’ by not bothering
to use a file-comparing utility like Windiff. Can’t Bob just tell Ann which pieces of
the code he changed and have Ann copy those new pieces in? In practice this
rarely works. Usually Bob will forget about some of his minor changes, and
when he and Ann go to rebuild the code they will get a lot of error messages.
If they’re lucky, fixing these errors one by one ends up taking as much time as
it would have taken to do the job right with Windiff in the first place. If they’re
unlucky, there will be some omitted change which doesn’t generate a compiler
error, but which does create a bug.

Revision control software

If you know that you are going to have to merge your code it’s a good idea to
try and localize your changes into one part of the document to make it easy to
block-copy them. It can also be useful to flag your changes with comments that
have your name.

There are advanced software engineering tools such as Microsoft SourceSafe
that more or less automate the version control and merging process. Tools such
as this are generally known as ‘revision control software,’ sometimes called RCS
for short. An RCS package has several significant features.

The most basic feature of RCS is that it serves as a single centralized repository
in which the source code lives. The RCS in fact saves every version of the code
that you’ve given it, so that as well as having your current code in a centralized
location, your team has access copies of your earlier builds as well.

RCS treats code files like books in a library. Only one user at a time can
‘check out’ a given file for editing. Until this user eventually ‘checks in’ the file,
no other user will be able to change the file. You can always get a read-only
copy of a file, but only one programmer at a time can check out a file for editing.
This helps prevent difficult code-merge situations.

The RCS software normally requires a programmer to make some kind of log
entry when he or she checks a file back in. The cumulative log entries help the
team track when changes were made.

We’re not going to discuss any specific RCS packages in this book, but if every
member of your team has access to the same one, you would do well to spend a
little time learning how to use it. If you are working in an environment where
there is a shared directory (on the web or on a network) then it is definitely
worthwhile to use some form of RCS to make it impossible for two people to
work on the same file at the same time. As well as Microsoft SourceSafe, there is
a well-known shareware Unix-based RCS tool called RCS. It’s worth noting that
the familiar Macromedia Dreamweaver web-site-building tool can in fact be

Tools for software engineering 397

used as an RCS system. Another option is to use a web-based collaboration tool,
of which several exist. For that matter, it wouldn’t be too hard to create a web
page for your team that effectively acted as your RCS system.

Informally, you can achieve something like the effect of using RCS by being
strict about not letting team members work on the same code at the same time.
This is really worth doing, as merging code is such a hassle.

Once the group gets a new merged build that works, be sure to clean it, save
off an archive copy of the code, make a *.zip of it, and distribute the *.zip to
all team members. Without exception, each member of the development team
should replace all of his or her source-code files with the new build’s source-
code files. This is to avoid having to repeatedly fix the same bugs or to merge
the same code.

21.4 Counting lines of code

Often people like to measure the progress of a software project in terms of the
number of lines of code in the project. One reason for doing this is that it may
help you come up with a reasonable estimate for how long a project might take.
That is, if you feel that project B is similar to project A, and you know that pro-
ject A used nA lines of code, then you might guess that when you’ve written nB
lines of code on project B, then project B is nB/nA of the way done.

Or, again, if you want to add some feature G to a project and you know
that the feature G is similar to a feature F that was already added, then once
again, you can gauge your progress on feature G by tracking the ratio of nG to
nF, where nG would measure the lines of code related to feature G and your
baseline nF would measure the lines of code related to feature F.

There are professional tools to track the number of lines of code, but here
let’s just mention a quick and dirty solution. It’s a crude technique, but it’s easy
to use. It lets you come up with a painless, reasonably accurate estimate of how
many lines of code you wrote.

To count the number of lines of code in all your project files, open up your
main project file and use the Edit | Find In Files feature to search for the semicolon;
in all the *.h and *.cpp files. If you want to count the lines of code in an individual
file, you can change the Edit | Find In Files to only search in that file.

Other than the fact that for loops do introduce two extra semicolons apiece,
there is a pretty close one-to-one correspondence between the number of semi-
colons in your project and the number of lines of code. This rough-and-ready
metric can be thrown off a bit if you use a lot of semicolons in your comments.
Another mild source of inaccuracy is that *.res files don’t have semicolons, so
your work on the interface doesn’t get counted by the search-for-semicolons
metric.

To be completely accurate, you can separate out the starting code that you
didn’t write yourself. In the case of a new Visual Studio project, this will be
about 100 lines of code scattered across something like 12 small files.

Software Engineering and Computer Games Reference398

If you keep the source for your successive builds in different directories, and
are careful to put the date of the build into the caption bar of your successive
builds, you can work out a little table to get an idea of how fast you program.
Table 21.1 gives some data on the progress of the author’s Pop Framework over
the last couple of years.

The ‘Starting Code’ represents the code that the Microsoft Visual Studio
automatically generated when the author used the Visual Studio’s ‘AppWizard’
to create a Document-View architecture (MDI) project named Pop.

The values of the rates in the last column are deceptively high for the earlier
builds, because in those early builds the author was still adding in modules of
‘tool class’ code that he’d written before. Adding in some old code modules
accounts for most of the new lines added between Pop 2 and Pop 4. The lower
rates further down the column are more indicative of the actual speed the
author programs, even when he’s working quite hard. The jump from version 7
to 17 is a little anomalous, as it covers ten versions at once, and these versions
were done over a year during which there were long periods when the author
wasn’t programming at all. Though, all along, he was still thinking about the
program. Thinking is slower than typing. The rather substantial jump from Pop
20 to Pop 21 represents the introduction of three-dimensional vectors and
OpenGL graphics.

As a program gets more developed and starts using high-level classes, you
can actually make quite a large change to it with only a few lines. The hard
thing, of course, is figuring out the lines. If they involve some tricky new con-
cept like, say, a splitter window, just a dozen lines can take you all day, because
most of that day you’re reading up on splitter windows.

Tools for software engineering 399

Table 21.1 The number of lines of code in the Pop Framework.

Version Total lines New lines Date New days New lines /
New days ~

Starting code 99 0 July 4, 1999 0
Pop 1 219 120 July 5, 1999 1 120
Pop 2 249 30 July 6, 1999 1 30
Pop 3 908 759 July 12, 1999 6 127
Pop 4 1431 523 July 13, 1999 1 523
Pop 5 1505 74 July 14, 1999 1 74
Pop 6 1755 250 July 26, 1999 12 21
Pop 7 1906 151 July 30, 1999 4 38
Pop 17 5036 3130 June 7, 2000 312 10
Pop 19 5380 344 Aug 15, 2000 73 5
Pop 20 5822 442 Jan 20, 2001 158 3
Pop 21 9135 3313 June 21, 2001 121 27
Pop 24 10067 872 March 11, 2002 203 4
Pop 25 10152 85 May 1, 2002 52 1

21.5 Help files without tears

Software Engineering and Computer Games is about software engineering and
about games development. As part of the package, you need to learn how to
make a fully complete program all on your own. This means you need some
minimal knowledge about how to make a help file, that is a file that users can
read from within your program.

We’ve already mentioned that from the earliest build on, your program
should always include a User’s Guide. And that it’s crucial to discipline yourself
to do this. Working on the User’s Guide should go hand-in-hand with working
on your project specification.

It turns out that you can use the very same text file as ‘source’ for both a print
version of the User’s Guide and a corresponding help file. So you might as well
actually have a help file from quite early on. After all, as long as you have a User’s
Guide written, it makes sense to make it into a help file that your co-workers,
professor, family, friends, etc. can look at when they test out your new build of the
program. People are sometimes more willing to look at a help file than at written
documentation. And written documentation can so easily be misplaced.

One might initially suspect that turning written documentation into a help file
is so difficult that it’s something you should put off for later. But this isn’t true
– if you keep things simple. If all you want is a vanilla, single-file help display
with no table of contents, index, or hyperlinks, creating a help file is a snap.
The fact is, the key thing about a help file is what’s written in it. All the other
stuff is just glitz that’s only occasionally useful.

Help systems are often spoken of as having separate topics, and the topics
are often kept in separate source-text files that are then compiled into a single,
large help file. In order to keep our help development process as simple as
possible we are going to only have one topic in our system, one topic in one big
source-text file.

By limiting yourself to a single, large topic file, you can focus on making it a
useful document. An additional benefit of working with a single topic file is
that then you have a file you can print out as is for a hard-copy User’s Guide.

Be aware that this is a somewhat non-standard approach. In a commercial
program you would eventually want to break your help into separate topics, pro-
viding a table of contents and an index. But for now, we’ll just keep it simple.

In defense of our approach, let it be said that if you have a limited amount of
time to spend on the help, it’s better to spend it on the writing than on electronic
help features. One does encounter help systems in which the priorities have
been skewed the other way. Thus, when the user wonders what a control like, say,
Clavier | Deviance does, he or she has to navigate through a contents page that
doesn’t list it in the topics, use the search tool, follow a string of hyperlinks and
end up with a single-sentence nugget of non-help such as, ‘The Clavier Deviance
Tool deviates the clavier.’

In the following subsections, we first have some notes about how best to
create a User’s Guide that’s appropriate for converting into a help file. Then we
discuss the troublesome fact that there are presently two possible kinds of help

Software Engineering and Computer Games Reference400

file: the newer HTML help and the old Windows help. Then we have a section
about how to make each kind of help file. And finally we have a note about a
mixed case that can arise for some developers.

Writing the User’s Guide

Write the source documentation for your help as if it’s something you might
actually expect a human being to read. Don’t fill up line after line with obvious
and uninformative things like ‘The File | Save command saves a file.’

It’s good to break the guide into sections. You can use a format similar
to what we used for the Pop User’s Guide; this is the document that appears
both as Appendix B of this book, and as the help file that comes with the Pop
Framework. Start with a little introduction, describe what the user sees on the
screen, including the cursor appearance, explain how the game is played and
scored, explain all the non-standard menu items, tell about any other controls,
explain any peculiar features of your program’s interface, and add some tips for
play. It’s good to have a ‘Getting Started’ section at the beginning of the Guide
to walk the user through the first few things he or she should try.

Let’s stress again that when you’re writing, you should always imagine that
you’re talking to a real person. Write as if you are explaining the game to
a friend, not to a boss or to a professor. Be generous with the information.
If there’s some hint or suggestion or motivation that you always verbally tell
someone when you watch them play your game, then this information should
be part of your written documentation. Also be sure to put your name, the date,
copyright info, and contact information at the end of your file.

Now for some remarks about the technicalities of word-processing.

Which word-processor?

Most people use a recent version of Microsoft Word, which is part of Microsoft
Office. Word supports a variety of file formats; in particular you can use it to
create the native *.doc (Word format) files, *.rtf (rich text format) files, or *.htm

(HTML format) files. A nice feature of Word for this purpose is that you can
format your text in any fashion you like, and when you save to *.rtf or *.htm, all
of your fonts, spaces, indents, included bitmaps, figures, tables, and so on will
be preserved – though you may want to double check the tables.

As we’ll discuss in the following subsection, there are actually two different
ways of making help files; you can make the old and nearly obsolete ‘Windows’
help files or you can make the newer HTML help files. If you plan to make
Windows help files, you need to be able to save your files in the *.rtf format.
If you plan to make HTML help files, you need to be able to save in the *.htm

format.
If you don’t have Microsoft Word, you can make *.rtf files with the WordPad

accessory which comes free with Windows. If you don’t have Word and wish to
have a graphic HTML editor, you will need to find one; it may be that you have
some Web design software that can help you create HTML.

Tools for software engineering 401

Making an effective help file

There are a few key things you need to remember when you create a text file
that’s intended to be read onscreen.

• Make your file single-spaced. People are going to be reading it onscreen,
where space is at a premium.

• Remember not to put a paragraph mark (an Enter key press) at the end of
each line in a help file. This is because the help file text is going to be shown
inside of a resizable window, and if you have ‘hard’ line breaks, then when
the window is made narrow, the hard line breaks will appear at bad places.
Only use Enter for the end of a paragraph or to skip a line.

• You can paste in bitmaps, but don’t overdo it. Too many bitmaps will increase
the size of your help file resulting in (a) a larger file to distribute with your
program and (b) slower loading time of the help when the user calls for it.

• If using Word, format the lines at the heads of your sections with the styles
Heading1, format the subsection lines with Heading2, and so on.

It’s easier to avoid putting in unnecessary hard line breaks if you view your
document in a mode where the breaks are visible. If you are using Microsoft Word,
you can do this by putting a check into the Tools | Options... | View | Paragraph

marks box. This will display paragraph marks in your text as you edit it, so that
you can visually see the spots where you pressed Enter and put a hard break
into a line.

The reason for formatting your section headings is that, first of all, this
makes them visually stand out and, second of all, it allows you to automatically
insert a Table of Contents, as we’ll mention in the ‘Creating and reading HTML
help files’ section further below.

The two kinds of help

Here’s a bit of bad news. There are now two incompatible standards for help
files: the older Windows help standard and the newer HTML help standard.

It would be easier for the author to advocate and explain only one of these
approaches. But, in order to make the Pop Framework code as widely usable as
possible, we’re going to explain three approaches.

• Using HTML help with Visual Studio.NET, Version 7.0.

• Using Windows help with Visual Studio, Version 6.0.

• The mixed case: using HTML help with Visual Studio, Version 6.0.

The default behavior of the Pop Framework is to detect your compiler type
and to use the first option if you have Visual Studio.NET, and use the second
option if you have Visual Studio, Version 6.0.

The first approach is really the best, as this is where the future lies. And if you
have Visual Studio.NET, it’s the only way to go. If you plan to use this approach,
you should now download the HTML Help Workshop from Microsoft. We

Software Engineering and Computer Games Reference402

have a link to the download site on our book’s website www.rudyrucker.com/

computergames, or you can go to www.microsoft.com and enter download htmlhelp

in the Search box at the top corner of the Microsoft home page. Once you’ve
done this, you can pretty much ignore the rest of this subsection, though you
might just skim over it so you know what’s here.

If most or all of the people in your group are using Version 6.0, the second
approach is probably the best for you for now. In this case you also can ignore the
rest of this subsection, though again, a quick glance through it might be useful.

If you are in a mixed group, it’s probably best if the people with Version 6.0
make the effort to switch over to the HTML help. In this mixed case, you’ll
need to read the rest of this section as well as the special Mixed Case subsection
at the end of the chapter.

Let’s get an overview of the distinctions between the two kinds of help. We
summarize these in Table 21.2.

Up through and including Version 6.0, Visual Studio shipped with a hcw.exe,
known as the Help Workshop. The Help Workshop’s function was to convert *.rtf

(rich text format) files into *.hlp Windows help files.
Now there is a new tool, hhw.exe, known as the HTML Help Workshop. The

HTML Help Workshop’s function is to convert *.htm (HTML) files into *.chm

HTML help files.
Visual Studio, Version 6.0, shipped with the hcw.exe Help Workshop. The

hcw.exe Help Workshop is now classed as obsolete and is not available as a
download.

Visual Studio.NET, Version 7.0, ships with neither hcw.exe nor hhw.exe. As
mentioned above, the hhw.exe HTML Help Workshop is available as a free down-
load from Microsoft.

There are two different kinds of things a developer needs to do with help
files.

• Create a help file using some sort of ‘help workshop’ tool.

• Add to the program code a function call which will read the help file.

What’s required to do these things?

• You need the HTML Help Workshop hhw.exe to create HTML help files.

• In order to have your program be able to read a *.chm HTML help file, your
program must include the special header file htmlhelp.h, and it must link
to the special library file htmlhelp.lib. These files are pre-installed by Visual
Studio.NET in a place where the compiler can easily find them, and the Pop
Framework code is set to, respectively, include and link the files with Visual
Studio.NET.

• You need the Help Workshop hcw.exe to create Windows help files.

• In order to have your program be able to read a *.hlp Windows help file, you
don’t need to add anything more to your system.

When you install Visual Studio.NET, Version 7.0, it installs the support files
htmlhelp.lib and htmlhelp.h into, respectively, the include and lib subdirectories of

Tools for software engineering 403

Visual Studio.NET\Vc7\PlatformSDK. This means that your compiler will easily be
able to find these files.

Visual Studio, Version 6.0, doesn’t install the support files htmlhelp.lib and
htmlhelp.h, but if you are using the Help Workshop, you won’t need them.

When you download the HTML Help Workshop package the package will
also install htmlhelp.lib and htmlhelp.h onto your machine, by the way. By default,
the download puts these files into, respectively, the include and lib subdirectories
of Program Files\HTML Help Workshop. Note that Program Files\HTML Help Workshop will

Software Engineering and Computer Games Reference404

Table 21.2 The new HTML help compared with the old Windows help.

New HTML help Old Windows help

Pop Framework default Used for Visual Studio.NET, Used for Visual Studio,
Version 7.0 Version 6.0

Authoring tool hhw.exe (HTML Help hcw.exe (Help Workshop)
Workshop)

How to get the tool Download from Microsoft Shipped with Version 6.0.
Not available as a
download

Source files *.htm (HTML files) *.rtf (rich text format files)

Project file extension *.hhp *. hpj

Help file extension *.chm *.hlp

Window opens help file ::HtmlHelp ::WinHelp

with a special call to (...”pop.chm”...) (...”pop.hlp”...)

Include file needed for #include <htmlhelp.h> None
this special call

Library needed to be htmlhelp.lib None
linked in for this
special call

How to get the include file Ships with Version 7.0. And None needed
and library file downloads from Microsoft

with the HTML Help
Workshop tool

Where to put the include With Version 7.0: no action Doesn’t apply
file and library file needed.

With Version 6.0: either with
your source code or in,
respectively,
Program Files\Microsoft
Visual Studio\VC98\Include
and Program Files\Microsoft
Visual Studio\VC98\Lib

also contain the new HTML Help Workshop tool hhw.exe, along with a bunch of
documentation about how to use the tool.

If you already have Visual Studio.NET on your machine, you won’t need
these new copies of htmlhelp.lib and htmlhelp.h, so you can delete them. If you are
using Visual Studio, Version 6.0, you will want to use these files, as we discuss
in the Mixed Case subsection at the end of this chapter.

Creating and reading HTML help files

This subsection tells you how to work with HTML help files using either version
of Visual Studio. If you plan to use Visual Studio, Version 6.0, with Windows
help files, skip this subsection and go to the next one.

(1) We’ll keep our Windows help in the Help\HTML Help subdirectory of the
project. Edit your source text and, if using Word, use the File | Save As

selection to save as a web page (*.html, *.htm) file called, say, Myproject.htm.
The HTML help will preserve any jumps or links that you put into your
file. This is useful because Word has an Insert | Index and Tables... | Table

of Contents feature that allows you to give your document a table of
contents that’s automatically generated by the heading styles used for
your section headings (assuming that you used these styles). When you
save a file with this kind of contents table in the *.htm format, the table of
contents links will be preserved. (This is a shortcut that lets you postpone
or avoid the more complex issue of making a standard HTML Help Table
of Contents.)

(2) Find HTML Help Workshop under your main Windows Start | Programs |

HTML Help Workshop and start it up. Or, if you already have a Myproject.hhp

HTML Help Workshop project file, click on it to open it.

(3) To make a new HTML Help Workshop project, select File | New... | Help

Project file inside HTML Help Workshop. When the dialog asks the name
for your project file, choose the same name as your executable, say
Myproject.hhp, and save it to the same subdirectory where you put your
source-text file Myproject.htm. You also get the chance to choose the name
and location for the completed Myproject.chm file. It’s convenient to give it
the same name as your executable and to write it up into the directory
where you keep your source code and executables. (Don’t call your help
file Pop.chm!) Thus if you are making your help down in Help\HTML Help

subsubdirectory of the source, you might want your target file to be
..\..\Myproject.chm. When, later on, your executable tries to open the help
file, it will expect to find it in the directory where it lives.

(4) Use the HTML Help Workshop Add/Remove Topic Files... button to add
the Myproject.htm user guide file from step (1) as a so-called topic file. You
also have the option of using the Add/Modify Window Definitions button
to control the appearance of the window in which your help file will
appear. In the case of the default Pop.hhp project, we added a PopHelp
window style which has the ‘Navigation’ panel closed (as we didn’t make

Tools for software engineering 405

a table of contents or an index to show in the panel), but which has Back,
Forward, and Print buttons. Be sure to make the title of your window
style match your project. There are other possible window style options
you can explore.

(5) Click the Save and Compile button on the HTML Help Workshop window.
It may show you one or two warnings, but it should in any case create
your ..\..\Myproject.chm. Leave HTML Help Workshop open till after the
next step.

(6) Find the newly built Myproject.chm help file in Windows Explorer and
click on it to open (Windows can open any help file on its own). Before
opening it, by the way, you might want to check its time and date in
Explorer to be sure you’re not opening an old version of the help file.
If what you see in the file isn’t satisfactory, open up your Myproject.htm in
your word-processor and edit it. Then do a fresh save of the file, leaving
the word-processor open if you like, go back into the HTML Help Workshop,
and recompile. Repeat steps (5) and (6) till you’re happy with the way
your help file looks.

(7) Step (7) is already done for you in the Pop Framework, but we mention
it for your future reference. Add a menu selection so the user can tell your
app to open your help file, and link this menu selection to a handler
in your code that will open the help file. To add the menu selection, use
the Resource View to open up the project-specific IDR_POPTYPE menu,
then add a selection named User’s Guide to the Help popup. It gets the
ID_HELP_USERSGUIDE. Add a handler for the selection; a good place to
keep the handler is in the CMainFrame class, as when you open a help file,
it must be linked to one of your onscreen windows. Your main frame
window is the logical one to use. Thus the handler for the Help | User’s

Guide menu selection is CMainFrame::OnHelpUsersguide.

(8) Edit the handler code. The generic Pop handler code for HTML help is as
follows. You will need to edit the code so that it looks for your own
Myproject.chm file rather than for the Pop.chm file.

void CMainFrame::OnHelpUsersguide ()

{

::HtmlHelp (GetSafeHwnd (), “Pop.chm”, HH_DISPLAY_TOPIC, 0);

}

(9) See if your project will build. It is possible that you will see an error
message like this in your Output window when you reach the ‘Linking’
stage of the build.

Pop error LNK2019: unresolved external symbol _HtmlHelpA@16

referenced in function “protected: void _thiscall

CMainFrame::OnHelpUsersguide (void)”

(?OnHelpUsersguide@CMainFrame@@IAEXXZ)

Software Engineering and Computer Games Reference406

This message means that your project can’t find the code for the
::HtmlHelp method, and this means, in turn, that your project isn’t linking
in the necessary htmlhelp.lib library.

Open the Project Settings dialog and set the configurations being
changed to All Configurations as described in Appendix C. Then edit the
Configuration Properties | Linker | Input | Additional Dependencies edit box
to include htmlhelp.lib. Now your program should build.

If you still have problems you may need to adjust the Visual Studio
directory paths so that it can find htmlhelp.lib.

(10) Build and run the program and select Help | User’s Guide. There it is!

Creating and reading Windows help files

This subsection is only for those planning to use Windows Help with Visual Studio,
Version 6.0. Do not bother with this subection if you use Visual Studio.NET.

(1) We’ll keep our Windows help in the Help\Windows Help subdirectory of the
project. Edit your source text and, if using Word, use the File | Save As

selection to save as a rich text format (*.rtf) file called, say, Myproject.rtf.

(2) Find Help Workshop under your main Windows Start | Programs | Microsoft

Visual Studio | Microsoft Visual Studio Tools and start it up. Or, if you already
have a Myproject.hpj Help Workshop project file, click on it to open it.

(3) To make a new Help Workshop project, select File | New... | Help Project file

inside Help Workshop. When the dialog asks the name for your project
file, choose the same name as your executable, say Myproject.hpj, and save it
to the same subdirectory where you put your source-text file Myproject.rtf.
You also get the chance to choose the name and location for the com-
pleted Myproject.hlp file. It’s convenient to give it the same name as your
executable and to write it up into the directory where you keep your
source code and executables. (Don’t call your help file Pop.hlp!) Thus if
you are making your help down in Help\Windows Help subsubdirectory of
the source, you might want your target file to be ..\..\Myproject.hlp. When,
later on, your executable tries to open the help file, it will expect to find it
in the directory where it lives.

(4) Use the Help Workshop Files... | Add to add the Myproject.rtf user guide file
from step (1) as a so-called topic file.

(5) Click the Save and Compile button on the Help Workshop window. It may
shows you one or two warnings, but it should in any case create your
..\..\Myproject.hlp. Leave Help Workshop open till after the next step.

(6) Find the newly built Myproject.hlp help file in Windows Explorer and click on
it to open (Windows can open any help file on its own). Before opening it,
by the way, you might want to check its time and date in Explorer to be
sure you’re not opening an old version of the help file. If what you see in
the file isn’t satisfactory, open up your Myproject.rtf in your word-processor
and edit it. Then do a fresh save of the file, leaving the word-processor

Tools for software engineering 407

open if you like, go back into the Help Workshop, and recompile. Repeat
steps (5) and (6) till you’re happy with the way your help file looks.

(7) Step (7) is already done for you in the Pop Framework, but we mention
it for your future reference. Add a menu selection so the user can tell your
app to open your help file, and link this menu selection to a handler
in your code that will open the help file. To add the menu selection, use
the Resource View to open up the project-specific IDR_POPTYPE menu,
then add a selection named User’s Guide to the Help popup. It gets the
ID_HELP_USERSGUIDE. Add a handler for the selection; a good place to keep
the handler is in the CMainFrame class as, when you open a help file, it must
be linked to one of your onscreen windows. Your main frame window is
the logical one to use. Thus the handler for the Help | User’s Guide menu
selection is CMainFrame::OnHelpUsersguide.

(8) Edit the handler code. The generic Pop handler code for Windows help is
as follows. You will need to edit the code so that it looks for your own
Myproject.hlp file rather than for the Pop.hlp file.

void CMainFrame::OnHelpUsersguide ()

{

::WinHelp (GetSafeHwnd (), “Pop.hlp”, HELP_CONTENTS, 0);

}

(9) Build and run the program and select Help | User’s Guide. There it is!

The mixed case: reading HTML help files with a Version 6.0 build

Now let’s talk about using HTML Help Workshop with Visual Studio, Version 6.0.
First of all you need to read the subsection about HTML help. And in addition,
you need to read this subsection about how to adjust your build so as to work
with these files.

In order to build programs that can read HTML help files, each Version 6.0
team member needs to add a new library file htmlhelp.lib and header file htmlhelp.h

to their build environment.
As we mentioned before, when you download the HTML Help Workshop

package the package will also install htmlhelp.lib and htmlhelp.h onto your machine,
by default putting them into, respectively, the include and lib subdirectories of
Program Files\HTML Help Workshop. And, again, the Program Files\HTML Help Workshop

will also contain the new HTML Help Workshop tool hhw.exe, along with a
bunch of documentation about how to use the tool.

If you are using Visual Studio, Version 6.0, you will need to either (a) move
these files to a spot where your Visual Studio can find them when it compiles and
links your project, or (b) remember to prefix references to these files in your
Visual Studio code or project with the path information about where the files are
located, or (c) use the Version 6.0 dialog Tools | Options | Directories to add the
appropriate paths to the lists of include and library directory paths searched.

Software Engineering and Computer Games Reference408

If you are working with people who may easily get confused, the safest
initial option is to (a) just put the two htmlhelp.* files in with your source code.
Otherwise have them download the files themselves and either (b) put them in,
respectively, their local directories Program Files\Microsoft Visual Studio\VC98\Include

and Program Files\Microsoft Visual Studio\VC98\Lib, so that their Version 6.0 compiler
can find them, or (c) change the include path list to have Program Files\HTML Help

Workshop\Include and the compiler’s library path list to have Program Files\HTML

Help Workshop\Library.
In addition you will need to do two more things.

• Override the Pop Framework’s default choice of Windows Help for Version 6.0.

• Add htmlhelp.lib to your Visual Studio, Version 6.0, *.dsw project file.

You do the first thing by commenting in a //#define POPHTMLHELP line in
the mainfrm.cpp file. We print the line here and its comment, along with the pre-
liminary code that detects which version of Visual Studio is being used and
automatically defines or doesn’t define POPHTMLHELP accordingly.

#if _MSC_VER >= 1300 /* Version abcd means your Visual C++ is

version ab.cd. It turns out “Visual Studio.NET, Version 7.0”

gives an _MSC_VER of 1300, or Build 13.00, and “Version 6.0”

has _MSC_VER of 1200, or Build 12.00 for a _MSC_VER of 1200.

We could also have distinguised the two by detecting the MFC

version, with _MFC_VER. The _MFC_VER is, perversely, returned

as a hexadecimal number. Version 6.0 uses MFC version 0x0060,

while Version 7.0 uses 0x0070. */

#define POPHTMLHELP /* Normally don’t use this with Version 6.0,

though you can if you want, see the next comment down. */

#endif //End the _MSC_VER switch

//#define POPHTMLHELP //Comment in to force on for Version 6.0

/* At this point POPHTMLHELP is turned on for Version 7.0 and

off for Version 6.0. If you want to force it on anyway in

Version 6.0, then comment in this #define POPHTMLHELP. Note that

Version 7.0 puts two necessary files htmlhelp.h and htmlhelp.lib

onto your machine in standard directories where the compiler can

find them. If you are using Version 6.0, you have to get these

files yourself, and put them in a place where the current

Visual Studio Directories settings can find them. Note that

for Version 6.0, you also need to add htmlhelp.lib to the list

of Link files. Our Version 7.0 solution file already has the

library in the link list, but the Version 6.0 workspace file

does not.*/

#ifdef POPHTMLHELP

#include <htmlhelp.h>

#endif // POPHTMLHELP

Tools for software engineering 409

To add htmlhelp.lib to your Version 6.0 project do the following. Open the
Project | Settings dialog. Activate Settings For | All Configurations in the upper left
corner of the Settings dialog. Now find the Project | Settings | Link | General |

Object/Library Modules edit box, and type in htmlhelp.lib.
As we discussed above, you should have htmlhelp.lib in a place where the

compiler’s current directory settings can find it. Alternately you can put a
path name in front of the htmlhelp.lib name, but this makes your project fairly
non-portable.

By the way the POPHTMLHELP switch gets used as follows:

void CMainFrame::OnHelpUsersguide ()

{

#ifndef POPHTMLHELP

//If not POPHTMLHELP do it the old way with a *.hlp

::WinHelp (GetSafeHwnd (), “Pop.hlp”, HELP_CONTENTS, 0);

#else // POPHTMLHELP means use a *.chm.

::HtmlHelp (GetSafeHwnd (), “Pop.chm”, HH_DISPLAY_TOPIC, 0);

#endif //End POPHTMLHELP switch

}

Exercise

Exercise 21.1: Counting semicolons

See what the semicolon count is for your version of the Pop Framework code. Make a
note of this and then, as your project progresses, track your progress with a table similar
to the one shown above. (Note that even if your version number appears in the table
above, your line count may not exactly match the value in the table, as the author may have
changed the Pop code in the meantime without giving it a whole new version number.)

Software Engineering and Computer Games Reference410

22Topics in C++++

The Pop Framework and MFC use C++ very extensively. Here’s a brief brush-up
on C++, with emphasis on some of the trickier points. If you know C and/or
Java but are new to C++ you should read this chapter carefully and refer back to
it as the various topics come up.

22.1 Classes, objects and constructors

In object-oriented programming (OOP) we use a special kind of data structure
called a class. A class is quite similar to an ordinary C struct. Particular instances
of some class type are called objects. As well as having members which are data
fields, a class also has members that are functions. If SomeClass were the name
of a class and SomeFunction(…) happened to be the name of one of the class’s
member functions, then it would make sense to have two lines like:

SomeClass K;

K.SomeFunction(…);

The first line says that K is an object of the class type SomeClass. You can
also say that ‘K is a SomeClass object’ or you can say ‘K is an instance of the
SomeClass class.’ Supposing K has a bunch of data fields, what gets put into
these fields when you make the ‘SomeClass K;’ declaration? It turns out that
when you define any class you also define a constructor function which serves
to initialize new members of the class.

The second line says to let the object K call the class member function
SomeFunction. SomeFunction might act on K’s data members, do something to the
SomeFunction arguments, possibly return a value, or do any combination of these
three actions.

Sometimes a class’s constructor function takes arguments. MFC includes, for
instance, a CPoint class which has a constructor that can take two arguments,
one for each of the point’s coordinates. In this case you might have a declara-
tion of the following form, creating a CPoint object with coordinates 3 and 7.

CPoint cpdot(3,7);

It is allowable for a class to have several kinds of constructors. The constructors
can be thought of as functions that you can use to create objects of the class
type.

We need to mention still another way of initializing an object. Suppose that
you want to have, say, a global SomeClass variable, but that you won’t know
what numbers to initialize the SomeClass with until well into your code. One
approach that you could use would be to use a global pointer to a SomeClass.

SomeClass *sc_ptr;

When you declare a pointer to a class like this, no initialization happens.
No constructor gets called. Depending on the context, a junk value like
CDCDCDCD0x or the NULL (zero) value gets put into the pointer, and no effort is
made to create a legitimate class object for the pointer to point to.

The way that you make *sc_ptr correspond to a legitimate object is that
later, down in the code when you find out what parameters, say x and y, you
want to give to the SomeClass constructor, you put a line like the following.

sc_ptr = new SomeClass(x, y);

In C++, new is a special operator which (a) allocates space for a new object of
the specified class, (b) calls the class’s constructor on the indicated arguments
in order to initialize the object, and then (c) returns a pointer to this newly
constructed object.

When you create an object of a given class type the constructor gets called;
the constructor encapsulates the initialization and the allocation code. You can
‘create’ an object either by declaring it as a variable or by using the new operator
to create an object and return a pointer to it.

Note that in Java, all class instance variables are of the pointer type. Java
doesn’t explicitly use the * symbol to indicate pointers, but the variables for
objects are indeed pointer variables. This is why in Java you need to call new

whenever you want to initialize an object variable. Something that makes the
situation a little confusing is that Java also has primitive type variables such as
integers that are not pointers.

Saying the same thing again in a different way:

in the Java language every class instance is a pointer.

Sometimes beginning Java programmers have the impression that ‘Java has
no pointers.’ But exactly the opposite is true. Everything in Java is a pointer,
other than primitives like int and char. The Java compiler will remind you of
this if you try and compile code with a line like SomeClass nogood. You’ll get
an error message saying something about a NULL pointer. Java requires you to
rewrite the offending line as SomeClass goodnow = new SomeClass().

Software Engineering and Computer Games Reference412

22.2 Implicit arguments

Suppose that SomeClass is a class whose prototype includes a member _val and
two functions SomeFunction and SomeOtherFunction.

class SomeClass

{

int _val;

int ValSquared(){return _val * _val;}

int SomeFunction(int input);

int SomeOtherFunction(int first, int second);

};

Now if K is an object of type SomeClass, then the value of, let us say,
K.SomeFunction(17)will depend on (a) the argument 17, (b) the function
definition of SomeFunction, and (c) the contents of the object K. K is an ‘implicit
argument’ to this function call.

When you write out the code for SomeFunction, you play on the fact that you
have an implicit argument to the function, even though you don’t explicitly
show it. Thus the code for SomeFunction might look like the following.

int SomeClass::SomeFunction(int input)

{

return SomeOtherFunction(_val, ValSquared());

}

This means that K.SomeFunction(17) would be evaluated as
K.SomeOtherFunction(K._val, K.ValSquared()), with K.ValSquared()being
evaluated as K._val * K._val.

The initially bewildering C++ this is used inside a function as a way to refer
to a pointer to the implicit calling object. The object itself is *this, that is,
the object that this is pointing to. Remember that if p is a pointer, then *p
‘dereferences’ the pointer to stand for the actual object the pointer points to.

If we wanted to, we could have put this->_val or *this._val in place
of _val inside the SomeClass::SomeFunction definition. But we don’t want to,
as this would be defeating the whole beauty of C++’s concise syntax.

In general, when you are looking at some unfamiliar code and you see a
function call inside a class method definition, you can usually expect that any
unfamiliar function you see being called ‘naked’ is in fact a member of the
class. When we speak of a function being called ‘naked,’ we mean that it’s
being called without any explicit calling object in front of it, no caller. or
pcaller-> in other words. If you don’t find the function listed as a method of
the class, it may be that it’s a method of the class’s parent class.

Now and then we want to explicitly avoid using a class’s own version of a
member function, preferring to use a global function with the same name. In
this case, we put the symbol :: in front of the function name. The name of this
symbol, by the way, is the ‘scope resolution operator.’ We sometimes use it in

Topics in C++++ 413

MFC programming, as most of our MFC class methods have the same names as
some global method. In order to make the code easier to understand, when we
use any global function at all we will habitually put the :: in front of its name
just to remind ourselves that it isn’t a member method of any class.

22.3 Defining a new class

Just to show that making a class doesn’t need to be hard, let’s do the absolute
simplest implementation of, say, a cDisk that represents a circle. Suppose
we assume that we specify the circle by a cVector center, a Real radius, and a
COLORREF fillcolor.

For a class which has simple fields as members, C++ defines an appropriate
default no-argument constructor, a default copy constructor, a default over-
loaded operator=, and a default destructor. The default constructor allocates space
for the data fields but doesn’t initialize them, the default copy constructor and
operator= copy the data from one object to another field by field, and the default
destructor simply frees up the space used by a class object. (As an aid in debugging,
when you do a Debug build of a program in Visual Studio, unitialized variables are
filled with a distinctive bit pattern, commonly 0xCDCDCDCD; so if you see a variable
with a curiously regular value, it usually means you forgot to initialize it.)

For this very simple example, let’s make all the class data members public
so we don’t have to think about mutators and accessors. So now we can define
cDisk like the following.

class cDisk

{

public:

cVector _center;

Real _radius;

COLORREF _fillcolor;

};

Is that painless, or what? Who says it’s hard to use classes?
This is a time to remind you that

when you write classes of your own, you have to put a final semicolon at the
end of the class declaration. This is a possible slip-up that can lead to really
confusing error messages from the compiler.

This is also a time to mention that in C++ we have the convention of starting
all of our member variable names with an underscore. This makes your code
more readable as then you can easily recognize when something is a member
variable. Unfortunately this sound and useful convention was not carried over
to Java. Do note that the code will compile just as well if you leave out all the
underscores on the private field names; they are there only for the human pro-
grammer, the compiler doesn’t care what you call the variables.

Software Engineering and Computer Games Reference414

Where should we put the class definition? The clean thing to do is to put it
into its own disk.h file that lives in the same directory as our Pop code. Since we
don’t have any cDisk methods to implement, we don’t need a disk.cpp file.

How to make the disk.h file? There are several choices.
If your new class header file is similar to an existing class header file, simply

make a fresh copy of the old class header file and change its name. Or use File |

New to create the disk.h file in Visual Studio (or in any other text editor, provided
you save it as a text only file).

In either case, you’ll need to use the Project | Add | Existing Item... [Project |

Add | Files... in Version 6.0] dialog to add the file to the Pop project.
You can create and add the file in one step with the Project | Add New Item

dialog [Project | Add to Project | New | Files tab dialog in Version 6.0].
A final option, not highly recommended, is to use the Visual Studio menu

selection Add | Class... (Note that this option is only visible if you have selected
View | Class View.) [The control is Insert | New Class... in Version 6.0.]

The author doesn’t recommend the last technique because it throws you
into a dialog box situation with a lot of choices whose consequences aren’t
immediately clear; and when you’re done, your files have some ugly machine-
written code that you truly don’t need.

One caveat; when you make your own header file, don’t forget to bracket it
with the following lines to prevent double header-file includes (as discussed in
Chapter 20: Using Microsoft Visual Studio).

#define DISK_H

#ifndef DISK_H

... //The class prototype code goes here

#endif //DISK_H

However you end up making your new header file, you need to tell the files
that want to use it about the class, by putting an #include “disk.h” into them.
When you have classes with methods you need to implement, you need to
make a file like disk.cpp to put the implementation into. You can make this new
file in any of the ways mentioned above. Be sure that the first two lines of this
file are these.

#include “stdafx.h”

#include “disk.h”

When working with an MFC project, if the #include “stdafx.h” isn’t the very
first (non-comment) line of your *.cpp, you will get a confusing error message
when you try to compile.

22.4 Destructors

As well as a constructor, each class has a destructor method with a name
like ~SomeClass. (On US keyboards, the ‘~’ symbol is normally on the upper

Topics in C++++ 415

left-hand corner of your keyboard, but in other parts of the world you’ll find it
somewhere else.) We have no choice about the names of the constructor and
destructor methods. For any class SomeClass, the constructor is called SomeClass

and the destructor is called ~SomeClass.
When a variable goes out of scope its destructor is automatically called.

Thus if your program has a global variable, the variable’s destructor is called
when your program terminates. If you have a function which has a local
variable sctemp in it of type SomeClass, the SomeClass constructor is called when
the code execution hits the line where the SomeClass variable is declared, and
the SomeClass destructor code for sctemp is called when the execution hits the
closing bracket of the function. More precisely, when you hit the closing
bracket of a function, the destructors are called for all of the local variables that
were declared inside the function. The destructors for local variables are called
in the reverse order that the constructors were called.

In the case where you use the new operator to create a pointer to a SomeClass

instance, you must explicitly call the delete operator on the pointer to call the
destructor and free up the memory.

22.5 The const function declaration

When you look at documentation on classes, you see a lot of pesky const.
What’s all that about? Well, first off let’s say that if they confuse you too much,
it would in fact be OK to just leave them all out. But there is a reason for them.
It’s generally considered a good idea to put const after the declaration of any
function with does not change the values of a class’s private fields.

int Func(SomeClass input)const; //Doesn’t change the caller class

int Func(SomeClass input); //May change the caller class

Meticulous programmers (and that’s what we should all want to be!) use const

as a way of telling the compiler to warn you if it finds anything in that function’s
code which changes a private class member. If you don’t bother to put the const

into your class and a meticulous programmer uses your class in another class
definition where he or she has const, then there will in fact be trouble, as the com-
piler will be scared to use your non-const function in a const function definition.

There are some savage gotchas connected with the use of the const after
a function prototype. These have to do with the fact that a C++ compiler
internally ‘name-mangles’ function names so that a function has a completely
different name according to whether it’s a const or not. We could put the two
Func prototypes above into a class and C++ would compile as if these were
completely different functions.

This has two unpleasant consequences. First of all, whether the implementa-
tion of a function includes the word const or not depends upon the prototype.
Otherwise you get a compiler error. That is, if either or both of the two different
prototypes above were in a cMyClass, they’d be respectively implemented like
this.

Software Engineering and Computer Games Reference416

int cMyClass:Func(cSomeClass input)const{ }

int cMyClass:Func(cSomeClass input){ }

The second unpleasant consequence is much worse. Suppose you declare
a virtual function in a base class and then redeclare it in a child class. (If
you’re hazy about what virtual functions are, look down at the description
in Section 22.10.) If the const declarations of the two functions don’t match,
then the virtual base class function won’t call the child class function. This
happened to the author recently with some code like this.

class cSprite

{

virtual void draw()const;

};

class cPolygon : public cSprite

{

void draw();

};

When one sets a cSprite* psprite = new cPolygon() and calls
psprite->draw(), one keeps getting the cSprite::draw instead of the cPolygon::draw.
This is because C++ viewed our draw() in cPolygon as a new function completely
different from the draw()const in cSprite.

Starting to use const is an all-or-nothing decision. That is, if you start using
const in one file, then the compiler will make you use it in every related file. The
reason for this is that if you try, say, to give a class Careful a const accessor
method which uses the non-const accessor member of a Casual class member,
then the compiler will balk. Here’s an example:

class Casual

{

int _val;

public

int val(){return _val;}

};

class Careful

{

private:

Casual _casual_member;

public:

int val() const {return _casual_member.val();}

/* Won’t compile, will give error like “non-const function

called on const object.” */

};

Topics in C++++ 417

Putting const declarations into your code is a bit of a hassle, but if you plan
to have others use your code, you have to do it. Why? Because even if you like
to be casual, your user may very well be careful, and, as just explained, when a
careful class tries to use a casual class method there can be a conflict.

22.6 Pass by reference

The & symbol is a way of telling the compiler to pass an object by reference,
that is, the compiler generates a pointer to the object and passes that, instead of
copying out all the fields of the object. If you have a function with a prototype
like the following, you can give it a cSomeClass argument input and Func can in
fact change what’s in the input.

int Func(cSomeClass &input);

One reason we do this is because we might actually want to change the fields
of the object being passed. Recall that in C, you can’t directly change the value
of a variable being passed into a function. But the C++ trick of putting an &
into the function prototype lets you have a function which does change the
values of its input.

Another reason why we sometimes want to pass an object as a pointer
instead of as a structure is that it’s faster to pass a pointer to an object instead
of copying the whole object. And there will be times you want this speed, but
you definitely don’t want to change what’s in the input.

The troublesome const also arises in connection with the & symbol in func-
tion declarations. Here it relates to the argument of the function rather than to
the caller. If you want the speed of passing an argument by reference, but you
know you don’t want to actually change what’s in the object, then you use the
const followed by the class name and the & to mean ‘don’t allow any change in
this fields of this object, but do pass it as a pointer which you generate.’ And
you use a prototype like:

Func(const cSomeClass &input);

You can combine the const argument and the const function declarations in
all the possible ways. C++ views all of these as different functions.

int Func(SomeClass &input)const;

int Func(SomeClass &input);

int Func(const SomeClass &input)const;

int Func(const SomeClass &input);

For full disclosure, we might as well mention four more possible ways that
you might prototype a function in C++.

Software Engineering and Computer Games Reference418

int Func(SomeClass input)const;

int Func(SomeClass input);

int Func(SomeClass *input)const;

int Func(SomeClass *input);

What a hassle, huh? A real nightmare! No wonder so many people want
to abandon C++ for the calm of Java or C#. Bjarne Stroustrup, the inventor of
C++, claims that the only reason that Java is simple is because it’s a young lan-
guage lacking all of C++’s features. He says that C++ is so complicated because
it’s mature.

But once you get some practice with using C++, you’ll find that having
eight possible ways to prototype a function isn’t so bad as you might expect.
The practice is always to make every function as const as you can, so you don’t
actually have to think about that so much. The different forms let you make
sure your code is going to be as portable, safe, and fast as possible.

Remember to match the *.cpp implementation format to the *.h declaration
format. And, above all, be careful that your derived classes use the same declara-
tions as the parent classes.

22.7 Instance members and reference members

We often have members of classes which are themselves classes. Thus we might
have something like this.

class MyClass

{

protected:

ClassA aobject;

ClassB *pbobject;

};

In this kind of situation, we say that aobject is an embedded or instance
ClassA member, while pbobject is a pointer-based or reference ClassB member.
We often prefer to use pointer-based members because then the methods of
these members can be called polymorphically. When we talk about Serialization,
Chapter 30, we’ll see that there are some important issues relating to the differ-
ence between embedded and pointer-based members.

Generally you let primitive variables be instance members, and you let your
object members be references. This is, in fact, the Java style of doing things.
You should generally have in the back of your mind that you might need to
port your C++ to Java (or C#) one of these days, or vice-versa, so, all things
being equal, the more you can make your C++ code like Java and your Java code
like C++ code the better.

A big win with having pointer-based reference members is that then poly-
morphism will work for these members – see Section 22.11: Polymorphism.

Topics in C++++ 419

22.8 Parent and child class data

A parent class is a subset of a child class; that is, the child class includes all of
the data members and methods as the parent. It’s common also to speak of a
parent class as a base class, and to speak of a child class as a derived class.

In order to allow the child class to have access to the private fields and methods
of the parent class we need to declare those fields to be protected rather than
private.

What about access to the public fields of the parent? The child can always
access these, but these fields do not necessarily have to be public members of
the child as well. A child can change a parent method from protected to public

or from public to protected by redeclaring it.
In the declaration of a child class, you follow the child class’s name by a

colon, an access specifier, and the name of the parent class, like class cMyChild

: public cMyParent.
We usually stick the word public in there because otherwise the access permis-

sions will default to the default C++ value of private, which is not as commonly
used. In particular, if you don’t put in the public, then all of the parent’s public
methods are now private methods of the child.

Why would you ever want to use private inheritance anyway? This is
appropriate when you have defined a class that is a specialization of a parent
class that has some methods you don’t want your code-users to be able to
invoke.

Here’s a specific example. We use a class called a cBiota which holds a
bunch of cCritter* pointers to lively little cCritter objects. Now cBiota actually
inherits from a special kind of MFC class called CObArray which encapsulates
the notion of an array of pointers to objects. The CObArray has standard array
methods such as GetSize(), operator[], and a method Add() for adding things to the
end of the array. Now suppose that when you Add an element to the cBiota, you
want to be sure to do some kind of branding on the element, like, say, giving
it an internal pointer to the cBiota itself. So if we had a cBiota _biome and
a cCritter* pcritter, we might write a line like _biome.Add(pcritter), but
we might not want to be able to write a line like _biome[_biome.GetSize()-1]
= pcritter;. Now if in this case you want to prevent yourself and the other
programmers you work with from using all of the possible CObArray methods,
you can declare class cBiota : private CObArray. And then down inside the
cBiota definition, you can specify the Add method as public, and override it to
do the critter-branding.

The author recently stumbled across an odd gotcha related to parent and
child classes. C++ will let you declare a child class member with the same name
as a parent class member. If you do this, your child class can be changing the
value of this field, but when you use a parent class accessor to look at what you
think is the same field, you’ll get back the default value that lives in the parent
class. In this situation, the parent field is said to ‘shadow’ (as in ‘cover up’) the
child field. Here’s an illustration.

Software Engineering and Computer Games Reference420

class cSprite

{

Real _radius; //Assume the constructor sets this to 0.0

Real radius(){return _radius;}

};

class cPolygon : public cSprite

{

Real _radius;

Real makeRegularPolygon(int vertexcount, Real radius)

};

cPolygon poly;

poly.makeRegularPolygon(5, 2.0);//Changes cPolygon _radius to 2.0

Real polyradius = poly.radius(); //Makes polyradius 0.0, not 2.0!

22.9 Parent and child constructors and destructors

When a class object is constructed, the following sequence takes place.

(1) Memory storage for the object is allocated (e.g. enough bytes for the
object’s data fields are allocated in memory).

(2) The default constructor of the parent class (if any) is called, unless you
explicitly request some other parent constructor in your initializer list.

(3) The constructors for each of the class member objects are executed (in the
order of the member classes’ declaration); if there is no initializer list the
default constructors are called, but you can request special constructors in
your initializer list.

(4) The class constructor code is executed.

When a class object is destroyed the following sequence takes place.

(1) The class destructor code is called.

(2) The destructor of each of the class member objects is executed.

(3) The destructor of the base class (if any) is executed.

(4) The memory storage for the object is recycled.

So the cMyChild constructor automatically calls the default cMyParent con-
structor before getting inside its own code. A handy way to think of this is to
imagine that a cMyChild object has a cMyParent object as a member. The parent
class and the members all get their constructors called.

Now, it may be that you want to feed some arguments into the base class
or member constructors. To do this, you write out these constructors in an
‘initializer list’ that follows a colon after the constructor. Here’s an example of
a class definition.

Topics in C++++ 421

cTeacherProgrammer : public cProgrammer

{

private:

int _ugliness;

cGollywog *_pimaginaryfriend;

public:

cTeacherProgrammer(int flubba, float gleep);

~cTeacherProgrammer();

}

And here’s a constructor using an initializer list.

cTeacherProgrammer::cTeacherProgrammer(int flubba, float gleep):

cProgrammer(flubba, gleep),

_ugliness(1000000)

{

_pimaginaryfriend = new cGollywog(this);

}

And here’s how the destructor would be defined.

cTeacherProgrammer::~cTeacherProgrammer(){delete _pimaginaryfriend);}

Note that the cTeacherProgrammer destructor first does the delete _pimagi-
naryfriend, and then calls the parent cProgrammer destructor. You can remember
the sequence by thinking in terms of working your way down the hierarchy at
construction, and working your way back up at destruction.

When you need to code up several different forms of a constructor, it can be
useful to have an initialization helper function that the different constructors
in both the parent and the child class can call.

22.10 Virtual methods

The keyword virtual in front of a parent class method tells the C++ compiler
that the class has a child class which has a method which has the same name
but which acts differently in the child class. If (a) a method is declared as
virtual, and (b) the object which calls the method is referred to via a pointer,
then (c) the compiled program will, even while it is running, be able to decide
which implementation of the virtual method to use. It is worth stressing that
this ‘runtime binding’ only works if you the programmer fulfill both condi-
tions: (a) you use virtual in your method declaration, and (b) you use a pointer
to your object.

Except in the case of a destructor, corresponding virtual functions have
the same name. You don’t put the word virtual in front of the actual function
implementation code in the *.cpp. You can put virtual in front of the child class

Software Engineering and Computer Games Reference422

function declaration in the child class’s header file or not, as you like. In other
words, to start with, you really only need to put virtual in one place: in front of
the parent class’s declaration of the function.

But, in order to make our code more readable, when we derive off child classes
from a parent class with a virtual function, we usually do put virtual in front
of the child method declaration as well as in the parent method declaration.
The child does need to have a declaration for the method in order to override
it in any case.

One slightly weird thing is that a parent class destructor like ~cProgrammer()

needs to be declared virtual even though a child class destructor like
~cTeacherProgrammer() seems to have a different name. But you don’t in fact
call the destructor by name. In a program where we have a cProgrammer
*_ptextbookauthor, we might be calling either the cProgrammer or the cTeacher

destructor with a line like delete _ptextbookauthor;. The thing is, it’s pos-
sible that _ptextbookauthor got initialized as new cTeacher, so we just don’t
know.

The delete operator calls the destructor without referring to the destructor
method by name. So the compiled code needs to actually look at the type
of the _textbookauthor pointer to find out whether it’s really a cProgrammer* or
a cTeacherProgrammer*, so it knows which destructor to use. And unless you
fulfilled the ‘virtual condition’ by making the destructor virtual, then the code
won’t know to do runtime binding and choose between using the parent or the
child method as appropriate. The destructors are different here because the
cTeacherProgrammer has more stuff to destroy, in particular, the cGollywog
*_pimaginaryfriend.

Slogan for a class: If your child is richer than you, you need a virtual destructor.

One final point should be mentioned here. Ordinarily, when you have a
method virtual void somemethod() in a base class called, say, cParentClass, then
when you override the method in a child class called, say, cChildClass, the child
class somemethod() will call the parent class method if we explicitly ask it to with
code like this.

void cChildClass::somemethod()

{

cParentClass::somemethod();

//Your extra childclass code goes here....

}

But in the case of a virtual destructor, the parent class’s destructor method
will be automatically called when the object is deleted. This is in accord with the
standard C++ execution order of constructors and destructors mentioned in the
last subsection.

Topics in C++++ 423

cChildClass::~cChildClass()

{

//Your extra child class destructor code goes here...

...

/* The cParentClass::~cParentClass destructor will be

automatically called

here at the end of the ~cChildClass destructor call. */

}

22.11 Polymorphism

Each Pop Framework game is based on a cBiota object which is a specialized
kind of array of cCritter* pointers. The program executes by walking through
this array and letting each of the member critters call a method. At each step of
the game’s animation, for instance, we walk through the cBiota array and let
each of the member cCritter pointers make a call to its virtual update method.

Rather than having to check which kind of critter we have in each slot, we’re
able to just let each critter call its own version of the update method. This is what
polymorphism is for. In order to make a function behave polymorphically, we
have to do two things. We already mentioned this in Section 22.10: Virtual
Methods, but it’s worth saying again.

The first step in making a method polymorphic is that the function has to be
declared as virtual in the base class. As mentioned before, you don’t need to put
the word virtual in the child class declaration, though you can if you like.

The second step in making a method behave polymorphically is that it has
to be stored in a pointer variable rather than in a base class instance variable.
That is, consider the difference between these two declarations.

CArray<cCritter, cCritter &> _embeddedarray;

CArray<cCritter*, cCritter*> _pointerarray;

Suppose that, for the purposes of this discussion, the virtual cCritter update

method is overridden by the cCritterArmed child class to do something different.
Now, even if some of the objects in the _embeddedarray are ‘really’ cCritterArmed

objects, when you placed them into the CArray<cCritter, cCritter&>, you had
to upcast them into cCritter objects, so now if you walk through this array and
call _embeddedarray[i].update(...), you will always end up just using the
cCritter::update method.

But, if some of the cCritter* pointers in the _pointerarray are actually
cCritterArmed* pointers, then when you walk through this array and call
_pointerarray[i]->update(); you will get either the cCritter::update method or
the cCritterArmed::update method, depending on the type of the pointer. Since a
cCritterArmed class is a child of the cCritter class, a cCritterArmed* can be thought of
as a cCritter*, so we are allowed to put it into the array. But a pointer ‘remembers’
what kind of class it really points to, and this information gets used when a
possibly polymorphic method call is made.

Software Engineering and Computer Games Reference424

This is why the Pop Framework uses an array of cCritter* pointers. It turns
out, though, that for reasons having to do with writing the critter data to a file,
it works better to use the less obvious array template CTypedPtrArray<CObArray,

cCritter*> in place of the expected CArray<cCritter*, cCritter*>. More on this in
Chapter 30: Serialization.

22.12 Runtime class information

When you have an array of polymorphic pointers, how do you tell what kind of
class pointer you have? That is, after you set a cCritter* pcritter somewhere
in your code, how can you tell if pcritter is just a cCritter* or whether it is
perhaps a cCritterBullet*? (For this discussion, assume that we have a cCritterBullet

class that inherits from cCritter.) There are two ways to deal with this.
A hand-made way would be to keep a CString _classname field inside

our cCritter class and set it to either cCritter or to cCritterBullet, depending
on whether the object was constructed by the cCritter constructor or by the
cCritterBullet constructor. And then you could find out if a cCritter* pcritter is
really a cCritterBullet* by checking if pcritter->_classname is the same as the
string cCritterBullet. People have written programs that way.

In MFC, however, we’re encouraged to take advantage of the so-called
CRuntimeClass structures. These objects have a CString field for the class name,
just like the _classname field of the hand-made approach. They also keep track
of how many bytes big one of our class objects might be.

The way that you associate an informational CRuntimeClass structure with one
of your class objects? You have to do three things.

• First, declare your class as a child of the MFC CObject class, or as a child of
another class that itself inherits from CObject. The essence of the CObject class
is that it has a CRuntimeClass field for storing your class’s name in it.

• Second you have to add a certain macro to the *.h class definition file, as
described in the next paragraph.

• Third, you have to add another macro to the *.cpp class implementation
file. There are a couple of different forms of these macro pairs, the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC pair, the DECLARE_DYNACREATE
and IMPLEMENT_DYNACREATE pair, and the most powerful pair, the
DECLARE_SERIAL and IMPLEMENT_SERIAL. Each takes a couple of arguments
like class names and generates a few lines of code. More specifically, the
DECLARE line declares a couple of functions, and the IMPLEMENT macro puts
code for the methods. See Exercise 22.1 for fuller details.

MFC provides a couple of tools for working with the ‘runtime class
information’ in a CObject-derived class. First of all, there is a macro called
RUNTIME_CLASS(classname), which generates a pointer to a CRuntimeClass description
of a class if you feed it a class’s name just written there without any quotation
marks. This macro can only works if the class is CObject derived. Since cCritter

Topics in C++++ 425

inherits form CObject, we can indeed write RUNTIME_CLASS(cCritter) to produce
a CRuntimeClass* reference to the kind of class that cCritter is.

The second main MFC tool involving CRuntimeClass information is the BOOL

CObject::IsKindOf(CRuntimeClass* pruntimeclass) method. Thus, if you wanted to
know if a cCritter *pcritter pointer is actually a cCritterBullet* pointer, you could
evaluate pcritter->IsKindOf(RUNTIME_CLASS(cCritterBullet)).

Implementing the runtime class support is actually easier than thinking
about it. Here are the three steps mentioned above.

• Declare cCritter : public CObject.

• Put this line inside the brackets of, the cCritter class definition.

DECLARE_SERIAL(cCritter);

Note that it can’t just be anywhere in Critter, it has to be inside the cCritter

class brackets.
• Put this line anywhere inside the Critter.cpp file after the #include lines.

IMPLEMENT_SERIAL(cCritter, CObject, 0);

And we do the same steps for cCritterBullet, except that if cCritterBullet inherits
from cCritter, it doesn’t have to inherit from CObject. The inheritance relation-
ship is transitive. The IMPLEMENT_SERIAL macro for cCritterBullet will mention
the parent cCritter, rather than cObject, as follows.

IMPLEMENT_SERIAL(cCritterBullet, cCritter, 0);

A word of caution here. You have to be very disciplined about putting in the
correct IMPLEMENT_SERIAL macro code into the *.cpp file when you add a new
class that has the DECLARE_SERIAL macro in its *.h header. If you don’t do it, or
if you do it wrong in any way (for instance if you were to put cObject instead of
cCritter in the IMPLEMENT_SERIAL macro for cCritterBullet), then your program will
compile and build, but when you try and run it you will get a crash at startup
accompanied by an inscrutable message. Try and remember this fact: if you ever
do have code that seems to crash at startup ‘for no reason,’ then you should
take a good look at all of your IMPLEMENT_SERIAL macro declarations and make
sure that they’re all in place and correct.

22.13 The scope resolution operator and global functions

In C++, the ‘::’ is called the ‘scope resolution operator.’ If you put a class name
like MyClass in front of the operator, this indicates that you want to use the
version of the class method implemented by the MyClass code. If, for instance,
you have a ChildClass and a ParentClass, then ParentClass::Method() and
ChildClass::Method() could very well mean different things.

Software Engineering and Computer Games Reference426

Some functions are ‘global’ functions that aren’t a member of any class at
all. We try to make a practice of always putting two colons with no class name
in front of a global function to remind ourselves that this is a function that
doesn’t belong to any class. Ordinarily, putting the ‘::’ in front of a global
function doesn’t add anything or change anything; the code compiles and runs
equally well with or without it. It’s just something you do make your code
easier to read. Thus, when I want to refer to the global Windows API method
PlaySound, I’ll normally write ::PlaySound.

The one time the ‘::’ would really be necessary in front of a global function
would be if you wrote a class method with the same name as a global function.
If, for instance, you gave CPopView its own PlaySound method, then if you wanted
to call the global PlaySound inside a CPopView method, you really would need to
say ::PlaySound, as a call to PlaySound would call the CPopView::PlaySound method.

22.14 Name-mangling

When a compiler processes C++ code it changes the names of functions to
include information about the types of the function’s arguments. This process,
normally invisible, is called ‘name-mangling’.

You most often notice the effects of name-mangling when you put a proto-
type of a class method in a header file, but then fail to implement the method
in any of your project’s *.cpp files. The project will compile all right, but at the
very end, you will get a linker message. Thus, if you were to leave out the code
for the cCritter method int cCritter::move(Real dt), you would get a linker error like
the following.

popview.obj : error LNK2001: unresolved external symbol “public: int

__thiscall cCritter::move(float)” (?move@cCritter@@QAEHM@Z)

The string at the end at the end of the line is the name-mangled name of the
method.

Remember how we talked about how having a const after the name of a
function changes how C++ thinks of it? That’s because the const goes into the
name-mangled name.

Name-mangling can become an issue in advanced programming situations,
for instance if (a) you want to link someone else’s *.c module with your *.cpp

modules, or (b) you want to locate a function by name inside a dynamic link
library module. This is because although you may think the function’s name
is what you called it, say ‘int MyFunction(),’ C++ will actually have assigned a
different ‘mangled’ name for your function. You can turn off the name-mangling
for a function name by specifically asking in its prototype that it be treated like
a C function, using a line like the following.

extern “C” int MyFunction();

Topics in C++++ 427

22.15 Preprocessor directives

Compiling a file is actually a multi-step process. Before actually compiling any
code, a compiler uses something called a ‘preprocessor’ to look through the pro-
ject files and carries out the instructions embodied in the various preprocessor
directives. Any line of C++ that starts with # is a preprocessor directive. Some of
them are #include, #define, #ifdef, #endif, and #pragma. Each preprocessor directive
tells the compiler to do something before running. The instructions in the #
directives are used to alter the contents of the file, which is only then passed on
to the normal compilation process.

The #include directive

What the #include directive tells the compiler to do is to replace a line like
#include “whatever.h” with a full, exact copy of the Whatever.h file, just as if you
had used your text editor to block copy the whole Whatever.h file and paste it in.

If the filename after #include is in quotes, the compiler will look for the file
in the directory where the project file lives; and if the include file is in pointy
brackets, the compiler will look for the file in whatever directories the project
file has set to be places to look for include files – typically the standard location
for include files is the INCLUDE subdirectory of the directory where the compiler
lives, but sometimes you will want to add other directories to the standard
search path. Note that the compiler is not sensitive to the case of the letters
used in the names of the include files.

The #define directive

The #define directive has this appearance.

#define ANYSTRING Any other string

The string between the first two blank spaces after the #define is replaced every-
where by the string which fills out the rest of the line after the second blank
space. Who does the replacing? The preprocessor. It effectively does a search
and replace, replacing each ‘ANYSTRING’ by ‘Any other string.’ It’s good pro-
gramming practice, but not formally necessary, to always use all capital letters
for a quantity which you #define.

Another, non-obvious effect of a #define statement is that it adds the first
string to a special ‘symbol table’ that the preprocessor constructs for the code
being compiled; the symbol table being a private list of what strings have been
used in a #define.

#ifdef and related directives

The next group of preprocessor directives have to do with control flow. Lines
of the form #ifdef, #ifndef, #else, and #endif conditionally include or exclude parts

Software Engineering and Computer Games Reference428

of the file depending on whether some symbol has been placed into the pre-
processor symbol table by a #define.

#ifdef, #ifndef, #else, and #endif are preprocessor directives to the compiler. The
first two stand, respectively, for ‘if defined’ and ‘if not defined.’ If the expression
(or ‘token’) after the #ifdef has been defined with a #define, then the block of
code up until the #endif is included; if the token is not defined, then the code is
not included. If the token after an #ifndef has been defined with a #define, then
the block of code up until the #endif is not included; if the token is not defined,
then the code is included.

As mentioned above, you can #define something without putting a ‘replacement
string’ for it. That is, we can have this line.

#define ANYHEADER_H

This use of the #define directive adds the indicated string of letters to the pre-
processor symbol table so as to possibly affect #ifdef or #endif statements.

There is also a defined() operator one can use in conjunction with a plain
#if directive. So instead of #ifdef WIN_H, for instance, you can write #if
defined(WIN_H), and instead of #ifndef WIN_H, you can write #if

!defined(WIN_H).
The #pragma directive is used for miscellaneous kinds of special hints to the

compiler. A common use is to turn off a warning that you don’t care about.
Thus the following line taken from our realnumber.h file turns off two warnings
that result from treating a double as a float.

#pragma warning(disable: 4305 4244)

Sometimes you don’t want to bother using a pragma to turn off a warning
message of the form, say, “information lost in conversion from double to

int”. You can tell the compiler that in a particular case you really don’t mind
rounding, say, sqrt(dx*dx + dy*dy) off to the closest integer. In C we would
have done this with a ‘cast’ by putting (int) in front of the number. In C++ it’s
more common to write a cast as a ‘constructor’ by putting int(sqrt(dx*dx +

dy*dy)). In general, if you can get rid of a warning message by adding a little
bit of code it’s worth doing, so that then you know that any messages that do
pop up in your compiler are important.

The typedef convention

Although typedef isn’t a preprocessor directive, it has much the same force.
typedef gives us a mechanism for defining a synonym for an existing type. The
syntax is as follows:

typedef existing-type synonym;

If you want a synonym for a class name then its better to use typedef than define,
as the compiler can then better check the consistency of what you’re doing.

Topics in C++++ 429

We might use a typedef in the case where a type name is very long and
unwieldy. Thus we might do something like this (although actually we don’t
use this in the Pop Framework).

typedef CTypedPtrArray<CObArray, cCritter*> cCritterArray;

Another case where we use typedef is when we want to try out different builds
of our code. The Pop Framework has two possible typedef for the Real type in
realnumber.h, and in vectortransformation.h, it has a typedef based on whether we
plan to use 2D or 3D graphics.

#define THREEDVECTORS

#ifndef THREEDVECTORS

typedef class cVector2 cVector;

typedef class cMatrix2 cMatrix;

#else //THREEDVECTORS

typedef class cVector3 cVector;

typedef class cMatrix3 cMatrix;

#endif //THREEDVECTORS

22.16 Resizable arrays

Suppose you want to have an array that holds, say, cCritter objects. There are
really three options: maintain your own C-style array, use an array template
from the ANSI C++ STL Standard Template Library, or use the Microsoft CArray

template.
To maintain an array yourself means using a declaration like cCritter

*_critter or cCritter _critter[]. (Note that C regards these two declarations
as equivalent; in C an array is simply a pointer.) If you do this, you would also
need an int _critter_count variable to keep track of the current number of
points stored. And you’d either have to preallocate _critter to some gener-
ously large size (and worry about eventually writing off the end), or you’d have
to keep reallocating the memory for the array as it grows.

That’s a lot of work, and it’s easy to make errors in doing it. Writing your own
array code these days means reinventing the wheel. It’s much better instead to
use a presupplied array template. Here we have two choices: STL or MFC.

STL vector arrays

Every version of C++ comes with a platform-independent library of templates
known as the STL or the Standard Template Library. This library was written at
Hewlett-Packard around 1995 and is now part of the official ANSI C++ language
standard, which means that all C++ compilers for every platform must support
it. The STL library includes, among many other kinds of collection classes,
an array template that’s known as vector. The code for the STL template will

Software Engineering and Computer Games Reference430

normally be found in a file in your Visual Studio include directory; the name
of this include file is, a bit oddly, just plain VECTOR, with no file extension. For
whatever reason, Visual Studio needs a bit of a nudge to let the STL work;
whenever you include an STL file you need to follow it with a code line of the
form using namespace std;. To create an STL array of some class type T, you use
the new type vector<T>.

One plus of STL templates is that they’re portable to all C++ platforms,
so you can expect to be able to use them in more environments. But there
are some annoying gotchas associated with the now fairly old STL templates
– I won’t go into them here. Certainly the Visual Studio documentation of
the STL is not as easy to use as is their documentation of the CArray. And the
CArray templates are tweaked so as to work smoothly with the MFC method
of ‘serializing’ or saving and loading files. It’s simpler to give in and do it the
Microsoft way instead of trying to use STL. We’re going to use the MFC CArray

template in this book. Table 22.1 compares the template usage for STL arrays
and MFC arrays.

Topics in C++++ 431

Table 22.1 A Standard Template Library (STL) array template compared to an MFC array.

Template usage for STL MFC

Include instructions #include <vector> #include <afxtempl.h>

needed in file. using namespace std;

This include should
appear only in the files
where <vector> is used,
and it should be the last
include listed at the
head of these files.

Prototype of array of vector<cCritter> CArray<cCritter,

classes. _critter; cCritter &> _critter;

Prototype of array of vector<int> _radius; CArray<int, int>

basic types. _radius;

Adding element to end push_back(newpoint) Add(newpoint)

of array.

Deleting the array erase(i) RemoveAt(i)

member in the i slot.

Accessing size of the size() GetSize()

array.

Setting the array size. resize(newsize) SetSize(newsize)

Accessing an element for [i] [i]

reading or setting. ElementAt(i)

GetAt(i), for read only

MFC CArray arrays

The code for the CArray template is in a file called afxtempl.h. If you want to
declare some CArray variables in a file, you need to add this line to the top of the
file, so the compiler will know what we’re talking about.

#include <afxtempl.h>

To create an array of objects of some type T, we normally declare our new
type as

CArray<T, T&>.

The meaning of the second mention of T in the declaration is that this is the
type used in some of CArray’s internal functions that do things like add your
elements to the CArray. The idea is that one normally uses the pass by reference
for these types so as to marginally improve the speed of your code, by effectively
passing pointers instead of copying whole structures. In the case where T is a
primitive type like an int, we don’t bother with the & for the second argument.

The default size of _critter in either case will be 0, and if you immediately
try and execute a line that sets, say, _critter[1] to something, then your pro-
gram will crash. Adding an element to an array will automatically grow it to a
size large enough to hold the new element (i.e. it grows the size by one). But, if
you are planning to read a lot of elements into your array using the [] operator,
you need to set the array’s size to be large enough before you start.

Another thing about array templates that it’s important to be aware of is that
when you add an element of type T to your array, it’s a copy of your element
which actually goes into the array rather than the element itself. So you need to
be sure to have a good copy constructor and an overloaded =operator defined for
any class of objects that you’re going to put into an array template.

Actually we’re going to be using a variation on the CArray template, and this
is the CTypedPtrArray<CObArray, cMyClass *> template. This is used for holding an
array of pointers to instances of some class we’ve written called cMyClass. For
this to work, the cMyClass has to inherit from the MFC CObject class, which is a
kind of universal base class in MFC. More on this below.

22.17 Real numbers

Simulations work better with real numbers, and there is a Real type and some
macros we use in our programs, so we’re going to have a file called RealNumber.h

which we include in our files using real numbers. (If we didn’t want to do
all those includes, we could have put the #include “realnumber.h” some-
where inside of the StdAfx.h file, for instance right before the line that says
//{{AFX_INSERT_LOCATION}}.)

In our code we use Real as another word for double or for float. To give our-
selves the freedom to switch between double and float, depending on whether we

Software Engineering and Computer Games Reference432

have a greater need for accuracy or for speed, we have a line saying typedef
double Real or typedef float Real inside RealNumber.h.

#ifndef REALNUMBER_H

#define REALNUMBER_H

/* Note that to use the Real type throughout my program, I have to

always remember to include realnumber.h. */

#define USEFLOAT // float is slightly faster, slightly less accurate.

#ifdef USEFLOAT

typedef float Real;

#else //not USEFLOAT

typedef double Real;

#endif //USEFLOAT

/* When I use a float Real, I’ll get warning messages generated by

the fact that constants like 2.0 are viewed as doubles, so that

if x is a float, the line x = x/2.0 would be viewed as converting

a double to a float. These messages take this form: warning C4244:

‘=’ : conversion from ‘double’ to ‘float’, possible loss of data

warning C4305: ‘=’ : truncation from ‘const double’ to ‘float’

I can disable these warning messages with a pragma stating the

two warning numbers. */

#pragma warning(disable: 4305 4244)

#define PI 3.14159265358979

#define CLAMP(x,lo,hi) (x)=(((x)<(lo))?(lo):(((x)>(hi))?(hi):(x)))

#define SMALL_REAL 0.00001

#define BIG_REAL 1000000000.0

#endif //REALNUMBER_H

The point of the typedef double Real line is that if at some point you find
that you want to squeeze a little more speed out of our program, you can come
back here and replace double by float. We need PI because, although the ANSI
C library is supposed to define an M_PI constant of this value in math.h, the
Microsoft version of the math.h file doesn’t seem to have any pi in it. (For
sanity’s sake, a software engineer learns not to obsess over things like this;
simply fix them and move on.) The CLAMP macro is useful for forcing a variable
x to lie between two values lo and hi. SMALL_REAL is convenient in code where
you want to avoid dividing by numbers that are too close to 0. And BIG_REAL is
useful to put in as a starting value in a search loop when we keep looking for a
smaller number, as in the code for cCritter* cBiota::pickClosest(const cVector

&vclick) in biota.cpp for instance.

22.18 A randomizer module

We are going to be randomizing our parameters a lot in this book. In most of
our programs we’ll want to have a bunch of different objects, and we will want

Topics in C++++ 433

to use randomization to keep the objects from all being the same. In our more
advanced programs we may have our objects use randomization so as to give
themselves an appearance of interesting behavior.

Even when there’s only one object using a given set of parameters, it’s not
always clear which values to use. It may be that there are no ‘best’ values, and
it’s more interesting to look at a wide range of possibilities. In other cases, there
may be a ‘best’ set of values, but the only way to try and find these values is to
feel around the parameter space by trying lots of random possibilities.

The C library of standard functions supplies three relevant functions that are
of significance here.

long int time(NULL)

srand(unsigned int seed)

short int rand()

Randomizing with the C library

Each call to rand() returns a 15-bit positive integer that lies between 0 and +32K.
The way rand works is that the C library maintains a hidden 32-bit integer
variable holdrand. When your program starts, holdrand has a default value of 1.
Every time you call rand(), holdrand is replaced by holdrand * 214013 + 2531011,
and rand returns the low 15 bits of the high word of holdrand. (That is, the
return value is (holdrand >> 16) & 0x7FFF.)

If rand starts with the same value of holdrand, it’s always going to give you
the same sequence of values. So what we usually do is to use the srand function
to initialize the randomizer to a fresh state. What srand(seed) does is simply
sets the hidden holdrand variable equal to the seed argument.

But how can our deterministic program come up with a ‘random’ seed
to feed into srand? What we usually do is to use the time(NULL) function. This
function returns the number of seconds that have elapsed since midnight,
January 1, 1970. For whatever reason, this is the official ‘birth instant’ of our
computer era, a little like the anomalous moment when the Western calendar
went from BC to 1AD.

The cRandomizer class

To make it easier to randomize things, we wrap the randomizing functions
up inside a class called cRandomizer. Instead of having to use the % operator
to bring numbers into range, the cRandomizer has a method random(N) that will
give you a number between 0 and N − 1, a method random(lo, hi) that will give
you a number from lo to hi inclusive, a randomReal(loreal, hireal) method to give
you a real number between loreal and hireal, a randomColor() method, and so on.
The randomBOOL(double truthweight) is a cute function that gives lets you specify
a truthweight between 0.0 and 1.0. The truthweight is the probability of the
randomBOOL returning a TRUE. So randomBOOL(0.75) would return TRUE three
fourths of the time and would return FALSE one fourth of the time.

Software Engineering and Computer Games Reference434

The default cRandomizer constructor seeds it with the time function. You also
have the option of feeding a seed number into the constructor so as initialize
your cRandomizer into some specific state. When you’re debugging a program it’s
often a good idea to have the cRandomizer always set to the same state so that it’s
easier for you to reproduce the exact same behavior over and over.

#ifndef RANDOMIZER_H

#define RANDOMIZER_H

/* This is a set of 32-bit-based randomizing functions. The functions

use standard C library techniques. The code is written to be portable,

although there is one line you need to comment in or out at the head

of Randomizer.cpp according to whether or not you use Microsoft MFC.

These randomizing functions are based on a modular scheme derived

from the Microsoft implementation of the C library randomizer. In the

Microsoft implementation, the C Library int rand() function works by

maintaining a _holdrand variable and iterating _holdrand * 214013 +

2531011. rand() returns (_holdrand >> 16) & 07FFF, which is a 15 bit

positive short integer. We use the same scheme, but tailor it to

return a 32 bit unsigned long integer. Returning _holdrand gives too

much correlation, so we actually execute the _holdrand update twice,

and use the high words of the two successive _holdrands as the upper

and lower words of the value we return.

The Randomizer.cpp file includes a historical note at the end about

an unsuccessful attempt to base the randomizer on Wolfram’s CA Rule 30.

*/

#include “realnumber.h”

//For the Real typedef, which is double or float

class cRandomizer

{

private:

static cRandomizer * _pinstancesingleton;

unsigned long _seed; //Start value of _shiftregister

unsigned long _shiftregister;

//Used internally for the running compute process.

unsigned long _thirtytwobits();

// The internal pseudorandom function used.

cRandomizer();

//Uses the C Library randomizer and seeds it with the time.

cRandomizer(unsigned long seednumber);

//C Library randomizer seeded by seednumber.

public:

static cRandomizer * _pinstance();

static void delete singleton ();

Topics in C++++ 435

unsigned long getSeed(){return _seed;}

void setSeed(unsigned long seednumber);

//Start off in a specific state

unsigned long randomizeSeed(void);

//Seed with the time in seconds

unsigned long random(); //Return an unsigned long int

unsigned long random(unsigned long n);

//Return an int between 0 and n – 1

long random(long lon, long hin);

//int between lon and hin inclusive

BOOL randomBOOL(Real truthweight = 0.5);

// Return TRUE truthweight often.

unsigned char randomByte(void); //Return a byte between 0 and 255

unsigned short randomShort(unsigned short n);

// Short between 0 and n-1

Real randomReal(void); //A real between 0.0 and 1.0

Real randomSignedReal(void); //A real between -1.0 and 1.0

Real randomReal(Real lo, Real hi); //A real between lo and hi

Real mutate(Real base, Real lo, Real hi, Real percent);

//Mutate base by percent of size.

int mutate(int base, int lo, int hi, Real percent);

//Mutate base by percent of size.

unsigned long mutateColor(unsigned long base, Real percent);

//Mutate a color.

Real randomSign(void); //1.0 or -1.0

void randomUnitDiskPair(Real *x, Real *y);

// Makes (x,y) a random point with distance <= 1 from (0,0)

void randomUnitPair(Real *x, Real *y);

// Makes (x,y) a random point with distance 1 from (0,0)

unsigned long randomColor(); //A Windows COLORREF number.

};

#endif RANDOMIZER_H

Since we’re going to use the cRandomizer a lot, you might wonder if, as time
goes by, the cRandomizer will accumulate more and more functions. Later, for
instance, we might have some cMyClass with parameters that we like to ran-
domize, so will it make sense to add a void cRandomizer::randomizeMyClass(cMyClass

&myclassobject); method to the cRandomizer class?
No, this would be a bad idea, because then we’d always be coming back and

changing the Randomizer.h and Randomizer.cpp files. For sanity’s sake, it’s much
better to try and get your basic, general-purpose files working once and for
all and not be continually going back and changing them. This is one of the
reasons why we don’t use COLORREF as a type in Randomizer.h (instead we use
the equivalent unsigned long).

So how then can we write a method for randomizing a cMyClass with a
cRandomizer? We’ll put a randomizing method that’s a member of cMyClass, that

Software Engineering and Computer Games Reference436

is, we’ll have a void cMyClass::randomize(). And then inside the implementa-
tion for this method, we’ll use standard cRandomizer calls to randomize the fields
of cMyClass.

The static cRandomizer::Randomizer object

So as not keep having to create new cRandomizer objects to randomize things, we
give the cRandomizer class a static cRandomizer member. This means that anywhere
in our Pop program we can call, say, cRandomizer::RANDOMIZER.randomReal()
to get a random real number. This is very much a Java-style thing to do; Java
has lots of special members and methods that are statics of its standard classes.
This is an example of what’s called the ‘Singleton pattern.’

In C++ a static such as RANDOMIZER has to be declared in a *.h file and it
has to actually be instantiated, or ‘live’ as an instance, inside a *.cpp file. We put
the instantiation inside randomizer.cpp.

cRandomizer* cRandomizer::pinstance()/* pinstance() allocates

_pinstancesingleton if it’s NULL, then returns it. */

{

if (cRandomizer::_pinstancesingleton == NULL)

//First time pinstance() is called

#ifndef _DEBUG //not _DEBUG means Release build

cRandomizer::_pinstancesingleton = new cRandomizer();

/* In Release build, the default constructor seeds

with the time for variety. */

#else // _DEBUG means Debug build

cRandomizer::_pinstancesingleton = new cRandomizer(1);

// In Debug build, use a fixed seed to help replicate bugs.

#endif //End the _DEBUG switch

return cRandomizer::_pinstancesingleton;

}

In understanding this code, you need to know that Visual Studio has a line
#define DEBUG that gets preprocessed if and only if you are making the Debug
build and not the Release build. Thus in our code, the compiler chooses
between the two declarations depending on whether you are doing a Debug or
a Release build.

We don’t want the randomizer to be so random in Debug, because there we
like to be able to start up a session over and over and keep seeing the same bug
in the same spot.

Exercises

Exercise 22.1: Find the MFC code for DECLARE_SERIAL

Use Edit | Find in Files to search the C:\Program Files\Microsoft Visual Studio\VC98
directory and subdirectories for DECLARE_DYNAMIC. The line you are looking for is the

Topics in C++++ 437

one that starts with #define DECLARE_DYNAMIC; it lived in AFX.H, last time the author
checked. Look at this and the other macros mentioned in this section, especially
DECLARE_SERIAL and IMPLEMENT_SERIAL. Note that a macro definition can extend over
several lines if the lines keep ending with a backslash \.

Exercise 22.2: The second 4 Gig problem

Since time returns a 32-bit integer, we can expect a Y2K kind of problem some four billion
seconds after 1970. (You might think of it as the Second 4 Gig problem.) This is when
the time function will start repeating itself. Get out your calculator and figure out the date
of this instant.

Exercise 22.3: Initializing the randomizer

Run Pop and use File | New to open a new document. Use Window | Tile so you can see
them both. Do they look the same? Try this with both the Release and the Debug builds of
the code. Why is the behaviour different?

Software Engineering and Computer Games Reference438

23Programming Windows
with MFC

There’s C, there’s C++ and then there’s MFC. ‘MFC’ stands for ‘Microsoft
Foundation Classes.’ In this edition of the book, we won’t get into Microsoft’s
new C# language at all.

The older style of Windows coding was called ‘Win32.’ Win32 code can in
fact be incorporated into an MFC program, just like C code can be incorporated
into any C++ program. So MFC is an extension of Win32 programming, just
as C++ is an extension of C. MFC adds structure to Win32 at two levels: the
low and the high. At the low level, MFC extends the Windows programming
language by adding more types and more function names. At the high level,
MFC makes it easy to automatically add a great many features to your programs
by using the application frameworks, also known as AFX. In this subsection
we’ll talk primarily about MFC, and we’ll talk about AFX below in Section 23.8:
The MFC Program Flow.

23.1 Some Windows data structures

The COLORREF type

Windows represents colors as 32-bit numbers, of which eight bits each correspond
to the red, green, and blue intensity. That is, the ‘red’ parameter ranges from 0
for no red up to 255 for as much red as possible, and likewise for ‘green’ and
‘blue’. RGB is a macro that packs the three byte-sized numbers into a 32-bit
number (the high eight bits are ‘reserved’).

These color-representing integers are treated as a type called COLORREF, where
COLORREF is defined in the windows.h file to mean unsigned long. If you know 0
to 255 intensities r, g, and b of red, green and blue that you want, then you can
use the Windows macro RGB to create a COLORREF:

COLORREF col = RGB(r,g,b);

The order of the bytes from left to right is reserved, blue, green, red. The
high, reserved byte is usually set to 0, although when you use special Windows
color palettes (as is necessary when in 256 color mode), you may put something

else into the reserved byte, such as a flag indicating that the remaining three
bytes contain an index into a special Windows palette object.

The RECT structure

There are few things to say about Windows rectangles. The CRect class dis-
cussed below is actually is a child of an older kind of Windows structure called
a RECT.

A window’s ‘client rectangle’ is the region, exclusive of the caption bar and
frame, into which the user can write things. The CWnd::GetClientRect(CRect box)

function puts the coordinates of the client rectangle into the CRect box object
that you pass to the function as argument.

The coordinate system used by GetClientRect is said to be in terms of ‘logical
units’ and by default the logical units are pixel units, with the upper left-hand
corner of the Windows client rectangle being treated as the origin (0,0). The
absolute screen pixel coordinates are not used here, although they are used by
some other Windows functions.

When using the default logical pixel coordinates, a window measures the
y-axis in the downward direction. So moving down the screen corresponds to
increasing the value of y. Thus, the value of bottom is normally larger than that
of top, unless the rectangle happens to have been deliberately or accidentally
defined in a ‘upside down’ manner.

When working with Windows rectangles, we think of the (left, top) or TopLeft()
corner as being ‘inside’ the rectangle, with the (right, bottom) or BottomRight()
corner being ‘outside the rectangle.’ In other words, a rectangle can be thought
of as having a closed boundary along its top and left edges, and an open
boundary along its right and bottom edges. This is analogous to the calculus
notion of a half-open interval like [0,1), which includes the left endpoint but
not the right endpoint. In other words, the last lower-right-hand point actually
inside the rectangle is (right-1, bottom-1).

Since the origin is in fact the (left, top) position of the client rectangle, after
a call to GetClientRect(rect), rect.left is 0, rect.top is 0, rect.right is the
width of the client area in pixels, and rect.bottom is the height of the client
area in pixels. You can see that this is correct because, for instance, the pixels
inside the rectangle have x-coordinates ranging from 0 up to rect.right – 1,
which makes for rect.right pixels in all.

23.2 MFC utility classes

Unlike most classes, the handy utility classes, CRect, CPoint, and CSize, have
public data members. That is because these classes are actually derived as child
classes of the old Windows structures RECT, POINT, and SIZE, respectively. This is
permissible in C++ because a structure can be thought of as a class all of whose
members are public. The names of the data fields of these three classes are
shown in Table 23.1.

Software Engineering and Computer Games Reference440

These utility classes have some nice accessors and overloaded operators. For
instance, we can get the CSize csmax of a CRect crbox by writing

CSize csmax = crbox.Size();

CString is a particularly useful MFC class. The CString takes the place of the
char[] that you might otherwise use to store a string. A CString is a self-sizing
array, so you don’t need to preallocate memory space before you put characters
into it. Using the CString’s constructor we might instead write something like

CString cstrhello(“Pop!”);

Another thing worth noting is that the operator== is overloaded for CString so
that stringa == stringb means that they have the same characters.

The MFC code for these utility classes is formulated in a sufficiently poly-
morphic way that you can usually pass these objects without an explicit &
reference cast even if the calling function expects a pointer. In other words,
MFC functions that are prototyped for a CRect * argument will also accept a
CRect argument, passed by reference as a CRect&. A function that wants a data
type with the kludgy old name LPCTSTR (for ‘long pointer to a constant string’)
will accept a simple CString argument.

23.3 The MFC application framework

The really important MFC classes have to do with providing a Document-View
architecture. Some of the most important of these classes are the CWinApp, the
CDocument, the CView, and the CDC.

When you’re running a program, there will be one CWinApp object, and this is
the program itself. The CWinApp is responsible for things like routing the pro-
gram messages, organizing the windows, and deciding what order to do things in.
Later, when we want to make our programs do things like move images around
even when there’s no user input, it will be the CWinApp that does this for us.

In a particular program like Pop, your application is a CPopApp object.
CPopApp is a class derived from CWinApp. It’s defined in the Pop.* files.

When you’re looking at a window, there are three ways of thinking of it.
First of all, behind the scenes, there’s a CDocument object in which you can
store the data that the window displays. Second, the window itself is a CView

Programming Windows with MFC 441

Table 23.1 The fields of some simple MFC utility classes.

Class name Public data fields

CRect left, top, right, bottom
CPoint x, y
CSize cx, cy

(which is a specialized version of a general window class called a CWnd). Third,
when you want to send graphics output to your window, you think of it as a
CDC, where the ‘DC’ stands for ‘Device Context.’

The CView contains the operating system’s ID for keeping track of one window
as opposed to another. The Windows operating systems uses the CView as a way
of keeping track of which particular window is supposed to process a given
message, such as a menu selection or a mouse-click.

A CDC is used whenever you want to write any text or graphics to the window.
A window’s CDC has information about the window’s current location and
appearance on the screen. As you resize the window, move it around, and possibly
change its color palette, the appearance of the window will change, so usually
you need to get a fresh CDC for the window right before you do a graphics call.
Graphics functions such as TextOut and Ellipse are members of the CDC class.

Why does Windows have to make it so hard for us? Why do we have to have
a CWinApp, CViews, and CDCs? Well, many programs have the ability to open up a
number of different windows, so it stands to reason that, although there is only
one CWinApp, your program may well have different CView. But, why must the
CDC differ from the CView?

Well, it turns out that you can have a CDC which is not associated with an
onscreen window. When you send text or graphics to your printer, you get a
CDC for the printer, which is not a window at all. And we’ll also find that we can
have CDCs which contain invisible memory bitmaps rather than being actual
windows. These ‘virtual window’ CDCs are essential for writing programs that
have moving objects on the screen. The way Windows usually does animation
is to prepare each new frame of the animation offscreen in a memory-based
virtual window CDC, and then, once the new frame is ready, to use the rapid BitBlt

operation to copy the image to the CDC of the visible onscreen CView.
As well as the CWinApp, CView, and CDC classes, there are MFC classes which

represent graphics tools called pens, brushes, bitmaps, and more. These classes
have names like CPen, CBrush, and CBitmap.

Take a look at the header files for some of the AppWizard-generated classes
like CPopDoc as defined in popdoc.h and CPopView as defined in popview.h. Note
that these machine-generated files are very messy-looking. It’s a good practice
to put all the things that you add down at the end of the class declarations
so they’re easy for you to find. In general the order in which things appear
within a class declaration doesn’t matter, so we put the human-written stuff at
the bottom so it’s easy to find. Generally, it’s only the human-written code that
you want to edit anyway. It’s also a good idea to set off the human-written code
with a comment line.

If you keep your code at the very bottom of the class it will be easy for
you and other programmers to find. Although you can use the Class View to
add variables, it is easier and safer to type in your variables by hand. There’s
no telling where Class View will put the variables inside the class. If you type
them in by hand you can insist on keeping them all at the bottom of the class
definition. By the way, it doesn’t matter where any block of code appears inside
a class definition.

Software Engineering and Computer Games Reference442

23.4 Naming conventions

The naming conventions in MFC programs are that the MFC class names all
start with a capital C, and the class member functions are all written as run-
together phrases in which each word is capitalized. FillSolidRect is an example of
such a function name.

We’re free to give our variables any kinds of names we want, but since MFC
programs are so big and cumbersome, we try and make the names as helpful as
possible. A good variable name will give you (a) information about the type
of the class the variable is an instance of, and (b) information about the mean-
ing of your variable inside the program. A common convention is to give our
variables names which start with some letters to remind us of the type of the
variable, and to have the rest say something about what the variable does.
A variable name should always start with a lower-case letter. If you like you
can mix in some capitals later into the name, to indicate word breaks, as in
bSoundFlag, for a BOOL variable. But all lower case for the variable names is
easier to remember and faster to type.

Thus, we might give a CString variable the name cstrhello. Or we could use
the names cstring_hello or cStrHello. In the cases where a variable is
a pointer to a class, we like to start the variable name with a p. Thus a CDC*

variable might be named pdc or perhaps pDC.
What about variables that are examples of general types rather than classes?

It’s common to use n as the prefix to indicate an integer variable. Sometimes,
when an integer is a ‘count’ variable used to count something like the number
of pixels in the screen’s width, the c prefix is used. The letters f or b signal a
variable which is a BOOL flag. As just mentioned, the letter p signals a pointer. The
older Windows documentation sometimes raises the (no longer meaningful)
distinction between a normal pointer type p and a ‘long’ or ‘far’ pointer lp.
Win32 programming often uses a kind of pointer-like index object called a
HANDLE, and the h prefix is used for variables of this type. In older Windows
code we often see the prefix sz or lpsz to stand for a variable which represents
a string of characters. Of course in MFC programming we will generally use
CString variables instead.

You’ll notice a bit of ambiguity in all this; the truth is that all of our naming
conventions are a little flexible. The golden rule is to develop a few good con-
ventions and stick to them in all of your code. As you learn more about pro-
gramming, however, your ideas about the conventions will evolve, so don’t feel
duty-bound to forever stick to something dumb that you used to do when you
were starting out.

Windows uses a lot of constants that are defined in its header files.
These are always written in all capitals, with underscores separating the com-
ponent parts. Often a defined constant has a prefix that reminds you of the
context in which the constant is used. As a random example, the DT_CENTER

and DT_VCENTER constants that can be used as arguments to the CDC::DrawText

method have the DT prefix to remind you that these constants have to do with
the DrawText.

Programming Windows with MFC 443

As a rule you should never use one-letter names like u or x, unless it’s
immediately obvious what you mean, nor should you use meaningless names
like foo or whatever. The one and only time it’s definitely acceptable to use
one-letter variable names is for the indices i, j, k used to index loops.

The AFX part of the MFC programming picture has to do with what’s in
those 30 or so files that the Visual Studio AppWizard creates for you when
you make a new project. One thing worth mentioning here is that MFC has a
few global functions with the prefix Afx. These functions are used for getting
information about your program. An example of such a function is CWnd*

AfxGetMainWnd();. We’ll look some more at AFX below. But first we’ll have a little
information for Win32 programmers, some information about documents and
views, and another look at the Pop program code.

Later we’ll also define a lot of classes of our own. To make clear that these
are our classes, we’ll start all their names with a lower-case c. Thus we will use a
name like cMyClass rather than MyClass. We would absolutely never want to use
a name like CMyClass, as that last format should be left only for use by MFC. The
MFC class members generally start with m_, although the CPoint class members are
just called x and y and the CRect members are left, top, right, and bottom. We’ll
always have our own class data members start with an underscore _. A general
principle of naming members of your classes is to start the member names with
an underscore, and then you have the possibility of using the name without the
underscore as an accessor function name (although usually it’s a better practice
to start accessors with the word ‘get’). It’s a good idea to give your class’s private
or protected members ‘ugly’ names (by starting them with an underscore) to
remind you that they are indeed not public.

When we define a special function as one of our class methods, we almost
always use the convention of starting it with a lower-case letter and using capital
letters at word breaks. Thus, we might have a randomInt method or a setAutoRotate

method. You never want to start your methods with a capital letter because
then they’ll look like standard MFC functions, and next programmer to use
your code will get confused when he or she tries to look up MFC documenta-
tion for these functions.

23.5 MFC classes are shallow wrappers

You might wonder what the members of the various kinds of MFC classes are. As
it turns out, most of the classes have only one member, which is public. These
members all have a name which starts with a lower-case m and an underscore:
m_. Thus, for instance, the only data member of a CWnd is a public HWND called
m_hWnd. What’s an HWND, anyway? It means ‘handle to a window.’ In similar
fashion, if you look inside a CDC, you’ll find a public HDC field called m_hDC,
where an HDC is a ‘handle to a device context.’

Handles can be described as pointers to pointers. We can think of a handle as
being like an index into a table of memory pointers. Saving an object’s memory

Software Engineering and Computer Games Reference444

pointer at a second remove allows the operating system to move around the
object’s memory and change its memory pointer, while keeping the same handle
pointer to locate the current value of the memory pointer.

As a practical matter, C++ really doesn’t want you to worry about the data
members of a class. You’re supposed to use accessors to get information about
what’s in an object, use mutators to change an object’s contents, and use the
class methods to do things with the object. So usually we don’t think too much
about the m_ fields inside our classes. But now and then we’ll notice that the
implementation of an MFC method refers to one of the class’s m_ data fields.

If you’ve ever worked with Win32 programming, you’ll be familiar with the
fact that Windows programming involves a number of special data whose
names start with the letter H. An HWND is a type that represents a window, an
HDC is a type that represents a ‘device context,’ an HPEN is a kind of virtual
drawing object called a ‘pen,’ and so on. These types all start with the letter H,
because rather than being visible data structures, they are handles for hidden
Windows data structures.

The basic idea for MFC is instead of using handles to secret data structures,
we should start using real pointers to real C++ objects. This means two things.
For just about every HWHATEVER type from Win32, MFC defines a corresponding
CWhatever class. Thus, HWND is replaced by CWnd, HDC by CDC, HBRUSH by CBrush,
HICON by CSpriteIcon, HBITMAP by CBitmap, and so on.

In addition, most Win32 functions that had an H??? as the first argument
type now become member functions of the corresponding C??? class. Thus
GetDC(HWND hwnd) becomes CWnd::GetDC(). And all of the graphics design inter-
face (GDI) functions that had an HDC as the first argument are now CDC member
functions; for instance Rectangle(HDC hdc, int left, int top, int right, int bottom) is
now CDC::Rectangle(int left, int top, int right, int bottom). The formerly explicit
HWHATEVER argument is now an implicit CWhatever argument that appears as
the object calling the method. Where formerly we wrote Rectangle(hdc, 10,

20, 100, 200), we’ll now write cdc.Rectangle(10, 20, 100, 200) or pDC->

Rectangle(10, 20, 100, 200).
Many function arguments and function return values that used to be HWHAT-

EVER HANDLE types are now usually pointers to CWhatever objects. Thus, for
example we might see code like this in Win32.

myFunction(HWND hwnd)

{

HDC hdc;

hdc = GetDC(hwnd)

TextOut(hdc, ...);

...

}

Converting all the H??? to C??? and changing from handles to pointers, we’d
expect to see something like the following.

Programming Windows with MFC 445

myFunction(CWnd *pWnd)

{

CDC *pDC;

pDC = pWnd->GetDC();

pDC->TextOut(...);

...

}

Or what might happen is that myFunction is actually a member function
of CWnd now, with code like the following. (Remember that the word ‘this’
refers to the calling object when used inside the code implementing a class
method.)

void CWnd::myFunction()

{

CDC *pDC;

pDC = this->GetDC();

pDC->TextOut(...);

...

}

What is actually inside these new classes like CWnd, CDC, and CBrush? What
are their data members and what are their class methods? The answers are both
a relief and an anticlimax.

Most of the CWhatever classes have only a single data member, which is
a public field of type HWHATEVER named m_hWhatever. Most of the CWhatever

member methods are just modifications of regular old API functions that used
to have a CWhatever as the first argument.

The MFC classes are in fact ‘shallow wrappers’ around regular old Win32
objects. Thus, the only data member of a CWnd is a public HWND called m_hWnd.
A CBrush’s single data member is a public HANDLE called m_hObject; normally
this is in fact an HBRUSH. (The CBrush class is a child of the CObject class.) A
CDC has two data members that are public HDCs called m_hDC and m_hAttribDC.
(Normally these are equal to each other, but in the case where m_hDC represents
a special metafile or is derived from a printer, m_hAtrribDC is derived from an
onscreen window.)

The good news is that MFC is not very different from Win32, so if you
already know Windows programming there’s not all that much new to learn.
The bad news is that if the Windows programming language was a confused,
screwed-up mess, MFC is, if anything, even gnarlier. Like living organisms,
real-world computer-languages evolve by successive mutations, rather than
being written clean and fresh from the ground up. Every now and then there
is a fresh new language, but eventually it too gets all crusty and frobby and
tweaked after being out in the world, and (if it is lucky) being heavily used for
a few years.

Software Engineering and Computer Games Reference446

23.6 Navigating app, doc, and view

We’ve already discussed how MFC uses the Document-View architecture in
Chapter 5: Software Design Patterns. This section fills in a little more informa-
tion about how we can navigate among the app, the doc and the view.

In MFC you can always get there from here. But the pathways are a little
oddly marked. Table 23.2 lists the code to use to get a pointer to the classes listed
in the top row from inside a method belonging to class in the left column.

The ::AfxGetApp() is a global MFC function, by the way; we write the ‘::’ in
front of it to remind ourselves that it’s a global function rather than being a
method of any particular class.

The access methods in the fine print look kind of unpleasant. In reality,
however, they are just using a standard kind of pattern for iterating through a
CList, or linked list, of objects. We use one of these odd-looking methods in the
CWinApp::animateAllDocs method discussed in Chapter 6: Animation. We don’t
use them all that often, though. We only print them here so that you know
they exist. And they are convenient for occasionally walking through all possible
documents or all possible views, for instance if you want to count all the open
views that you have.

If all you need is a pointer to the currently active view, there is an easier
way to get to it from either CWinApp or CDocument; you can use the global
::AfxGetMainWnd() method to get the main window, downcast the CWnd* return
value into a CMDIFrameWnd*, and then move down the window levels using the
calls we’ll discuss in the next section.

CView* activeview =

((CMDIFrameWnd *)::AfxGetMainWnd())->MDIGetActive()

->GetActiveView();

The exact way that you write the parentheses for the cast is important. To
be more formal and possibly more readable, you can instead use the C++
dynamic_cast operator and write lines like the following. To help you catch
errors, the dynamic_cast operator returns a NULL pointer if the cast is for some
reason impossible.

CMDIFrameWnd *pframewnd =

dynamic_cast<CMDIFrameWnd*>(::AfxGetMainWnd());

ASSERT(pframewnd); //Is NULL if the cast failed.

pframewnd ->MDIGetActive()->GetActiveView();

Walking through the open documents

In this subsection we’ll give some details about how the CPopApp::animateAllDocs

code is used to find all the open documents and call their stepDoc(dt) methods.
Windows uses ‘MDI’ to stand for ‘multiple document interface’. A MDI pro-

gram groups the open documents in terms of ‘templates.’ The way we find all

Programming Windows with MFC 447

Software Engineering and Computer Games Reference448

Ta
bl

e
2
3
.2

H
ow

 M
FC

 a
pp

,
do

c,
 a

nd
 v

ie
w

 o
bj

ec
ts

 c
an

 a
cc

es
s

ea
ch

 o
th

er
.

G
et

 t
o?

 F
ro

m
?

C
W

in
A

pp
C

D
oc

um
en

t
C

V
ie

w

C
W

in
A

pp
th

is
P
O
S
I
T
I
O
N

p
o
s

=

P
O
S
I
T
I
O
N

p
o
s

=

G
e
t
F
i
r
s
t
D
o
c
T
e
m
p
l
a
t
e
P
o
s
i
t
i
o
n
(
)
;

G
e
t
F
i
r
s
t
D
o
c
T
e
m
p
l
a
t
e
P
o
s
i
t
i
o
n
(
)
;

C
M
u
l
t
i
D
o
c
T
e
m
p
l
a
t
e

*
p
T
e
m
p
l
a
t
e

=

C
M
u
l
t
i
D
o
c
T
e
m
p
l
a
t
e

*
p
T
e
m
p
l
a
t
e

=

(
C
M
u
l
t
i
D
o
c
T
e
m
p
l
a
t
e

(
C
M
u
l
t
i
D
o
c
T
e
m
p
l
a
t
e

*
)

*
)
G
e
t
N
e
x
t
D
o
c
T
e
m
p
l
a
t
e
(
p
o
s
)
;

G
e
t
N
e
x
t
D
o
c
T
e
m
p
l
a
t
e
(
p
o
s
)
;

p
o
s

=

p
T
e
m
p
l
a
t
e
-
>
G
e
t
F
i
r
s
t
D
o
c
P
o
s
i
t
i
o
n
(
)
;

p
o
s

=

p
T
e
m
p
l
a
t
e
-
>
G
e
t
F
i
r
s
t
D
o
c
P
o
s
i
t
i
o
n
(
)
;

C
D
o
c
u
m
e
n
t
*

d
o
c

=

p
T
e
m
p
l
a
t
e
-
>

C
D
o
c
u
m
e
n
t
*

d
o
c

=

p
T
e
m
p
l
a
t
e
-
>
G
e
t
N
e
x
t
D
o
c
(
p
o
s
)

G
e
t
N
e
x
t
D
o
c
(
p
o
s
)

p
o
s

=

p
D
o
c
-
>
G
e
t
F
i
r
s
t
V
i
e
w
P
o
s
i
t
i
o
n
(
)
;

C
V
i
e
w

*
p
T
e
m
p
l
a
t
e

=

p
D
o
c
-
>
G
e
t
N
e
x
t
V
i
e
w
(
p
o
s
)
;

C
D

oc
um

en
t

::
A

fx
G

et
A

pp
()

th
is

P
O
S
I
T
I
O
N

p
o
s

=

G
e
t
F
i
r
s
t
V
i
e
w
P
o
s
i
t
i
o
n
(
)
;

C
V
i
e
w

*
p
T
e
m
p
l
a
t
e

=

G
e
t
N
e
x
t
V
i
e
w
(
p
o
s
)
;

C
V
ie

w
::
A

fx
G

et
A

pp
()

G
et

D
oc

um
en

t(
);

th
is

open documents is to look at all the available templates, and look at all the
associated documents for each of them.

You might wonder why we need to talk about templates at all? This is because
it is possible for an MDI program to open different kinds of documents, and for
each of these kinds there is a ‘template’ or, as MFC puts it, a CMultiDocTemplate.
Your Visual Studio program, for instance, opens up *.cpp files in a text editor, but
it opens up *.rc files with a two-pane view that has a tree view of the resources on
the left and a WYSIWYG window of the currently selected resource on the right.
And it opens up *.dsw workspace files in yet another way. So clearly the code for
Visual Studio must involve several kinds of CMultiDocTemplate classes.

Our Pop programs don’t do anything this sophisticated: they have only
one kind of document template, a standard template which is constructed by
the AppWizard-generated CPopApp::InitInstance code inside the Pop.cpp file. The
documents of a given template type are stored as a linked list.

void CPopApp::animateAllDocs(Real dt)

{

CMultiDocTemplate* pSelectedTemplate;

CPopDoc* pDoc;

POSITION docpos;

POSITION pos = GetFirstDocTemplatePosition();

if (pos == NULL)

return; //No doc template exists yet.

pSelectedTemplate = (CMultiDocTemplate*)GetNextDocTemplate(pos);

//Only look at first template

docpos = pSelectedTemplate->GetFirstDocPosition();

//find first document

while(docpos != NULL)

//while there are documents left to process

{

pDoc = (CPopDoc*)pSelectedTemplate->GetNextDoc(docpos); /*

This retrieves the document at position docpos and then

increments docpos to the next position. */

pDoc->stepDoc(dt); /* Will animate the *pDoc and

call UpdateAllViews to update the *pDoc’s views. */

}

}

It’s not important that you understand the iteration code, but it’s worth
glancing at. This type of code is common in MFC. The business about using a
POSITION object to iterate through the collection is a standard technique used
for iterating through CList template objects, which is how MFC implements
linked lists.

We assume here that the first template we find is the only one to worry
about. There’s a similar sort of method for walking through all of a document’s
views, but we normally use the default CDocument::UpdateAllViews for that.

Programming Windows with MFC 449

23.7 Levels of Windows

Very many of the rectangular areas on your screen are officially windows, more
of them than you realize. A toolbar is a window, a button on the toolbar is a
window, a scrollbar is a window, your main view is a window, and so on. When
one window always lives inside some other window, we speak of them as a child
window and a parent window. Thus a toolbar button is a child window of the
parent toolbar window, and the toolbar is in turn a child window of the parent
window running the application. When a parent window has the form of a
frame around the child window, we often speak of the child window as the
client of the parent frame.

One possible source of confusion here is that we also use the words ‘parent’
and ‘child’ about classes. Consider the situation where a class ClassB has a
declaration like

class ClassB : public ClassA

{ . . . };

Here we say that class ClassB is a child of ClassA, or we say that ClassB
inherits from ClassA. By the same token, we say that ClassA is a parent of
ClassB, or that ClassB is derived from ClassA.

But when we talk about parent and child windows we mean something
different. We are talking about the window positions in what is sometimes
called the windows tree. As a window, the client area is a child of the frame. But
as classes, the client window is perhaps a CView class, while the parent window
is perhaps a CFrameWnd class or a CMDIChild class. As window class types, all three
classes inherit from the basic CWnd class. But they are not in any class-type
parent-child relationship to each other.

When we program an SDI (single document interface) or a MDI application
in MFC, we usually speak of the window we are going to use for our input and
output as the view. The view is an example of a CView object. Our code will
include a special class to describe the behavior of our view; in the Pop program,
for instance, this class will be called the CPopView class and is defined in the
PopView.* files. The CPopView class is derived from a built-in MFC class called
CView, which is in turn derived from a built-in MFC window class CWnd.

The outermost of your program’s window rectangles is an object of your
special type CMainFrame, and it’s called the main frame. Your CMainFrame class
is defined in your MainFrm.* files. As usual in this book, we focus on the MDI
style of application, as opposed to the SDI. But it’s worth mentioning that in
an SDI app, your CMainFrame class is a child of the CFrameWnd class, and in an
MDI program your CMainFrame class is a child of the CMDIFrameWnd class. Along
with your underlying CWinApp program object, your CMainFrame main frame is
‘mission control central’; it directs the shapes of the main window, the toolbar,
the menu bar, the caption bar, and so on.

In a MDI program, you have the possibility of showing a variety of views.
Each view has its own frame, which your program defines as a CChildFrame

Software Engineering and Computer Games Reference450

object. A MDI program’s CChildFrame object inherits from the CMDIChildWnd class.
And an actual view that you write in is the child or client of a CMDIChildWnd

frame. We illustrate this ‘window tree’ in Table 23.3.
The child frame window is the caption bar and the frame and parent of your

View window. In a MDI application, you can see the child frame particularly
clearly when a view is not maximized. The caption bar of the child frame will
usually have a three buttons in the upper right corner. One button is for closing
the window, and the other two are for either minimizing, restoring (to a non-
maximized and non-minimized size), or maximizing your window. Whichever
two options are different from the window’s current state are what is offered;
for instance, if the window is maximized, you’ll have the minimize and the
restore options.

If you maximize a view in a MDI application, the view’s child frame merges
into the big main frame. And the child view’s Minimize, Restore, and Close
buttons move up onto the menu bar of the main frame. When seen this way, a
MDI program closely resembles an SDI program, which is why sometimes one
doesn’t notice the difference. But the double set of Minimize, Restore, and
Close buttons are a tip-off. The top set is for the main frame and MDI client;
the lower set is for the child frame and view.

For the sake of completeness and full disclosure, we should mention that
there is one extra intermediate-level in MDI. It’s called the MDI client window.
This is the gray background window that you see in an MDI application if you
repeatedly use File | Close to close all the open views. You also see part of the
MDI client window if you resize all of your active child windows so that none
of them is maximized. The gray MDI background is sort of like a local ‘desktop’
that the MDI app uses. Ordinarily we don’t customize it, so we don’t use any
kind of special class for it, and it’s not mentioned in our standard code.

How about getting from one window to another? Here’s how you would do
it in MDI. Table 23.4 lists the code to use to get a pointer to the classes listed in
the top row from inside a method belonging to class in the left column. This
table is a useful piece of information to have; it can save you a lot of grief.

For the sake of completeness, we should also mention how to get to the
gray MDI client window, should you want to do something to it. Like maybe
you’d want to make it start being green. Get hold of one of the CMDIChildWnd

objects, and then have that object call GetParent(). Although the main frame is
the parent frame of the child frames, the immediate parent of the child frames
is the skulking MDI client. A call to GetParentFrame() moves up the chain of
parent windows until it finds one that is of the CFrame type.

Programming Windows with MFC 451

Table 23.3 The ‘window tree’ for a view in the multiple document interface.

Colloquial name Pop name MDI inherits from Code is in

Main frame CMainFrame CMDIFrameWnd MainFrm.*
Child frame CChildFrame CMDIChildWnd ChildFrm.*
User view CPopView CView PopView.*

Our CPopDoc class defines a useful getActiveView method as follows.

CPopView* CPopDoc::getActiveView()

{

CMDIFrameWnd *pFrame =(CMDIFrameWnd*)AfxGetMainWnd();

if (!pFrame) //In case things aren’t initialized yet.

return NULL;

CMDIChildWnd *pChild = pFrame->MDIGetActive();

if (!pChild) //In case things aren’t initialized yet.

return NULL;

CPopView *pView = (CPopView *) pChild->GetActiveView();

return pView;

}

23.8 The MFC program flow

In this long section we’re going to try and explain the execution of a Windows
program built using the MFC framework (which is also called the AFX/MFC
framework). The story is not all that clearly told in the Microsoft documentation,
but one can check out the details by tracing function calls in the debugger.

The author has a lingering anxiety that he’s made some mistakes in this
account. On the other hand, he has a feeling of boredom and impatience
about further examining the innards of MFC. One of the differences between
science and computer science is that in science you are investigating things that
are going to be around for a long time. In computer science, your objects of
investigation are eternally moving targets, fleeting blossoms that bloom, shrivel,
and blow away. Given that whatever knowledge one gets about Windows MFC
programs is going to be worthless in ten years, it’s hard to get super-motivated
about getting every last detail right.

Even so, you do need a mental image of what any system is when you write
programs for it. The ‘system story’ helps you organize your knowledge about what
things work and what things don’t work. Whether the story is correct in every
detail doesn’t really matter, just so long as it enables you to write good code.

Software Engineering and Computer Games Reference452

Table 23.4 How the view and frame windows can access each other.

Get to? CMDIFrameWnd CMDIChildWnd CView
From? (main frame) (child frame)

CMDIFrameWnd this MDIGetActive() MDIGetActive()
(main frame) ->GetActiveView()
CMDIChildWnd GetParentFrame() this GetActiveView()
(child frame)
CView ::AfxGetMainFrame() GetParentFrame() this
(client)

Think of this The MFC Program Flow section, then, as a kind of ‘creation
myth’ about the origins of your active MFC window. When you face other kinds
of systems in the future, you’ll need the ability to formulate creation myths of
your own.

We’ll give two versions of the creation myth, first a simple and practical one,
and then a more complicated one.

All you really need to know

In simplest terms, here’s the sequence of function calls that happen during the
start of an MFC program.

• The CPopApp constructor.

• The CPopApp method InitInstance.

• The CPopDoc constructor.

• The CPopView constructor.

• The CPopView method OnCreate.

Now the program starts running. The following CPopView methods affect the
view.

• OnDraw is automatically called when the view needs to be redrawn, because
(a) it’s new, or (b) it’s been uncovered, or (c) it’s been resized, or (d) it’s had a
call to Invalidate.

• OnSize is automatically called when the view is resized.

The various mouse, keyboard, toolbar, menu, and dialog control processing
messages get called automatically. According to how the methods are coded,
they can affect either the CPopView or the CPopDoc. When something is changed,
we usually force an update of the view with a call to the CPopView method
Invalidate. Or, more indirectly, we call the CPopView method OnUpdate and let it
make the call to Invalidate. If you want the application to run on its own, you
can put some code into the CPopApp method OnIdle.

When the program closes down the destructors are called in this order.

• The ~CPopView destructor.

• The ~CPopDoc destructor.

• The ~CPopApp destructor.

That’s all you really need to know about the MFC program flow. But now, in
case you’re interested, we’ll tell you a little more.

The invisible WinMain function

Any application, such as the Pop program, defines its own type of application
as a child of the CWinApp. Pop uses a class called CPopApp, which is a child of the
CWinApp class which is in turn a child of the CWinThread class. The CPopApp class
has its prototype in Pop.h.

Programming Windows with MFC 453

If we look in Pop.cpp we find the declaration of a static variable object of the
type CPopApp. In general, your code is going to have exactly one object of the
relevant kind of ‘App’ type. The AppWizard puts the code into Pop.cpp as
follows. (By the way, your application object doesn’t have to be called ‘theApp,’
you can call it anything you like; the crucial thing is that there be exactly one
CPopApp object declared in your Pop.cpp.)

// The one and only CPopApp object

CPopApp theApp;

There is a CPopApp() constructor defined in Pop.cpp that carries out some of
the initialization of theApp. And the rest of the initialization happens inside the
program’s WinMain, which is what we’ll talk about next.

As you know, a C program always has a primary function called main. When
the program starts, it starts running at the beginning of the main code, and
when it gets to the end of the main code it exits. In a similar way, a Windows
program always has a primary function called WinMain which starts, runs, and
ends your program. In the older style of Windows coding, the programmer had
to explicitly write out the WinMain code. But this code is almost the same from
program to program, so the designers of the MFC have hidden the WinMain code
from you. It’s built-in as part of the AFX within which the MFC classes are
patterned. The ‘invisible’ AFX WinMain function has a skeleton that looks like
the following. To keep things simple, we’ve left out all the function arguments.

WinMain()

{

pApp->InitApplication()

pApp->InitInstance()

pApp->Run() /* Calls the global ::DispatchMessage() or pApp->OnIdle

pApp->ExitInstance() */

}

We describe our WinMain function in terms of a CWinApp *pApp pointer which
is really just &theApp, that is, a pointer to the single CPopApp object, theApp.

This version of the WinMain code (including the comment) mentions six
functions, and five of these are member functions of CWinApp. They are virtual
members of CWinApp. They have their own default code, but since they are
virtual functions, we are free to override them. We can change the code for the
member functions of CWinApp by overriding their implementations for our
CPopApp as defined in our Pop.cpp file.

InitInstance, Part 1: Initializing the CMainFrame

Here are the first two functions mentioned in our little outline of the hidden
WinMain function.

Software Engineering and Computer Games Reference454

• CWinApp::InitApplication

• CWinApp::InitInstance

Ordinarily you don’t worry about overriding InitApplication, and you never even
see the code for it.

By default, AppWizard expects you to override InitInstance, and AppWizard
will put some code for it in your Project.cpp, file, whatever your ‘project’ name
happens to be. A lot happens in here. We’re going to be talking about this
function for all of this and the next two subsections.

It turns out not to be a good idea to try and do any kind of heavy-duty
initialization inside the CPopApp() constructor, as the program is in some sense
not really ready yet at that stage. So this is one thing that we use InitInstance

for, as a place to put initialization code. If you want to allocate something like
a global memory bitmap resource at program startup, you would ordinarily
put code for this at the start of our CPopApp::InitInstance; and when you
then want to deallocate that memory, you would do it in the destructor
CPopApp()::~CPopApp.

The default CPopApp::InitInstance code takes care of opening the main
frame window. This is the place where the particular selections you made
for the kind of program you want are implemented. The choices about your
Document-View architecture go in here, for instance. The code looks (in part)
like this; you can see the whole thing in Pop.cpp.

BOOL CPopApp::InitInstance()

{

/* Register the application’s document templates. Document

templates

serve as the connection between documents, frame windows and

views. */

CMultiDocTemplate* pDocTemplate;

pDocTemplate = new CMultiDocTemplate(

IDR_POPTYPE,

RUNTIME_CLASS(CPopDoc), //your CDocument

RUNTIME_CLASS(CChildFrame), // your CMDIChildWnd

RUNTIME_CLASS(CPopView)); //your CView

AddDocTemplate(pDocTemplate);

// create main MDI Frame window

CMainFrame* pMainFrame = new CMainFrame; //your CMDIFrameWnd

if (!pMainFrame->LoadFrame(IDR_MAINFRAME))

return FALSE;

m_pMainWnd = pMainFrame;

// Parse command line for standard shell commands, DDE, file open

CCommandLineInfo cmdInfo; //Create a default cmdInfo object

ParseCommandLine(cmdInfo); //Copy any command line params

Programming Windows with MFC 455

// Now Dispatch commands specified on the command line.

// The default startup cmdInfo sends FileNew to your App,

// which creates a document, a child frame, and a view.

if (!ProcessShellCommand(cmdInfo))

return FALSE;

// The main window has been initialized, so show and update it.

pMainFrame->ShowWindow(m_nCmdShow);

pMainFrame->UpdateWindow();

return TRUE;

}

The pDocTemplate is defined in terms of the CPopDoc, CChildFrame, and CPopView

classes which are defined in, your project *.h and *.cpp files with the related
names. Note that these specialized classes inherit from, respectively, the standard
MFC classes CDocument, CMDIChildWnd, and CView. The template tells the application
what kind of a document and view structure you have, answering questions
like: are you using the SDI or the MDI; and is there more than one type of
document you might open?

Once the app knows about your template structure, a main frame window is
created by using new to call the CMainFrame constructor. Your CMainFrame class
inherits from the MFC CMDIFrameWnd class and was defined by AppWizard in
your project files MainFrm.*. If you have some global variables that will be used
by all of your files, you might want to keep these variables in your CMainFrame

class and initialize them in the constructor. And if you need to allocate
and deallocate some kind of global pointer, you might want to do it in the
CMainFrame constructor and destructor.

The call to LoadFrame(IDR_MAINFRAME) attaches whatever resources you’ve
defined in your *.rc file for your main frame: things like menu bars and
toolbars. Once we have a good pointer to a CMainFrame object, we store this in
the CWnd* m_pMainWnd field of the CWinApp class, so the app can use it whenever
it needs a pointer to its main window.

The next important group of calls use a CCommandLineInfo class that’s basic-
ally a data structure. We initialize a cmdInfo instance of the class with the
default values set by the CCommandLineInfo constructor, and then we call the
CWinApp::ParseCommandLine function to put any command-line arguments into
the cmdInfo variable.

You might wonder how your app could receive command-line arguments
anyway? After all, you’re running Windows, not DOS or LINUX, and you never
even see a command-line anymore! Well, you may have noticed in Windows
Explorer that if you click on a file name, the file will often get opened by the
application associated with it. Thus, clicking on a *.dsw file will typically start up
a Visual Studio session, while clicking on a *.doc file may open up a session of
Microsoft Word (if it’s on your computer). When these apps are started up in this
way, the Windows operating system passes them as command-line parameters
saying, in effect, ‘Do the File | Open command on the following file name . . .’

Software Engineering and Computer Games Reference456

If there are no command-line parameters of this type, the default settings for
a CCommandLineInfo object like cmdInfo will tell your app to start by processing
a File | New command. And this is what happens when we hit the CWinApp

method called ProcessShellCommand in the bit of code

if (!ProcessShellCommand(cmdInfo))

return FALSE;

[If you haven’t looked at much C code, this line may seem odd. But really
it’s just a cautious way of saying ProcessShellCommand(cmdInfo). A typical
programming trick is that when you call a function that conceivably might not
work correctly, you have it return the Boolean value TRUE if all goes well, and
return FALSE if there is a problem. That way the calling function can use this
return value to pass on the bad news to the rest of the program. FALSE is really
another name for the integer 0, with TRUE normally being 1, although any
value other than 0 is normally also acceptable as TRUE.]

InitInstance, Part 2: Initializing the CDocument and CView

When your app hits the ProcessShellCommand call inside InitInstance (or when a
user selects File | New) it needs to create a new CDocument and an attached CView.
This sets off a whole cascade of MFC calls. In terms of initialization, the three
key calls in the cascade are: (a) the CDocument constructor, (b) the CView con-
structor, and (c) the CView::OnCreate method.

Let’s say a bit more about these three function calls.
Something you probably remember about C++ programming is that you’re

not allowed to initialize a variable as part of its class member declaration. If
a variable isn’t a member of a class – if it’s a global variable, or a temporary
variable inside a function, for instance – then you can declare and initialize it
with a line like int crittercount = 21; or int crittercount(21);. But C++
does not allow you to initialize a variable inside a class definition. A variable
which is a member of a class needs to be initialized in the class’s constructor –
or possibly somewhere else.

The CDocument constructor is the place to initialize and/or allocate any
variables that belong to the CDocument. And if you have variables in your CView,
you need to initialize these as well. Normally we initialize as many of these as
possible in the CView constructor, but there will sometimes be CView variables
that should be initialized a bit later: inside the CView::OnCreate method.

The reason why it’s not always possible to initialize all the CView variables
inside the CView constructor is that when this constructor is called, the CView

window isn’t really ‘fully in existence.’ When you’re inside the CPopView con-
structor, for instance, if you try and use one of the CView methods it’s likely not
to work, because the special HWND window index called m_hWnd that’s hidden
inside the CView is still 0. And if you try and use the CView::GetDocument() func-
tion in here it’ll crash because the document is still 0 as well. The only things
that are safe to initialize inside the CView::CView constructor are things that

Programming Windows with MFC 457

don’t use the CDoc and which don’t in any way depend on the CView already
existing as a graphical window object.

You need to wait until the follow-up CView::OnCreate function to do any
initialization of CView that involves looking, say, at the size of the view, or look-
ing at its owner document. You won’t find the CPopView::OnCreate function
listed in your CPopView.cpp file, but you can include it by adding a ‘message
handler for WM_CREATE.’ More about message handlers in a bit.

InitInstance, Part 3: Putting the Windows on the screen

The last two function calls in InitInstance are the CWnd methods, ShowWindow

and UpdateWindow. Note that they are called by the app’s newly initialized
m_pMainWnd field.

The ShowWindow function figures out the appropriate size for the main frame,
and then draws the frame around that window on the screen. The UpdateWindow

function fills in the internal ‘client area’ of the window. This will involve a
cascade of function calls, as filling in the client area of the main frame involves
first of all, creating and drawing a child frame window, and then creating and
drawing a CView window inside the child. Another way of putting it is that
when a CView::UpdateWindow is called, an UpdateWindow function gets called for all
of that window’s child windows.

Now of course before your view can appear on the screen, it has to have
been initialized. But we’re cool with that, it already happened when the
ProcessShellCommand told our WinApp to behave as if it had received a File | New

menu selection. We processed the CDocument constructor, the CView constructor,
and the CView::OnCreate method.

So now the main window’s call to UpdateWindow has generated a CPopView::Update

window call. And what happens then? A call to CView::UpdateWindow generates a
call to CView::OnPaint. If you look for CPopView::OnPaint in the Pop project files, you
won’t find it though. It turns out that CView::OnPaint in turn calls CView::OnDraw.
And you will find the CPopView::OnDraw method in the CPopView.cpp file.

For most of our MFC programs, the OnDraw method of our view is where the
rubber hits the road or, more accurately, where the pixels hit the screen. Let’s
look a little more closely now at the MFC run cycle.

The MFC run cycle

If you look back at our outline of the AFX ‘hidden WinMain’ function, you’ll see
that the following three functions are mentioned in it.

• CWinApp::Run

• ::DispatchMessage

• CWinApp::OnIdle

Your app spends most of its time inside the CWinApp::Run function. What
this function does is to repeatedly see if there are any ‘messages’ to process. If
there is a message, then the global ::DispatchMessage function is used to send the

Software Engineering and Computer Games Reference458

message to the piece of your code that is designed to handle it. When there is no
message to process, then the CWinApp::OnIdle function is called until eventually
there is another message to process. (Recall from Chapter 22: Topics in C++ that
when we’re doing MFC programming, we often put a :: in front of the names of
global functions that are not the member of any class, just to remind ourselves
that they’re global.)

Talking about messages is going to take a long time, so let’s put that off
for the next section. Right here and now let’s just say something else about
OnIdle. As we discuss in Chapter 6: Animation, if we want to set in action a pro-
cess which runs all the time, a good way to do this is to write a function
CPopApp::animateAllDocs that executes whenever OnIdle is called. In the Pop
Framework, we do this by replacing the base class CWinApp::OnIdle function with
a CPopApp::OnIdle which calls the base class CWinApp::OnIdle and then calls a
function we write as animateAllDocs. (As mentioned in Chapter 6: Animation, the
CPopApp::OnIdle is actually slightly more complicated than what we show here.)

BOOL CPopApp::OnIdle(LONG lCount)

{

CWinApp::OnIdle(lCount); //Do the base class WinApp processing.

animateAllDocs(); /* Step through all the docs and update each

doc and all its views. */

return TRUE; //Keep doing it over and over.

}

The code for animateAllDocs is sort of ugly, so we printed it in Section 23.6.
The net effect of the animateAllDocs function in our Pop program will be as
follows.

• Step through the list of open CPopDoc objects and for each of these documents
call a CPopDoc::stepDoc function which will

• call a cGame::step method to update the positions of a list of polygonal critters
that are stored in the document.

• Make a call to CDocument::UpdateAllViews which will

• send down a call to a CPopView::OnUpdate for each of the document’s views,
and for each view this function call will

• use a CView::Invalidate call that generates a call to CPopView::OnDraw, which will

• use the current cGraphics to show an image on the screen.

But before we can start having that much fun, we will need to explain about
Windows messages and the ::DispatchMessage function.

Messages and message handlers

The Windows operating system maintains an internal message queue. Whenever
you use the mouse or the keyboard a message is placed on the queue. Windows
also puts a number of messages on the queue by itself. Windows works by

Programming Windows with MFC 459

continually taking messages off the queue and passing them to the window
that they’re intended for. The AppWin::Run function inside your hidden WinMain

apportions the messages among the windows that belong to your app. The
function that it uses to send off the messages is a global function called
::DispatchMessage.

At the low level, Windows represents messages by a kind of structure called
MSG. The Windows MSG structure can be written as follows.

struct MSG

{

HWND hwnd;

UINT message;

WPARAM wParam;

LPARAM lParam;

DWORD time;

POINT pt;

};

The first four of the special Windows variable types on the left are really
all the same as 32-bit integers, while the last two are 64-bit integers, though
a POINT can also be thought of as a pair of 32-bit integers. Even though it is
customary to speak of the MSG structures themselves as messages, the MSG

structure has a field whose name is ‘message.’
The hwnd field of a MSG structure is an ID number which tells the Windows

operating system which window (or which CView, in MFC terms) the message is
intended for. If you press a key or take a mouse action, you will generate a MSG

whose numerical hwnd ID value is equal to the numerical HWND index value for
a currently active window.

The message field of a MSG structure is an integer code number describing
what type of message this is. All of these message codes have names that start
with WM_. You can look at a long list of them in Visual Studio by selecting the
Help | Index dialog and typing in WM_. There are several hundred different
WM_? messages, but most of them are rarely used.

It’s common to blur the distinction between the MSG structure as a whole
and the value of its message field. Thus it’s common to speak of the operating
system sending a window, say, a WM_CREATE message, even though strictly
speaking, the window is really getting a MSG structure whose message field is
WM_CREATE.

The wParam and lParam fields have extra information about the MSG. In the
old-style Win32 programming, you need to learn what kind of information
each message puts into these parameters. But in MFC programming, this is
automatically done for you; the wParam and lParam information gets repackaged
into an easier-to-use form. The time and pt fields of the MSG are rarely used.

In MFC, the code for processing a message takes the form of a ‘message
handler’ function that lives in one of your CWnd classes, usually in your CPopView,
but occasionally in your CMainFrame or CChildFrame.

Software Engineering and Computer Games Reference460

Table 23.5 lists a few of the common Windows messages, along with the
names of their MFC message handler functions and some information about
the arguments that get passed to the message handler.

At this point, let’s make a few remarks about the difference between OnChar

and OnKeyDown. Generally speaking, you use the first function for doing word-
processing and you use the second for using the keyboard as a control panel.

Although we can’t seem to find them in the Microsoft online documentation,
the virtual-key codes returned by OnKeyDown are all defined in the WINUSER.H

file that lives in the INCLUDE subdirectory of your compiler. These codes have
all have names starting with VK_ followed by a simple name for the key. The
virtual-key code for the F1 key, for instance, is VK_F1, the virtual-key code for
the Left Arrow key is VK_LEFT. The virtual-key code VK_A for a letter-key like A
is in fact the same as the ASCII code ‘A’ for A.

Programming Windows with MFC 461

Table 23.5 Windows messages and their MFC handler methods.

Message Handler function Comments

WM_CREATE OnCreate(LPCREATESTRUCT Is called after the constructor.
lpCreateStruct) The best place to initialize

your CView data

WM_SIZE OnSize(UINT nType, int cx, nType tells you if you’ve just
int cy) Minimized or Maximized the

window. (cx, cy) is the size of
client area

WM_PAINT OnPaint() Is followed by a call to OnDraw,
which is where we normally
write our graphics

WM_LBUTTONDOWN OnLButtonDown(UINT nFlags, nFlags tells you which buttons
CPoint point) are down. point is the cursor

position in client-window
coordinates

WM_MOUSEMOVE OnMouseMove(UINT nFlags, All mouse message handlers
CPoint point) pass the same arguments as

in OnLButtonDown

WM_VSCROLL OnVScroll(UINT nSBCode, UINT nSBCode tells what kind of
nPos, CScrollBar* pScrollBar) scroll request, nPos holds the

scroll bar position

WM_CHAR OnChar(UINT nChar, UINT nChar is the ASCII code for the
nRepCnt, UINT nFlags) key if it’s a letter key

WM_KEYDOWN OnKeyDown(UINT nChar, UINT nChar is the Windows VK_
nRepCnt, UINT nFlags) ‘Virtual-key code’ for the key

WM_DESTROY OnDestroy() Gets called right before the
destructor at exit

If you press the A key alone, as opposed to pressing the A key with the Shift

key, you’d really like to get the ASCII code for ‘a’, as opposed to the ASCII
code ‘A’. How do we do this?

Well, when you press a letter key, your CView gets an OnChar message handler
call as well as an OnKeyDown message handler call. (The WinApp::Run function
makes this happen by using a global function called ::TranslateMessage.)

So, if you care about the case of a letter key, then you look at the OnChar

function input, as the nChar argument to this function will be the correct upper-
or lower-case ASCII code for the letter that the user typed in by pressing a letter
key and by possibly pressing the Shift key at the same time.

Usually we don’t do anything with the other OnChar and OnKeyDown parameters,
by the way. You might, for instance, be tempted to try and use the ‘repeat
count’ variable nRepCnt in a game program to detect when the user is holding
an Arrow key down, but this turns out not to work as reliably as does directly
polling the key state with a repeated call from WinApp::OnIdle to the global
::GetAsyncKeyState(int vKey) function.

Program termination

When you close down your file, either by ending the application or by using
the File | Close menu selection, that means you are closing the view and the
document, so the destructors will be called: first ~CView and then ~CDocument. If
your program is closing, you’ll then call the ~CMainFrame destructor, and last of
all the ~CWinApp destructor gets called. In general, destructors always get called
in the reverse order of the corresponding constructors.

Another spot where you might do some processing at program exit is in the
OnClose or OnDestroy functions of CView. If you want code that asks the user
whether or not he or she wants to save some file information, this call usually
issues from inside the OnClose function, which is called after the File | Close

menu selection is made, or when the view is killed by clicking on the ‘X’ or
‘kill’ box in the upper right corner.

Summing up, the sequence of function calls when you exit the program is as
follows.

• CView::OnClose

• CView::OnDestroy

• CView::~CView destructor

• CDocument::~CDocument destructor

• ~CMainFrame destructor

By the way, when you click the kill box at the upper right corner of your CView,
it calls the CWnd::OnSysCommand(UINT nID, LPARAM lParam) message handler for
your CView, with an SC_CLOSE in the nID parameter. OnSysCommand reacts by
invoking your CView::OnClose message handler, if there is one. If your CView

doesn’t have an OnClose message handler (some hard-to-get-rid-of programs
have an OnClose which puts up a message box asking ‘Are you sure you want to

Software Engineering and Computer Games Reference462

exit?’), then the default CWnd::OnClose calls your CView::OnDestroy function and
then passes control to the window’s destructor.

23.9 Adjusting the program appearance

The caption bar and the About dialog

To start with, the caption bar for a project like Pop will say something like:

Pop – [Pop1]

The second name is the name of the View window that currently has the focus.
If the child window is maximized, the name is in square brackets; otherwise it’s
not, and will say something like:

Pop – Pop1

The ‘Pop1’ is a program-generated name for the file (the ‘document’) that you
currently have open. If you use the File | Open or the File | Save As... commands,
this name will change to reflect your current choice of a file name. (At present,
‘opening’ or ‘saving’ a file will have no real effect except for changing the name
in the caption bar. We’ll show you how to properly save and open files later,
when we’ll have some data worth saving.)

The default first phrase, ‘Pop,’ is the name of your project file. Particularly
when you are working on a series of builds, as in a software project, you want this
caption to have more information than your project file name, which you usually
pick to be very short and generic. The easiest way to use the Pop Framework is
just to leave the project name as it is, so your project file will still probably be
Pop, no matter what your executable is. (It is possible to change the project
name, but it’s a little bit of trouble.)

You generally want your caption bar to also include your name and the
date of the build. So if, for instance, you were calling your program, say, ‘Skull
Farmer,’ you’d change the caption bar to say something like this, indicating
that the program is showing the file number 1 opened by Version 7 of your
Skull Farmer program.

Skull Farmer, Version 7, Your Name Here, July 5, 2010. – [Pop1]

The way to change the caption is to go to the Resource sheet of your Workspace
pane in your compiler. Click on Pop Resources to show the resource categories and
click on String Table to make a window open up listing your string resources.
The first string will have the identifier IDR_MAINFRAME. This is the string that
appears as your program name in the caption. Right-click on the text of this
string to get a popup context menu, select Properties on this popup, and then you
can edit the string to include the version number, your name, and the date.

Programming Windows with MFC 463

It’s also a good idea to put some information into the About dialog box. You
can do this from the Resource view by clicking on Dialogs and then clicking
on IDD_ABOUT. Right-click on the text area to get a context menu and select
Properties... to get a dialog where you can change the text to have your name.

The program icons

It’s a nice idea to use the Resource Editor to change the icons used by the your
programs. Although this isn’t immediately obvious, your program uses four
icons, and to fully customize your program you need to change them all. The
so-called IDR_MAINFRAME icon comes in two different sizes, and the IDR_POPTYPE
icon comes in two sizes as well.

Under the Icons listing on the Resource sheet of the Workspace window,
you’ll find IDR_MAINFRAME and IDR_POPTYPE. IDR_MAINFRAME controls the icon
that appears next to your *.exe in Windows Explorer and in the About dialog
box; by default it shows three blocks with the letters MFC. You can change this
icon in the Resource Editor, but at first you won’t think it worked – because
you’ll still see the three blocks with MFC in your main menu bar. Why is that?
Well, each icon is stored to actually hold images at two different resolutions. In
the Resource Editor you’ll find a Device dropdown with two choices: Standard

(32 × 32) and Small (16 × 16). And you need to change the Small one of
IDR_MAINFRAME to change what you see in the caption bar when the document
window is maximized.

With IDR_POPTYPE, the Standard version will appear next to Pop documents
if we eventually save any, while the Small version will appear in the menu bar
when the document window is maximized.

The IDR_MAINFRAME and IDR_POPTYPE icons are saved in the current \res file
as Pop.ico and PopDoc.ico respectively. Sometimes when you change the icons, the
compiler seems not to pick up on the changes. This is particularly likely
to happen if you drag new icons into the \res directory and simply assign them
the names Pop.ico and PopDoc.ico. One way to ‘jolt’ the compiler and get it to
notice that things have changed is to remove all icons from the \res directory,
try and open the workspace file, and let the compiler complain that it can’t find
any icons. If you then put some icon files back in, the compiler will now
use them.

Tweaking the File dialog

This is something you should do first of all when you start trying to serialize
your program’s documents. What we do here is find a way to give a distinctive
file-name extension to our serialization files. Detailed discussion of the serializa-
tion process itself appears in Chapter 29 Serialization.

The reason it’s a good thing to fix the File dialog before starting to imple-
ment serialization is that when you’re testing out your code with repeated saves
and opens, it’s a lot easier to find the files you’re testing if they have a distinctive
kind of name.

Software Engineering and Computer Games Reference464

If you use the Resource Editor to look inside the string table resource for
your project, you’ll find the second line has the label IDR_POPTYPE. By default,
AppWizard sets it to the following string.

\nPop\nPop\n\n\nPop.Document\nPop Document

This kind of object is a kind of ‘string of strings’ because each of the \n
symbols is a new-line symbol. Really we have seven substrings here, although
by default three of them (the very first one, the fourth and the fifth) are empty
strings of the form \n.

A good explanation for the Document String is in Alan Feuer’s MFC
Programming (Addison-Wesley, 1997), p. 218, where Feuer explains that the
seven strings can be named like this and explained as in Table 23.6, where
we’ve shaded the two lines that are important for us here.

App\nDocName\nDocType\nFileType\n.ext\nRegType\nRegName

Thus, when building, say, Pop21, you might want to use the extension .p21

for the files, and you might want to have the File | Open and File | Save dialogs
refer to these files as having the type ‘Pop 21 File.’ To make this happen, all
we would need to do is to use the Resource Editor to make two changes to the
IDR_POPTYPE document string, so that it looks like this.

\nPop\nPop\nPop 21 File\n.p21\nPop.Document\nPop Document

Programming Windows with MFC 465

Table 23.6 Where to edit the MFC document string to change your parameter file type.

Feuer’s name Default for Pop Project Comments

App \n This is the text for the title bar by an SDI
app, but an MDI app uses the
IDR_MAINFRAME string instead

DocName Pop\n The default document caption, used with a
number after it

DocType Pop\n Document type, used with the File | New
command if your app has several types of
docs

FileType \n A descriptive phrase shown by the File | Open
and File | Save to filter for the app’s types of
documents

.ext \n The default file extension used for your file type

RegType Pop.Document\n Systemwide identifier used for the file type in
the registry if the app registers itself

RegName Pop Document The user-readable name used for your type
of file in Windows Explorer if the app is
registered

23.10 The multiple document interface layouts

The MDI hierarchy

Now let’s say some things about taking control of the MDI. Let’s review some of
the material from the Document-View section of Chapter 5: Software Design
Patterns.

As the user’s interface with the program, the CView has two different roles.
On the one hand, it’s the user’s channel to the program’s data. And on the
other hand, the CView is a graphical Windows object that sits inside two levels
of frame windows.

In terms of data, we have the hierarchy shown in Table 23.7. We include the
CMainFrame here because we do sometimes keep program data in there.

And in terms of the window tree we have the hierarchy shown in Table 23.8.
Note that the use of a CSplitterWnd adds an extra layer.

As we summarized it in Tables 23.2 and 23.4, there are a number of special
MFC functions for getting a pointer to any one of these application classes from
inside any of the other ones. Looking back at those tables you’ll recall that the
method for getting from the CPopApp down to the CPopViews is pretty ugly. But
it’s easier to move up the hierarchy of the window tree.

For reasons that we’ll discuss shortly, we need a way for CMainFrame to count
the number of open CChildFrame windows. So we write a CPopApp::getMDIChildCount()

method that looks like this. Remember that a CMDIChild is what we call a child
frame; in our program it’s a CChildFrame object.

Software Engineering and Computer Games Reference466

Table 23.7 The application, the document, the frame, and the view in MFC.

Application class MFC parent class Defined in

CPopApp CWinApp Pop.*
CMainFrame CMDIFrameWnd MainFrm.*
CPopDoc CDocument PopDoc.*
CPopView CView PopView.*

Table 23.8 The ‘window tree’ for a splitter window view in the multiple document interface.

Application class MFC parent class Defined in

CMainFrame CMDIFrameWnd MainFrm.*
CChildFrame CMDIChildWnd ChildFrm.*
CSplitterWnd CSplitterWnd ChildFrm.*
CPopView CView PopView.*

int CMainFrame::getMDIChildCount()

{

int count = 0;

CMDIChildWnd *next, *current = MDIGetActive();

//Current focus child wnd.

if (!current)

return 0;

while (TRUE)

//We’ll exit this endless loop with a return inside it.

{

count++;
MDINext();

//Move the child frame activation to the cyclically next one.

next = MDIGetActive();

if (next == current)

return count;

}

}

Automatic tiling and maximizing

To give our Pop Framework a good behavior, we don’t want to ever waste screen
space by showing the user the boring gray MDI client window that shows up
when no views at all are open. What we want is the following.

• If there is only one child frame open, we want it to automatically maximize
into the main frame.

• If there is more than one child frame open, we want them to automatically
tile themselves into the main frame.

• If we resize the main frame, we want the child frames to retile so as to con-
tinue filling the frame.

You might think that a feature like this would be built into the MDI, but it
isn’t. This isn’t necessarily a failing, this just doesn’t happen to be something
that the designers anticipated someone wanting to do. And, frankly, it isn’t all
that important a feature for the Pop Framework. It’s developer gold-plating
again. After all, why would we want to open more than one game document in
the first place? And since we’re using splitter windows anyway, we don’t have
much reason for opening a second view of a given doc either. Well, looking at
how it works is a good way to gain a little more understanding of how MDI
works. But if you’re in a hurry, feel free to skip the rest of this section for now.
You can always come back to it later.

What we’ve done here is to add a new BOOL _autotile variable to our CMainFrame

class. We give it a default value of TRUE, and we put a menu item controlling it
as Windows | Autotile. Our CMainFrame handles this menu item’s messages.

The MFC call for tiling a window ‘vertically’ is CMDIMainFrame::MDITile(MDITILE

_VERTICAL). We need for our CMainFrame object to call this method whenever

Programming Windows with MFC 467

we do any of these five things listed in the first column of Table 23.9. In the
second column we list the method that we need to override to make our auto-
tiling work.

To make things more complicated, if there is only one open child frame, we
don’t want to call MDITile, because that puts our frame inside the client area of the
main frame, and we have a wasteful extra caption bar. Instead, if we only have
one child frame open, we need to make sure that this one view is maximized.

In order to distinguish between the case where we have one maximized view
and the case where we have a number of views that we want to tile, we need a
way to count how many views are open. And this is where we have to use that
CMainFrame::getMDIChildCount() method.

As an example of the changes we had to make, we print our version of
CMainFrame::OnWindowNew below. (In the Pop Framework the menu selection for
invoking OnWindowNew is in fact labeled Window | Additional View of Current

Game, rather than with the more standard label Window | New.)

void CMainFrame::OnWindowNew()

{

CMDIFrameWnd::OnWindowNew(); //Call base class handler.

//Our code. RR.

/* Keep tiling so the child frames stay “stuck” to the outer

window. The CMainFrame::getMDIChildCount() is a helper

function I added. Gets the number of existing child

frames, including this one. If there are more than one

child, then I tile, otherwise I don’t tile because

whenever I have only one child, I’ve maximized it. You

don’t want to tile when a single window is maximized as

this brings its caption bar back down into the MDI

client area. */

if (_autotile && getMDIChildCount() > 1) //

MDITile(MDITILE_VERTICAL);

}

Software Engineering and Computer Games Reference468

Table 23.9 The function overrides needed for ‘autotiling’ a multiple document
application.

Action MFC method to override

Open a new child frame view of an open document CMainFrame::OnWindowNew
with Window | New

Open a new document with File | New CPopApp::OnFileNew

Open a saved document with File | Open CPopApp::OnFileOpen

Resize the main frame window CMainFrame::OnSize

Close a child frame window CChildFrame::OnDestroy

We make a similar change to the CMainFrame::OnSize, the CPopApp::OnFileNew(),
CPopApp::OnFileOpen(), and the CChildFrame::OnDestroy().

In the case of CChildFrame::OnDestroy() we have to work a little harder. This
is the method that gets called when you kill off a child frame. Here it’s possible
that we had two open child frames and are now closing one of them. If only
one child view is going to remain, then we need to maximize the single remain-
ing child frame. If you’re interested in how this works, you can look at the code
in the Pop Framework’s ChildFrame.cpp.

23.11 Splitter views

A splitter window holds two or more views of a document inside of it. There
are two kinds of splitter windows, the dynamic splitter window and the static
splitter window.

• A dynamic splitter window is a window such as you have in Microsoft Word
or in Visual Studio that the user can choose to split or not to split. Usually
a dynamic splitter window has the property that if you resize it, the pane
on the right-hand side will change size, but the pane on the left stays the
same width.

• A static splitter window is a window that is always split. With a static splitter
window the programmer is better able to control the ratio of the size of the
two panes. If you don’t want to see the split, in a static splitter window, you
can drag the split-divider over to one side, but if you go and click there,
you’ll find the divider bar is still waiting there.

The author designed the Pop Framework so you can build both. In the
Adding a Static Splitter section below we show how to change from one build
to the other. Our default build uses dynamic splitter, which you can activate
with Window | Split.

In understanding the role of splitter windows we need to understand their
place in the window tree. Ordinarily a CView is the immediate window child of
its frame. In the case of MDI, which is what we’re focusing on, the frame is a
ChildFrame object (which is an instance of the CMDIChildWnd class). In the case of
SDI, the frame would be a MainFrame object which is an instance of the
CFrameWnd class. But in any case, the usual situation is that your view is right
inside the frame, in terms of the windows tree.

When we add a splitter window, it gets in between the frame and view.
Here’s a picture showing the two kinds of window trees.

Programming Windows with MFC 469

ChildFrame ChildFrame

CView CSplitterWnd

CView CView

Let’s describe how to add either kind of splitter. ‘Dynamic’ sounds more
exciting and complicated than ‘static,’ but in some ways the static splitter
windows are more powerful, and they’re slightly harder to program. Let’s explain
the easier case first.

Adding a dynamic splitter

(1) Add a CSplitter _cSplitterWnd data field to ChildFrame in ChildFrm.h.

(2) Change the CChildFrame::OnCreateClient code in ChildFrm.cpp to have a single
line as in the following.

BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext*

pContext)

{

/* When adding a splitter, be sure to comment out the base

class code. */

// CMDIChildWnd::OnCreateClient(lpcs, pContext);

/* We pass the CSplitterWnd::Create call the “this” pointer,

the max number of rows (1 or 2), the max number of

columns (1 or 2), and an (x,y) size at which you want a

pane to just disappear, the pContext variable, and a flags

variable. */

return _cSplitterWnd.Create(this, 1, 2, CSize(20, 20), pContext,

WS_CHILD | WS_VISIBLE | SPLS_DYNAMIC_SPLIT); /* The default

includes | WS_HSCROLL | WS_VSCROLL in the sixth

argument, but I don’t want scrollbars here. */

}

And that’s it! If you rebuild now, you’ve got a working dynamic splitter window!
If you use the Window | Split selection, you can split any of your views in two.

But there is one more consideration. It may be that you want the two panes
of the split view to automatically be different. To do this, you could put some
code like the following into your game’s override of initializeView(CPopView*

pview), so as to make the views in the two panes be different. When the window
is not split, your default behavior will be that of the ‘left pane.’

CSplitterWnd* csplitter = (CSplitterWnd*)(pview->GetParent());

if (pview == csplitter->GetPane(0,0)) //we’re the left, main view.

{

//Change the view settings the values you want in the left pane

}

else //we’re the right, subsidiary view.

{

/* Change the view settings to the values you want in the right

pane. */

}

Software Engineering and Computer Games Reference470

You might also want to override the cGame child’s initializeCritterViewer(cCritterViewer

*pviewer) with a similar kind of switch on pviewer->_pownerview.

Adding a static splitter

If you use a static splitter window, you have the ability to make your window keep
a fixed layout no matter what size it is. The idea is to allocate some fixed propor-
tion, like 0.75 of the window for the left pane and give the rest to the right pane.
Of course the user can still move the splitter bar back and forth, but whenever
we resize the frame window we’ll go back to our standard proportions.

Look for the following block of code at the top of the Childfrm.h file. Comment
STATIC_SPLITTER in, set the Build | Set Active Configuration . . . to select the Release

option and rebuild.

/* Comment STATIC_SPLITTER out to have a dynamic (user selectable)

splitter window rather than a static (automatically present)

splitter window. If we have STATIC_SPLITTER, then we use

LEFT_PANE_PERCENT to specify how much of the width of the child

frame window is devoted to the left pane. The PERCENT macro is

defined in stdafx.h to convert the 0 to 100 range to 0.0 to 1.0. */

//#define STATIC_SPLITTER

#define LEFT_PANE_PERCENT PERCENT(50)

Run the new *.exe and notice that when you resize the window, the
left splitter pane always takes up 50 percent of the screen. Change the
LEFT_PANE_PERCENT number to 75 and build again.

What makes this a little tricky is that a static splitter window is not fully
initialized until you’ve both called CSplitterWnd::CreateStatic and repeatedly called
CSplitterWnd::CreateView to put valid CView objects inside its panes. What with
all the things the MDI framework does to initialize itself, you will hit the
ChildFrame::OnSize method three or four times before you’ve managed to finish
executing the ChildFrame::OnCreateClient code that initializes the _cSplitterWnd. So
you need a BOOL _splittercreated field to keep you from trying to set the sizes of
the _cSplitterWnd ’s panes before they’re fully ready.

If you look in the Pop ChildFrm code, you’ll find the following two things.

• First, there is a CSplitter _cSplitterWnd data field of ChildFrame in ChildFrm.h,
and a BOOL _splittercreated field as well. The CChildFrame constructor
initializes _splittercreated to FALSE.

• Second, the CChildFrame::OnCreateClient method in ChildFrm.cpp is written
to make a call to _cSplitterWnd.CreateStatic, three calls to
_cSplitterWnd.CreateView, and a call to _cSplitterWnd.RecalcLayout. See
the code in childfrm.cpp and its comments for details.

As in the case of the dynamic splitter, you may want to change your
CPopView::OnCreate to initialize the views differently according to which pane
of the splitter window they appear in.

Programming Windows with MFC 471

Finally, if you want to change the behavior of the relative sizes of the panes
when you resize the window, you can tweak the CChildFrame::OnSize method a
bit further.

23.12 Portable classes

When you develop a general-purpose class like cRandomizer, cVector, cRealBox,
cRealPixelConverter, or cMemoryDC, it’s a good idea to try and keep the class as
portable as possible. By ‘portable,’ we mean not having many dependencies
upon other classes. A class that you develop as a programmer is like a tool that
you build to help yourself do things. If you plan to keep programming for a
number of years, you don’t want to have to redesign your tools any more often
than necessary. And, after all, C++ is a language meant to run on all kinds of
machines, from Windows to Mac to Linux, so it would be nice to be able to
take your tools with you if you happen to migrate.

One way to judge how independent a class is by looking at how many #include
lines it has at the top of its definition *.h file and its implementation *.cpp file.
Because of the demanding nature of MFC with the AFX application frameworks,
we are forced to put the #include <stdafx.h> at the head of every *.cpp file that
gets linked into our MFC project. So this one line’s worth of linkage to MFC is
unavoidable. But it could be unwise to bet the farm on MFC and, for instance,
derive something as simple as cVector from the MFC base class CObject.

Let’s look at the relationships among the special classes just mentioned.
If you flip through the header files, you’ll find that cRandomizer, cVector, and
cRealPixelConverter use no other classes at all, although they do all use the Real

type. But Real is simply a typedef we made in realnumber.h to stand for double, so
it’s use puts no crimp in portability.

The cMemoryDC class, on the other hand, is implemented in such a Windows-
specific fashion that we don’t worry about making it very MFC. The cMemoryDC

is in fact a child of the CDC. Although the idea of a memory bitmap buffer is
something you would want to use on any platform you work on, implementing
something like this is so operating-system-specific that it’s impossible to accom-
plish it in a portable manner. Actually, if you use the Swing graphics classes in
Java, you don’t need to implement double buffering, it happens automatically.

What about cRealBox? Well, thanks to having a cVector randomVector(cRandomizer

&rand) method and a draw(CDC *pDC, const cRealPixelConverter &rtop, BOOL bSolid)

method, the cRealBox uses all four of the other classes, not to mention the Real

type and MFC. With cRealBox we’re moving closer to the code for specific appli-
cations.

The Pop Framework classes are so far down into a specific kind of application
that we don’t worry quite as much about their generality. Even so, there is the
possibility that we might someday port these classes to a different platform
or even to a different OO language such as Java or C#. So we encapsulate as
much of the Windows-specific things as we can. The various cSprite drawing
methods use Windows graphics code.

Software Engineering and Computer Games Reference472

One specifically MFC thing that we do with most of our classes is to make
them inherit from the general MFC base class called cObject. Doing this allows us
to include the DECLARE_SERIAL macros in the headers and the IMPLEMENT_SERIAL
macros in the *.cpp files. The purpose of this declaration is twofold: (a) it makes
the class support the MFC model for runtime class information, which involve
such constructs as the macro RUNTIME_CLASS(...), the CObject methods
GetRuntimeClass and IsKindOf, and the CRuntimeClass method CreateObject; and (b)
it makes it possible to use the CObject::Serialize method to save and load the
objects’ parameter information with external files.

Exercises

Exercise 23.1: Checking the CRect and CString documentation

Look up the documentation on CRect, CSize, CString, and CPoint. We’re going to be using
these classes from time to time. Be sure and get an idea of the different methods and
constructors that these classes have.

Exercise 23.2: Checking the WinMain documentation

Look up WinMain in the Visual Studio Help and see what it says about WinMain in MFC.

Exercise 23.3: Using the debugger to look under the hood of MFC

How does one find out how the CPopView::CView constructor gets called from inside
CPopApp::InitInstance? As a way of getting to know the debugger, let’s work through some
steps to figure it out.

First put a breakpoint inside the (empty brackets) code for the constructor in the
CView.cpp file. Place the breakpoint by right-clicking at the spot where you want it and
selecting Insert/Remove Breakpoint from the context menu. Then select Build | Start
Debug | Go to run the program in the debugger until it hits the breakpoint. If the program
stops too early, press F5 to make it run all the way to the breakpoint. Now select View |
Debug Windows | Call Stack to see what functions were recently called. The window
shows the most recent call at the top, the call before that one step down, and so on. Do
any of these functions look familiar? Hmm, maybe not. This seems to be kind of a false
start. Interesting, though, all those function calls. Do remember to use the Call Stack dia-
log later when your programs start crashing, and you want to try and step backwards from
a given bug.

So now try something different to figure out how that constructor gets called. Put a break-
point at the if (!ProcessShellCommand(cmdInfo)) line in CPopApp::InitInstance.
Use the Debug | Restart selection to start over, press F5 if the debugger stops too soon, and
when you get to the breakpoint, use the Debug | Step Into (or the F11 shortcut key for this,
or the Step Into button on the Debug toolbar). You’ll find yourself in a switch statement, and if
you press F11 some more, you’ll see you go into the case CCommandLineInfo::FileNew:

of the switch. Aha! But why does the case value have that odd name? It turns out it’s an
enum value associated with the CCommandLineInfo class. To confirm this, place your
cursor inside m_nShellCommand and press F1 for the help file information.

If you want to step further on, you may want to use the F10 or Debug | Step Over to
avoid going into each function call.

Programming Windows with MFC 473

Gnarly, huh? The moral is that you can get lots of information out of MFC and the
Developer’s Studio, but you have to feel around a bit to find it. There’s so much more
information than you can absorb, you need to be pretty quick and casual in the process –
while remaining determined and implacable at the same time.

Exercise 23.4: Checking the message handling documentation

Look up the Help on the CWnd::OnSysCommand message handler. Aren’t you glad you don’t
have to take care of all these situations yourself? The base class automatically handles
these. For most messages, you will in fact be using the base class window behavior. And
any message that doesn’t happen to be handled either by your special CView or by the
base class CWnd gets sent to a default message processing function. This default pro-
cessor is the CWnd::DefWindowProc method. Look this method up in the Help.

Exercise 23.5: Changing the caption bar and the About dialog

Put your own name in the caption bar of Pop and in the About dialog box.

Exercise 23.6: Editing the icons

Change the appearance of the Pop 1 IDR_MAINFRAME icons. Be sure to change both
sizes. Once you’ve opened the icon in the Visual Studio’s Resource Editor, you can switch
sizes with the Device: combo box, which has two options Standard (32 × 32) and Small
(16 × 16). Figure out how to get these icons to appear in Windows Explorer and/or on your
desktop.

Exercise 23.7: Changing the file extension

Try changing the file extension and file name for your version of Pop.

Software Engineering and Computer Games Reference474

242D and 3D graphics

In this chapter and the following two chapters (on Windows Graphics and
OpenGL Graphics), we talk about how the Pop Framework uses graphics to
draw images. Rather than committing once and for all to one way of doing
graphics, we’ve used the Bridge software pattern to abstract the common core
of our graphics calls into an interface called cGraphics.

As of 2002, the Pop Framework had two implementations of cGraphics:
cGraphicsMFC and cGraphicsOpenGL. A cGraphicsDirectX will probably be added at
some point; check the book’s web page for current information.

By way of review, Figure 24.1 is a UML class diagram of the Pop Framework,
showing where the cGraphics class and its child classes fit in.

Figure 24.1 UML diagram of the Pop Framework with the cGraphics class

24.1 Vectors and matrices

The Pop Framework uses a cVector class to hold our critters’ positions. Basing the
cVector on real numbers helps to make our programs resolution-independent.
Also the use of real numbers lets us give our simulated objects more interesting

and physically realistic behaviors. We can use cVector for positions, velocities,
and accelerations, and, because these vectors are based on real numbers, we can
use some standard machinery from mathematics and physics.

We normally define the shape of an object by a collection of vectors near the
origin, and then when we want to translate or rotate the object, we imagine
transforming these ‘shape vectors’ into some new location. Without going
into much detail, let’s assume that you’re vaguely familiar with the notion of
a matrix from mathematics – you probably recall that a matrix is a square or
rectangular array of numbers arranged as in a table, say as a four by four array.
We have a certain way of ‘multiplying’ a matrix times a vector, and this proves
useful in computer graphics for moving and rotating vectors. We will think of
multiplying a chain of matrices on the left times a vector on the right.

In case you’re a bit foggy on matrix multiplication, you can simply think of
a matrix as a transformation that can be made up of translations, rotations,
scalings, and/or shears. When you see a matrix-times-vector multiplication like
M*v, you can think of it as meaning something like M(v), that is, ‘the result of
letting M act on v.’ If View and Model are matrices, a line like Vertex = View *

Model * Vertex can be read as Vertex = View(Model(Vertex)), meaning that we
are to apply first Model and then View to the Vertex.

As well as using matrices to move our objects into position, we also use
matrices as a way to describe the position and attitude from which the user
views the simulated world.

Our vector and matrix class headers and implementations live in files that
are named VectorTransformation.h and VectorTransformation.cpp.

24.2 The graphics pipeline

In graphics the word ‘render’ means the process of converting information about
geometric objects into a visual image on your computer screen. Rendering a scene
is a multi-step process which is often described in terms of a graphics pipeline.

At one end of the pipeline we feed in polygon vertices, color information
about the objects in our scene, bitmaps to paint onto some of the scene objects
or use as backgrounds, and perhaps some locations of lights. At the other end
of the polygon a rendered two-dimensional color image appears in a memory
location called the frame buffer. The pipeline is rudimentary in two-dimensional
graphics, and is shown in Figure 24.2.

In two dimensions the Matrix Multiply step converts the controlling vertices of
our polygons, rectangles, ellipses, lines, etc. into locations that may be rotated
or translated away from their standard positions. The model matrix expresses
the motions caused by the objects associated with the given shapes, while the
view matrix expresses the way in which the viewer may have moved relative to
the world. We’ll say more about this in the next section.

In the Rasterization step, we convert our vertices into pixel coordinates, and
use basic graphics methods to draw the corresponding polygons, rectangles,
ellipses, lines. The location into which we draw these pixels is the frame buffer.

Software Engineering and Computer Games Reference476

If we have some bitmaps that we want to use, say as backgrounds, we copy
them into the frame buffer during rasterization.

Usually the frame buffer is an offscreen memory bitmap or a RAM region on
the graphics card, as it is too visually disturbing to see the drawing happening
bit by bit. Once the pipeline is done filling the frame buffer, the Display Frame

Buffer step makes the frame buffer image appear in a visible window. This step
is sometimes done by a so-called BitBlt operation, which (rapidly) moves the
color information pixel by pixel. When the hardware allows it, the Display

Frame Buffer can be accomplished by a more rapid technique called page-flipping
or buffer-swapping.

The idea behind buffer swapping is that, rather than moving the pixel informa-
tion from one region of memory to another, you simply change the address
that the graphics card uses as the base location from which to refresh the visual
information in your window. Doing buffer swap for an onscreen window is
harder than doing it for an entire screen, but newer graphics cards and graphics
libraries allow this.

Now let’s talk about the three-dimensional graphics pipeline. The picture is
considerably more complex, as shown by Figure 24.3. We’ll say more about the
Matrix Multiply step in the next section.

Two cases in which the Per-Vertex operations come into play are when your
world has lights in it or when you plan to ‘decal’ or ‘wallpaper’ some image onto
the surface of one of your three-dimensional objects. These glued-on images are
called textures.

With regard to lighting, the color of a lit surface is going to vary depending on
how the surface is oriented relative to the light source. With regard to texture,
suppose, for instance, that you want to glue a bitmap of a circular logo onto
the square wall of a house in 3D. If you look at the wall straight on, the logo
appears as circle. But if you look at the wall from an angle, the bitmap image is
going to have to be distorted into an elliptical shape. A texture-mapped square
maintains an invisible grid of coordinates to use for pasting on the texture.

In the 2D Rasterization step, the graphics system draws directly into the
frame buffer. But when rasterizing a 3D scene, the system can be thought of as
drawing into an intermediate buffer called the Z-buffer. By using the Z-buffer we
can automatically draw the closer shapes on top of the further shapes. Rather

2D and 3D graphics 477

Figure 24.2 A 2D graphics pipeline

than drawing ‘pixels,’ we speak of the 3D Rasterization as drawing ‘fragments.’
A fragment might hold a pixel location along with information about which
colors you’ve tried to draw there at which depths.

In the Per-Fragment operations step the system picks the closest object’s pixel
for each fragment. This is also the place where bitmap textures can be applied
in place of (or blended with) the lighting-adjusted fill colors.

As in the two-dimensional case, the Display Frame Buffer step abruptly transfers
the image to a visible location on your computer screen.

24.3 Matrices in graphics

Attitude

Now let’s take a more detailed look at the Matrix Multiply step of the graphics
pipeline. We’ll discuss the more general three-dimensional case.

In the Matrix Multiply step we right-multiply our input vertices by a series
of three matrices, first the model matrix, second the view matrix, and third the
projection matrix. Although we list the matrices from left to right in our formulas,
and in fact feed them into the graphics pipeline in the left-to-right order, the
matrices act on the vertices in the reverse right-to-left order. In other words, the
matrix closest to the vertex in the ordering of the formula acts on the vertex first.

vertex = projection * view * model * vertex

The model matrix is frequently just the cMatrix _attitude member of the
cCritter the vertex belongs to. The _attitude specifies a critter’s orientation and
its location. We think of each critter as having its own attitude trihedron, mean-
ing a set of three mutually perpendicular unit vectors. As the critter pitches,
yaws, and rolls, the vectors of its attitude trihedron move. At every step of the

Software Engineering and Computer Games Reference478

Figure 24.3 A simplified 3D graphics pipeline

update we are careful to ensure that the trihedron vectors remain mutually per-
pendicular and of unit length. As the critter moves about, its position changes as
well. A critter’s attitude embodies both its trihedron information and its position
information. In Figure 24.4 we show not only a critter with its attitude in a 3D
world, but also a viewer critter that will be used for projecting the 3D world to
2D plane that can be mapped to an onscreen window. We will take into
account the viewer critter’s attitude as well.

In the Pop Framework, the cVector class represents three-dimensional vectors,
and the cMatrix class represents the matrices used for our graphics. We think of
our vectors as being column matrices of size three by one. Although you might
expect the matrices to be three rows by three columns, they are actually three by
four, that is, they have an extra column. This is a standard computer graphics
trick.

The matrices are three by four in size so that we can use the first three
columns to represent rotations and the fourth column to represent translations.
We might say that one of our 3D graphics matrices M is really a square three by
three matrix R and an extra column T, that is, we could informally say M = (R, T).
If V is a vector, we compute M * V as R * V + T, where the R * V computation is
done in the same way that we would always multiply a square three by three
matrix times a three by one column matrix.

Mathematically we can make the computation seem consistent by imagining
that the matrix has a fourth row holding 0, 0, 0, 1, and that the vector has a
fourth row holding 1.

G R11 R12 R13 Tx J (Vx,H KH R21 R22 R23 Ty K Vy,H KH R31 R32 R33 Tz K Vz,H KI 0 0 0 1 L 1)

(R11 * Vx + R12 * Vy + R13 * Vz + Tx,
R21 * Vx + R22 * Vy + R23 * Vz + Ty,
R31 * Vx + R32 * Vy + R33 * Vz + Tz,
1)

By default, we match the x-, y-, and z-axes of a critter’s attitude matrix to,
respectively, the critter’s cVector _tangent, _normal, and _binormal variables. The

2D and 3D graphics 479

Figure 24.4 A critter’s attitude

tangent always points in the direction the critter is moving (or has most recently
moved). The normal points in the direction in which the critter is turning (or has
most recently turned). The binormal is the cross product (tangent * normal), a
vector perpendicular to the first two. That is, by default we keep updating our
critter’s attitude matrix to have the following form.

G _tangent._x _normal._x _binormal._x _position._x JH KH _tangent._y _normal._y _binormal._y _position._y KH KI _tangent._z _normal._z _binormal._z _position._z L

Doing this makes the critters have a pleasing kind of motion, as they move
about; they turn and roll like birds or fish. Sometimes, however, you may want
to keep a strict control over your critter’s attitude. In this case, you must use the
cCritter::setAttitudeToMotionLock method to set the cCritter _attitudetomotionlock field
to FALSE in place of the default TRUE.

Spacewar game critters with their attitudes locked to their motions

A further complication arises in the case where the critter has a sprite that’s
offset or rotated from the critter’s location and orientation. In order to manage
this, we give the cSprite class a _spriteattitude field. When we feed a critter’s
model matrix into the graphics pipeline, we actually feed in attitude() *
spriteattitude().

Software Engineering and Computer Games Reference480

The view matrix

Let’s look at our 3D graphics pipeline’s Matrix Multiply step again.

vertex = projection * view * model * vertex

The purpose of the view transformation is to show the world as seen by the
viewer critter. The original coordinates of the critter are given in terms of the
world coordinate system. The view transformation is designed to change from
the world coordinates to the viewer coordinates. Although the viewer is out
at some arbitrary position, the viewer thinks of itself as being at the origin of its
own coordinate system. Although the viewer may be pitched, yawed, and rolled
relative to the world, the viewer imagines itself to be at the center of its own
standard-oriented coordinate system. Although the world thinks of the critter
as having a fairly arbitrary viewpointcritterattitude, the viewer thinks of
its attitude as being the identity matrix cMatrix::IDENTITY. In Figure 24.5
we show the viewer critter’s attitude. The viewer critter is going to think of its
position as the origin of a coordinate system, and its attitude vectors as the
x-, y-, and z-axes.

The remarks about the viewer thinking it’s at the center of things can be
represented by an equation.

view * viewpointcritterattitude = CMatrix::IDENTITY

Assume that we have a cMatrix::inverse() operation to compute the multi-
plicative inverse of a matrix; this is analogous to the way that the multiplicative
inverse of, say, 2 is 0.5. Then we can rewrite our equation like this.

view = viewpointcritterattitude.inverse()

This is one of the little miracles of computer graphics. The tedious matrix
inverse operations have a use!

2D and 3D graphics 481

Figure 24.5 The viewer critter’s attitude

24.4 Graphics in the Pop Framework

The data about the state of the game and its critters lives inside the CGame object
in the CPopDoc. The individual CPopView is responsible for getting graphic onscreen
representations of the sprite objects associated with the game’s critters.

We allow the different views to use different kinds of graphics and to look at
the world from different viewpoints. To this end, there are two key members of
the CPopView class.

cGraphics *_pgraphics;

cCritterViewer *_pviewpointcritter;

Before continuing, let’s redraw our Pop Framework UML class diagram
another time (see Figure 24.6). In redrawing a UML diagram, you might think
of the classes as little pieces of wood connected by strings, with the strings
being the inheritance and composition lines. In redrawing the diagram, you
can flip things around in order to bring out different features.

The CPopView::OnDraw(CDC* pDC)

The code of the CPopView::OnDraw is expressed using the cGraphics class with no
reference to the details of any particular kind of graphics implementation. In
the case of cGraphicsMFC, behind the scenes the child class uses a scratch-pad

Software Engineering and Computer Games Reference482

An interesting viewpoint for the PickNPop game

cMemoryDC to prepare the image by clearing it, and drawing the background
and the critters on it. And then, still if our graphics is cGraphicsMFC, we use a
rapid BitBlt-based copy operation to copy the bitmap to the screen.

If our graphics is cGraphicsOpenGL, the draw method activates an OpenGL
context, writes the background and critters to an invisible ‘graphics page,’ and
then ‘flips’ the page to make it visible.

The actual code goes like this. By the way, a CDC is an MFC class used to hold
the device context of an onscreen window (or a printer).

void CPopView::OnDraw(CDC* pDC)

{

if (pDC->IsPrinting())

return; //Don’t try to deal with printing case.

//Wake up the graphics.

_pgraphics->activate();

//Tell the cGraphics to get rid of any extra unused image resources.

_pgraphics->garbageCollect();

//Graphically show the status of the game.

if (pgame()->gameover()) //Dim the lights

_pgraphics->setClearColor(CPopView::GAMEOVEREDGECOLOR);

else //turn the lights on

_pgraphics->setClearColor(CPopView::GAMEACTIVEEDGECOLOR);

//Clear the graphics background.

CRect targetrect;

pDC->GetClipBox(&targetrect);

_pgraphics->clear(targetrect);

//Install the projection and view matrices.

_pviewpointcritter->loadProjectionMatrix(); /* Initializes the

PROJECTION matrix or, in the case of cGraphicsMFC,

initializes the cRealPixelConverter. */

_pviewpointcritter->loadViewMatrix(); /* Initializes the MODELVIEW

matrix */

2D and 3D graphics 483

Figure 24.6 The Pop Framework classes

//Draw the world, by default as a background and a foreground

//rectangle.

pgame()->drawWorld(_pgraphics, _drawflags);

//Draw the critters.

pgame()->drawCritters(_pgraphics, _drawflags);

//Send the graphics to your video display. cGraphicsMFC needs to draw

//foreground again in here.

_pgraphics->display(this, pDC);

}

Finally let’s make a sequence diagram for the drawing process. This is shown
in Figure 24.7.

Software Engineering and Computer Games Reference484

OnUpdate

CPopDoc

UpdateAllViews

OnDraw

drawWorld

draw

draw
draw

CPopView cGame cBiota cCritter cSprite

Figure 24.7 Sequence diagram for the Pop draw

25Windows graphics

In this chapter we talk about Windows graphics. The cGraphicsMFC implements
Windows graphics using standard methods that are in the Windows GDI. The
good thing about the GDI graphics methods is that you can be sure they’ll work
on any Windows machine, no matter what libraries are installed and no matter
what kind of graphics card it has.

A limitation of the cGraphicsMFC class is that we haven’t bothered to
implement three-dimensional methods for it, so if you want to show three-
dimensional graphics you need to use cGraphicsOpenGL (or, should it become
available, cGraphicsDirectX).

It would be nice to simply say that you should always use cGraphicsMFC for
two-dimensional games and cGraphicsOpenGL for three-dimensional games. But
on certain graphics cards, the cGraphicsOpenGL calls will actually run faster than
the cGraphicsMFC calls. The Pop Framework leaves the choice up to the user,
with controls to select one or the other kind of graphics.

Windows graphics can be made to run quite fast, thanks to double-buffering.
In this chapter we’ll discuss the basics of fast Windows graphics, and then we’ll
describe how the Pop Framework implements double-buffering for Windows
graphics with a cMemoryDC, which is a memory-based device context.

25.1 The Windows sandwich

Windows graphics code typically has the form of a ‘sandwich.’ The top slice of
bread is some preparation work, the filling is when you draw your graphics, and
the bottom slice is cleanup work.

Assume that these variables get values set somewhere in your code.

COLORREF bubblecolor;

int intcenterx, intcentery, intradius;

Here’s an example of Windows sandwich code that draws a circle of bubble-
color with pixel intradius around the pixel (intcenterx, intcentery). The
code uses two local CBrush variables, where a Windows CBrush is an object that
Windows uses for filling in the insides of shapes. Note that one variable is a
CBrush object, while the other is a CBrush* pointer.

CBrush cbrush, *pbrush_old;

• The preparatory ‘top slice’ of the sandwich looks like this.

cbrush.CreateSolidBrush(bubblecolor);

pbrush_old = pDC->SelectObject(&cbrush);

• The yummy sandwich filling might be as follows.

pDC->Ellipse(intcenterx – intradius, intcentery – intradius,

intcenterx + intradius, intcentery + intradius);

• And the cleanup ‘bottom slice’ is this.

pDC->SelectObject(pbrush_old); //Need to unselect the brush before

deleting cbrush.DeleteObject(); //Delete the brush.

Whenever we need to write Windows sandwich code, we try and arrange the
code so that we undo things in the reverse order to that we do them in.

When you first see Windows sandwich code, it’s a little hard to believe how
much trouble it is. But it’s very versatile. And even though it looks like a lot of
steps, it happens very fast.

At this point we need to say some more about Windows graphics tools,
and how they relate to the MFC class used to hold the device context of an
onscreen window (or a printer): CDC.

25.2 A CDC is like a cranky six-legged ant

MFC formulates graphics in terms of a CDC class which encapsulates a handle to
a device context. A device context is simply something that accepts graphics
calls. A CDC can correspond to an onscreen window, to a printer, or to a region
in memory that’s been tailored so as to behave like a virtual device context. The
CDC class has one primary member, an old-style Windows HDC object holding a
handle. The CDC class’s state also includes certain active tool objects. In addition,
the CDC class has a wide range of graphics methods.

For the purposes of this section, let’s think of a CDC as a cranky six-legged
ant. If you anger a CDC, it has the ability to kick up such a fuss that Windows
will crash. (The author is attracted to the ant analogy because he once wrote a
novel, The Hacker and the Ants, about ants in cyberspace.)

Each CDC ant is born with one each of six kinds of graphics tools which
are instances of the classes derived from an abstract base class called GDIObject.
The six tools are a CPen, a CBrush, a CBitmap, a CPalette, a CFont, and a clipping
CRegion. Each of these graphics tool classes is a child of the GDIObject class. The
CDC holds one of these in each of its six legs. It has a special pen-holding leg, a
brush-holding leg, a bitmap-holding leg, and so on.

Software Engineering and Computer Games Reference486

When a CDC is created, it is clutching default GDIObject tools in its six legs:
a black solid width-one pen, a white brush, a default empty bitmap, an empty
palette, a standard Windows font, and an empty clipping region.

These default GDIObject tools are so-called stock objects. Two common
examples of stock objects are the fill brush and the drawing pen obtained
as, respectively, cbrush.CreateStockObject(WHITE_BRUSH) and cpen.

CreateStockObject(BLACK_PEN).
A CDC is very possessive of its six tools. If you take one of them away, it

spreads the alarm and Windows comes running to punish you! The CDC isn’t
particular about which tools it has, just so long as it has some tools. It just has to
have one each of the six kinds of tool. The CDC can only hold one of each kind
of tool. If you hand it a bitmap, it’ll take the new bitmap with its ‘bitmap leg,’
but it’ll have to drop the bitmap that it was holding before. So if we have a tool
that we want to give the CDC ant for a while and then take back, there are
two approaches we can use.

• Approach one: When we hand the CDC ant the good tool it will drop its old
tool of the same type. So we just pick up the tool it dropped, and save it for
giving back to the ant later on, when we need to get our good tool back.

• Approach two: Kill the ant before it can shriek. It drops all the tools it was
holding and you can do whatever you want with them.

Generally we’re going to use the first approach. This is because we will do
almost all of our graphics calls inside of CView::OnDraw(CDC* pDC) methods.
When the OnDraw method exits, the CDC* object is supposed to be still good; we
don’t have the option of killing it. Any temporary tool object that we create
inside of OnDraw is going to be destroyed by its destructor at the termination
of OnDraw; we need to make sure that the pDC isn’t holding onto any of these
soon-to-be-destroyed objects.

There’s another reason why it’s so important for us to be able to take tools
back from the CDC* and destroy them. This has to do with the fact that Windows
can only keep track of a limited number of GDIObject instances, and if you create
too many of them the program will start acting badly. So the two key rules to
remember are this:

• Don’t delete GDIObjects while they are selected into a CDC.

• Delete all GDIObjects you create.

As we hinted at just above, the second of these rules will very often happen
automatically, in the case that our tool is a local variable inside some function.
This is because when a locally declared GDIObject instance goes out of scope it
gets automatically deleted.

Whenever we want to draw graphics (or write text), we do this by using
a method of the CDC class, using either a CDC* pointer or a CDC object to call
the method. A properly designed Windows program normally does all of its
graphics calls from inside the CView::OnDraw(CDC* pDC) function, in which case
pDC is the CDC* object that makes the graphics calls.

Windows graphics 487

One exception to this rule is that sometimes we use special memory device
context CDC objects which can also make some graphics calls. More about this
in Section 25.5.

We should also point out that if you really want to, you can get a CDC* and
write some graphics from inside a CView method other than OnDraw. In this case
you can get a CDC* by calling GetDC(), and you then need to free up this CDC

with a call to ReleaseDC(CDC* pDC). But let’s repeat again that normally all of
your graphics writing should take place inside OnDraw. The reason is that in this
way you’re able to make sure that your window’s image is persistent.

Let’s go over the Windows sandwich steps that we use in order to use a
graphics tool such as a CPen, a CBrush, a CBitmap, a CFont.

• Create the GDIObject. We can do this in one step by using a constructor like
in the line CBrush cbrush(RGB(255,0,0)). Or we can do it in two steps with
lines like the following.

CBrush cbrush;

cbrush.CreateSolidBrush(RGB(255,0,0));

Each kind of GDIObject has its own special constructors and initialization
functions, such as CreatePen, CreateFontIndirect, and CreateCompatibleBitmap.
Look in Help for the individual kind of object to find out more.

• Have your CDC* call the SelectObject method to select the tool. This call
requires a pointer to a GDIObject class as an argument and returns a pointer
to a GDIObject of the same class type. Save the ‘old’ tool in a temporary
variable.

• Use your selected tool implicitly by having the CDC* make calls on its various
graphical methods, such as Ellipse.

• Unselect the tool from the CDC by doing a SelectObject on the ‘old’ tool.

• Explicitly call the tool’s DeleteObject method to destroy the tool. The
Windows documentation implies that each kind of GDIObject destructor calls
the DeleteObject method automatically when a tool goes out of scope, but this
may not be true for every version of Visual Studio and the MFC. Do the
DeleteObject yourself, or there is a real chance that your program will develop
a ‘resource leak.’

By the way, what does happen if DeleteObject doesn’t get called for some
GDIObject that you are repeatedly creating? The first few dozen or few hundred
times this happens in a program, you won’t notice any problem. But if the
bug is inside a drawing function used in the animation loop of a program it
can happen thousands of times. And then Windows runs out of the ‘graphics
handles’ that it needs to create new pen and brush tools. Your calls to CreateBrush

and the like start failing, and your pens and brushes always stay at their default
values, which are, respectively, a thin black line and white filling. So if your
colorful program suddenly turns black and white, this means you have a resource

Software Engineering and Computer Games Reference488

leak caused by the failure to call DeleteObject on some pen or brush that you are
repeatedly creating.

Since an CDC always has some instance of each kind of tool pre-selected, it’s
customary to save a copy of this tool for reselecting back in when you want
to ‘unselect’ the new tool before it gets destroyed by going out of scope. Say
we have a CDC *pDC, and we want to draw a hollow circle with an edge that’s
int intedgewidth pixels thick and with color COLORREF edgecolor. Also assume
that we have specified the center coordinates and radius as int intx, inty,

intradius. We could write a block of code like this.

CPen cpen, *ppen_old;

CBrush cbrush, *pbrush_old;

cpen.CreatePen(PS_SOLID, intedgewidth, edgecolor);

ppen_old = pDC->SelectObject(&cpen);

cbrush.CreateStockObject(NULL_BRUSH);

pbrush_old = pDC->SelectObject(&cbrush);

pDC->Ellipse(intx – intradius, inty – intradius, intx + intradius,

inty + intradius);

pDC->SelectObject(ppen_old); //Need to unselect the brush before

deleting cpen.DeleteObject(); //Delete the pen.

/* We don’t really need to do these next two lines, but its just

as well to be consistent in one’s habits. The reason we don’t need

these steps is that we don’t actually need to delete the cbrush

because you don’t need to delete stock objects. On the other hand,

it doesn’t cause any problems if you do happen to delete a stock

object. And if I wanted to chain this code together with some

further code that puts a new brush into cbrush, I would indeed

need to have emptied it out like this so that I can indeed put

something new inside it. Bottom line: Never pass up an opportunity

to call DeleteObject! */

pDC->SelectObject(pbrush_old); //Need to unselect the brush before

deleting cbrush.DeleteObject(); //Delete the brush.

The trick is that whenever you call CDC::SelectObject, the operation returns
the old tool or object of the appropriate type which was already in the CDC.
Often as not this ‘old’ object will be a stock GDIObject, possibly with no real
information in it (the default bitmap, for instance, is NULL). So why hang onto
the ‘old’ object? Because there actually is no ‘unselect’ CDC function such as
you would like to use in the ‘Unselect the tool’ step that we listed as the fourth
bullet point in our description above. You accomplish an ‘unselect’ by selecting
something else into the CDC.

Note that in order to have a circle or an ellipse drawn with an empty or
‘transparent’ interior, we need to select in a CBrush that’s been set to the stock
object NULL_BRUSH. By the same token, if you want to avoid outlining your
shapes, you can select in a stock object NULL_PEN. Check the Help | Index on
CreateStockObject to learn about the other kinds of stock objects.

Windows graphics 489

25.3 Persistent display

It takes some work to make a Windows program have a persistent display that
stays in place even if the window is resized or covered and then uncovered.

The OnDraw method

The standard practice is to have our Windows programs do all their writing to
the screen within one single function, the CView::OnDraw method. When does
your CView get an OnDraw message? Here are four important ways that this can
happen.

• When the CView is first created, whether automatically at startup, by a File |

New call or by a Window | New call. First there’s a call to the constructor,
then a call to OnCreate, and then a call to OnDraw.

• Whenever your CView gets resized, whether by dragging a corner using a
command like Window | Tile, or by clicking the Maximize or Restore buttons
in the upper right-hand window corner. First there’s a call on OnSize, and
then a call to OnDraw.

• When you uncover part of your window that has been covered by another
window, whether by clicking on your window to bring it to the ‘front’ of
onscreen windows, or by dragging a covering window to one side. Your
CView gets an OnDraw call. If you put the line pDC->GetClipBox(rect) inside
your OnDraw code, you’ll find that the rect will receive the client window
coordinates of the smallest rectangle that covers the part of the window that
was just uncovered. This rectangle is known as the clip box of the CDC.

• When the CView::Invalidate function is called from within one of the other
CView functions. This will queue up a message telling the CView to redraw
itself as soon as there are no other messages for it to handle on its queue. If
you want the redrawing operation to happen immediately and with no lapse
in time, you sometimes follow a call to Invalidate by a call to UpdateWindow.

(By the way, if you try and do an UpdateWindow call without calling Invalidate

first, the call may have no visible effect. OnDraw generally only redraws as much
of the window as it ‘thinks’ needs to be done. A call to Invalidate tells the OnDraw

that the whole window needs to be redrawn, but a naked UpdateWindow call on
its own will generate an OnDraw call with a CDC* argument that ‘thinks’ that
none of the window really needs redrawing.)

Bitmaps or display lists?

There are actually two possible approaches towards keeping a persistent appear-
ance in our onscreen window, and we end up using both of them. These are
sometimes called the display list approach and the bitmap approach.

The idea behind a display list approach is to set up code which will keep
track of every time the user draws something on the screen and then ‘replay’

Software Engineering and Computer Games Reference490

this during OnDraw. Because you have your items in a list, you can remove things
from the list and add things, too. Keeping track of the display list takes a goodly
amount of program machinery, especially if you write your own display list
code. But thanks to the CArray template it’s not so hard to do.

The display list approach embodies the insight that you can store a com-
plicated graphics file rather compactly by getting a list of structures, with each
structure including, say, a location and a description of what you wrote there.
Any formatted word-processor file is a kind of display list. Instead of storing
bitmap images of your pages, the file just stores the ASCII codes of the letters
and information about their locations. The popular Adobe PostScript format
extends this technique to files with lots of graphic information. There are two
big wins with display lists. (1) They take up much less room than bitmaps. (2)
They store the image in a format that is independent of the resolution. Printers
typically have a much higher resolution than computer screens (a laser printer
might have 600 dots per inch, while a typical monitor will show something
more like 75 pixels per inch.)

Display lists usually use real-number-valued positions, where a ‘real number’
is a mathematician’s expression for what a computer programmer calls a ‘double’
or a ‘float.’ We use our cVector class to hold pairs or triples of real numbers.

The idea behind the ‘bitmap’ approach is to keep a background bitmap as
big as the window’s largest possible size and do a pixel-for-pixel copy from this
bitmap to the screen whenever you need to repair part of your window in an
OnDraw. Windows has a powerful BitBlt function for moving blocks of pixels very
rapidly. (‘Blt’ stands for ‘block transfer,’ and you pronounce ‘blt’ like ‘blit.’)
There is also a StretchBlt function which can copy a block of pixels to an area
of a different size. StretchBlt can help to make the ‘bitmap’ approach relatively
resolution-independent, although one tries to avoid using StretchBlt whenever
possible, both because it’s slow and because its results aren’t always pretty.
Stretching a small bitmap to a large size introduces the ‘jaggies,’ while shrink-
ing a large bitmap to a small size is done by rows and columns of pixels getting
skipped, which can lead to a poor image.

Broadly speaking, paint programs or image-retouching programs tend to use
a bitmap-based approach. What’s being changed in these programs is primarily
at the individual pixel level. A bitmap the size of a detailed photograph or image
scan is quite large. It’s easy for an image editor to run out of memory, and to
start acting sluggishly as it pages memory from the RAM out to temporary files
on the hard disk.

Computer drafting programs, mesh design programs like 3D Studio Max and
libraries like OpenGL tend to use a display list approach. What’s being done here
is to compute things like the cVector coordinates of object positions. These pro-
grams are less memory-intensive, but they need to do a lot of computations in
order to ‘move’ things around.

All professional programs will actually have some display list-like aspects and
some bitmap-like aspects. Most 3D computer games use creatures that are based
on display list meshes of polygons, with the polygons being filled in using pixel
colors from bitmap skins.

Windows graphics 491

Even in two dimensions, it’s going to be worthwhile for our computer game
programs to incorporate aspects of both the display list approach and the bitmap
approach. The display list approach is an excellent way of achieving resolution-
independence. And the bitmap method of refreshing the OnDraw method proves
to be essential for preventing screen flicker. The bitmap approach is especially
crucial for achieving the smooth real time animation effects you want in a
program that shows rapidly moving objects. Our approach in designing our
cGraphicsMFC class is that each of our views that is using Windows graphics will
own a memory bitmap that’s wrapped inside an instance of a new class called
a cMemoryDC. (The situation works a bit differently with OpenGL graphics, as
the OpenGL library automatically provides a kind of memory bitmap or buffered
graphics output.) The array of moving game cCritter objects, on the other hand,
acts a bit like a display list. In Windows graphics mode, a view’s runcycle will
go like this.

• Update the cVector-valued positions of the list of critters that are stored in
the document.

• Convert the cVector positions into CPoint pixel positions relative to your
CView client area. Blank out the old information in the cMemoryDC. Draw any
desired background into the cMemoryDC. And then draw icons for the critters
at the computed CPoint positions in your cMemoryDC.

• Use the CDC::BitBlt function to rapidly copy the cMemoryDC bitmap to the
onscreen CDC.

25.4 Converting real coordinates to pixel positions

As mentioned before, many of the most interesting kinds of computer graphics
are based on equations, drawn from mathematics, and physics. These equations
are normally stated in terms of vectors and real numbers. In order to depict
images and motions based on mathematics and physics we need to be able to
translate back and forth between mathematical cVector positions and CPoint pixel
locations in an onscreen window.

Windows has some GDI functions of the form SetMapMode and SetViewport

that are useful in converting between different integer-valued sizes of windows.
This is the kind of thing you need to do in, for instance, desktop-publishing
when you want to control the physical sizes of printed versions of the images on
the screen. But Windows does not have any built-in functions for converting
between real numbers and pixels. The author has developed a cRealPixelConverter

class for this purpose. By the way, Java comes with a somewhat similar class
called Transformation built in, though not with all of our special methods sup-
plied. And when you do OpenGL graphics, the transformation from real to
pixel coordinates is something that the OpenGL graphics pipeline does for you
automatically, with the settings being controlled by your calls to the ::glViewport

method.

Software Engineering and Computer Games Reference492

Here are the steps for using a cRealPixelConverter. If you want to see the details
of the implementation, look in the realpixelconverter.h and realpixelconverter.cpp

files.

• Declare a cRealPixelConverter object in a line like

cRealPixelConverter _realpixelconverter

Since our View windows are going to have different sizes, it makes sense to
have a dedicated converter for each view.

• Tell your cRealPixelConverter the size of the Real window that you plan to use
for the world in which your cVector values are going to live. This might be
done in CPopView::OnCreate, with a line like

_realpixelconverter.setRealWindow(lox, loy, hix, hiy).

• Tell your cRealPixelConverter the size of the pixel window that you are going
to be displaying your objects in. We always resize the cRealPixelConverter ’s
pixel window to match the current size of the onscreen window. This is
done by adding a line of code to the view’s OnSize message handler.

Your view’s OnSize(UINT nType, int cx, int cy) method gets called (i) at startup,
(ii) when you resize the view window by dragging on of its edges, and (iii)
when you use the buttons at the View window’s upper right-hand corner to
minimize, maximize, or return to normal size. The nType variable tells you if
the window’s being maximized, minimized, or resized and the cy and cy tell
you the size of the window’s new client area. To tell _realpixelconverter to
match its pixel window to the newly resized screen window, we use code
like this. Note that we go ahead and call the base class OnSize function first;
in general this is the correct and safe thing to do when you override the
handling of a standard message.

void CView::OnSize(UINT nType, int cx, int cy)

{

CView::OnSize(nType, cx, cy);

// TODO: Add your message handler code here

_realpixelconverter.setPixelWindow(cx, cy);

}

In the Pop framework, we allow for the different graphics implementa-
tions cGraphicsMFC and cGraphicsOpenGL, both derived from cGraphics. So our
CPopView class has a cGraphics *_pgraphics member, and the actual Pop
Framework CPopView::OnSize method calls _pgraphics->setViewport(cx,
cy). A cGraphicsMFC object has a cRealPixelConverter member, and
the cGraphicsMFC::setViewport code invokes this member’s
cRealPixelConverter::setPixelWindow method.

Windows graphics 493

void CPopView::OnSize(UINT nType, int cx, int cy)

{

CView::OnSize(nType, cx, cy); //Machine code.

_pgraphics->setViewport(cx, cy);

pviewpointcritter()->setAspect((Real)cx/(Real)cy);

//width/height ratio

}

• For each object that you want to display, use your cRealPixelConverter’s

realToPixel function to convert the real number coordinates of the object into
pixel coordinates. In the Pop Framework’s graphicsmfc.h there are examples of
this in lines like

_realpixelconverter.realToPixel(center.x(), center.y(),

&intx, &inty);

• If you need to convert a real number length into a pixel window length use
the cRealPixelConverter::realToInt method.

• If you need to turn a window coordinate such as a mouse click location into
a real number location, use your cRealPixelConverter::pixelToReal method. In
the Pop Framework’s graphicsmfc.h, the cGraphicsMFC::pixelToVector does this
with a line like

_realpixelconverter.pixelToRealintx, inty,

&realx, &realy);

25.5 A memory-based device context

In order to keep our rapidly animated Windows displays from flickering, we use
the cMemoryDC objects as virtual windows, or memory bitmaps. It is not a standard
MFC class like CPoint, nor is it a well-known kind of user-written class like cVector.
cMemoryDC is a special memory device context class that the author implemented
here in order to make Windows programming easier.

The cMemoryDC class is a child of the standard CDC class. This means that we
can write to a cMemoryDC with the same graphics methods that the CDC class uses
to put graphics into an onscreen window or onto a printer page. And because
cMemoryDC is a kind of CDC, we can use the powerful CDC::BitBlt method to do
extremely fast copying from our cMemoryDC to a window-based CDC.

What makes the cMemoryDC special is that instead of being based on some
actual device, its writing area is a bitmap that lives in memory. Ten or fifteen years
ago, the cMemoryDC approach was not practical because it requires a goodly amount
of RAM for the memory bitmap – and 10 or 15 years ago, computers didn’t
have very much RAM. Although nowadays using a memory bitmap is becoming
a fairly standard kind of trick for professional programmers, many books on
Windows programming don’t mention it. One exception is MFC Programming

Software Engineering and Computer Games Reference494

from the Ground Up, by Herbert Schildt (Osborne, 1996). Though Schildt does not
encapsulate the memory-bitmap-plus-HDC technique and make a class of it as we
do here, he does informally refer to the assemblage as a virtual window. Charles
Petzold’s classic book Programming Windows 95 (Microsoft Press, 1996) also has
some discussion of the idea under the name of memory device context.

Our Pop program uses a cMemoryDC in order to achieve smooth-looking
graphics updates. The idea is to assemble the pieces of the new image in an off-
screen memory bitmap. We paint the CPopView’s _cMemDC with our background
color, and then we use the cPolygon::draw method to paste images of the polygons
on top of the background. Once all this is done, _cMemDC uses its copyTo method
to put the fresh image onto the visible screen.

Why not just do all this directly on the pDC that represents the onscreen
window? Because it would be ugly and distracting to erase the critter bitmap
images on the screen and then redraw them. You’d see drastic flicker. It’s much
nicer to use the _cMemDC as an offscreen drawing pad.

Another reason to use a cMemoryDC is that drawing to a memory bitmap device
like _cMemDC is often much faster than drawing to an onscreen bitmap like the
one embodied in the actual window’s CDC. The reason is that when you write to
screen, you have to go through your computer’s graphics card, which is usually
the biggest speed bottleneck of any graphics program. When we write to a
memory bitmap, we’re just letting our screaming-fast CPU processor chip move
bytes around in our RAM.

So when you want to achieve a real time animation effect, the only way to
go is to get your next frame ready in a cMemoryDC. The reasons are, again, that
(a) it is prettier than having your users see the picture being assembled, and (b)
it is faster.

You should use a cMemoryDC not only in animation programs but in any pro-
gram at all where you are writing a bunch of graphics to the screen in OnDraw.
The reason is that if you are writing a lot of graphics it takes some time, and if
the user sees this happening it looks bad. The right way to do graphics is always
to keep a cMemoryDC for your view, and inside your OnDraw put all the graphics
into the cMemoryDC and then use the cMemoryDC::copyTo method to blast them
into the user window.

Another use for cMemoryDC objects is to use one to hold an image of the back-
ground you want to use for your program. And, as we’ll see below, there is a
useful child class called cTransparentMemoryDC which is useful for holding small
bitmaps to be used to represent movable objects such as game characters. A third
trick is to use a large cTransparentMemoryDC as a foreground ‘scrim’ to put over
your game pieces. But first we need to understand the basic use of a cMemoryDC.

The cMemoryDC class definition

Here’s a partial, bare-bones listing of the cMemoryDC class definition. Because the
author has worked with the cMemoryDC class for so long now, it’s acquired a lot
of bells and whistles, but we don’t need to worry about those for now. See the
memorydc.h code for a full listing.

Windows graphics 495

class cMemoryDC : public CDC

{

protected:

CBitmap _cBitmap;

COLORREF _blankcolor;

int _cx, _cy;

public:

//Constructors and destructor

cMemoryDC();

cMemoryDC(int nSize, COLORREF blankcol = RGB(255, 255, 255));

virtual ~cMemoryDC(); /* The destructor is declared to be virtual

because cMemoryDC has a child class cTransparentMemoryDC,

and the child’s destructor is different. The methods that

differ between parent and child are also declared virtual. */

//Accessors

int cx(){return _cx;}

int cy(){return _cy;}

//Mutators

void clear();

void setBlankColor(COLORREF blankcol);

//Blt Methods

virtual void copyTo(CDC *pDC, const CRect &rect);

};

The size of a class object
How much size might a cMemoryDC object take up? One might think that maybe
a class object had to carry around pointers to its methods, and maybe a class
object’s size is larger than the sum of its data field sizes. But this is wrong. The
C++ compiler keeps the names of a class’s methods straight in some global
class-method pointer tables that it builds. So a class object isn’t responsible for
keeping track of its function pointers, and a class is no larger than a struct with
the same data.

So now our question is: how many bytes are used up by a cMemoryDC object’s
data fields?

Well, as a child of the CDC class, a cMemoryDC inherits the CDC data fields which
happen to be two ‘HDC handles’ called m_hDC and m_hAttribDC. (In all ordinary
situations these two handles are the same, and we don’t bother mentioning the
second one.) Now a ‘handle’ is really just an int that the Windows operating sys-
tem uses internally as a kind of half-baked pointer. So the size of the data inside
a CDC is the same as the size of two integers. Since we’re using 32-bit integers,
this means four bytes per integer, so we have a total of eight bytes in a CDC.

Now we add in the size of the cMemoryDC’s own data fields. How big is the
CBitmap member? Like a CDC, a CBitmap is a ‘shallow wrapper’ around a Windows
handle, in this case an ‘HBITMAP handle’ that, once again, is really just an int. So
we pick up four bytes here. The COLORREF is also an int-sized object, so here’s
another four bytes. And we get eight more bytes out of the two int _cx, _cy.

Adding it up, we get 24 bytes in all.

Software Engineering and Computer Games Reference496

Is a cMemoryDC a lightweight object in terms of memory demands? Yes and
no. Yes, there’s a small amount of data in the fields of the cMemoryDC. But no, it
isn’t really lightweight because a cMemoryDC’s CBitmap field is likely to hold the
handle of an HBITMAP which represents a pixel for pixel copy of your whole
screen. And as we’ll see in Size of a Bitmap section below, this can run into
several Meg of data.

Declaration and construction of a cMemoryDC

Usually we will want to have cMemoryDC for each of our views. Even if two views
are showing the same data, we will normally want to size the data display to be
an appropriate fit for the view’s size. An exception to this would be a program in
which we wish to work with a graphic image of some fixed size and simply let the
views show different pieces of the image; in this case we’d put the cMemoryDC

inside the document class. But for the rest of this preliminary discussion we’ll
assume we’re putting it inside the view.

You can have your cMemoryDC be a simple class member or you can have it be
a pointer member. If it’s a simple member you declare it with a line like cMemoryDC
_cMemDC and you construct it with a line like _memDC(CMEMDC_FULLSCREEN,
blankcolor);. The CMEMDC_FULLSCREEN parameter tells the constructor to make
the cMemoryDC have as many pixels as a full-screen window. The blankcolor
parameter tells the cMemoryDC to use a background color of blankcolor. If you
just want a white background you can leave out the blankcolor argument.

You can also give a CMEMDC_ONEPIXEL argument into the first slot of the
constructor if you want a cMemoryDC that’s only one pixel big. The default con-
structor with no arguments also makes a single-pixel cMemoryDC, by the way. The
purpose of the single-pixel cMemoryDCs is that they are used for loading bitmaps
to be used for background images or for character icons. When a cMemoryDC

loads a bitmap it can dynamically resize itself to the size of the bitmap.
It’s worth looking at what happens inside a call to the constructor

cMemoryDC(CMEMDC_FULLSCREEN, blankcol) so we get an idea of how the cMemoryDC

works. Keep in mind that the members of a cMemoryDC which need initialization
are the CBitmap _cBitmap, the COLORREF _blankcolor, and the two int _cx, _cy.
As we already mentioned above, every CDC has an HDC m_hDC member, so as a
child of the CDC class, a cMemoryDC has an HDC m_hDC which must be initialized as
well. This initialization is accomplished implicitly by a call to CreateCompatibleDC.

Here are the principal code blocks that are executed in the
cMemoryDC(CMEMDC_FULLSCREEN, blankcol) call, with a short comment on each one.

CDC cDC_display;

cDC_display.CreateDC(“DISPLAY”, NULL, NULL, NULL);

The purpose of the temporary CDC object cDC_display is to provide a role
model object of what a CDC should be like in the runtime environment where
this cMemoryDC is going to be used. The cDC_display gets destroyed when it
goes out of scope at the end of the constructor’s code.

CreateCompatibleDC(&cDC_display);

Windows graphics 497

This is the line that initializes our cMemoryDC’s ‘shallowly wrapped’ HDC m_hDC

field. The call makes our cMemoryDC be a CDC compatible with the screen. Each
CDC will have selected into it a CBitmap bitmap object of a certain area. The
CreateCompatibleDC method only makes our cMemoryDC compatible with the
screen, but does not give it a bitmap as large as the screen. It’s worth noting
that in Windows, a ‘normal’ device context such as one that you get from
a window never has any interesting bitmap associated with it. These ‘normal’
CDC always have an empty bitmap, and they don’t use it at all. But the
CreateCompatibleDC call is designed for creating memory-based device contexts.
Although the default CDC constructor gives a CDC an empty CBitmap tool, the
CreateCompatibleDC call gives the CDC a CBitmap that is one pixel big. It’s not
much, but it’s something. It’s up to us to replace this bitmap with one the size
of the screen. So now we figure out the size of the screen.

_cx = GetSystemMetrics(SM_CXFULLSCREEN);

_cy = GetSystemMetrics(SM_CYFULLSCREEN) – GetSystemMetrics(SM_CYMENU);

Calling GetSystemMetrics with the SM_C?FULLSCREEN arguments gives the actual
size of a full screen client window’s screen measured in pixels. This assumes the
window has a caption. We subtract off the region for the menu. Now we make
the bitmap that we need.

_cBitmap.CreateCompatibleBitmap(&cDC_display, _cx, _cy))

It is important to use the screen-based cDC_display as the argument to the
CreateCompatibleBitmap call. (If you try and use your memory device context
*this as the argument instead, you’ll get a monochrome bitmap!) Another
thing to note here is that CreateCompatibleBitmap is a kind of a memory alloca-
tion call, in that it’s going to look for enough memory to hold a bitmap the size
of _cx * _cy. Conceivably it might fail, so in our constructor code we’re careful
to check if this call is successful. Assuming it is, we now select the newly created
_cBitmap into our cMemoryDC.

SelectObject(&_cBitmap);

And now our cMemoryDC is a screen-compatible CDC with an effective area
as big as a full screen window. From now on, anything that we write to the
cMemoryDC goes into the bitmap, and anything that we put into the bitmap
appears in the cMemoryDC. (Although we don’t mention this in the code printed
here, we also need to do a DeleteObject on the single-pixel CBitmap that gets
‘unselected’ by the SelectObject call.)

Size of a bitmap
How much RAM memory is a bitmap like _cBitmap going to use? Software
engineers frequently have to talk about memory usage, and it’s good to get fast
at estimating it.

If your computer is running graphics in the lowest resolution mode, it has
640 × 480 pixels which you can round off in your head to 600 * 500 pixels,

Software Engineering and Computer Games Reference498

which is 300,000 or 300 K. If you are using the common 256 color mode, then
you’re using one byte of data per pixel. So that means 300 K bytes for a low
resolution 256 color bitmap. 300 K is only a third of a Meg, which is no sweat
compared to the many Megs of RAM that you’re likely to have.

A lot of people use the 800 × 600 with 256 colors mode; here the bitmap is
480 K, or about half a Meg, still no big deal. If you go up to 24-bit color in a
‘megapixel’ mode of 1200 × 1000 you might end up needing 4 Meg per bitmap,
which is still okay on most modern machines. But if you push your resolution
high enough and use a lot of bitmaps, you may find a point where your RAM
starts to suffer.

When Windows can’t find enough RAM for a bitmap it will usually store
the bitmap on the hard drive rather than returning an error from the
CreateCompatibleBitmap call. This is good in that it means your program doesn’t
crash, but it’s bad in that your program’s behavior turns ugly once it starts
using disk-based bitmaps.

The reason is that using a disk-based bitmap means lots of thrashing of your
hard disk every time you uncover or resize a window onscreen. If your program
switches to disk-based bitmaps you will notice a disturbing grinding sound
from your hard drive every time you move your windows around.

But even with a low amount of RAM, you can almost always afford two or
three screen-sized bitmaps. And you can have lots of small, icon-sized bitmaps.
You’ll only tend to find yourself running out of RAM for the cMemoryDC if you
open up, say 20 or 30 different documents and/or views at once.

Writing to the cMemoryDC in OnDraw

The general principle of using the cMemoryDC class is that whenever we want to
write something to the screen, we instead write it to our cMemoryDC _cMemDC,
and then use the cMemoryDC::copyTo method to send the image to the screen.
The exception is when we’re printing; in this case we don’t worry about flicker
and we write directly to the print CDC (which will either be the printer or an
image inside the Print Preview window). As usual we can use the CDC::IsPrinting()

method to distinguish between the two cases, and our CView::OnDraw(CDC *pDC)

code could look something like this.

if (!pDC->IsPrinting()) //The standard onscreen window case

{

//Put code here to draw your image into the _cMemDC... And then:

_cMemDC.copyTo(pDC);

}

else //The Print or Print Preview case

//Put code here to draw your image directly to the pDC...

When we are not involved in printing, we write to the screen in a two-step
process. The first step is to assemble our image in the cMemoryDC, and the second
step is to copy the cMemoryDC to the onscreen CDC.

Windows graphics 499

The way we’ll carry out our first step is that we’ll write some kind of back-
ground image into our cMemoryDC, and then we’ll write the images of our objects
on top of it. In the case of the Pop program we use the simplest kind of back-
ground: we simply erase whatever was in the cMemoryDC and fill the image with
the background color. This is encapsulated in our cMemoryDC::clear() method,
which creates and selects a CBrush of color _blankcolor and then uses the PatBlt

method to paint the whole cMemoryDC with the brush with the following line.
(See the subsection below for information about PatBlt.)

PatBlt(0, 0, _cx, _cy, PATCOPY);

Once we’ve fixed our background, we put our graphics into the cMemoryDC.
And then we’re ready for the second step of the OnDraw process, of copying the

cMemoryDC to the screen. We do this in the line _cMemDC.copyTo(pDC). This call
to the cMemoryDC::copyTo function in turn calls the following line.

pDC->BitBlt(0, 0, _cx, _cy, &_cMemDC, SRCCOPY);

Note that in this BitBlt call, the ‘target’ pDC goes on the left and the ‘source’
&_cMemDC goes inside the BitBlt arguments. More about the BitBlt method is in
the subsection below.

The BitBlt function
The CDC::BitBlt method is designed to move a rectangular block of pixel data
from a source CDC to a target CDC. The CDC which calls the BitBlt method is the
target; in effect, the caller CDC is saying ‘copy a block of pixels to me.’ You are
allowed to specify the location and size of the target rectangle that you want to
copy to, as well as the location of the source rectangle you’re copying from.
Since BitBlt does a one-pixel-to-one-pixel copy, the size of the source is the same
as the size of the target. The prototype looks like this.

BOOL CDC::BitBlt(int x, int y, int nWidth, int nHeight, CDC* pSrcDC, int xSrc,

int ySrc, int dwRop);

The arguments represent: the left upper corner and the horizontal and vertical
extent of the target rectangle within the target HDC, the source CDC, the upper
left corner of the source rectangle in the source CDC, and the write method.
There are 14 write methods called ROP codes for ‘Raster OPeration’, where ‘raster’
is a word meaning an orderly grid, such as the one pixels are arranged in. The
most natural ROP method is called SRCCOPY. The other ROP methods form various
logical combinations of the source pixels, the target pixels, and the active
brush-pattern pixels.

In general the time it takes for a BitBlt to execute is directly proportional to
the number of pixels moved, and this ‘pixel area’ is proportional to the product
of the linear dimensions of the window. In other words, if you make your
window twice as big, your BitBlt will run four times as slow. This is why one
so often sees things like onscreen video being shown in very small windows.

Software Engineering and Computer Games Reference500

The PatBlt function
PatBlt is a special kind of BitBlt function that doesn’t use a source CDC. Its proto-
type is like this.

BOOL PatBlt(int x, int y, int nWidth, int nHeight, int dwRop);

PatBlt takes the CDC’s currently selected CBrush and uses it to write over a
specified target rectangle. Here the most commonly used ROP code is PATCOPY,
which means to copy the brush pattern or color.

Let’s take another look at our call to _cMemDC.copyTo(pDC) which gets turned
into pDC->BitBlt(0, 0, _cx, _cy, &_cMemDC, SRCCOPY). The _cx and _cy are the
size of a full screen, so mightn’t this code be inefficient if our window is smaller
than the screen? Actually it doesn’t matter because the pDC that’s fed into the
OnDraw function has a clipping region set to the size of the ‘damaged’ rectangle
that it needs to repaint. The BitBlt will actually only try and do the pixel copying
for the points that lie within the pDC clipping rectangle.

In an animated program, at each step the entire window will need to be
repainted, and that’s how big the clipping rectangle will be. If all you’ve done is
to uncover a small corner of the window in a non-animated program, then that
corner will be the clipping rectangle.

Calling the OnDraw

There’s one final thing to remember to do when you use a cMemoryDC inside
your OnDraw function. You either need to use the Invalidate(FALSE) call
instead of the Invalidate(), or, better, you need to override the OnEraseBkgnd to
do nothing, like this.

BOOL CPopView::OnEraseBkgnd(CDC* pDC)

{

/* We normally don’t want to erase the background because our onDraw

will cover it up with the _cMemDC copyTo. If we did erase the

background, we’d get flicker. This is also true with OpenGL. */

return TRUE;

//Don’t call baseclass method, CView::OnEraseBkgnd(pDC);

}

The argument to the CView::Invalidate(BOOL eraseflag) method specifies whether
or not you should call OnEraseBkgnd, which normally will erase the screen with a
hidden Windows background brush before writing to the screen in the OnDraw

function. When we are refreshing the screen with a BitBlt of a cMemoryDC, we
don’t need to erase it. The reason for this is that the copyTo(pDC) call is going
to ‘erase’ the screen anyway; that is, it’s going to cover the screen over with a
copy of whatever image you’ve drawn into the cMemoryDC.

Now you might think it’s harmless to go ahead and erase the screen anyway,
but far from it. If you erase the screen, it’s momentarily white, and your eye

Windows graphics 501

is going to pick up a flicker. And then all our work with the cMemoryDC is for
nothing. But of course if we’ve overridden OnEraseBkgnd to do nothing, then
calling it will do nothing. (If you didn’t bother to override OnEraseBkgnd, you
could partly avoid the flicker by feeding a FALSE argument into your Invalidate

calls, but it turns out that resizing the screen would still call Invalidate(TRUE)
and give you your flicker.)

Let’s sum up the use of the cMemoryDC.

• Declare a cMemoryDC _cMemDC member of your CView class.

• Initialize _cMemDC with a call to cMemDC(CMEMDC_FULLSCREEN) in the CView

constructor.

• In CView::OnDraw draw graphics into the _cMemDC, possibly using the _pMemDC-
>clear() to erase the old _cMemDC image.

• In CView::OnDraw use _cMemDC.copyTo(pDC) to copy the image to the onscreen
CDC.

• Override CView::OnEraseBkgnd(CDC *pDC) to do nothing at all but return TRUE;.
If you forget this, your view will flicker when you call Invalidate(), which
by default calls Invalidate(TRUE). Also the view will flicker when you resize
the window, as the resizing code automatically calls Invalidate(TRUE),
which forces a call to OnEraseBkgnd.

Exercises

Exercise 25.1: What happens if you don’t clear the cMemoryDC?

Comment out the line _pMemDC->clear(clearrect); from the cGraphicsMFC:
:clear(const CRect &clearrect) code in graphicsmfc.h and see what happens. Drag a
corner of the window to resize it. Can you figure out what’s going on?

Exercise 25.2: Invalidate and flicker

Change the CPopView:: OnEraseBkgnd method to call the default CView method. Look at
the flicker.

Exercise 25.3: Writing your own memory CDC code

Occasionally students rebel at using the cMemoryDC class. ‘I want to use my own code; if
I have to do this at our job, I want to be able to do it myself.’ But do keep in mind that the
MemoryDC.* files (and all the other software in this book) are well-tested public domain
freeware that you are explicitly authorized to reuse in any way, shape or form, with no
acknowledgement necessary. But even so, there are individualistic souls who want to
be sure they can do it unaided. And who can blame them? There is a sense, after all, in
which you never completely understand code unless you have written it yourself, and then
corrected your inevitable errors in the compiler, and then maybe even stepped through the
code in the debugger. So this exercise asks you to write a screen-persistent version of
Pop in which you don’t use our cMemoryDC class. Here’s how.

Software Engineering and Computer Games Reference502

Put a static CDC _memCDC variable into CPopView followed by a CBitmap _memBitmap

and a couple of int _memcx, _memcy. We can live without the CBrush variable. Imitate
the cMemoryDC constructor code inside the CPopView constructor. The initialization is the
trickiest thing about a cMemoryDC, so this will be the hardest part of your work. Do it like
this after using the GetSystemMetrics to set _memcx and _memcy to match the screen
measurements.

CDC cDC_display;

CBitmap pBitmap_old;

cDC_display.CreateDC(“DISPLAY”, NULL, NULL, NULL);

_memDC.CreateCompatibleDC(&cDC_display);

_memBitmap.CreateCompatibleBitmap(&cDC_display, _memcx, _memcy));

pBitmap_old = _memDC.SelectObject(&_memBitmap);

pBitmap_old->DeleteObject();

Copy this very exactly; resist the temptation to simplify things by leaving out the seemingly
extra steps involving the temporary cDC_display variable. These steps are necessary. Now
go to CPopView::OnDraw. Imitate the cMemoryDC clear, using PatBlt with the WHITENESS
as the last argument. And use BitBlt to imitate the copyTo code.

You don’t need to change the CPopView destructor, because the destructor will
automatically call destructors on the CPopView data fields in the order they appear, which
means _memDC.DeleteDC() will happen, and then _memBitmap.DeleteObject(). Of
course if you’d created similar objects on a temporary basis somewhere, you might want
to kill them off yourself, just to be sure that the CDC dies before the CBitmap (because if
the CBitmap were to die first the CDC would have a cranky ant-fit!).

And don’t forget to override CView::OnEraseBkgnd(CDC *pDC) to do nothing at all but
return TRUE;. If you forget this, your screen can still flicker, as the default behavior of
any call to Invalidate() is to first call OnEraseBkgnd, and that function’s default behavior is
to erase the view with the background brush.

Windows graphics 503

26OpenGL graphics

Far from giving extensive coverage of OpenGL, this chapter simply provides a
bare-bones outline of how the Pop Framework uses these libraries of C functions.

As mentioned in the introduction, there are three standard books on
OpenGL, known as the Blue Book, the Red Book, and the White Book. The Blue
Book is a reference manual, listing all the OpenGL functions, the Red Book is a
programming guide explaining how to use the functions, and the White Book is
a guide to integrating OpenGL into Windows programs. Turn to these books for
more information.

26.1 Linking to OpenGL

To use OpenGL, you link your executable to the special OpenGL libraries and
include some special OpenGL headers. Typically you do the ‘linking’ by adding
these additional libraries to your project: opengl32.lib and glu32.lib. (You can see
Appendix C for how to add libraries to a Visual Studio project.) And you do the
‘including’ by putting lines like the following into any files that mention
the OpenGL functions. (In particular, the Pop framework has these lines in its
graphicsopengl.h header.)

#include “gl\gl.h”

#include “gl\glu.h”

Once your code is linked up, you can make OpenGL function calls in your
code. The OpenGL functions begin with one of the prefixes gl or glu. We usually
put the scope resolution operator ‘::’ in front of these functions names as a
reminder that these are global functions, rather than being members of any
class. In addition, Windows has some special functions designed for linking to
OpenGL. Some, but not all, of these functions start with the prefix wgl.

The functions our code uses are found in the following libraries:

• gl functions from OpenGL (gl.h, opengl32.lib)

• glu functions from OpenGL Utilities (glu.h glu.lib)

• wgl functions from OpenGL Extension for Windows (windows.h, opengl32.lib)

And of course our code will, as usual, use special functions defined in the
MFC libraries and in the basic Win32 libraries. Figure 26.1 shows how Pop and
the various libraries depend upon each other.

26.2 The OpenGL state machine

It’s useful to think of OpenGL as a state machine that has a special button on
it to send images to the screen. The ‘draw-the-picture’ button represents the
OpenGL function ::glFinish(). Figure 26.2 illustrates the process.

Before calling ::glFinish(), we prepare the state of the OpenGL machine
by feeding in real number position coordinates, real number color triples or
quadruples (with the fourth value α standing for transparency), and bitmap
files. In addition, we can set the state by various ::gl... functions that tell the
state machine to combine the coordinates into a triangle, into a quadrilateral,
or the like.

OpenGL graphics 505

Figure 26.1 Component diagram for Pop’s use of OpenGL libraries

Figure 26.2 The OpenGL state machine

26.3 Generic OpenGL code

Let’s look at an example of the kinds of calls that we feed into the OpenGL
state-machine hopper so as to prepare to draw something. Specifically, let’s see
what it would take to draw a white square.

//Initialize the Window (Described in next subsection)

::glClearColor(0.0, 0.0, 0.0, 0.0);

::glClear(GL_COLOR_BUFFER_BIT);

::glColor3f(1.0, 1.0, 1.0);

::glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

::glBegin(GL_POLYGON)

::glVertex(0.25, 0.25, 0.0);

::glVertex(0.75, 0.25, 0.0);

::glVertex(0.75, 0.75, 0.0);

::glVertex(0.25, 0.75, 0.0);

::glEnd();

::glFinish();

//Update the Window (Described in next subsection)

You can view a lot more code like this in the Pop Framework’s graphicsopengl.cpp

file.

26.4 OpenGL code in Windows

OpenGL is a platform-neutral library. It can run on operating systems such as
X-Windows, the Macintosh, or Windows. In each of these systems you add a
little extra code in order to interface your system to OpenGL.

The basic Win32 library includes a few built-in data types and functions
to be used with OpenGL. Here’s a block of code that shows how we initialize
a window and update it. The data types PIXELFORMATDESCRIPTOR and HGLR
are special built-in Windows types used for working with OpenGL. And
::ChoosePixelFormat, ::SelectPixelFormat, ::wglCreateContext, and ::SwapBuffers are
built-in Windows methods for use with OpenGL.

PIXELFORMATDESCRIPTOR pixelformat;

int pixelformat_index;

HGLR openglrenderingcontext;

HDC hdc_view;

//Initialize the Window.

pixelformatindex = ::ChoosePixelFormat(hdc, &pixelFormat);

::SelectPixelFormat(hdc, pixelformatindex, &pixelFormat);

openglrenderingcontext = ::wglCreateContext(hdc_view);

::glMakeCurrent(hdc_view, openglrenderingcontext);

Software Engineering and Computer Games Reference506

/* Use ::gl... and ::glu... calls to set GL states, add GL vertices,

load GL textures,

//the example of a square was given in the previous subsection. */

//Update the Window

::glFinish()

::SwapBuffers(hdc_view);

Note that you don’t need to re-initialize the window for every update. Each
time you want to load the OpenGL state machine and send something new to
the screen, it suffices to call ::glMakeCurrent again, using the same openglrender-
ingcontext. In the Pop Framework, the call to ::glMakeCurrent is encapsulated
into our cGraphicsOpenGL::activate() method.

26.5 OpenGL in the Pop Framework

Look back at the code for CPopView::OnDraw(CDC* pDC) that we gave in Section
24.4: Graphics in the Pop Framework. Here is a bulleted list showing some of
the corresponding OpenGL calls made by the _pgraphics member of CPopView

if _pgraphics is of the type cGraphicsOpenGL*.

• Wake up the graphics with

_pgraphics->activate().

This calls

::wglMakeCurrent(_pDC->GetSafeHdc(), _hRC)

• Clear the graphics background with

_pgraphics->clear(targetrect).

This calls

::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

• Install the projection and view matrices with these lines.

_pviewpointcritter->loadProjectionMatrix();

_pviewpointcritter->loadViewMatrix();

These in turn call:

::glMatrixMode(GL_MODELVIEW)

::glLoadMatrixf(_pviewpointcritter->attitude().inverse());

OpenGL graphics 507

::glMatrixMode(GL_PROJECTION)

::gluPerspective (fieldofviewangleindegrees, xtoyaspectratio,

nearzclip, farzclip); //Values from _pviewpointcritter

• Draw your game world and then the critters with

pgame()->drawCritters(_pgraphics, _drawflags).

This generates a variety of ::gl and ::glu calls like, in the case of polygons

::glEnableClientState(GL_VERTEX_ARRAY);

::glVertexPointer(...);

::glDrawArrays(...);

• Send the graphics to your video display with

_pgraphics->display(this, pDC)

This calls

::glFinish();// Tell OpenGL to flush its pipeline

::SwapBuffers(_pDC->GetSafeHdc()); // Now Swap the buffers

Software Engineering and Computer Games Reference508

27Menus and toolbars

One of the goals in Software Engineering and Computer Games is to show you how to
put together all the necessary pieces for a complete program. This means we need
to talk about some of the things we do to build user interfaces. In this chapter
we’ll talk about how to implement new menu selections and toolbar buttons.

27.1 Adding menu selections

To add menu selections, open the Resource View as described in Appendix C.
Click on the boxed little + signs as necessary to navigate down into the display
until you see the Menu | IDR_POPTYPE selection. Double-click on this to open
the menu in the Resource Editor.

(By the way, you might wonder about the Menu | IDR_MAINFRAME selection.
This menu is what appears when no game documents are open; you can see it
by closing all active games in the Pop program. Normally we don’t bother
changing this menu.)

Once you open the IDR_POPTYPE menu in the Resource Editor, you see a
picture of a menu bar resource in the Resource Editor window on the right; you
can edit this menu bar in a graphical manner. You can also change the arrange-
ment of the menu by dragging selections around inside the Resource Editor,
which is fully WYSIWYG. There will be gray boxes with dotted outlines in various
positions on the menu; these are the spots where you can add things.

Each of the menu items has properties associated with it. To change the
properties you can open the menu item Properties dialog for an item by double-
clicking it or by highlighting it and pressing Alt+Enter. If you are using Visual
Studio.NET, you may need to resize the dialog so you can see all of it, or you
can scroll through it to find the lines you need to change.

It’s worth noting that the Alt+Enter key combination will open the Properties
dialog for other kinds of resources as well. Visual Studio, Version 6.0, has a
helpful question mark at the corner of the dialog box that you can select for
specific information about the Properties entries. Visual Studio.NET instead has
a more generic and less specific kind of help that you can access with Help |

Dynamic Help or Ctrl+F1.

Anyway, once you get your menu item Properties dialog box open, your
typing goes into the Caption field of this box and onto the menu bar resource.
Usually you don’t bother to fill in the ID field in this dialog, Visual Studio will
put something reasonable based on the menu item’s position and name. You
can see what Visual Studio put you have to close the menu item Properties
dialog box and then open again. Thus the Game | Restart selection gets the
ID_GAME_RESTART as its identifier.

Note that menu selections usually have one of their letters underlined for the
short-cut key. You set the shortcut key by putting an ‘&’ in front of the desired
letter in the Caption field of the menu item Properties dialog box for that item.
Thus the caption for Game | Restart that we type in is &Restart. You shouldn’t use
the same shortcut letter for different controls on the same popup, as Windows
will always just do the first of the two controls when you use this key.

Also note that in the menu item Properties dialog box we have the option of
Setting to TRUE [or checking the box for (in Version 6.0)] the Separator or Popup

selections. A separator is a horizontal dividing line. A popup selection leads off a
menu bar or a popup to another popup. Generally you should avoid having
popups go down more than two, or at most three, levels deep. If you have a lot
of controls it’s better to lay them all out on a dialog box.

A final thing to notice in the menu item Properties dialog box is a field at
the bottom labeled Prompt. The string you put into this box supplies a user
prompt that appears in the status bar when that particular menu selection is
highlighted. It’s a good idea to fill in a prompt for each of your menu items.
Whenever possible try and include some really useful information that’s not
already contained in the caption of the menu item. For instance, it’s better to
have the Game | Small prompt be Show 20 critters than to have the prompt be
Small. Don’t be stingy with the user. Share what you know.

A second point about the Prompt is that it’s common to actually have two
strings inside the prompt, with the second string being a one or two word phrase
that can be used for a ‘tool tip’ in the event that this menu selection becomes
implemented as a toolbar button. The two strings are separated with a newline
symbol \n. Usually a tool tip is little more than the name of the menu selection.
Thus the full Prompt used for the Game | Small might be Show 20 critters\nSmall
count. We’ll talk more about toolbar buttons in the next section.

Handling and updating menu selections

For every menu item that your program has, MFC will let you add two ‘message
handler’ methods to your CView. The first is a so-called UPDATE method, whose
name usually starts with On... The second message handler is a so-called
UPDATE_COMMAND_UI method, whose name normally starts with OnUpdate... By
the way, UI stands for ‘user interface.’ And we’re using ‘. . .’ here to stand for a
name which is normally based on the name of your menu selection. the default
behavior of Visual Studio is indeed to give these methods names based on your
menu item’s name. In the case of the Game | Small selection, for instance, the
corresponding CView methods are named OnGameSmall and OnUpdateGameSmall.

Software Engineering and Computer Games Reference510

The UPDATE or On... method is where you specify what happens when the
user clicks on the menu selection.

The UPDATE_COMMAND_UI or OnUpdate... method is where you specify the
appearance of the menu selection. Is it grayed-out? Does it have a checkmark?
etc. The OnUpdate... method for a menu selection gets always gets called auto-
matically before you open a popup. You might think that you need to worry
about calling OnUpdate... to fix your menus, but you don’t. In fact the OnUpdate...

method gets called every time your program has nothing else to do on its
message queue. The reason it gets called so often is that it’s possible to turn
your menu selections into toolbar buttons, and Windows wants to make sure
that the appearance of your toolbar buttons is always up to date.

In Visual Studio.NET we use something called the Event Handler Wizard to
add the message handlers. You open the Event Handler Wizard by right-clicking
on the menu item whose messages you wish to handle, and by then selecting
Add Event Handler... from the context popup menu. You will see a wizard dialog
with the Command Name filled filled in with the ID of your menu selection,
suh as ID_GAME_SMALL.

[In Version 6.0, we use the so-called Class Wizard. To open the Class Wizard,
right-click the item and select Class Wizard.... You will see a multi-sheet Wizard
dialog with the Message Maps sheet selected, and with the ID of your menu
selection highlighted in the Object IDs box.]

You can now use the wizard to add the handler methods to your code. A
box near the top middle says Class list [Class Name (Version 6.0)]. This is
where we specify which class is going to be responsible for handling the menu
selections. If a menu selection changes a parameter, it’s most logical to have
the class in which that parameter lives do the message handling. Our feel-
ing regarding our new menu selections is that the Game | Play Sound should
be handled by the CPopApp, the other Game selections should be handled by
CPopDoc, and our new View selections should be handled by CPopView. By letting
the classes that own the relevant parameters handle the menu-based changes
of these parameters, we have to do a minimum of work in getting at the
parameters.

Let’s look at how we would add the handlers for the Game | Small selection.
First we set the active field in Class list [or Class Name (Version 6.0)] to CPopDoc

in the Wizard dialog. In the Message type box [Messages box (Version 6.0)] we
see an UPDATE and an UPDATE_COMMAND_UI selection. One at a time, we highlight
the selection. When you highlight a message selection, the wizard will suggest
a default name for the message handler. You can edit this name in the wizard
if you like. To actually put the handler into your code, you should click the
wizard’s Add and Edit button. Thus you can add, for instance, the prototypes and
function bodies for the CPopDoc::OnGameSmall and CPopDoc::OnUpdateGameSmall

methods.
Remember that menu selections will always need the UPDATE handler,

and usually they will need the UPDATE_COMMAND_UI handler as well. In Visual
Studio.NET, the wizard will close after you add one handler, so you will need to
reopen it to add and edit the other handler.

Menus and toolbars 511

[In Version 6.0, there is an Add button you can use to first add one handler
before using the Add and Edit button to close the wizard and edit the handlers.
Gotcha Alert! If you exit the Version 6.0 Class Wizard by just pressing the Esc

key or by using the kill button in the corner of the dialog, the changes aren’t
saved. You need to exit the Version 6.0 Class Wizard either by pressing OK or
by pressing Add and Edit, or Edit Code.]

[Once in a great while, in Version 6.0 you will start having trouble with the
so-called Class Wizard *.clw file and Visual Studio will pop up warning messages
about it. In this case you need to rebuild the *.clw file. To do this, close the
project and delete the *.clw file. Then reopen the project, and select View |

ClassWizard. Visual Studio will ask if you want to build a new Class Wizard file,
say yes, and accept the defaults offered by the dialog.]

Now let’s talk about the code for the handler methods. Remember that the
On... method is for reacting to clicks on the menu selection. And the OnUpdate...

method is for making the menu item’s appearance reflect the current state of
the program.

Remember that in handling our menu actions, we have the option of either
affecting the underlying data in the document or of affecting the representation
of the data in the view.

Let’s look at an example involving a document variable.

void CPopDoc::OnGameSmall()

{

_pgame->setSeedcount (cgame::COUNTSMALL);

}

void CPopDoc::OnUpdateGameSmall(CCmdUI* pCmdUI)

{

pCmdUI->SetCheck(_pgame->seedcount()==cgame::COUNTSMALL?1:0);

}

And here’s an example involving a view variable.

void CPopView::OnViewKeepplayerinview()

{

_pviewpointcritter->setTrackplayer

(_pviewpointcritter->trackplayer()^TRUE);

//Toggle the value.

}

void CPopView::OnUpdateViewKeepplayerinview(CCmdUI* pCmdUI)

{

pCmdUI->SetCheck(_pviewpointcritter->trackplayer()?1:0);

}

Software Engineering and Computer Games Reference512

The point of the OnUpdate... handlers is to put a checkmark by a menu item
when it reflects the state of the program. Each time a popup is displayed, these
handlers will automatically get called for all the menu items, so we can expect
that only the desired ones of them will be checked.

An UPDATE_COMMAND_UI message handler like OnUpdateGameSmall takes a special
MFC class CCmdUI as argument, this class can stand either for a menu selection
or a toolbar button, and its most important methods are Enable and SetCheck.
Enable takes a BOOL argument, and if this argument is TRUE, the effect is to gray
a selection out. SetCheck takes an int argument which is 0 for unchecked and 1
for checked. The value of 2 is also used for toolbar buttons.

Yes, as we’ll see in the next subsection, SetCheck can also be called by a toolbar
buttons. SetCheck(0) leaves a toolbar button looking normal. SetCheck(1)
makes the button’s background a light gray, making it look as if it were
in a pressed-down position. And SetCheck(2) sets a toolbar button to an
‘indeterminate’ grayed-out state, which is appropriate when the toolbar button
doesn’t apply to the current program state (for instance if no document windows
are open).

27.2 Toolbar buttons

When we have a menu selection that we use a lot, it’s nice to put a button on
the toolbar so that you can do this action with one click. Although we can,
in principle, have a toolbar button that does not correspond to an existing
menu selection, it’s considered good practice to always do it both ways. For
this reason, even if you really just want a toolbar button for something, you
ordinarily implement it first as a menu selection and then add toolbar button
functionality for the menu selection.

You will notice that many of the Pop menu controls have toolbar buttons
corresponding to them. According to which style of game is active, some of the
buttons may be grayed out, or inactive.

Generally you want to put your most commonly used controls onto the
toolbar to make the interface easier for the user. Any menu selection that you
use more than two or three times during a typical play session should probably
be a toolbar button. On the other hand, you don’t want too crowded a toolbar
as it then becomes confusing. The author makes no claim that the toolbar
design for Pop is particularly good, the particular set of buttons on it got there
by a slow process of accumulation, and should really be rethought. When you
design your own computer game with Pop Framework, take a hard look at the
toolbar, and make sure that you only have buttons that the users will need; you
will want to remove some of the existing buttons and add others.

Let’s look at the steps involved in adding a toolbar button for the Game | Play

Sound. We open the Resource View window, click on TOOLBAR and double-click
on IDR_MAINFRAME. The simplest practice is to use the same toolbar throughout
your program; adding a new one yourself is quite a hassle. Rather than adding a
new toolbar, we simply add buttons to the existing one.

Menus and toolbars 513

The Resource Editor will show an image of your toolbar at the top, with an
enlarged view of one of the buttons below. You can drag the buttons around on
the toolbar as you like. To add a new button, highlight the blank button on the
toolbar image. You can use the Resource Editor’s graphics tools like a little paint
program to draw something onto the button. If you don’t see the graphics con-
trols right-click on the Visual Studio menu bar and make sure that the Image
Editor toolbar is checked. [In Version 6.0, make sure that the Graphics and
Colors toolbars are checked.]

Once you’ve decorated the button to your liking, you need to connect the
control to your program. To do this you need to open the toolbar button Prop-
erties dialog, which will look very similar to the menu item Properties dialog
from before. Opening the toolbar button Properties dialog is a little harder
though, because your mouse is busy acting like a graphics editor. You can’t get
to the toolbar botton Properties with a double-click or a right-click. The easiest
way to open the Properties dialog for a highlighted button is to press Alt+Enter.

Once you’ve got your toolbar button Properties open, use the arrow on the
ID field to scroll to the name of the ID of the menu item you want to imitate,
in this case ID_GAME_PLAYSOUNDS. And make sure that the Prompt field ends with
something like \nSounds to specify a ‘tool tip’ for Windows to show when your
mouse pauses over the button.

At this point you’re done! The OnGamePlaySounds and the
OnUpdateGamePlaySounds message handlers we wrote earlier are already in place,
and are already linked to all menu items and/or toolbar buttons that happen to
have the ID_GAME_PLAYSOUNDS. And the SetCheck function will show the button
as either in state 0 (looking normal) or in state 1 (pressed down).

If the message handler for a button lives inside the CView or the CDoc class,
Windows knows to SetCheck that toolbar button to the ‘indeterminate’ state 2
when all the documents are closed. The nice thing about all this is that we
the programmers don’t need to worry about when to call the control update
methods. Windows calls these all by itself; in fact each time your program has
nothing else to do (no messages to process), Windows will call your program’s
control update methods.

By the way if you really did want to have a toolbar button that doesn’t
correspond to any menu selection, this would be perfectly fine. The only differ-
ence is that instead of scrolling through the existing ID_ values, you’d make
up a new ID_ name for your toolbar button. And then you’d have to use Class
Wizard to add handlers for the corresponding COMMAND and UPDATE_COMMAND_UI
messages.

27.3 Accelerator keys

An accelerator key is different from a menu shortcut key. To use a View menu
shortcut, you press Alt+V to open the View menu, and then press P or C to change
the cursor. But an accelerator key is a single key or key combination that takes
effect without opening any menu.

Software Engineering and Computer Games Reference514

Adding an accelerator key for an existing menu item is easy. You go to the
Resource View in the Visual Studio Workspace window, click on Accelerators,
double-click on IDR_MAINFRAME to see the list of accelerator keys. Down at the
bottom is a blank box with a dotted line around it. Double-click it or press
Alt+Enter to open the accelerator key Properties dialog.

In the ID field you put the menu item selection that you want imitate. If
you don’t remember the name of the selection, pressing the Arrow key next to
the ID field will show a list with all the existing selection IDs. In the Letter field
you put the key that you want to use for the accelerator. There are three fields
that you can turn on or off, according to whether you want to require a Ctrl,
Alt, or Shift key with your key press.

It’s often a convention to put the name of a menu item’s accelerator key
on the right side of the menu after the selection name. One thing to note
about accelerator keys is that they don’t work while a menu is open; unless
of course the menu item shortcut happens to be the same key as the acceler-
ator key.

27.4 Writing to the status bar

The CFrameWnd::SetMessageText method lets you write a string into the status
bar. MFC provides us with a CString class that makes it very easy to create
strings. In order to write the values of program parameters into a string, we
use a CString::Format method, which behaves very much like the C language
printf function. The operator= and operator+ are overloaded for CString, with the
operator+ doing the logical thing of concatenating one string onto the end of
another.

We write a little helper method called updateStatusBar for our CPopView class. As
we mentioned before, we’ll have our CPopView::OnSetCursor call updateStatusBar,
so that the status bar will reflect information about whichever window is
currently under the cursor. In addition, we will need to call updateStatusBar at
the bottom of our OnLButtonDown code because if you click the mouse without
actually moving it, then your CView won’t get an OnSetCursor call.

void CPopView::updateStatusBar()

{

CMainFrame* cMainFrame = (CMainFrame*)::AfxGetMainWnd();

cMainFrame->SetMessageText(pgame()->statusMessage());

//Write to status bar

}

What goes into the actual statusMessage string is up to the individual game.
You can look back to our section on the cGame class for the default game.cpp

code for this method.

Menus and toolbars 515

Exercises

Exercise 27.1: Add two game size buttons

We will probably use the Medium and Large game sizes the most. Add toolbar buttons for
these two menu commands. Draw the buttons yourself.

Exercise 27.2: Add Window | New and Window | Tile buttons

The Pop menu labels the standard Window | New button as Window | Additional View
of current game. Add a toolbar button for this menu command. Instead of drawing the button
yourself see if you can find a way to copy it from somewhere else. One approach is to look
for appropriate *.bmp images on your hard drive. Visual Studio, in particular, will have a
lot of them in its subdirectories.

Exercise 27.3: Adding an accelerator key

Make the Ctrl+A combination be an accelerator for Window | New.

Exercise 27.4: Changing the caption

If you wanted to, you could write your information into the caption bar instead of into the
status bar, using lines like the following. But there are reasons not to do this.

CPopDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

pDoc->SetTitle(pgame()->statusMessage());

Try this and check what happens when you maximize a view. Check what happens
when you use File | New to open an additional game document. Can you tell which view
corresponds to which document?

Software Engineering and Computer Games Reference516

28Mouse, cursors, and
keyboard

28.1 Mouse messages

Processing a mouse message

Windows generates a number of mouse-related messages, including
WM_MOUSEMOVE and WM_ONLBUTTONDOWN. MFC handles these two
with message handlers normally called OnMouseMove and OnLButtonDown.

The programmer is free to decide which class is to hold the handler methods.
One way to do this is to open the Class View and to right click on the name of
class that is supposed to handle the mouse message. In Visual Studio.NET you then
select Properties... and click on the Message button in the Properties dialog. (In
Version 6.0, you right click the class and select Add Windows Message Handler....)

In any case, the default message handler you’ll get for WM_MOUSEMOVE
will look like this.

void CPopView::OnMouseMove(UINT nFlags, CPoint point)

{

// TODO: Add your message handler code here and/or call default

CView::OnMouseMove(nFlags, point);

}

We override this as follows, telling the view to pass the mouse click right on to
the game object.

void CPopView::OnLButtonDown(UINT nFlags, CPoint point)

{

//My Code. RR.

SetCapture(); /* This is so that as long as the mouse button is

down, this window gets messages from the mouse even when the

mouse is outside the window. */

pgame()->onLButtonDown(this, nFlags, point);

/* Don’t need to figure out the game world pos, it’s set as pgame()-

>pbiota()->_cursorpos in OnSetCursor. */

}

Our special cGame::onLButtonDown (cPopView *pview, UINT nFlags, cPointpoint)
code figures out which critter you should think of as being closest to the
click with a line like this: cCritter* pTouched = _pbiota->pickClosest

(pview->pgraphics()->pixelToSightLine(point.x, point.y));. And then,
depending on the type of cursor currently active, the cGame does something to
the pTouched critter. See the source later in this chapter for details.

We handle the OnMouseMove case in a different way. The cPopView::SetCursor

has code to figure out the game world position closest to the pick point that
also lies in the plane of the player critter.

void CPopView::OnMouseMove(UINT nFlags, CPoint point)

{

/* Normally I track the cursor position in OnSetCursor, but this

method doesn’t get called during dragging, so I need to do it

here */

if ((nFlags & MK_LBUTTON) || (nFlags & MK_RBUTTON)) //You’re

dragging.

pgame()->setCursorPos(pixelToPlayerPlaneVector(point.x,

point.y));

pgame()->onMouseMove(this, nFlags, point);

}

Calling the OnDraw method

Often a mouse action changes the world in such a way that we need to redis-
play it. This isn’t an issue in our animated Pop framework, where the world is
constantly being redisplayed. But in other programs it is an issue. The way to
force a redisplay of all view windows from a given view’s method is a line of the
form pDoc->UpdateAllViews(NULL). You never try to call OnDraw directly, as this
is a severe Windows no-no. One reason is that we’d have to do too much work
in getting the right kind of CDC *pDC ready for the OnDraw argument, but there’s
some other considerations as well (which we won’t go into).

No, the way to have, say, an OnMouseMove call OnDraw is to use an indirect
approach. We call the Invalidate() function. But in order to keep our Document-
View architecture smoothly functioning, we’re not going to let OnMouseMove

call Invalidate directly. Instead we’re going to go all around Robin Hood’s barn
and do this.

• CPopView::OnMouseMove might kill off a critter say, and then call

• CPopDoc::UpdateAllViews, which calls

• CPopView::OnUpdate, which calls

• CPopView::Invalidate, which calls

• CPopView::OnDraw to draw the new state of affairs.

The pDoc->UpdateAllViews(NULL) line in the code has the default effect of
telling the CPopDoc to send an UpdateView call to each of its views.

Software Engineering and Computer Games Reference518

What about the CPopView::OnUpdate method? As it turns out, the default
CView behavior for the method is just what you’d want; to call the Invalidate()

method.

28.2 Cursor tools

Looking at the Pop Framework, you’ll notice that the user can activate different
kinds of cursors. When you have a program where users can change the tool
action of the cursor, it’s important to change the appearance of the cursor to
match the mode. That is, the appearance of the cursor should inform the user
about what the effects of mouse actions are likely to be.

We’ll let the tool type depend on the view, so that it’s possible to have two
views open with a different tool being used in each one. This means that the
data about which cursor to use should live in the CPopView. And the CPopView

will be responsible for resetting the cursor whenever the cursor moves over
the CPopView’s window.

How does the CPopView keep track of which cursor type and tool type it is to
use? A general principle of good program design is

never to keep the same information in two different places.

The reason is that if a piece of data lives in two different places, then
inevitably some change in your program will remember to change the data
in one of its locations but not in the other. Now, since the CPopView is going
to need to change the cursor’s appearance, it might as well have an HCURSOR

_hCursor variable that specifies the cursor’s appearance – the HCURSOR type is
a Windows handle used for this purpose. But since we’re going to use the
HCURSOR to change the cursor appearance, we might as well use it as the data
to tell us which tool type is being used as well. That is, we do not need, or
want, to have an int _cursortype variable in the CPopView in addition to the
HCURSOR _hcursor.

Changing the cursor

A first thing to realize is that the cursor is a global resource; i.e. the cursor is not
the property of any one window. The user is free to move the cursor away from
your program’s window and onto another window. So many of the Windows
functions having to do with the cursor are global functions, i.e. functions that
are not members of any class.

The global function used for changing the cursor’s appearance is
::SetCursor(HCURSOR hCursor). It takes an HCURSOR handle to the new cursor
resource as its argument. Remember a Windows handle is an indirect kind of
pointer; it’s a carry-over from the old Win32 programming that you don’t
see all that often in MFC. But, for whatever reason, the cursor functions are
not wrapped up inside any MFC class. Remember also that, although strictly

Mouse, cursors, and keyboard 519

speaking we don’t have to, we like to put the scope resolution operator :: in
front of a global function with nothing to the left of the :: as a way of reminding
ourselves that the function is not a member function of a class.

Now our CView is going to have an HCURSOR _hCursor variable, so this is prob-
ably what we want to feed into the ::SetCursor function. But where should we
do this?

You might logically expect that we’d change the cursor only right after we
change the _hcursor in the code that handles the menu or toolbar commands to
change the active cursor type. Well, when do we change the cursor type in our
program? Choosing the View | Pin Cursor and View | Hand Cursor menu selections
calls the CPopView::OnViewDraggerCursor or the CPopView::OnViewPinCursor method.
And inside these methods the value of the _hcursor does indeed change. So you
might expect that in here would be the place to call ::SetCursor (_hCursor). But
you’d be wrong.

This is because you can’t just change your cursor once and be done with it. If
you were to change the cursor to a pin only inside the OnViewPinCursor function,
then as soon as you moved the mouse, your cursor would go back to being
the default Windows arrow cursor IDC_ARROW. Windows resets the cursor every
time there is a mouse move. The reason for this is that the cursor appearance
needs to change as it moves across various windows and window-features on
your program. Remember that the cursor is a global kind of thing. For instance,
the cursor needs to turn into a double headed arrow if you place it over the
corner of a window frame. And if a window has a special default cursor then
that should be the cursor to show.

As it happens, every time the mouse makes a move over a CWnd window,
the window gets a call to the OnSetCursor method for that window, so that’s
the place to put the code for changing the cursor. We use View | Class Wizard to
open up the Class Wizard, and then tell it to add an OnSetCursor handler to our
CPopView. And we edit the code to look something like the following partial
listing of the Pop Framework code.

BOOL CPopView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)

{

/* This method get called whenever the cursor is over the client

area of the view. Don’t call the baseclass handler, that is,

don’t call: CView::OnSetCursor(pWnd, nHitTest, message).

DON’T CALL THIS!!!! In particular, don’t call base

CView::OnSetCursor last because then you’ll get the default

IDC_ARROW cursor back!*/

//(1) Set the correct cursor for this view.

::SetCursor(_hCursor);

//(2) Use a special drag cursor if you are attached to the player.

if (pgame()->playerListenerClass() ==

RUNTIME CLASS (cListenerCursor))

::SetCursor(((CPopApp*)::AfxGetApp())->hCursorDragger);

Software Engineering and Computer Games Reference520

//(3) Save the cursor position with cGame::setCursorPos if you’re the

active view

//if (isActiveView())

{

//First get the cursor position in a client area coordinates.

CPoint point;

::GetCursorPos(&point);

//Gets screen coordinates

ScreenToClient(&point); //A CView conversion method

//Then convert point to world coordinates and save with

//setCursorPos

if (pviewpointcritter->plistener()->

IsKindOf(RUNTIME_CLASS(cListenerViewerRide)))

pgame()->setCursorPos(pixelToPlayerYonWallVector(

point.x, point.y,

0.5 * pviewpointcritter->toFarZ()));

/* If we are riding the critter, we want to pick a

point on the “yon” wall, that is, the viewer’s far

clip plane. Given that we’re on the critter, that

distance from us will the viewpointcritter’s toFarZ(),

inlined as {return fabs(zfar - position.z());} */

else

pgame()->setCursorPos(pixelToPlayerPlaneVector(

point.x, point.y));

/* Otherwise we pick a point in the plane of the

player’s body, that is, his tangent and normal

plane. */

}

return TRUE;

}

Notice that as well as setting the cursor here, we also tell the view’s associated
cGame object to update its current notion of where the cursor is. We do this
update inside the OnSetCursor method because the method gets called essentially
at every update.

Coming back to setting the cursor, how do we manage to put a valid HCURSOR

value into the CView _hCursor variable?

Making a cursor in the Resource Editor

If we want to have special-looking cursors in our program, it’s up to us to design
their appearance. And then these cursor designs become part of our program’s
resources and get bound into the program executable where your application
can find them at runtime.

It’s pretty easy to add new resources to a program in Visual Studio. You just use
the menu selection Project | Add resource... [Insert | Resource | New... in Version 6.0].

Mouse, cursors, and keyboard 521

Either method pops up a dialog where you specify what kind of resource you
want to insert. If you select Cursor you get a little Image Editing window. There
are a few special things to know about cursor images.

• A cursor only uses the colors black and white.

• The cursor editor also uses pseudocolors that we might call ‘transparent’ and
‘invert.’ In the Visual Studio Resource Editor, these colors are represented
by a grayish blue and by pink, respectively. Usually you want most of your
cursor image to be ‘transparent,’ that is, you want the cursor to be a small
shape that does not appear to have a white rectangular background.

• A cursor has an associated hot spot whose coordinates you can edit in the
Resource Workshop. The hot spot is the location in the cursor image that is
used to determine the pixel coordinates that are returned by mouse messages
like MouseMove or OnLButtonDown. There are two considerations in picking the
hot spot. (a) If possible, the hot spot should be near the upper edge of the
cursor so that the cursor ‘knows’ as soon as you move it into the toolbar/
menubar region at the top of your window. And (b) the hot spot’s location
should make sense relative to the visual appearance of the cursor, that is, it
should be at the tip of a pencil, at the nozzle of a spraycan, etc. Sometimes
you need to redesign your cursor image to satisfy both conditions. [In
Version 6.0 you may need to close the Resource Editor’s little Color and Tool
windows before you can see the button that lets you pick the hot spot.]

As usual, when you create a resource you have the option of changing the
name of the resource’s ID mnemonic. By default, the Developer Studio will give
a cursor resource a one-size-fits-all name like IDC_CURSOR1. You should change
the name of the cursor resource to something that’s easier for you to remember.
To do this you need to get to the resource’s Properties dialog. The easiest way to
open the dialog is to press Alt + Enter. Or you can right-click on the IDC_CURSOR1
name of the cursor over on the Resource View and select Properties to see
the cursor Properties box. You can either give your cursor an numerical ID
mnemonic like IDC_PIN or, if you prefer, you can give it a string name like
‘Pin,’ being sure to put the string inside quotation marks. Remember to
click on the little question mark at the corner of the dialog box for additional
information.

The Resource Editor will save off a file with your cursor information. This file
will have a generic name like Cursor1.cur and it will go into the .\res subdirectory
of your build directory. It’s fine for this file’s name to be generic, because you
normally don’t need to directly access it, and if you did want to directly access
it – say to quickly open it to edit it – you can tell what’s in it by the appearance
of the icon next to it in the Windows Explorer window. But if you really want,
you can Rename the file in Windows Explorer and change its name to match
inside the File Name field of the Visual Studio cursor Properties box. The first
time you try and rebuild after doing a resource item file name change like this,
you’ll get an error message, but if you try a second rebuild, the Visual Studio
will then accept your change.

Software Engineering and Computer Games Reference522

If you aren’t good at drawing, you can look for a cursor to copy. For the
hand cursor, for instance, you might go through a process like this.

• Look on the distribution Visual Studio disk and find a lot of cursor files.
Perhaps there’s one called, say, H_NW.CUR that you like.

• Use Visual Studio File | Open to open this file inside the Resource Editor.

• Use Edit | Copy to copy the cursor image to the clipboard.

• Use Insert | Resource... | New to add a new cursor resource.

• Use Edit | Paste to paste the H_NW.CUR image from the clipboard onto the
new cursor.

• And perhaps name the new resource IDC_DRAGHAND.

You might think you can copy the H_NW.CUR file to your res subdirectory
and use Insert | Resource... | Import to add this resource. But when you do that and
try to build, you may get a message saying ‘Can’t write H_NW.CUR, file is Read
Only.’ So that’s why you need to use the Edit | Copy and Edit | Paste trick instead.

Getting a cursor resource

So alright, now we’ve talked about how to add an IDC_PIN and an IDC_DRAGHAND
cursor to the project. How do we turn them into HCURSOR handles to feed into
::SetCursor? It turns out that there is a CWinApp::LoadCursor method. So we add
HCURSOR _hCursorPin and _hCursorDragger variables to the CPopApp class, and some-
where in the initialization phase of CPopApp inside the Pop.cpp file, we put these
two lines.

_hCursorDragger = LoadCursor(IDC_HAND);

_hCursorPin = LoadCursor(IDC_PIN);

Where exactly ‘in the initialization phase’ do we put this? Well, you aren’t
supposed to try and do any serious initialization inside the CPopApp::CPopApp

constructor, because when that constructor kicks in, the app isn’t really fully
ready to do anything. Instead you should do it right at the start of the
code for CPopApp::InitInstance(). Do it at the start of the code block, mind you,
and not at the end, because it’s in the middle of the InitInstance() where
ParseCommandLine(cmdInfo) is called to sneakily create your app’s first CDocument

and CView, and these guys may want to use something like the CPopApp informa-
tion about the HCURSOR.

What a zoo, huh? But it’s kind of exciting to figure MFC out and try to master
it. In terms of sheer complexity and gnarl it beats the stuffing out of any computer
game you’ll ever see. And, let’s face it, Windows programs are doing complicated
things in a highly customizable fashion, so it’s no surprise that they’re so gnarly.

Another point to mention is that we need to make those CPopApp variables
_hCursorPin and _hCursorDragger be public so that the CPopView can see them.
Alternatively we can put a friend class CPopView declaration inside of CPopApp.
(Note that you can do this without trying to #include “popview.h” inside Pop.h,
which would be a risky thing to do, possibly leading to circular includes.)

Mouse, cursors, and keyboard 523

The CPopView uses these variables when it changes the cursor. For instance
we have this handler for View | Pin Cursor.

void CPopView::OnViewPincursor()

{

_hCursor = ((CPopApp*)::AfxGetApp())->_hCursorPin;

}

Let’s back up and take another look at the way we did this. Why don’t we just
do something like _hCursor = ((CPopApp*)::AfxGetApp())->LoadCursor(IDC_PIN)

inside the CPopView::OnViewPincursor()?
Well, we have three reasons for not doing it this way.

• First of all, since LoadCursor is a CWinApp method, it seems like good object-
oriented design to let the CWinApp be the one to call it from inside one of its
methods.

• Second, if we load the cursors once at startup in the CPopApp, we then have
the static fixed HCURSOR _hCursorPin and _hCursorDragger variables to use for
distinguishing between the two cases of the CView _hCursor variable.

• Third, in a few chapters we’re going to start loading bitmap resources that
we want to use as icons for game objects, and then wrapping them up inside
cMemoryDC objects to make it easy to BitBlt them into our game image. Often
we’ll have multiple game objects using the same bitmap, in which case it
will make for a cleaner and more efficient design to have these identical
bitmaps preloaded into static global cMemoryDC objects. So having our cursor
object be a CWinApp member is good practice for later on.

What happens when you load a resource anyway? When you compile and
link a Windows program, the resource code you’ve created is bound into your
executable along with your compiled C++ source code. Your app finds the
resource information by searching in the *.exe code that was loaded into RAM
at the program’s startup. You get at this resource information by various func-
tions. CWinApp::LoadCursor and CWinApp::LoadIcon load cursors and icons. Later
we’ll see that CDialog::DoModal or CDialog::Create call up dialog box resources. You
get at a resource-stored bitmap with a CBitmap::LoadBitmap call. If you have an
alternate menu in your resources, you can get to it with a CMenu::LoadMenu func-
tion. ::PlaySound can get a *.wav file out of your resources.

The first call to LoadCursor is in fact a slightly computation intensive operation,
because at this call, the program has to find the resource somewhere inside
the *.exe and convert it into a useable form in the RAM. You might think that
successive calls to LoadCursor for the same resource would keep incurring the
same computation cost, but in fact Windows is smart enough to not reload a
resource if you’ve already loaded it once during a given program run. So our
justification for only calling LoadCursor once has more to do with good object-
oriented design than it does with execution speed.

While we’re talking about loading resources, do recall that in all of these
resource-loading calls the argument you give to the function is a name for the

Software Engineering and Computer Games Reference524

resource you want to get at. As we’ve mentioned before, the ‘name’ for your
resource can either be a character string in quotes or it can be an ID_??? name
that actually stands for an integer.

(Win32 programmers might possibly worry about whether or not you need
to free up the resources involved in the HCURSOR handles you create. Although
in Win32 you are responsible for calling DeleteObject for graphics-tool-handles
like HPEN or HBRUSH you create, in the case of an HCURSOR, you don’t have to
delete the object. Windows will automatically get rid of it when your program
terminates.)

In the Pop Framework, cGame has a cArray_arrayHCURSOR which is initialized
in the game constructor to list the usable cursors.

Using the cursor tools

All the mouse message handlers take the same two arguments as in OnMouse
Move (UINT nFlags, Cpoint point). The nFlags has information about which
buttons are down, and the point gives the click location in client coordinates.
Since the primary method used is going to be left-clicking, we put most of our code
into the cGame::onLButtonDown function that we call from CPopView::OnLButtonDown.

So here, as an example of how we use the mouse, is what the base cGame

class does with left mouse clicks.

void cGame::onLButtonDown(CPopView *pview, UINT nFlags, CPoint point)

{

if (gameover() || gamepaused())

return; /* Don’t use mouse or keyborad messages until game

starts. */

if ((pview->hcursor() == ((CPopApp*)::AfxGetApp())->hCursorPlay)

|| playerListenerClass() == RUNTIME CLASS(cListenerCursor))

pcontroller->onLButtonDown(nFlags);

/* We put a left click into the pcontroller for the individual

critters to see if either we have the hCursorPlay cursor,

which is used for shooting, or if our player happens to be

using a ListenerCursor. */

if (playerListenerClass() == RUNTIME CLASS(cListenerCursor))

return;

/* Don’t try and use the cursor as a tool if it’s attached to

the player. */

cCritter* pTouched = NULL;

pTouched = pbiota->pickTopTouched(pview->pgraphics()

->pixelToSightLine(point.x, point.y));

/* the “pickTopTouched” method picks the top relative to a

line. I need to define the sight line different ways for

2D and 3D graphics, so I let cGraphics children overload

pixelToSightLine. */

if ((pview->hcursor() != ((CPopApp*)::AfxGetApp())-> hCursorPlay))

setFocus(pTouched);

Mouse, cursors, and keyboard 525

/* Click any cursor except cursor play (shoot cursor) sets

focus to a clicked critter, or to nothing if you missed ’em.

Don’t let playcursor setFocus. */

if (!pTouched)

return;

pTouched->makeServiceRequest(“move to front”); /* Only has visible

effect in 2D worlds. */

//Click Hand case

if (pview->hcursor() == ((CPopApp*)::AfxGetApp())->

hCursorDragger)

{ /* The draggable condition checks if the critter is willing to be

dragged. */

if (pTouched->draggable())

{

bDragging = TRUE;

onMouseMove(pview, nFlags, point); /* Move to the click

point. */

}

return; /* Note that by bailing out here we leave

the pfocus on the move critter, which has the

side effect that cBiota::move doesn’t move it,

which is good. */

}

//Click Pin case

if (pview->hcursor() == ((CPopApp*)::AfxGetApp())-> hCursorPin &&

pTouched != pplayer())

pTouched->die(); /* makes “delete me” request, possibly does

more */

//Click Zap case

if (pview->hcursor() == ((CPopApp*)::AfxGetApp())-> hCursorZap)

pTouched->zap();

/* makes “zap” request for this guy. */

//Click Replicate case

if (pview->hcursor() == ((CPopApp*)::AfxGetApp())->

hCursorReplicate)

pTouched->replicate();

/* makes “replicate” request for this guy. */

//Clean up

pbiota->processServiceRequests(); /* So you don’t change

critter twice. If you wait for the timer to trigger

CPopDoc::stepDoc to call the processServiceRequest,

you might possibly manage to click or drag the same

critter again. The reason is that you may have several

OnLButtonDown messages in the message queue, and when

they are processed you will get several calls to

onLButtonDown. */

Software Engineering and Computer Games Reference526

setFocus(NULL); /* For all of the one-time actions, we release

the pfocus after the action, because it’s confusing to see

the critter frozen in focus after you zap it for instance.

(The freeze would be because cBiota::move doesn’t move the

pfocus.) We do leave in the freeze on the move cursor. */

}

And our cGame::onMouseMove code is as follows:

void cGame::onMouseMove(CPopView *pview, UINT nFlags, CPoint point)

{

if (gameover() || gamepaused())

return; /* Don’t use mouse or keyborad messages until game

starts. */

pcontroller->onMouseMove(nFlags);

/* We pass this on, but ordinarily the critters don’t do

anything with it. */

if (playerListenerClass() == RUNTIME CLASS(cListenerCursor))

/* Don’t try and use the cursor as a tool if it’s attached

to the player. */

return;

// No Drag Case

if (!(nFlags & MK LBUTTON)

return;

// Drag Hand Case, with (hcursor == ((CPopApp*)::AfxGetApp())->

hCursorDragger)

if (pFocus() && bDragging)

{

cVector cursorforcritter =

pview->pixelToCritterPlaneVector(point.x, point.y,

pFocus());

/* It’s going to be easier, at least to start with, to

drag only within the focus critter plane. */

pFocus()->dragTo(cursorforcritter, pcontroller->dt());

/* Feed the current dt to dragTo so as to set the

critter’s velocity to match the speed of the drag;

this way you can “throw” a critter by dragging it. */

pbiota->processServiceRequests(); /* In case critter

reacts. If you wait for the timer to trigger

CPopDoc::stepDoc to call the processServiceRequest, you

might possibly manage to click or drag the same critter

again. The reason is that you may have several OnMouseMove

messages in the message queue, and when they are processed

you will get several calls to cGame::onMouseMove. */

}

}

Mouse, cursors, and keyboard 527

A thing to point out here is the standard trick for dragging. The idea behind
dragging is that you want your mouse move code to behave differently depend-
ing on whether or not the left button is down. The trick is to preface any drag-
ging code with two lines like this.

if (!(nFlags & MK_LBUTTON)) //Bail unless the left button is down.

return;

The Windows MK_LBUTTON constant is a single-bit binary number, like 1 or
2 or 4 or 8, and the nFlags will have this bit set if the left button was down
at the time the mouse move took place. There are other MK_ masks as well:
MK_RBUTTON, MK_MBUTTON, MK_CONTROL, and MK_SHIFT, where the last two flags
allow you to have the effect of a mouse drag depending on whether the Ctrl

or Shift key is down.
A second thing to point out is that since we wanted the left drag with the

Pin cursor to pop bubbles just like a left click does, we could do this by simply
calling the onLButtonDown method. This is a far better practice than putting a
copy of the relevant bubble-popping code inside the onMouseMove. This adheres
to our general principle of good program design that you should never have
copies of the same code in different places. (See game.cpp for details)

28.3 The mouse wheel

Though not everyone has a wheel mouse yet, they are becoming more popular. If
you don’t have one, you really should get one, as the wheel makes it a lot easier
to scroll through all the files you have to look at when you’re programming. An
additional good feature of some wheel mice (such as Microsoft’s high-end one)
is that you can press down on the wheel to simulate a double click.

You can add a handler for WM_MOUSEWHEEL to add a method BOOL

CPopView::OnMouseWheel(UINT nFlags, short zDelta, CPoint pt). Check the Visual
Studio help for the meaning of the arguments.

For our purposes, we only want the mouse wheel to scroll through the differ-
ent tool types. In the Pop Framework build, the mouse wheel scrolls through all
the available cursors for each game. Thanks to encapsulation and OOP, the
mouse wheel code is particularly clean.

BOOL CPopView::OnMouseWheel(UINT nFlags, short zDelta, CPoint pt)

{

/* Swap the cursor functionality, depending which cursors the game

uses. We just use the sign of zdelta, which will be some positive

or negative number, depending on which way and how far you turned

the wheel. */

pgame()->nextHCURSOR(_hCursor, zDelta);

return TRUE;

}

Software Engineering and Computer Games Reference528

28.4 Focus and autofocus

A slight interface problem arises when we use the accelerator keys or the mouse
wheel to change the cursor type. The problem is this. We might sometimes
have two views open in a splitter window, one on the left and one on the right.
Suppose that in the view on the left, the Pin cursor is selected and in the view on
the right, the Hand cursor is selected. Since the CPopView::OnSetCursor gets called by
a view whenever the cursor passes over it, the cursor changes from Pin to Hand
as we move it from left to right, and changes back to Pin when we move back
to the left. This happens automatically, without any clicking of the mouse.

In an MDI program with several views open, only one view will have what is
called the focus. This is the view whose caption bar is highlighted. In an MDI
program, you can change the focus by clicking on one of the views, by pressing
the Ctrl+F6 key combination, or by using the Window popup menu and selecting
one of the views listed at the bottom. The focus view is the view which handles
menu selections, toolbar buttons, and accelerator keys, and dialog information.

Now here’s our problem. Suppose the left view has the focus. Its caption bar
is highlighted. The cursor is over the left view and it shows the Pin cursor.
Move the cursor over the right view, and the cursor changes to the Hand cursor.
Now press 2 or rotate the mouse wheel. What happens?

The highlighted toolbar button showing the active cursor type changes. But
the cursor doesn’t change. And you’re confused. You’re an unhappy user. And
then, to confuse you the more, if you move your cursor back over the left view,
the cursor there is a hand instead of a pin.

The problem here is that the cursor’s appearance is reflecting the toolstate of
the view under the cursor. But the accelerator key and mouse wheel shortcuts
are changing the toolstate of the focus view, which will not be the same as the
view under the cursor until you’ve clicked the cursor in that view.

What to do? One option would be just to get rid of the confusing accelerator
key and mouse wheel tool controls. Another option would be to use a context
menu as described in Exercise 28.5. This option would work because once you
right-click to open the context menu, you’ve clicked inside the underlying view
and you’ve automatically made it your focus. An even easier option, that you
can try in Exercise 28.7, is to let a right-click just swap the tool type without
even showing you a context menu.

There is a more complicated solution, which is to have the focus change
automatically to whatever view is currently under the cursor. The Pop Frame-
work lets you choose this option by selecting Window | Autofocus. You can
check the Pop Framework CPopView::OnSetCursor code in popview.cpp to see how
it’s implemented.

28.5 The keyboard

Let’s talk about how we handle the keys in the Pop Framework. In order to process
keys, your CView can either have an OnChar handler or an OnKeyDown handler.

Mouse, cursors, and keyboard 529

But it turns out, the OnChar handler is only good for letter keys. So in order to
process arrow keys we use VisualStudio to add to CPopView the OnKeyDown

handler for the WM_KEYDOWN message.
When you press a key, the view that has the focus receives an OnKeyDown

message. If you continue holding the key down, the focus view will continue
receiving OnKeyDown messages (but it won’t necessarily get repeated OnChar

messages). The timing between these messages varies greatly from machine to
machine, and you should never write code that depends on any assumptions
about how often or how seldom the repeated OnKeyDown messages will come
in when somebody holds down a key. One reason for the variation is that most
computers have a BIOS setting for how often to generate ‘autorepeat’ or ‘type-
matic’ messages when a key is held down. Another reason for the variation is
the behavior of Windows itself. If it matters to you if a key is being held down,
it is up to you to keep track of this yourself rather than depend on repeated
OnKeyDown messages.

When you release the key, the focus view receives an OnKeyUp message. One
thing that can cause problems here is that if you press a key while a given view
has focus, hold the key down, switch the focus (by selecting another view or
by opening a menu popup or dialog), and then release the key, the initial view
window will not receive the OnKeyUp message.

The UINT nChar argument to the key handlers is a keycode. For letter and
number keys, this code is simply the ASCII code for that key. In C, C++ and
Java we write an ASCII code for a character by putting the character in single
quotes. Thus ‘A’ is the ASCII for the A key.

The keycodes for the non-ASCII keys are defined in a file called winuser.h.
These codes have names that start with VK_. Thus VK_LEFT is the Left arrow key,
VK_F2 is the F2 key, VK_SHIFT is the Shift key and so on. We list the keycodes
in Appendix A; the numerical values of the keycodes should never make any
difference to you, but it is good to have the listing just so as to know exactly
what all the names are. (Without the list, you have to guess, for instance,
whether the Control key, which has ‘Ctrl’ printed on it, is VK_CTRL or
VK_CONTROL.) One gotcha in key programming is that you cannot automati-
cally use a keycode like VK_A in place of the standard symbolism ‘A’.

It can be useful to be able to tell if an OnKeyDown message is from the user’s
first press of a key or if it’s from the user holding the key down. As mentioned
above, most keyboards generate repeated OnKeyDown messages for any key you
hold down. In the Pop Framework we won’t actually care about this feature;
what will matter to us more is whether the critters have already had a chance to
detect a given keypress message.

As was mentioned in Chapter 12: Listeners, the Pop Framework has a special
class called cController to encapsulate our key handling code, and each cGame

object has a cController member. This means that in our CPopView, we do very little
work inside the key handlers; we just have them pass the buck to the cGame.
The game stores the key information in the controller, and then makes this
information available to each critter. You could also override the methods so
that the game did something extra for certain keypresses. The gain of having

Software Engineering and Computer Games Reference530

the key information in the controller is twofold: the controller organizes the
keydown/keyup pairing and makes the key information available to any critter
that needs it. In some games, you might well want to have more than one critter
responding to the keys (e.g. left and right flippers in a pinball game).

Here’s the code where the Pop Framework reads the keys:

void CPopView::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)

{

/* We will use the Windows-defined VK_??? symbols to stand

for the various nChar values. Most of these are defined in

the Visual C++ include file winuser.h. A few that should be

defined are not, so we fix this by #defining them in the

controller.h header file. */

/*Although the documentation says nRepCnt gives you the

number of repeated typematic messages from a keypress,

this may not always to be true. Alternately, the doc says

Bit number 14 of nFlags tells me if a prior OnKeyDown

message has already been sent from this particular keypress.

If this bit is on, the key is being held down. You access

bit 14 via (fFlags & (1<<14)). But in any case we are not

very interested in detecting repeated typematic OnKeyDown

messages, instead we plan to make cController set a

GOTTWICEBIT bitflag to signal when a given key press has

been accessed more than once by the critters. This is more

of an issue than whether we have a typematic repeat. */

UINT control = (0x8000 &

::GetAsyncKeyState(VK_CONTROL))?cController::CONTROLBIT:0;

/* Is control key down? The GetAsyncKeyState method returns

a short unsigned int that has a one in its high bit if

the key in question is down. I trust this more than using

the nFlags.

No matter how you detect Ctrl, on the Microsoft Natural

Keyboard, the control key blocks the INSERT key, so we can’t

count on using the Ctrl+INSERT combination for anything. In

the same critical vein, note that when the Alt key is down,

you do not get any OnKeyDown messages at all. This contradicts

the Microsoft doc that says the nFlags have a bit (#13) to

tell you if the Alt key is down. */

UINT shift = (0x8000 &

::GetAsyncKeyState(VK_SHIFT))?cController::SHIFTBIT:0;

/* Is shift key down? Again, GetAsyncKeyState seems more

reliable than nFlags. */

nFlags = control | shift;

pgame()->onKeyDown(this, nChar, nFlags);

}

Mouse, cursors, and keyboard 531

The view reacts by passing the keydown messages to the cController which
will detect on its own when a given key has been released. In its update(dt)

method, cController uses the a global Windows method SHORT GetAsyncKeyState

(int vKey).
We put the scope resolution operator in front of this method name with

nothing to the left of it to remind ourselves that the method is indeed global
and not a member of any class and call it ::GetAsyncKeyState. The 16-bit signed
integer variable returned sets ‘the most significant bit’ to tell you if the key is
down or not, so we mask with 0X8000, which in binary is a one followed by 15
zeroes. This call works both with keys and with mouse buttons. (The left mouse
button has key code VK_LBUTTON.) The GetAsyncKeyState method gets your key
information regardless of which window currently has the focus. It’s a direct
hardware access method.

[A troubling issue with the keyboard in Windows is the behavior of the
group of four Arrow keys, not the ‘digital keypad’ on the right, but the little
group with Up and then below it Left Down Right. The Left key here fails to fire
if the Up and Space are pressed. By ‘failing to fire’ we mean that the Left key
passes a nChar value of 0 to the OnKeyDown. If you hold down Space and Left, the
Up key is then blocked in the same way. What makes this especially puzzling is
that the Right key will fire when the Up and Space are pressed. Also this blocking
doesn’t occur for the digital keypad Left Arrow keys, only for the keys on the
extra little group of four Arrow keys.]

We use the cController::onKeyDown method to tell the controller when we press
a key.

void cController::onKeyDown(UINT nChar, UINT nFlags)

{

if (_keystate[nChar] == KEYOFF)

{

_keystateage[nChar] = 0.0;

_keystate[nChar] = KEYON | nFlags;

}

else

_keystate[nChar] |= TYPEMATICBIT;

/* Notice when you get repeated keypresses by holding a

key down */

}

The cController::update takes a dt argument for two reasons: first, cController

remembers the last dt in case anyone needs it; and second, cController tracks how
long each currently pressed key has been held down – this is useful for having,
say, the rotation of a spaceship start out slow and then speed up a bit if you
press, say, the Left Arrow key and continue holding it down.

Here’s a simplified version of the code for cController::update. Note that since
we have the cController::onKeyDown method to turn the keys ‘on,’ we use
cController::update only to ‘age’ keys or to turn them off. Checking the key states

Software Engineering and Computer Games Reference532

‘by hand’ with the ::GetAsyncKeyState method is safer than relying on the Windows
OnKeyUp message, which may not get sent to the view you are currently in.

void cController::update(Real dt)

{

for(int vkindex=0; vkindex< VKKEYCOUNT; vkindex++)

{

if (keystate[vkindex] & KEYON)

{

if (!(0x8000 & ::GetAsyncKeyState(vkindex)))

//Key isn’t down.

{

keystate[vkindex] = KEYOFF; //Turn off the keystate.

keystateage[vkindex] = 0.0;

}

else //Key is down.

{

keystateage[vkindex] += dt; //Age the keystate.

if (keystate[vkindex] & GOTONCEBIT)

//keystate[vkindex] |= GOTTWICEBIT;

else

keystate[vkindex] |= GOTONCEBIT;

}

}

}

}

The place where the controller information may be used by the critters is this
line of the cGame::step(dt) method: _pbiota->listen(dt). These cascade down
to cListener calls that have access to the game’s cController object. Figure 12.1 in
Chapter 12: Listeners is a sequence diagram of the process.

Exercises

Exercise 28.1: Viewing the OnMouseMove calls

Use a block like #ifdef BOGUS at the start and #endif at the end to temporarily com-
ment out the CPopView::onMouseMove code inside the brackets and replace it with these
three lines.

CDC *pDC = GetDC();

pDC->TextOut(point.x, point.y, “X”);

ReleaseDC(pDC);

This way you’ll see an X at each position where the mouse sends a an OnMouseMove
call. Notice that if you move the mouse fast the X’s are further apart. Also notice that if
you resize the window after putting the X’s in it they go away. Why is that?

Mouse, cursors, and keyboard 533

The reason the three suggested lines look as they do is because you need to have a
CDC object in order to call a ‘graphics’ function like TextOut. You can get a CDC from a
CView using the GetDC function. The only requirement here is that when you get a CDC
like this, you need to release it with a ReleaseDC call before leaving the block of code
where you got the CDC.

Exercise 28.2: Using system-wide cursor resources

It turns out there are a few system-wide cursor resources you can use. The system-wide
Windows cursors are called IDC_ARROW, IDC_CROSS, IDC_EXCLAMATION, and IDC_WAIT.
You can get an HCURSOR for one of them by using the CWinApp::LoadStandardCursor
method which takes one of these IDC_??? for a system-wide cursor name as argument.
Change the Pop Framework code so that it uses the system-wide IDC_EXCLAMATION
instead of our IDC_PIN.

Exercise 28.3: The grenade tool

In this problem, add a ‘grenade’ cursor tool which will remove all nearby critters when you
click it. When you left-click with the grenade tool, you destroy all the critters whose center
is within some fixed Real _grenadedistance of the cVector point corresponding to the
cursor click. Or maybe it will be better to just destroy the first int _grenadekillpower

count critters that you find within _grenadedistance, counting down from the closest
ones. This way, if you have a really deep stack of critters, like the Game | Huge selection,
you can have fun using repeated grenade hits to blast your way down. Try and think of a
game where the grenade tool would serve a useful purpose.

Exercise 28.4: A Rotate tool

It would be nice in the Dambuilder game to have a rotating tool, that is, a cursor tool so
that if you left-click with it, it will rotate a selected wall critter a bit counterclockwise. See
if you can design and implement this.

Exercise 28.5: Creating floating popup menus

A lot of programs popup a context menu when you right-click. You can do this as follows.
(a) Use the Resource View to add a new menu with an ID like ID_TOOLPOPUP. (b) Type
any old character, which will add a top-level menu selection with a popup under it. Go
down into the popup and add ‘Pin’ and ‘Hand’ selections with, respectively, the ID values
ID_VIEW_PINCUSOR and ID_VIEW_DRAGGERCURSOR. (c) Class Wizard will ask which
class to associate the new menu with. Associate it with CPopView. (d) Use Class Wizard
to add a WM_CONTEXTMENU handler to CPopView. Code the handler like this.

void CPopView::OnContextMenu(CWnd* pWnd, CPoint point)

{

CMenu menu;

menu.LoadMenu(ID_TOOLPOPUP);

menu.GetSubMenu(0)->

TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x,

point.y, this);

}

Software Engineering and Computer Games Reference534

To make the popup really fast to use, make the easy keys 1 and 2 be the menu short-
cuts on this little menu. That is, use these strings for our menu item names ‘&1 Pin’ and
‘&2 Hand.’

Exercise 28.6: An accelerator key for autofocus

Open up about four windows and get an idea of what autofocus does. It would be a useful
thing to have an accelerator key for Window | Autofocus. Use the Ctrl+A combination
for this. The idea is that we might want to usually leave autofocus on, and only hit Ctrl+A
to turn it off when we want to move our mouse away from a view and up into the menu bar
and we don’t want to worry about having the view get autofocused away from the view we
want to change.

Exercise 28.7: Using the right mouse button

Give CPopView a message handler for WM_RBUTTONDOWN and have it change the cursor
type. Or, if (a) you’ve done a right button popup and don’t want to lose it and (b) your
mouse has a middle button, use the WM_MBUTTONDOWN.

Mouse, cursors, and keyboard 535

29Serialization

In this chapter we’re going to talk about how to save information about your
current document’s data, and how to read that kind of information back in.
This process used to be called file handling, but these days it’s called serialization.
To serialize a document means either to write it to a file, or to read information
into it from a file. The word ‘serialize’ is used to express the notion that we
are converting a complicated data object into a simple series, or sequence, of
0s and 1s.

The MFC framework makes it exceedingly easy to open and save files. One
good thing is that the work of finding the file names is already done for us. The
presupplied File Open and File Save dialog boxes are examples of what are
called Windows common dialog boxes. The Windows operating systems supplies
us with a number of these.

Another good thing is that the place where we do our file loading and saving
is easy to find; it’s the CPopDoc::Serialize method in PopDoc.cpp. The AppWizard
has put a skeleton of the code there with TODO comments indicating where to
add your code.

Before undertaking serialization, you should adjust your File dialog so
that it uses a reasonable default extension for the files you want to save and
open (see Sections 23.9 and 29.9).

29.1 Serialization summary

Here’s a summary of how to serialize the data in a CDocument class.

• Use the Resource Editor to change the document string to use a distinctive
file extension for your files.

• If your document has any data members that are instances of a class cMyClass

which you wrote, define the cMyClass as a child of CObject (or as a child of
some other class which inherits from CObject) and add the DECLARE_SERIAL
and IMPLEMENT_SERIAL macros to, respectively, the cMyClass definition in the
*.h file and the cMyClass implementation in the *.cpp file.

• Override the cMyClass::Serialize(CArchive &ar) method so that it writes and reads
the data members of cMyClass, according to whether or not ar.IsStoring()

is TRUE. Be sure to write and read the data members in the exact same order.
Use the standard extraction and insertion operators to write and read simple
types.

• If your document has an array member that holds an array of pointers to
your cMyClass objects, declare the array type as CTypedPtrArray<CObArray,

cMyClass*>.

• Override your CDocument::Serialize. First use overridden Serialize calls inside
it to serialize embedded class objects or arrays, and follow this with code
that uses ar.IsStoring()to decide whether to write or read, and which uses
the standard extraction and insertion operators to write and read simple
types.

29.2 Serialization in the Pop Framework

Serialization typically works by cascading downwards. Thus the cPopDoc::Serialize

makes a call to the cGame::Serialize method which in turn calls cBiota::Serialize

and so on. Figure 29.1 shows the cascade of some of the serialize calls that
we use.

Serialization 537

Figure 29.1 Sequence diagram of the Pop Framework serialize

29.3 Serialize, operator<<, and operator>>

Rather than working directly with files in MFC, we work with CArchive objects,
which are friendly wrappers that have files buried down inside them. The general
process of writing from or reading into a class such as CPopDoc or cCritter gets
encapsulated into a method known as Serialize. Serialize is a polymorphic method
that’s declared way up inside CObject as virtual void Serialize(CArchive& ar).

One of the useful things about a CArchive is that it ‘knows’ whether you’re
writing to it or reading from it. That is, if you have SomeClass which is perhaps a
child of ParentClass, the SomeClass::Serialize function will normally have the form

void SomeClass::Serialize(CArchive& ar)

{

if (ar.IsStoring()) //Writing data.

// write to ar.

else //Reading data.

// read from ar.

}

How do we read and write data from a CArchive? If the data is a class that
has its own Serialize method, you can call that. And for primitive data you use
operator<< and operator>>. Only a class object can have a Serialize method. If
you’ve worked with C++ file writing before, you’re familiar with the overloaded
‘extraction’ operator<< and the ‘insertion’ operator>>. In MFC, these operators are
friends of the CArchive class. For all the basic types like int, float, and double, and
CString, there are operators like this.

CArchive& cArchive::operator <<(int i);

CArchive& cArchive::operator >>(int i);

For many MFC classes like CString, there are similar operators, though these are
viewed as binary rather than unary operators. Examples are

CArchive& operator <<(CArchive& ar, const CString& string);

CArchive& operator >>(CArchive& ar, CString& string);

The << is called ‘extraction’ which means that you use it to extract data from
your class and put it into a CArchive. The >> is called ‘insertion’ because you use
it to get data from a CArchive and insert it into your class.

For a simple utility class like a 2D cVector2, we can overload the operators
like this with these declarations inside the cVector2 class definition.

friend CArchive& operator<<(CArchive& ar, const cVector2 &v);

friend CArchive& operator>>(CArchive& ar, cVector2 & v);

And then the cVector2 implementations look like this.

Software Engineering and Computer Games Reference538

CArchive& operator<<(CArchive& ar, const cVector2 &v)

{

ar << v._x << v._y;

return ar;

}

CArchive& operator>>(CArchive& ar, cVector2 & v)

{

ar >> v._x >> v._y;

return ar;

}

The reason that these operators return a CArchive& is so that you can chain
them together, as we see in a line like ar << v._x << v._y. The C language asso-
ciates expressions from the left, and parses this line as (ar << v._x) << v._y, so
we need for the first << call to return another CArchive& to use for the second <<

call. The argument type is CArchive& rather than CArchive, because these calls
change the state of the CArchive.

Just for completeness, we define a Serialize method for cVector2 as well. As a
general rule, we should, whenever possible, use Serialize rather than the over-
loaded operators << and >>. This is especially true for CArray objects, for which
the overloaded operators << and >> don’t work.

For a more complicated class like cCritter which we expect to use in serializing
pointer-based cCritter objects from within other classes, we write the Serialize func-
tion first, and then add the special DECLARE_SERIAL and IMPLEMENT_SERIAL
macros to tell the compiler to define operator<< and operator>> for the class.
(This in fact might have been a good approach to use with the cVector class
as well.)

The reason why we prefer to define Serialize and let the application frame-
work generate the other operators is that, with a more complicated class, we
really need two forms of the insertion and extraction operators. That is, we
need the embedded forms:

operator<<(CArchive & ar, cCritter &critter). Embedded extraction.
operator>>(CArchive & ar, cCritter &critter). Embedded insertion.

And we need the pointer-based forms:

operator<<(CArchive & ar, const cCritter* pcritter). Pointer-based extraction.
operator>>(CArchive & ar, cCritter *& pcritter). Pointer-based insertion.

The idea behind the pointer-based forms is that we don’t want to read and
write the address that is the pointer. Instead we want the pointer-based extraction
operator to extract data from a pointer-based object and write it to the archive.
What we want the pointer-based insertion operator to do is more complex. We
actually want it to turn the argument pointer into a pointer to a new object,
and then to read the CArchive data into that.

Serialization 539

If your class inherits from CObject and if the class definition and implementa-
tion use the DECLARE_SERIAL and IMPLEMENT_SERIAL macros, then you get all
four of the special operators by writing one single function, the class’s Serialize

function.
How much of an object should we serialize? The best practice is not to worry

about whether or not you really ‘need’ to serialize a variable. Perhaps it gets
set by the constructor anyway? So maybe you don’t have to serialize it? The
best practice is to serialize everything in sight. Work your way down the list of
declarations in the header file and serialize everything. Once you get the ‘save’
direction of the Serialize code written, block-copy it and turn all the << into >>
to make sure you ‘load’ things in the same order.

Here’s a small part of the cCritter::Serialize. A bit more of it is printed later in
the chapter, and all of it’s in critter.cpp of course.

void cCritter::Serialize(CArchive &ar)

{

CObject::Serialize(ar);

//Call the base class method to save the CRuntimeClass info.

if (ar.IsStoring()) //Writing data.

{

//Personal variables

ar << _age << _lasthit_age<< _oldrecentlydamaged << _health <<

_shieldflag <<

//........ETCETERA..........

}

else //Reading data.

{

//Personal variables

ar >> _age >> _lasthit_age >> _oldrecentlydamaged >> _health >>

_shieldflag >>

//........ETCETERA..........

}

}

For now, just focus on the fact that we write and read a sequence of things to ar
in the same order.

The way we use the two SERIAL macros is that we start the cCritter class
declaration like this in the file critter.h.

class cCritter : public CObject

{

DECLARE_SERIAL(cCritter);

And we put a line like this at the top of the critter.cpp file, right after the #include

lines.

IMPLEMENT_SERIAL(cCritter, CObject, 0);

Software Engineering and Computer Games Reference540

Thanks to DECLARE_SERIAL and IMPLEMENT_SERIAL, using the cCritter::Serialize,
MFC will automatically define four overloaded operators that work something
like this. What we put here is not real code, it’s the idea behind the code, or
what’s sometimes called pseudocode.

CArchive& operator<<(CArchive & ar, cCritter &critter)

// Embedded extraction.

{ //=======CAUTION:PSEUDOCODE, NOT REAL CODE============

//MFC sets ar so IsStoring() is TRUE

critter.Serialize(ar);

return ar;

}

CArchive& operator>>(CArchive & ar, cCritter &critter)

// Embedded insertion.

{ //=======CAUTION:PSEUDOCODE, NOT REAL CODE============

//MFC sets ar so IsStoring() is FALSE

critter.Serialize(ar);

return ar;

}

CArchive& operator<<(CArchive & ar, const cCritter* pcritter)

// Pointer-based extraction.

{ //=======CAUTION:PSEUDOCODE, NOT REAL CODE============

//MFC sets ar so IsStoring() is TRUE

pcritter->Serialize(ar);

return ar;

}

CArchive& operator>>(CArchive & ar, cCritter *& pcritter).

Pointer-based insertion.

{ //=======CAUTION:PSEUDOCODE, NOT REAL CODE============

//MFC sets ar so IsStoring() is FALSE

//MFC reads the CRuntimeClass information out of ar to get a

//cCritterChild class type.

pcritter = new cCritterChild();

pcritter->Serialize(ar);

return ar;

}

If you use Edit | Find in Files to root around in the MFC source code, you’ll
see that what the operator>>(CArchive & ar, cCritter *& pcritter) does is to make a call
of the form pB = (cCritter *) ar.ReadObject(RUNTIME_CLASS(cCritter)),
which (a) reads off the class name ‘cCritterChild’ and object size informa-
tion for the next object in the archive, which makes it polymorphic, (b) calls
pcritter = new cCritterChild(), and (c) calls pcritter->Serialize(ar) to
copy the information from ar to *pcritter.

Serialization 541

And what makes the critters get serialized in the first place? This results from
the serialization of the _pbiota array in the CGame::Serialize method.

One gotcha to be aware of is that when you have as CArray type _myarray,
you must serialize this object with calls to Serialize rather than trying to use
operator<< and operator>>.

_myarray.Serialize(ar); //Yes, this works.

ar << _myarray; //No, this won’t compile.

ar >> _myarray; //No, this won’t compile.

The *& combination

The first time you see the CArchive operator>>(CArchive & ar, cCritter *& pcritter)

declaration, you may perhaps be distressed by seeing the *& combination. Since
you knew that * dereferences a pointer and that & generates a pointer reference
to an object, you might have the feeling that the *& should cancel each other
out. This would indeed be the case if you were to write something like this.

int x, y;

x = 1;

y = *&x;

The third line would indeed compile to exactly the same machine code as
y = x;.

But when the & is used inside a function prototype’s argument list it
doesn’t have the same meaning. Remember that if you write a prototype
like void someFunction(AnyType &mutable), what you mean is that you call
someFunction with an AnyType argument and that someFunction is allowed to
change the value of the AnyType argument.

AnyType mutable = whatever;

someFunction(mutable);

//mutable may no longer be equal to whatever.

So, logically, this means that if you write void otherFunction(cAnyClass*
&mutablepointer), what you mean is that you call otherFunction with a
cAnyClass* argument, and that otherFunction can change the value of the
cAnyClass* pointer that you feed into it.

cAnyClass* mutablepointer = whateverpointer;

otherFunction(mutablepointer);

//mutablepointer may no longer be equal to whateverpointer.

The reason that we want the operator>> to have a cCritter* &pcritter argument
is that, typically, the pcritter argument we feed into it is going to be NULL, and
we’re going to be counting on the operator>> to construct a new cCritter, fill it
with data, and set the value of pcritter equal to that nice new pointer.

Software Engineering and Computer Games Reference542

Summing up, when you see a prototype like otherFunction(cAnyClass*
&mutablepointer), mentally insert some parentheses and read it as
otherFunction((cAnyClass*) &mutablepointer).

29.4 Serializing an array of pointers

The most important part about the Pop Framework’s serialization code is one
single line in the cGame::Serialize method:

_pbiota->Serialize(ar);

Getting that line to work was quite a task. Why? The _pbiota object is a
CTypedPtrArray<CObArray, cCritter*> of pointers, some of which point to cCritter

objects and some of which point to objects of child class types such as
cCritterBullet, cCritterArmed, cCritterArmedPlayer, and the like. The array template
type CTypedPtrArray<CObArray, cCritter*> is defined by MFC as an alternative to the
simpler template type CArray<cCritter*, cCritter*>.

First of all, we need to tell the cCritter class and its subclasses how to write
and read their data; we do that by implementing Serialize for the class and the
subclasses.

Second of all, we need to arrange things so that we save and read the contents
of the _pbiota array objects and not the values of the pointer addresses. This will
happen partly because we used the DECLARE_SERIAL and IMPLEMENT_SERIAL
macros and partly because we are using a CTypedPtrArray<CObArray, cCritter*> array
rather than a vanilla CArray<cCritter*, cCritter*>.

Third of all, _pbiota is a polymorphic array of pointers, some of which are
cCritter* pointers and some of which are various child critter class object pointers,
so we need some way to tell which is which when we are writing and reading
their data. This, again, is taken care of by the fact that we used the SERIAL macros
and the fact that we used the special complicated kind of CArray template
CTypedPtrArray<CObArray, cCritter*> instead of the simpler CArray<cCritter*, cCritter*>.

It turns out that the default behavior of a standard CArray is in fact the wrong
thing for arrays of pointers: it block copies whatever data is in the array. That
is, it writes some information that you totally don’t care about: the numerical
values of the addresses where your data objects live. What you want to write is
the data that lives in the objects. There are three ways of avoiding the inappro-
priate serialization behavior of CArray.

Serializing a CTypedPtrArray of CObject pointers

This is the most modern approach, the one we use in Pop Framework. If your
class inherits from CObject, you can use a special kind of CTypedPtrArray instead of
a CArray .

CTypedPtrArray<CObArray, cCritter*> *_pbiota;

Serialization 543

(To be accurate we must immediately mention that _pbiota is actually a cBiota*
object; the cBiota class is a child of the class CTypedPtrArray<CObArray, cCritter*>.)
The virtue of using the CTypedPtrArray is that a CTypedPtrArray ‘knows’ it’s made of
pointers so it will serialize your pointers by calling the proper kind of operator>>

or operator<< for each pointer. This technique will not work if you use the
CTypedPtrArray<CPtrArray, cCritter*> *_pbiota, in fact if you use an array
like this, your serialization won’t work at all.

The first modifying argument to a CTypedPtrArray definition can be either
CPtrArray or CObArray. It’s the second option that we must use here. The CObArray

tells the CTypedPtrArray it is made of pointers to serializable CObjects. The effect
of the first argument is to make CTypedPtrArray<CObArray, cCritter*> in fact be a
special kind of CObArray.

[It would be more logical if the modifying argument used to specify the kind
of CTypedPtrArray were CObPtrArray, and not CObArray, but, as we’ve said before, if
MFC were fully consistent and logical, it wouldn’t be true Windows programming!
(Not that any other kinds of programming are perfectly logical either.)]

If you set a breakpoint at the line _pbiota.Serialize(ar) and step though a
save or load in the debugger we find that the following MFC method gets called
down in an MFC source-code file called Array_O.cpp. (In order to be able to step
into MFC source code, you need to have set the options to install the source
code when you installed Visual Studio.)

void CObArray::Serialize(CArchive& ar)

{

if (ar.IsStoring())

{

ar.WriteCount(m_nSize);

for (int i = 0; i < m_nSize; i++)

ar << m_pData[i];

}

else

{

DWORD nOldSize = ar.ReadCount();

SetSize(nOldSize);

for (int i = 0; i < m_nSize; i++)

ar >> m_pData[i];

}

}

In looking at this code, understand that any kind of CArray, CObArray, or
CTypedPtr array has two main private fields: its m_nSize that gives its size, and
its m_pData that gives its array of elements. In the case of an array of cCritter*

pointers, m_pData will have the type cCritter**.
As we described in the last subsection, we have a special overloaded pointer-

based extraction operator<< and the special overloaded pointer-based operator>>

to read the pointers intelligently. Rather than copying the address values of the

Software Engineering and Computer Games Reference544

pointers, the CObArray calls call these special overloaded extraction and insertion
operators.

It’s worth repeating that we don’t explicitly define operator<<(CArchive &, const

cCritter*) and operator>>(CArchive &, cCritter *&). These are implicitly defined by
(a) making cCritter a child of cObject, (b) putting the DECLARE_SERIAL and
IMPLEMMENT_SERIAL macros in, respectively, critter.h and Critter.cpp, and (c) pro-
totyping and implementing a cCritter::Serialize(CArchive &ar) method.

Serializing a CArray of CObject pointers by overloading ::SerializeElements

The second approach is to stick to the more familiar approach of defining
CArray<cCritter*, cCritter*> _critters. The problem here will be, as men-
tioned above, that the default CArray::Serialize method will block copy the
pointer addresses. So here we need override a certain global polymorphic the
SerializeElements function. We would add some code like this to our Popdoc.cpp

file.

void AFXAPI SerializeElements(CArchive &ar, cCritter **pcritterarray,

int count)

{

int i;

if (ar.IsStoring())

for (i=0; i<count; i++)

ar << pcritterarray[i];

// Uses operator<<(CArchive &, const c*)

else

for (i=0; i<count; i++)

ar >> pcritterarray[i];

//Uses operator>>(CArchive &, cCritter *&)

}

Note the peculiar prototype for the SerializeElements global function. Another
tricky point here is that the linker will complain if you define this function in
critter.h or Critter.cpp. Your override of SerializeElements has to be defined inside the
document implementation file Popdoc.cpp. A good place to keep it is right before
your override of the CDocument::Serialize function. You may be tempted to skip
writing this odd little bit of code when using a standard CArray of pointers, but
if you leave it out, then when you try and read in a file, your program will crash
because you will read garbage values into your pointers.

Serializing a pointer array the hard way

We said there were three approaches, so what’s the third? The third is to
pigheadedly do it all yourself and not even derive cCritter from CObject. The
price would be that we then need to keep a CString _classname field inside our

Serialization 545

cCritter and class to take the place of the CRuntimeClass information. It’s enough
to just have _classname be either cCritter or cCritterBullet or whatever. Note, by the
way, that any child of the CObject class has a CRuntimeClass member, and one
of the fields of CRuntimeClass is in fact a CString that holds the name of the class.
So if you do this by hand, you’re only copying what the MFC framework wants
to do for you automatically.

The trick for serializing an object this third way would be to save off the
name string before saving the object, and when you are reading it back in, you
read in the name string and have a switch statement to construct the right kind
of critter child class object pointer to read the object into. But there’s no reason
to work this hard. Save your energy for something other than reinventing the
CRuntimeClass!

29.5 Serializing pointers

Serializing pointer members

CPopDoc has a cGame* _pgame object as its most important member. Serializing
the cGame *_pgame pointer takes a bit of care.

Something to realize is that when you load into a CPopDoc, that CPopDoc

object will already exist, so it will have been initialized by a constructor call.
So the _pgame will in fact be a valid pointer. Whenever you load into a valid
pointer variable ptr, you have to call delete on the pointer first, otherwise you’ll
have a memory leak caused by the ‘orphaned’ object that the pointer pointed
to before you overwrote it with the load. For reasons we’ll now explain, we
must use an overloaded ar >> ptr operator to load into a pointer, rather than a
call like ptr->Serialize(ar).

To save and load the _pgame fields of CPopDoc, we use the autogenerated
overloaded operator<<(CArchive &ar, cgame *p) and operator>>(CArchive &ar, cGame

*&p). MFC has ‘written the code’ for these operators automatically because the
cGame

• inherits from CObject,

• has DECLARE_SERIAL and IMPLEMENT_SERIAL, and

• has its own Serialize defined

In the load case we want to make a new cGame* and place it into the _pgame

field, and this is exactly what ar >> _pgame does.
Now, as mentioned just above, in the load case, we delete _pgame before load-

ing it. At first you might think you could load either with _pgame->Serialize(ar)
or ar >> _pgame. But since you delete _pgame just before the load, it becomes
an invalid pointer just before the load, and you would get a crash if you
tried to call _pgame->Serialize(ar) for the load. We could actually use
_pgame->Serialize(ar) in the save case, but for symmetry in the appearance of
the read and write cases, we use ar << _pgame there.

Here’s a partial listing of the cPopDoc::Serialize.

Software Engineering and Computer Games Reference546

void CPopDoc::Serialize(CArchive& ar)

{

CObject::Serialize(ar);

if (ar.IsStoring()) // Save

ar << _pgame;

else //Load

{

delete _pgame; /*At CPopDoc construction a document creates a

default cGame *_pgame. So if we’re loading a game we need

to delete the existing game first or there will be a

memory leak.*/

ar >> _pgame; /* Uses CreateObject to creates a new cGame*

object of the correct child class, copies the new objects

fields out of the file, and places the pointer to the new

object in _pgame. */

_pgame->setGameover(TRUE); /* So you can press ENTER to

actually start it running. _brandnewgameflag will have

been set to TRUE by the constructor call inside the ar >>

call, so the first ENTER won’t randomize things. */

UpdateAllViews(NULL, CPopDoc::VIEWHINT_STARTGAME, 0);

}

}

Serializing reference pointers

One exception to the principle of ‘serialize everything in sight’ is when your
objects have pointer members that are used as references to point to other
objects that may or may not be getting serialized as well. This is, in other words,
a case where our code actually has two or more copies of the same pointer in
two different locations. One of these copies is the ‘member’ and this copy gets
serialized as just described. But the other copies are meant only to echo the
address value of the member pointer object. In these cases we need to do
something a little tricky.

The cGame class, for instance, has a separate cCritter* _pplayer pointer
that is the same value as one of the cCritter* actually in the cBiota *_pbiota

member. We track the index of where it appears in the cBiota array, if it does
appear, and we save that. Here’s some of the relevant code.

void cGame::Serialize(CArchive& ar)

{

int playerindex;

CObject::Serialize(ar);

/*It’s worth noting that when we call this next line in

loading mode, the _pbiota will be pointing in a non-NULL

cBiota that was created by the cGame constructor, so we’ll

need to have the cBiota::Serialize take care of deleting

members of an existing cBiota before loading into it. */

Serialization 547

_pbiota->Serialize(ar);

if (ar.IsStoring()) // Save

{

playerindex = _index(_pplayer);

ar << _border << /* ETCETERA */ << playerindex;

}

else //Load

{

ar >> _border >> /* ETCETERA */ >> playerindex;

/* _pplayer currently equals NULL or one of the old

dummy pointers in the cBiota, either way we don’t have

to delete it. Remember it’s only a reference

copy. */

_pplayer = _pbiota->GetAt(playerindex);

}

}

29.6 The cCritter serialize

All the tricks we’ve discussed come into play with the cCritter::Serialize. A critter
has a cCritter* _ptarget field that’s a reference pointer, so when you save and
reload the game file, which means saving and loading all of the critters, then
the copy of the target critter is not going to be loaded into the exact same area
of memory, and the old _ptarget pointer will no longer be correct. That’s why
we have the _targetindex field in the cCritter.

This reference pointer problem comes back in even stronger form with the
armed critters, who have pointers to their bullets. You can look at the Serialize

code inside the critterarmed.cpp file to see one way to work things out. In
particular look for the fixPointerRefs methods.

The cCritter also has member pointer fields. As we explained in the last
section, in order to load the pointer _psprite and _plistener fields of cCritter,
we must first delete them and then use the overloaded operator>> to overwrite
them with new pointers.

Note also that the CArray _forcearray has to be handled with Serialize and
that, to avoid having a possible memory leak, you have to empty it out before
you read into it. Here’s some relevant code.

void cCritter::Serialize(CArchive &ar)

{

CObject::Serialize(ar);

//Call the base class method to save the CRuntimeClass info.

if (ar.IsStoring()) //Writing data.

{

_forcearray.Serialize(ar);

//Generally you cant use << with a CArray.

//Sprite

ar << _psprite <<

Software Engineering and Computer Games Reference548

//Listener

_plistener <<

//Personal variables

_age << _lasthit_age<< _oldrecentlydamaged << _health <<

_shieldflag <<

//........ETCETERA..........

//Pointer index variables.

if (_pownerbiota)

_targetindex = _pownerbiota->_index(_ptarget);

//Prepare for a pointer reference.

else

_targetindex = cBiota::NOINDEX;

ar << _targetindex;

}

else //Reading data.

{

clearForcearray(); /* We have to empty out the array before

reading into it or we’ll have a memory leak in case

something’s in it. */

delete _psprite;

/* always delete a pointer before reading into it or you

have a leak. */

delete _plistener;

/* always delete a pointer before reading into it or you

have a leak. */

_forcearray.Serialize(ar); /* Read in. You usually can’t use >>

with a CArray. */

//Sprite

ar >> _psprite >> /* Uses CreateObject to creates a new

cSprite* object of the correct child class, copies the new

object’s fields out of the file, and places the pointer to

the new object in _psprite */

//Listener and force

_plistener >> // See the comment just above.

//Personal variables

_age >> _lasthit_age >> _oldrecentlydamaged >> _health >>

_shieldflag >>

//........ETCETERA..........

//Index for pointer reference variable.

ar >> _targetindex; /* cBiota::Serialize will call

cCritter::FixPointerRefs to replace this index

by a pointer. */

_ptarget = NULL; /* The cBiota::Serialize will call

all pcritter->fixPointerRefs for each critter to fix the

_ptarget, and also fix any pointer refs in the forces. */

}

}

Serialization 549

The cCritter::fixPointerRefs can only be called after all of the cCritter have been
loaded and added to the cBiota array, with this array installed as the _powner-
biota of each cCritter. The fixPointerRefs does the following, in part.

void cCritter::fixPointerRefs()

{

if (!_pownerbiota)

return;

else

_ptarget = _pownerbiota->GetAt(_targetindex);

}

29.7 Serializing child classes

If you have a child class of an existing class with a Serialize method, you will in
fact inherit a serviceable Serialize method. And if you have put the correct
DECLARE_SERIAL macro in your *.h and IMPLEMENT_SERIAL in your *.cpp, the
inherited Serialize code will save and load the right kinds of child class objects.

If your child class has some new members then you need to override the
Serialize method by adding this line to the class declaration: virtual void

Serialize(CArchive& ar), and by then implementing the method in the code.
For instance our cCritterBullet class includes a new _hitstrength field, and a

few other things, so we override its Serialize method to save and load this data.
When overriding a Serialize method, you always call the parent class’s Serialize

method at the start of the code block like this.

void cCritterBullet::Serialize(CArchive &ar)

{

cCritter::Serialize(ar);

if (ar.IsStoring()) //Writing data.

{

if(_pownerbiota && _pshooter)

_shooterindex = _pownerbiota->_index(_pshooter);

ar << _hitstrength << _dieatedges << _shooterindex;

}

else //reading data

{

ar >> _hitstrength >> _dieatedges >> _shooterindex;

_pshooter = NULL; //Gets fixed by the cBiota call to

fixPointerRefs.

}

}

Let’s look at the relevant fixPointerRefs here, too.

Software Engineering and Computer Games Reference550

void cCritterBullet::fixPointerRefs()

{

cCritter::fixPointerRefs();

if (_pownerbiota)

_pshooter =

(cCritterArmed*)(_pownerbiota->GetAt(_shooterindex));

}

As another example, cGamePicknpop uses two cRealBox rectangles, so we save
and load them.

void cGamePickNPop::Serialize(CArchive &ar)

{

cGame::Serialize(ar);

if (ar.IsStoring()) //Writing data.

ar << _packingbox << _targetbox;

else //Reading data.

ar >> _packingbox >> _targetbox;

}

It’s really easy to mess up your Serialize code, and when you do, it’s hard to
debug it. The most common error is to fail to save and then load things in the
same order. If this happens then, when you load, a lot of variables end up with
garbage in them and the program crashes in some (usually) unenlightening
way. When you have broken serialization code, the best practice is to back up
to a point where it works, and then begin adding in the code bit by bit, being
really obsessive about making things match.

One thing to keep in mind when testing your Serialize code is that the default
MDI behavior is to not open a given file if a file of the same name is already
open. So if you have saved a file as test.p17 and then leave it open and let it run
for a while and then try to reopen it to get the old state back, nothing will
happen. You need to close the current run of the game and then do a fresh
open to get the old version back.

29.8 Serializing a CRuntimeClass

Here’s a special bit of MFC arcana that took quite a while to figure out! How do
we serialize a CRuntimeClass? Here’s an example of how to do it from force.cpp

file. The long comment explains why this was a difficult thing to do.

void cForceClassEvade::Serialize(CArchive &ar)

{

cForce::Serialize(ar);

/* I had a hard time figuring out how to serialize the

CRuntimeClass *_pnodeclass.

Serialization 551

(1) You can’t call _pnodeclass.Serialize(ar), as this is

not a method of CRuntimeClass.

(2) Nor can you save off the CRuntimeClass m_lpszClassName

field and try and use RUNTIME_CLASS to reconstruct it,

as RUNTIME_CLASS requires a literal argument and not a

CString.

(3) MFC provides a CArchive::SerializeClass(CRuntimeClass

*prtc). But it doesn’t do the job either. It’s

actually designed more for use as a compatibility

type-checker. If I put in

ar.SerializeClass(_pnodeclass), when I save and load,

I don’t get anything read back into _pnodeclass

because SerializeClass treats its argument as a const

and won’t change it in the load!

(4) What DOES work is to save with

ar.WriteClass(_pnodeclass) and load with

_pnodeclass = ar.ReadClass(). */

if (ar.IsStoring()) //Writing data.

{

ar.WriteClass(_pnodeclass);

ar << _evadechildclasses << _dartacceleration << _dartspeedup;

}

else //reading data

{

_pnodeclass = ar.ReadClass();

ar >> _evadechildclasses >> _dartacceleration >> _dartspeedup;

}

}

29.9 Serializing the view and version

A difficulty in properly serializing a Pop Framework game is that we want to
serialize the view information as well as the game information. If you’ve set
your viewpoint to a certain location, direction, and zoom, you’d prefer to have
it restored when you reload a saved game.

Since a document can have more than one view open, the default behavior
for an MFC CDocument class is to not save any of the view information. The Pop
Framework changes this by having a CPopDoc save the view information of the
active view and, when loading, signal the active view to load its parameters
from the archive being loaded.

Another point to worry about is versioning. When you make repeated builds
of a program, you will occasionally change the number of fields in your key
structures. If you then try and load an archive file from an earlier build, you’ll
get a hideous crash, because you’ll be writing, say, 1003 bytes of file data onto,
say, 998 or 1107 bytes of allocated RAM for the object you think you’re reading

Software Engineering and Computer Games Reference552

in. So you’ll end up by overwriting or non-initializing some bytes, and when
the program goes to read those bytes there will be trouble.

MFC provides a method for versioning by putting an integer version number
into the third argument of the IMPLEMENT_SERIAL macros. But changing these
numbers is time-consuming and hard to remember to do, particularly as your
code is going to have dozens of IMPLEMENT_SERIAL lines. So what we do in the
Pop Framework is to treat the string in the program’s caption bar as if it were a
version name. In order to make this work for you, you need to remember to use
the Resource Editor to change the IDR_MAINFRAME string each time you do a new
build. You do this with the control sequence View | Workspace | Resource View |

String Table | IDR_MAINFRAME | Alt+Enter.
Here’s a copy of our code to both serialize the active view and do a version

check based on the caption.

void CPopDoc::Serialize(CArchive& ar)

{

/* So as to make sure that (a) I load and save my files with

the same build and (b) I don’t try and load non-Pop files,

I’m going to write a version string at the head of each

archive. */

CString cStrAppVersion;

VERIFY(cStrAppVersion.LoadString(IDR_MAINFRAME));

/* VERIFY means always evaluate the expression, but if you

are in the debug build and the expression is 0, then interrupt

just like a failed assertion. */

CObject::Serialize(ar);

if (ar.IsStoring()) // Save

{

ar << cStrAppVersion;

ar << _pgame;

getActiveView()->Serialize(ar);

}

else //Load

{

CString cStrFileVersion;

ar >> cStrFileVersion;

if (cStrFileVersion.GetLength() > 256) //Then you opened some

totally bogus file cStrFileVersion =

cStrFileVersion.Left(16) + “...”; //Truncate

if (cStrFileVersion != cStrAppVersion)

{

CString message = “File Version:\n” + cStrFileVersion +

“\n\nDoesn’t Match App Version:\n” + cStrAppVersion +

“\n\nWill Abort the Load.”;

MessageBeep(MB_ICONEXCLAMATION);

Serialization 553

::AfxMessageBox(message);

::AfxThrowArchiveException(0, NULL); /* This throws an

exception which is caught inside the base class

CDocument::OnOpenDocument call and then closes the

badly opened document. */

return;

}

delete _pgame; /*At CPopDoc construction a document creates a

default cGame *_pgame. So if we’re loading a game we need

to delete the existing game first or there will be a

memory leak.*/

_pgame = NULL;

ar >> _pgame; /* Uses CreateObject to creates a new cGame*

object of the correct child class, copies the new objects

fields out of the file, and places the pointer to the new

object in _pgame. Constructor makes pnewgame->

_gameisfreshlyinitialized be TRUE, so when you press ENTER

it won’t reseed. The CPopDoc constructor calls

setGameClass. */

_pgame->setGameover(TRUE); /* So you can press ENTER to

actually start it running. _gameisfreshlyinitialized is

true, as mentioned just above, so ENTER won’t randomize

things. */

/* We used to not bother to try to load the CPopView info,

and we just called UpdateAllViews(NULL,

CPopDoc::VIEWHINT_STARTGAME, 0); But as of 9/2001,

we wrap the CArchive in a cArchiveHint and pass it to

the views. */

cArchiveHint *parchivehint = new cArchiveHint(&ar);

UpdateAllViews(NULL, CPopDoc::VIEWHINT_LOADINGARCHIVE,

parchivehint); /* This call jumps right to

CPopView::OnUpdate, so the ar information

is still good. */

delete parchivehint;

parchivehint = NULL;

}

}

The CPopView::OnUpdate code process the archive hint in the most obvious
kind of way.

void CPopView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)

{

//If you’ve just loaded a new game, use the game’s initialization

//code on this view.

if (lHint == CPopDoc::VIEWHINT_LOADINGARCHIVE)

Software Engineering and Computer Games Reference554

{

if (pHint && pHint->IsKindOf(RUNTIME_CLASS(cArchiveHint)))

{

CArchive *parchive = ((cArchiveHint*)pHint)->parchive();

Serialize(*parchive);

}

return;

}

//More code for all the other lHint cases....

}

Since our cPopDoc::Serialize now does version-checking on its own, we don’t
really need to use numbered file extensions like *.p21 as was suggested in the
tweaking the file Dialog subsection of 23.9. So the Pop framework just uses
*.pop for its file extensions.

Exercise

Exercise 29.1: Binary or text file format?

Open one of the saved files in WordPad to see what it looks like. It’s in binary form, so
will be unreadable gibberish. Can you think of a way to save and load files that are written
in readable text form? It can be done, though it takes some extra work. Figuring out how
to do it is a good research project. The virtue of having files in readable text form is that
you can edit them so as to change the nature of the objects being loaded; of course,
there are risks to doing this as careless edits may make the file unreadable. But when
developing a program, editable text files can provide a useful debugging tool as well as a
kind of ‘meta-interface’ to the program.

Serialization 555

30Sound

30.1 Adding sound to your program

How do we get our program to make noise? The easiest way is to use the multi-
media features of Windows to play so-called wave or *.wav files. A wave file is to
sound as a bitmap is to graphics: it’s a binary representation. Although Java
code can also play files in the *.au format, the Visual C++ libraries don’t supply
this capability.

And what about music? What about playing *.mp3, or generating sounds
with algorithms? Certainly a full-featured game ought to have some music and
some more sophisticated sound-blending modes. Also you’d like to be able to
use MIDI to avoid having to store a sound file in such a large format. But, in
this chapter, we’re only going to give you the bare minimum.

If you use the Windows Start | Find dialog you can look for *.wav files on
your machine. Assuming that you have a sound card, and assuming that your
speakers are turned on, you can ‘play’ these sounds by double-clicking on them.
Before starting to work with sound programming, you should check that your
system will indeed play sounds, otherwise you won’t be able to tell if your
program is working properly. Note that it often takes some fiddling to get
sound to work, as there are usually several ways to turn it on and off, including
both a control bar dialog and a physical knob on the speakers.

Let’s take a look at an example of where the Pop Framework code makes a
sound, the case where an asteroid is hit by a bullet in gamespacewar.cpp.

int cCritterAsteroid::damage(int hitstrength)

{

int deathreward = cCritter::damage(hitstrength); /* This is _value

(typically nonzero) you get

for killing off the critter. */

((CPopApp*)::AfxGetApp())->playSound(“Ding”, SND_RESOURCE |

SND_ASYNC); //Signal the hit.

return deathreward;

}

The call to the CPopApp::playSound method simply wraps a call to the
Windows multimedia API call ::PlaySound. The reason we wrap it like this is so

that we can check every call for sound against a ‘global’ _soundflag that belongs
to CPopApp. Here’s the code from pop.cpp.

void CPopApp::playSound(LPCSTR pszSound, DWORD fdwSound)

{

if (_soundflag)

::PlaySound(pszSound, NULL, fdwSound);

}

Windows has an API function called PlaySound(CString soundname, HINSTANCE

programinstance, int flags). This function is not a member of any MFC class, and
we put a :: in front of it to remind ourselves of this fact.

The soundname is the name of some sound. There are three kinds of sound
names you can use, with the type of sound indicated by a flag which is ORed
into the third argument. We’ll come back to this in a minute.

The HINSTANCE argument in the second place is a throwback to the old
Win32 programming and is not needed in MFC applications. In Win32 we
need this argument when we want to use a sound that’s stored as a program
resource. But in MFC applications the second argument can always be NULL.

The flags in the third argument is made by combining various bitflags with the
OR operation. A variety of SND_ flags are defined in C:\Program Files\Microsoft Visual

Studio\VC98\Include\MMSYTEM.H. Ordinarily we OR in a flag to tell PlaySound what
kind of soundname you are giving it: SND_ALIAS, SND_RESOURCE, or SND_FILENAME.

Another flag which we almost always OR in is the SND_ASYNC. This tells the
program to send the work of playing the sound off to the sound card and not to
wait for the sound to finish playing before continuing program execution. If this
flag is present in a first call of PlaySound, then this means that if a second sound
wants to start up, the first sound will stop and let the second sound start. If the
SND_ASYNC flag is not present in the first call of PlaySound, then the first sound
insists on playing to conclusion before the second sound is allowed to start.

Usually it’s better to use the SND_ASYNC flag when you are doing action-
generated sounds, as otherwise the sounds can lag behind the actions. And you
don’t want to stop the action just for a sound. Better to cut a sound short than
to have the next sound come too late.

Now let’s talk about the three kinds of sound names we can use. The names
usually have the form of a string in quotes. The string is not case-sensitive, by
the way, so it doesn’t really matter how it’s capitalized.

• System sound name. You can use the name of some standard Windows event,
and Windows will play whatever sound is associated with that event. In this
case your call is of the form

::PlaySound(“SystemExclamation”, NULL, SND_ALIAS | SND_ASYNC);.

Some of the system sound names you can use are: ‘SystemExclamation,’
‘SystemAsterisk,’ ‘SystemStart,’ ‘SystemExit,’ and ‘SystemDefault.’ If you look
at the sound dialog in your Windows Start | Settings | Control Panel | Sounds

Sound 557

you can find other candidates. The names for system events are usually the
obvious ones, consisting of the word ‘System’ run on with the name listed in
the dialog.

• External sound file. You can use the name of some special *.wav file which
holds a binary description of a sound. In this case your call is of the form

::PlaySound(“Bonk.wav”, NULL, SND_FILENAME | SND_ASYNC);

With a call like this, PlaySound looks in the same directory as the execut-
able for the requested *.wav file. If it doesn’t find the file it looks in the
Windows and the Windows\System directory. If it still doesn’t find the *.wav,
it makes the default ‘system ding’ sound.

• Resource sound file. The third option is that you can have the sound file
description bound into your executable as a resource. This is the one where
Win32 requires something special for the second argument. But in MFC,
NULL is still okay. Your call is of the form

PlaySound(“Ding”, NULL, SND_RESOURCE | SND_ASYNC);

You add a *.wav to your resource by placing the desired *.wav into the \res

subdirectory under your source code and then using the Project | Add

resource... | Import... dialog to import the file. [This is the Insert | Resource... |

Import... dialog in Version 6.0.] Once you do this, the Resource View will
show a ‘WAVE’ category. It will assign an integer-valued name like IDR_WAVE1
to your wave resource. Right-click on this name, select Properties... on the
context menu and use the dialog to change the ID from IDR_WAVE1 to a string
like ‘Ding,’ being sure to type in the quotation marks as well as the string. If
PlaySound doesn’t find a given resource it doesn’t make any sound at all.

The benefit of the system sound approach is that you are fairly certain that
the program will make some sound, as usually Windows has various sounds
associated with different kinds of events. Also these sounds are user pro-
grammable. The drawback is that you have no control over which sound the
user will hear. It depends on how he or she has configured the sounds on his
or her system.

The benefit of the external sound file approach and the resource sound file
approach is that you can control which sound the user hears.

In the external sound file approach, if the user wants to change the sound,
he or she can rename a favorite *.wav file to match the one your program looks
for. And at least PlaySound will make some kind of system sound even if it can’t
find the requested *.wav file. A drawback is that you need to distribute the
necessary *.wav files along with your executable, and it’s nicer to just be able to
give someone a single *.exe that includes everything.

The benefit of the third approach is that you control which sound the user
hears, and the sound is certain to be available in the *.exe. The drawback is that

Software Engineering and Computer Games Reference558

the *.exe will end up being a little larger than before: a small *.wav file is about
10 K, and they can be much larger.

The most professional approach might be to combine the second and third
approaches. Include resource files, but allow the user to use File | Open to load
external files if he or she likes. This would be an example of adding flexibility
to the user interface.

Oh, one final point. Whenever your program includes sound, it must include
a control for turning the sound off! Of course the user can turn sound off by using
the Windows controls, but your program must be polite enough to be willing to
turn its own sound off. That’s, again, the reason that we pass all our sound call
requests to CPopApp, and let it check against _soundflag before making noise.

Resource identifiers

Just as PlaySound with the SND_RESOURCE flag turned on loads sound files from
the program resources, there is a LoadBitmap function that loads bitmap files
from the resources, and a LoadCursor function to load cursor images from the
resources. These functions take resource identifiers as arguments.

A resource identifier can be either an integer or a string. By default the
Resource Editor assigns integers as identifiers for resources and then makes up
mnemonic names like IDR_EDIT_UNDO or IDR_WAVE1 or IDR_BITMAP1 for them.
But you can change the identifier to a string.

The MFC versions of CBitmap::LoadBitmap and CWinApp::LoadCursor are poly-
morphic; that is, they’ll accept a resource identifier which is either an integer or
a string.

The old-style Win32 non-MFC functions like ::PlaySound will only accept
resource identifiers which are strings. If you don’t feel like replacing your
resource’s integer ID by a string you can fake it by using the Windows macro
MAKEINTRESOURCE to convert the integer ID into a string ID which ::PlaySound is
willing to use. Thus you could call something like

::PlaySound(MAKEINTRESOURCE(IDR_WAVE1), NULL, SND_RESOURCE |

SND_ASYNC);

If you want to dynamically select which resource to use it’s sometimes
handy to use integers to stand for them. If you need for the integer values to
be consecutive numbers you can directly edit them in the resource.h file or
indirectly in the View | Resource Symbols... dialog.

30.2 Adding libraries to your project file

If you’re not using the Pop Framework, the first time you add the ::PlaySound call
to your code and try and compile the code, you’ll get a compiler error that says
something like PlaySound’ : undeclared identifier’. To get rid of this, you
need to add the line #include <mmsystem.h> to the top of your file.

Sound 559

And now after you get past the compile, you’ll get a linker error, saying
something like “PlaySound definition not found”. Actually it will have a
bunch of gibberish attached to the PlaySound name; this is because C++ does
‘name-mangling’ which means attaching symbols to a function name so as to
specify what types the function expects as its arguments.

When you get a linker error of this kind, this means that you have used the
name of some function without telling the compiler where to find the code
that defines this function. The compiler is recognizing that PlaySound is a func-
tion, but the linker isn’t able to find the code for it.

The response is to add more *.cpp or *.lib modules to your project file. If the
function is one that you yourself have the code for, then the linker error means
that you forgot to include the *.cpp file where your code lives. If the function is
a Windows function, then the error means that this is some unusual function
whose code is found in some Windows library other than the standard libraries.

How do you figure out which header and library to use for a function? Use
F1 or the Help | Index to find the documentation on PlaySound. This will include
a Quick Info section that tells you what header file and import library the func-
tion uses. It turns out that the import library where PlaySound lives is winmm.lib,
and the header file where its prototype lives is mmsystem.h.

So we want to tell the project file to include winmm.lib. The wrong way to do
this is to use Project | Add to Project | Files to add the winmm.lib to your project
files. This is not a good method because you need to tell the Add Files To
Project dialog where winmm.lib lives, which means browsing around until you
find it in, say, C:\Program Files\Developer Studio\VC\Libraries. Doing this takes a long
time. Even worse, doing this has the effect of making your project file non-
portable, because the path name you use becomes part of the name of the
library file as stored by the project. This then means that if someone whose
Developer Studio lives on his or her D: drive tries to use a project files that looks
for winmm.lib in the C: drive, the project file won’t be able to find winmm.lib.

The correct way to add a *.lib file to a project is to use the Project | Settings

dialog. Open the dialog and change the Settings For dropdown to All Configurations

in the upper left-hand corner of the dialog. Now click on the Link sheet of the
dialog. Make sure the General selection is active at the top of the Link sheet.
Now click on the Object/Library Modules edit box. The box may be empty, but if
there are file names in it, use the Arrow key to move to the end of the list of *.lib

files in this edit box. Type in winmm.lib, making sure there is a space between it
and the previous file name. Don’t put a path name in front of winmm.lib; the
linker will look for the library in the Visual Studio’s list of Library directories.

Let’s reiterate that you should do this for All Configurations, so that you are
making the change to both the Debug and the Release versions of your project.
After making this change you need to do Build | Rebuild All.

From now on, the linker will look for winmm.lib in the list of Library directories
maintained by the active installation of Visual Studio.

This list, by the way, is found under the Tools | Options dialog on the
Directories sheet. To see the Library directories select Libraries in the box at
the upper right of the sheet. Normally the correct library directory will be

Software Engineering and Computer Games Reference560

among the options listed, but if it isn’t you can type it in. Note that the Tools |

Options Directories settings are attached to the Visual Studio compiler when it is
installed on some specific machine. These settings are not part of your project
or workspace file.

30.3 An application-wide mute variable

The point of a mute variable is, as we mentioned above, to allow the user
to turn all the sound for the application off or on. Let’s repeat that you should
never ever write a game that makes noise without giving the user an easily
usable control to turn the sound off. Why? Sooner or later a user might get
sick of the sounds. Or they might want to play the game without annoying the
person at the next desk. Or maybe they want to play it in a crowded airplane.
There has to be a way to tell the program to shut up.

What we need here is a BOOL _soundflag variable which we can set to either
TRUE or FALSE. Where should the variable live? Keep in mind that Pop is an
MDI application. It’s capable of showing multiple views of multiple documents.
If you turn sound off in one view window of the Pop program, you don’t want
it to suddenly come back on when you switch to another view or document
window. This means that we don’t want the _soundflag variable to live down
inside the CPopView class. And by the same token, it won’t do to put it inside
CPopDoc. No, we need for _soundflag to be something very much like a global
variable.

Well, what’s the biggest scope object that an MDI program has? It turns out
that your program always has one single CWinApp object, which stands for the
program, or ‘application’ itself. We don’t often put things into this class, but
when you do have some application-wide data, this is the place it should go.

So we opened up Pop.h, found CPopApp, and declared a private: BOOL

_soundflag; in the bottom of the class declaration. The variable doesn’t need to
be public as only CPopApp will do things to it or look at it. And then we opened
Pop.cpp and initialized _soundflag to TRUE in the CPopApp::CPopApp constructor.

As we already discussed, we wrap the call to ::PlaySound up inside a
CPopApp::playSound method, and we call this from anywhere in the program with
a line like

((CPopApp*)::AfxGetApp())->playSound(“Ding”, SND_RESOURCE |

SND_ASYNC);

What is the first part of this line doing? MFC provides you a bunch of special
global functions for getting information about your application. These function
start with the letters Afx. The AfxGetApp() returns a pointer to the currently active
CWinApp object.

Alright, but why didn’t we just write our code in a simple way like this?

(AfxGetApp()->playSound ...

Sound 561

Well, if it was simple, it wouldn’t be Windows programming, would it? Look at
the upside: if Windows programming was simple, you wouldn’t be able to get
such a good salary for knowing it!

The thing is, AfxGetApp returns a CWinApp* pointer. And the general CWinApp

class of course doesn’t have a playSound member function. Only the child class
CPopApp has the playSound() method. And if we try and compile the code as
written the ‘simple’ way, the compiler will give us an error message telling us
the problem. So after we get the AfxGetApp() pointer to our application, we need
to cast it into a CPopApp* pointer, a pointer to our modified child version of
the CWinApp class.

By the way, since AfxGetApp isn’t a member of any class, in consistency with
our practice of signaling a non-class-member function by the :: symbol we put
that in front of it. We actually write our code like this.

((CPopApp*)::AfxGetApp())->playSound ...

The exact way that you write the parentheses for the cast is important.
That is, a C++ pointer cast has to have the form ((NewPointerType*)Pointer). As we
mentioned earlier, you can instead use the C++ dynamic_cast operator and write
lines like the following. Recall that, to help you catch errors, the dynamic_cast

operator returns a NULL pointer if the cast is for some reason impossible.

CPopApp *ppopapp = dynamic_cast<CPopApp*>(::AfxGetApp());

ASSERT(ppopapp);

ppopapp -> playSound(...);

Exercises

Exercise 30.1: Changing the sounds of Spacewar

First of all, get sound working on your computer so that you can hear the Pop Framework
sounds. (You need to have a sound card with speakers, and the speakers need to be
plugged in. If you double-click the little speaker icon on the upper right of your Windows
taskbar, the Mute button needs to not be checked. Also don’t forget to see if your speaker
has a manual, physical control.) Now try removing the SND_ASYNC from the playSound
calls in the gamespacewar.cpp. Rebuild the program and see how it sounds. See what
happens if you OR in SND_LOOP.

Now find some other *.wav file and incorporate it into the program. Where to find a
*.wav file? First you can use Start | Find to look for them on your hard disk. Second, it’s
pretty easy to search the web for sites that have *.wav files for download. When picking
sounds for effects in a game, avoid long sounds. For instance, once a student wrote a
game where every time you shot something the game said ‘Hasta la vista, baby,’ and
although that was funny the first few dozen times, it then got really old.

So get the *.wav, put it in the res subdirectory and add it to the resources. Give it a
name like, say, ‘Newsound.’

Now change the code so that when you shoot an asteroid it will make the ‘Newsound’
sound if the radius is bigger than some value, and it will make a ‘Ding’ sound if the radius

Software Engineering and Computer Games Reference562

is smaller than some value. What value? Look for some value that separates the big from
the small asteroids.

Exercise 30.2: Using system sounds

Since the Ta-da sound usually lives in Windows\System directory you might get away
with not including it as a resource and instead looking for the file externally with a call
playSound(“Tada.wav”, SND_ASYNC). See if this works.

Exercise 30.3: Encapsulating the playSound call

It’s kind of a drag to have to write that stupid ((CPopApp*)::AfxGetApp())->. all the time.
Assuming that it’s normally a cCritter that’s going to make a call to make a sound, try
adding a cCritter::playSound(CString soundname) method to the cCritter class. Let the
method do the tedious fetching of CPopApp and also let it stick in the standard flags
SND_RESOURCE | SND_ASYNC as one of the arguments. Using this new method, add code
to have the asteroids in the spacewar game make a little noise when they collide. Think of
more sounds to add, too.

Sound 563

31Bitmaps

In this chapter we talk about how we use bitmap background and bitmap
sprites in the Pop Framework. First we’ll talk about some common things about
bitmap resources, then we’ll talk about how we create bitmaps with transparent
backgrounds in Windows graphics.

31.1 Bitmaps

For a professional-looking program you will often want to use bitmaps. We will
talk about two uses for bitmaps. First we’ll discuss using bitmaps as background
images for your program. And second we’ll talk about using small bitmaps as
sprites to represent your moving critters. But first we need to say a bit about
bitmaps in general.

A bitmap can be something that you draw inside a paint program, a photograph
that you scan, or something that you grab off the web. In taking something off
the web, however, be sure that it is public domain. If you use copyrighted
images in your software, then you’re not going to be able to legally distribute
your program, and your work is effectively wasted.

Bitmaps come in various kinds of file formats, including *.gif, *.jpg, *.tif, and
*.bmp. The Visual Studio, Version 6.0, compiler is only set up to easily deal
with bitmaps in the *.bmp format. The MFC Version 7.0 supplied with Visual
Studio.NET has a CImage class that does make it possible to handle the other
formats. But we aren’t presently using this class in the Pop Framework. If you
have any kind of high-end image editor on your machine (such as a photo-
graph editor) you can convert from one format to another by loading a bitmap
from the existing format and saving it into the *.bmp format. Once you have
something in *.bmp format you can, if you like, load it into the Windows Paint
Accessory.

As we’ve discussed before, when you save something into the *.bmp format,
you’ll notice that you have several options for the kind of *.bmp you save.
Typically the options will be labeled 16 Color, 256 Color, 24-bit Color, or True
Color (which may use 32 bits per pixel). If your Image Editor doesn’t show
these options, you can load the *.bmp file inside the Windows Paint Accessory
in order to see them.

The 256-color option is usually the best way to go. This gives you a richer
palette than the 16-color option, but avoids the problems with 24-bit color and
True Color bitmaps. And for a simple icon, 16 Color is okay.

What’s wrong with 24-bit Color and True Color bitmaps? The problem is
that bitmaps like this make for very large files because you are storing so much
information per pixel. A 256-Color bitmap uses eight bits per pixel, rather than
24 bits. A large file can take up a lot of room on your disk, possibly making
your *.exe be one or more Meg larger than it would be with 256-Color bitmaps.
Another issue is that copying a 24-bit bitmap takes more time than copying a
bitmap with a smaller ‘color depth.’

Bitmap resources

Once you have a *.bmp file you want to use as a resource, copy it into the
\res subdirectory of your code directory. Then use the Resource pane of your
Workspace window, right-click on Bitmap, and select Import. In the dialog
select the All Files option, find the *.bmp you want and click Import.

Give the bitmap an easy-to-remember ID name like IDB_BACKGROUND. This
name will actually stand for some integer, but you don’t care what the value
of the integer is. If Visual Studio gives it a name you don’t like remember
that you can change the resource’s properties by clicking on it and pressing
Alt+Enter.

From now on, when you build your program, the binary code for the new
resource bitmap will be bound into your *.exe file. If the bitmap is very large,
then your *.exe is going to become very large. The nice thing about the having
the bitmap inside your *.exe code is that now you can get at the bitmap by a
couple of lines like

CBitmap cBitmap_new;

cBitmap.LoadBitmap(resource_ID)

To actually do anything with a bitmap, though, you need to load it into a
CDC, and, in usual Windows fashion, this is a little trickier than any reason-
able person might expect it to be. We’ve encapsulated the process into the
cMemoryDC class as a method called loadResourceBitmap that can be found in the
memorydc.cpp file.

If you plan to use 3D graphics, it is extremely important to save your bitmaps
so that all of their dimensions are powers of two.

31.2 Using a background bitmap

Suppose we want to use a background bitmap as a resource. The basic idea is
that when we draw the view we want to do the following.

Bitmaps 565

• Copy the background bitmap to a memory window.

• Write the critter sprites on top of the memory window as well.

• Copy the memory window to the screen.

What we need to do is to store our background bitmap in a ready-to-use
form. At the high level, we wrap it up inside a cSpriteIcon object. In Windows
graphics, we implement the image as a cMemoryDC, and in OpenGL we save it as
a cTexture – both of which are classes invented for use in the Pop Framework.

A complication comes up. We want our program to be size-independent;
that is, if we resize the window, we want the whole background bitmap to show.
In Windows graphics, we could use a StretchBlt operation to keep stretching the
background bitmap to fit the view’s current size. But StretchBlt is a rather slow
operation compared to BitBlt. So what we do is to equip the cGraphicsMFC object
used for Windows graphics and the cGraphicsOpenGL object used for OpenGL

graphics with methods for adjusting the size of a cSpriteIcon to fit the current
window size. The author hardly even likes to think about the numb weeks of
insane coding frenzy that it took to implement this. For the gory details, see the
graphicsMFC.* and graphicsopengl.* files.

31.3 Transparent bitmaps

We have the option with the cSpriteIcon of giving it a ‘transparent background.’
The reason we’ll be interested in transparent backgrounds is that we want to
have a cSpriteIcon that shows a bitmap sliding around like a little live creature.
If you have two normal bitmaps pasted on the screen close to each other, then
the background region of one bitmap is likely to cut an unattractive white
corner out of the other bitmap’s central image.

How is this effect to be achieved? Since there is a simple way to make text
and dotted line backgrounds transparent with the CDC::SetBkMode(TRANSPARENT)

call, you might think it’s easy to make bitmaps have transparent backgrounds.
But this is not the case. Making bitmaps with transparent backgrounds is some-
thing we have to do by hand in two different ways, one for OpenGL, and one
for Windows graphics.

• OpenGL has alpha blending methods which are in fact rich enough to pro-
duce transparent background bitmaps, and that’s the route we use in the
cGraphicsOpenGL implementation of the cSpriteIcon for which transparent() is TRUE.

• The Windows API includes methods called AlphaBlend and TransparentBlt that
one might think would be useful here. But, prior to Visual Studio.NET, these
methods have not seemed to give us what we need. What AlphaBlend (which is
a generalization of TransparentBlt) does is mainly to overlay a full rectangle
bitmap upon an existing image, but with the overlaid rectangle set to a certain
level of transparency. Examples of this kind of graphic are the little station
logos that one sees in the corners of many TV channels’ images. But what we
want is a way to write an image which is opaque in some parts (where our
‘character’ is) and transparent in other parts (where our ‘background’ is).

Software Engineering and Computer Games Reference566

As mentioned earlier in this chapter, the MFC Version 7.0 supplied with
Visual Studio.NET has a CImage class that improves the handling of bitmaps.
In particular, you can use CImage to get transparent background bitmaps. How-
ever, the Pop Framework currently has its own, older way of doing transparent
backgrounds.

In Windows graphics, we can get transparent bitmap backgrounds using a
special trick based on something that the wonderful BitBlt function can do.
BitBlt has nine arguments, and the last argument is an argument called a ROP
code, where ROP stands for ‘raster operation.’ When you want your BitBlt to
just copy the information from one HDC to another (which is most of the time),
you use the SRCCOPY raster operation. But there is a wide range of other possible
raster operation codes. The two we will be interested in here are SRCAND and
SRCPAINT. The effect of these is to perform, respectively, a bitwise AND and a bit-
wise OR between the color codes of the target and source pixels.

Let’s explain this in more detail. Suppose that at some pixel, the color in the
target HDC is called targetcolor, and the color in the corresponding source HDC

pixel is called sourcecolor. Finally, let newtargetcolor be the new color which ends up
in the target pixel. The three different raster operations mentioned act like this:

• SRCCOPY: newtargetcolor = sourcecolor;

• SRCAND: newtargetcolor = sourcecolor AND targetcolor;

• SRCPAINT: newtargetcolor = sourcecolor OR targetcolor;

What exactly does it mean to combine two colors with AND or OR? Recall that
in Windows a color is a COLORREF type, which is a block of 32 bits, of which the
right-hand three bytes correspond to the intensities of red, green, and blue
respectively. Combining the colors with AND or OR just means combining the
corresponding bits pair by pair with AND or OR.

If we were to write WHITE to stand for the value RGB(255,255,255) which
has three bytes of all 1s and write BLACK to stand for the COLORREF value
RGB(0,0,0) with three bytes of all 0s, then it’s not too hard to see that for any
values of targetcolor and sourcecolor:

• BLACK = targetcolor AND BLACK;

• targetcolor = targetcolor AND WHITE;

• WHITE = targetcolor OR WHITE;

• targetcolor = targetcolor OR BLACK;

We are going to use these properties of OR and AND in order to create the
illusion of a bitmap with a transparent background. Before going into the details,
we should examine why this is necessary. Why can’t we just put the image
which we want on the screen and not paint any background at all? Well, the
fast pixel-transfer operation called BitBlt only works on rectangles of pixels. This
has to do with the fact that it takes very little calculation to single out a rectangle
of pixels, as opposed to some irregular shape. Then why isn’t there a transparent
pixel color? Well, moving a pixel involves copying a color value to a memory
location, which inevitably is going to change the value already there. The trick

Bitmaps 567

we use for getting transparent background bitmaps is not at all obvious: we
use two bitmaps and two BitBlts, one with the SRCAND raster operation, and one
with the SRCPAINT raster operation. A last point to mention here is that for the
hardware on the graphics card, all three kinds of BitBlts are equally fast. Just as
in assembly language the instruction AND AX BX is executed as fast as MOV AX
BX, doing a SRCAND BitBlt happens as fast as doing a SRCCOPY BitBlt. You might
think of a BitBlt as a ‘super’ assembly language instruction that is executed in
parallel on many pixels at once.

So now let’s look at how Windows bitmaps with transparent backgrounds
work. Briefly, the way we’re going to implement transparent background bitmaps
is to use two bitmaps, a mask bitmap and an image bitmap. First you AND the
mask bitmap with the target, and then you OR an image bitmap with the screen.
The mask has BLACK pixels everywhere that the image is, and it has WHITE
pixels everywhere that the image isn’t. When you AND the mask with the target,
you cut a black hole in the target just the shape of the image, and you leave the
rest of the target alone. The pixels in the ‘hole’ all get set to black. The image
bitmap has the image pixels set to the correct image color values, and the other
background pixels of the image bitmap are set to BLACK. When you OR the
image bitmap with the target you lay the image right into the waiting hole, and
you don’t change the other target pixels.

The cTransportMemoryDC class encapsulates this trick, automatically generating
a source bitmap and mask bitmap in its constructor. See the memorydc.* files for
details.

And that’s about it for now. Happy programming!

Software Engineering and Computer Games Reference568

Appendix A:
The Windows keycodes

It’s important to know the keycodes if you want to make more sophisticated
listeners. If you wanted to distinguish between the left and right versions of the
Shift, Control, and Alt keys you would need to be actively checking these keys in
each call to your cController::update method. You might write a cControllerLeftRight

child class with an overridden update to do this.
This is taken from the file winuser.h. The default set-up for keycodes is that for

normal letters and numbers like 0 or Z, you don’t use VK_0 and VK_Z, instead
you use the traditional ASCII code symbols ‘0’, ‘Z’, etc.

/*

* Virtual Keys, Standard Set

*/

#define VK_LBUTTON 0x01

#define VK_RBUTTON 0x02

#define VK_CANCEL 0x03

#define VK_MBUTTON 0x04

/* NOT contiguous with L & RBUTTON */

#define VK_BACK 0x08

#define VK_TAB 0x09

#define VK_CLEAR 0x0C

#define VK_RETURN 0x0D

#define VK_SHIFT 0x10

#define VK_CONTROL 0x11

#define VK_MENU 0x12

#define VK_PAUSE 0x13

#define VK_CAPITAL 0x14

#define VK_KANA 0x15

#define VK_HANGEUL 0x15 /* old name for compatibility */

#define VK_HANGUL 0x15

#define VK_JUNJA 0x17

#define VK_FINAL 0x18

#define VK_HANJA 0x19

#define VK_KANJI 0x19

#define VK_ESCAPE 0x1B

#define VK_CONVERT 0x1C

#define VK_NONCONVERT 0x1D

#define VK_ACCEPT 0x1E

#define VK_MODECHANGE 0x1F

#define VK_SPACE 0x20

#define VK_PRIOR 0x21

#define VK_NEXT 0x22

#define VK_END 0x23

#define VK_HOME 0x24

#define VK_LEFT 0x25

#define VK_UP 0x26

#define VK_RIGHT 0x27

#define VK_DOWN 0x28

#define VK_SELECT 0x29

#define VK_PRINT 0x2A

#define VK_EXECUTE 0x2B

#define VK_SNAPSHOT 0x2C

#define VK_INSERT 0x2D

#define VK_DELETE 0x2E

#define VK_HELP 0x2F

/* VK_0 thru VK_9 should be ASCII ‘0’ thru ‘9’ (0x30 – 0x39) */

/* VK_A thru VK_Z should be ASCII ‘A’ thru ‘Z’ (0x41 – 0x5A) */

/* Unless you define them yourself, you can’t use symbols VK_0,

VK_A, etc. in your code, and you must use ‘0’, ‘A’, etc.

instead. To correct this, The Pop framework defines the

missing VK_0 through VK_9 and VK_A through VK_Z so you can in

fact use these symbols if you include controller.h. */

#define VK_LWIN 0x5B

#define VK_RWIN 0x5C

#define VK_APPS 0x5D

#define VK_NUMPAD0 0x60

#define VK_NUMPAD1 0x61

#define VK_NUMPAD2 0x62

#define VK_NUMPAD3 0x63

#define VK_NUMPAD4 0x64

#define VK_NUMPAD5 0x65

#define VK_NUMPAD6 0x66

#define VK_NUMPAD7 0x67

#define VK_NUMPAD8 0x68

#define VK_NUMPAD9 0x69

Appendices570

Appendix A 571

#define VK_MULTIPLY 0x6A

#define VK_ADD 0x6B

#define VK_SEPARATOR 0x6C

#define VK_SUBTRACT 0x6D

#define VK_DECIMAL 0x6E

#define VK_DIVIDE 0x6F

#define VK_F1 0x70

#define VK_F2 0x71

#define VK_F3 0x72

#define VK_F4 0x73

#define VK_F5 0x74

#define VK_F6 0x75

#define VK_F7 0x76

#define VK_F8 0x77

#define VK_F9 0x78

#define VK_F10 0x79

#define VK_F11 0x7A

#define VK_F12 0x7B

#define VK_F13 0x7C

#define VK_F14 0x7D

#define VK_F15 0x7E

#define VK_F16 0x7F

#define VK_F17 0x80

#define VK_F18 0x81

#define VK_F19 0x82

#define VK_F20 0x83

#define VK_F21 0x84

#define VK_F22 0x85

#define VK_F23 0x86

#define VK_F24 0x87

#define VK_NUMLOCK 0x90

#define VK_SCROLL 0x91

/*

The following are left and right Alt, Ctrl and Shift virtual

keys.Used only as parameters to GetAsyncKeyState() and

GetKeyState(). No other API or message will distinguish left

and right keys in this way.

*/

#define VK_LSHIFT 0xA0

#define VK_RSHIFT 0xA1

#define VK_LCONTROL 0xA2

#define VK_RCONTROL 0xA3

#define VK_LMENU 0xA4

#define VK_RMENU 0xA5

Appendix B:
The Pop help file

This appendix is a printout of a file that we saved both as pop.rtf and as pop.htm

for making our Windows help file and our HTML help file. The Windows help
file format doesn’t support tables and has somewhat weak suport for bullets, so
we don’t use tables or bullets here. If were making only the HTML help file,
we’d be able to use more elaborate formats.

As the Pop help file is primarily designed to be read on the screen in a help
file window, it makes more use of bold fonts than does the rest of our text.
Italic fonts don’t stand out well on the screen.

This version of the help file matches Pop 27, September 2002.

About the Pop program

The Pop program was built using the Pop Framework classes for Rudy Rucker’s
textbook Software Engineering and Computer Games. Full source and execut-
able for the Pop Framework are available from the book website
www.rudyrucker.com/computergames

Normally developers build only one game at a time with the Pop Framework,
but the Pop program includes nine games. Only four of these games are in a
finished, playable state with a clear goal: Spacewar, PickNPop, Airhockey, and
Defender3D. The others serve only to demonstrate features of the Pop Frame-
work and to provide stubs for easy extension.

Since the Pop program is designed to let developers explore possibilities for
their own games, there are more control options than one would want to have
in a finished game.

Updates per second

When you first run the Pop program, you will see the startup game Spacewar,
which resembles an Asteroids game. Look at the Updates per second figure in the
status bar at the bottom of the Pop window. The number is a rolling average, so
it takes a few seconds for it to respond to changes, and the value will sometimes

dance between two or three nearby numbers. The highest rate the Pop Frame-
work allows is the speed of your graphics card’s updates per second; if you are at
or near this rate the message will say ‘(Near Max).’ If you are in a mode where
the program is running slower than the real time that it simulates, the message
will say ‘(Slower than Real Time).’ Except in the ‘(Slower than Real Time)’ case,
one second of simulated game time equals one second of real-world time.

On most recent machines you should expect to see an Updates per second

ranging from about 40 to whatever your graphics card’s refresh rate is. Com-
monly used refresh rates are 60, 75, and 85. (For general ergonomic reasons, you
should set your graphics card’s refresh rate as high as is possible for the currently
used resolution.) If you see a number below 15, your system is running the Pop
program too slowly for effective play. You should remedy this before continu-
ing, or use a different machine. Normally the cause of a low updates per second
rate is an old or a low-quality graphics card.

Here are some steps you can try to improve your updates per second.
The updates per second is dependent on the number of pixels in the Pop

window, so if you run your display at a very high resolution, large Pop windows
will run slow. You can gain speed at any time by resizing the Pop window to
make it smaller.

The updates per second is dependent on the number of critters in the game
you are running. If you used the controls to create a very large number of critters,
you can expect the speed to be slow, particularly if you also give the critters
complicated sprites that are slow to draw.

Also note that there are both Release and Debug builds of the Pop program.
A Release build always runs faster than a Debug build, sometimes even twice
as fast, though this varies with the machine and with the nature of the game
you are running. For better speed make sure you’re running a Release build; you
can tell which is which from the names of the executables.

Both the 2D and 3D graphics modes of Pop will often run faster if your
monitor is set to use something like 64,000 colors rather than ‘Millions of
Colors’ or True Color. To change the number of colors your display uses, right-
click on your desktop, choose Properties from the floating popup menu, and then
go to the Display Properties | Settings page. In this dialog you can also adjust
your graphics card’s refresh rate. (Note, however, that certain kinds of cards
only support hardware OpenGl acceleration if you do set the number of colors
to 24 Bit, 32 Bit or True Color.)

The Pop program has a View menu that allows you to run the games in the
2D Windows Graphics mode or in a 3D OpenGL mode. Different games default
to different graphics, but all of the games except 3DStub and Defender3D work
in either 2D or 3D view mode. On most systems the Windows Graphics mode
is faster, but systems with certain types of 3D graphics acceleration may in fact
run the 3D OpenGL mode faster.

If your games consistently run too slow when in the View | 3D OpenGL Graphics

mode, look into getting OpenGL hardware acceleration to work for your graphics
card. Although most desktop machines have cards that support OpenGL hard-
ware acceleration, the OpenGL drivers are often not put in place by the default

Appendix B 573

install. You may need to download a driver from your graphics card manufacturer.
The Web site www.opengl.org/developers/faqs/technical/mswindows.htm has
further information about OpenGL hardware acceleration. Note, however, that
some systems, including most laptops, have graphics cards that will not support
OpenGL hardware acceleration.

Overview

The Pop display

Pop shows a border box with objects inside that that begin moving after the
Enter key is pressed. The program’s appearance and behavior are independent of
the size of the window and, within certain limits, the speed of your processor.

Pop is a multiple document interface program, and it is possible to open up
several Pop games or views of the games at once, with all the games and views
running at the same time.

The way to open an additional view of a game session already open is to
use Window | Additional View of Current Game. Opening an additional view of a
game can be useful, as you can look at the game from two different viewpoints
in the different views.

The way to open a window on a different game is to use the File | New Game

Window control. There is in fact little point in opening more than one game at
once, but we have this feature for the sake of completeness.

In practice, running multiple game windows makes the update speed quite
low. The program limits you to opening at most four windows at once.

When the main Pop window is not the focus window on the Windows
desktop, the animation of all the games and views is paused.

The moving objects in a Pop game are called critters. Each critter has an
associated sprite, which is what you see. In some games you have the option
of changing the kinds of sprites that are attached to the critters, so as to
experiment with different design possibilities.

By default, the critters are oriented with their principal axes matching their
current motion directions.

Except in the PickNPop game, there is always a distinguished critter called
the player; this is usually represented as a small red triangle with a line indicat-
ing a gun, and with a circle around the triangle. If the player is dead or dam-
aged, the filling of the triangle temporarily disappears. (Note that in Airhockey
and in Worms the player has a different appearance.)

You normally move the player by using the Arrow keys, and you shoot the
gun by pressing the spacebar. See the Keyboard and Mouse Controls section for
more about the keyboard controls.

Some of the Pop games allow you to select different kinds of cursors, with
the available cursors depending on the game. The cursors can act as tools that
do things to the critters when you left-click. In particular if the Shoot, or
Crosshairs, cursor is active, you can shoot by left-clicking the mouse.

Appendices574

If you prefer not to use the mouse button, or if you have a tracking device
whose ‘left-click’ does not trigger the Pop program, you can press the Z key on
your keyboard in place of left-clicking the mouse.

The games

The Pop program implements nine different games: Spacewar, PickNPop,
Airhockey, Ballworld, Dambuilder, Worms, 2DStub, 3DStub, and Defender3D.
The start-up game is the Spacewar game. Spacewar, PickNPop, Airhockey, and
Defender3D are finished games. The others serve as starting points for games to
program with the Pop Framework, or as demos of features of the framework.

All of the games except for 3DStub and Defender3D are essentially 2D.
That is, in each of the games besides 3DStub and Defender3D, the critters are
limited to move in fixed planes.

All of the games will take on a 3D appearance if you select View | 3D OpenGL

Graphics. Critters that would be drawn as flat shapes are given a thickness for
the 3D graphics mode.

Keyboard and mouse controls

There are five main kinds of keyboard controls.
First, there are controls to move the player critter, that is, to change its position,

velocity, or orientation.
Second, you can often make the player shoot.
Third, there are controls to change the view location, that is, to move the

world relative to your View window.
Fourth, you can reduce or increase the zoom or magnification of the ‘lens’

through which you view the world.
Fifth, when using 3D graphics, there are controls to change the view direction

in which you look at the game.
To summarize let’s use the phrase ‘direction keys’ to include the Arrow keys,

the PgUp/PgDn keys and the Home/End keys.

These Controls Affect This
Direction keys Player Critter’s Motion

Spacebar key Player Shooting

Ctrl + direction keys View Location

Ins/Del keys View Zoom

Ctrl + Shift + direction keys View Direction (3D Only)

Now for some details.

Player motion controls

The player controls include 2D and 3D controls. The 3D player controls apply
only in the three-dimensional game worlds of 3DStub and Defender3D.

Appendix B 575

In using the player controls, remember to think of the direction the player’s
sprite points as ‘forward.’

The rotations caused by the directional keys speed up if you hold these keys
down longer than a fifth of a second. For delicate directional adjustments, just
tap on the keys.

Something that complicates the situation is that the user has the option of
using the Player menu to change which kind of controls the player uses. The
player can use Arrow Key Controls, Scooter Controls, Car Controls, Spaceship
Controls, Hopper Controls or Mouse Controls. At present the Hopper Controls
selection is only enabled for the Ballworld game.

In describing the controls below, we first specify what the controls do in a 2D
world, and then we describe the additional things the controls do in a 3D world.

Arrow key controls
2D: Up/Down arrows move the player up/down along the y-axis. Left/Right

move the player left/right along the x-axis.
3D: PgUp/PgDn moves the player forward/backward along the z-axis (which

by default points out of the computer screen).
2D & 3D: The Arrow Keys Controls are like classic PacMan. The player moves

left, right, up, or down with the arrows, and points in these directions. If some-
one bumps into the player it will sometimes rotate a little. But normally the
player is always aligned with the most recent direction of motion. This makes it
hard to shoot in arbitrary directions.

A useful trick in a two-dimensional world is to use the Arrow Key Controls
with the Shoot cursor. The Shoot cursor will aim the player and shoot in the
direction where you left-click. Using the Shoot cursor makes up for the fact that
the Arrow Key Controls always align the critter along the principal axes of the
game world. This trick works to a lesser extent in a 3D world, as here the mouse
click will always select points in the current plane of the player, and will not
produce pitch or roll.

Scooter controls
2D: Up/Down arrows move the player forward/backward. Motion halts as soon
as the key is released. Note that reverse motion is possible with the Down arrow.
Left/Right yaws the player left or right.

3D: PgUp/PgDn pitch the player’s tip up or down. Home/End rolls the player
counterclockwise/clockwise around its direction of motion.

Car controls
2D: Up arrow accelerates the player forward up to a maximum speed. Player
cruises along at the same speed until you slow it down. The Down arrow acts
as a brake that can slow the player’s speed down to zero. There is no ‘reverse
gear.’ The Left/Right arrows yaw the player left or right, instantly changing its
direction of motion.

3D: PgUp/PgDn pitch the player’s tip up or down. Home/End rolls the player
counterclockwise/clockwise around its direction of motion.

Appendices576

2D & 3D: You can think of Car Controls as Scooter Controls plus momentum.
In Car Controls motion, you use Up/Down like accelerator/brake and use
Left/Right, PgUp/PgDn, Home/End like a steering wheel.

Spaceship controls
2D only: with Spaceship Controls, the player’s sprite doesn’t have to point in
the same direction as the player’s motion. The Up key accelerates the player in
the direction in which the sprite is pointing. The Down key gives the player a
reverse acceleration, in the direction opposite to which it’s pointing. If held
down long enough, the Down key can make the player begin moving in reverse.
The Left/Right keys rotate the player to the left and right.

Hopper controls
2D: the Hopper Controls move the player left and right with the Left and Right

arrow keys. The Up arrow key hops the player up into the air, but continuing to
depress the Up key will not produce a continued hopping effect. You need to
tap the Up key repeatedly if you want to add a hop to a hop.

3D: PgUp/PgDn moves the player forward/backward along the z-axis (which
by default points out of the computer screen).

Mouse controls
2D: the player effectively becomes the Mouse cursor and moves freely with the
mouse. If you move the mouse outside of the game world, the current cursor icon
reappears and the player ‘waits’ at the edge of the game world. The Left/Right

arrow keys can also rotate the player.
3D: in a 3D world such as 3DStub, the mouse moves the player within the

current plane of the player’s sprite. You can use the PgUp/PgDn keys to pitch the
player’s attitude up or down, and the Home/End keys to roll the player counter-
clockwise/clockwise.

2D & 3D: When moving the player with the Mouse Controls, the player’s
velocity matches the current velocity of the mouse motions. This means you
can use the Mouse Controls to hit things with the player as if the player were a
paddle. This feature is important for the Airhockey game.

Note that when the Player | Mouse Controls is being used, the cursor tools are
disabled.

Player shooting controls

2D & 3D: The spacebar lets the player critter shoot bullets in the direction in
which the player sprite is pointing. For realism, any forward component of the
player’s own motion in the shooting direction is added to the bullet motion. In
3D, the Pop Framework orients the bullets to have the same pitch, roll, and yaw
as the shooter. Bullets are shot as long as the spacebar is held down.

In the case where the Shoot cursor is selected, the left mouse button or the
Z key will also shoot. In addition, the left-click or Z key will aim the player in
the direction of the current mouse position before shooting. Using the Shoot
cursor you can fire at targets simply by left-clicking or Z-keying on them.

Appendix B 577

The Z key option has two purposes. First, it can be more ergonomic to use the
Z key in place of the left mouse button. Second, you may need the Z key option
if you have reassigned the meanings of the buttons on your tracking device, as
in this case the Pop program may not recognize your current ‘left button.’

A useful player control combination in a two-dimensional world is to use the
Arrow Key Controls with the Shoot cursor. Using the Shoot cursor makes up for
the fact that the Arrow Key Controls always align the critter along the principal
axes of the game world. The Shoot cursor allows you to aim and shoot in any
direction you like.

Standard view controls

The view controls include 2D and 3D controls, where the 3D controls apply if
you are using 3D graphics such as View | 3D OpenGL Graphics. Unlike the player-
controlling keys, the view key controls are not sensitive to how long the keys
have been held down.

View location controls
2D or 3D: Ctrl+Up/Down arrow keys move the world up/down. Up slides the
world up, Down slides it down. Ctrl+Left/Right arrow keys move the world
left/right. Left slides it left, Right slides it right.

3D only: PgUp/PgDn move the world closer/further, that is, PgUp/PgDn move
the viewpoint forward/backwards.

View direction
3D only: Ctrl+Shift+Left/Right yaws the world left/right. Ctrl+Shift+Up/Down pitches
the world up/down. As with the View Location controls, Ctrl+Shift+Left swings
the world to the left, Ctrl+Shift+Right swings the world to the right, and so on.

Ctrl+Shift+Home/End rolls the world counterclockwise/clockwise.

View zoom control
2D and 3D: Ins/Del magnify or shrink the image. The Zoom Controls change
the field of view without changing the view position. You can think of them as
smoothly transforming from a telephoto to a wide-angle lens. There are limits
to how far in and out you can zoom.

To restore to a normal zoom, use View | Reset Viewpoint or the Ctrl+R shortcut.

View controls using Ride the Player

You can only choose the Ride the Player option in the 3D OpenGL view.
3D Only: when the View | Ride the Player option is selected, the viewpoint

and view direction are controlled by the motions of the player critter. The view-
point is perched upon a ‘saddle’ a bit behind and above the player, and the
view direction is set to look out ahead of the player. When the View | Ride the

Player option is in effect, the Ctrl+Up/Down keys affect the height above the
player which the viewer rides.

Appendices578

When you Ride the Player, the View Direction controls have no effect.
Instead, you change the view direction by turning the player. The Ins and Del

keys still affect the zoom of the view.

A hardware Windows bug in the Arrowkey Controls

Unfortunately the combination of the standard Windows keyboard and Windows
operating system has a minor bug that we can’t seem to work around. This
occurs when you use the Spacebar along with the small group of four Arrow

keys that sits between the alphabetical keys and the rectangular block of
numerical keys. We refer to the group of Arrow keys arranged like this near the
bottom edge of the keyboard:

Up

Left Down Right

You cannot get this Left key, the Space key and any other of these Arrow keys
to work at the same time. Barring a fix from Microsoft, the only way around
this at present is to use the Arrow keys on the digital key pad to the right side of
your keyboard, making sure that the Num Lock is off, so that these keys act like
Arrow keys.

Spacewar

Getting started with Spacewar

You’re in control of a little red triangle ship. Your goal? Avoid being bumped
by asteroids and shoot the asteroids into pieces. When enemy UFOs appear,
avoid being shot by their bullets and try to shoot them. In other words, shoot
everything in sight before you get shot! Use the spacebar or left mouse clicks to
shoot at the other creatures. (If you dislike shooting games, skip Spacewar and
try PickNPop, Airhockey, Ballworld, 3DStub, or Dambuilder.)

The asteroids and UFOs in the Spacewar game have a primitive kind of intel-
ligence. They run away from the bullets that the player shoots. And when they’re
not running away from bullets, the asteroids tend to move towards the player.
Some users have described the Spacewar asteroids as ‘cowardly and sneaky.’

You are only allowed to have eight of your bullets active at one time. When
you try and shoot more than eight bullets, your oldest bullet is removed. This
means that if you keep the spacebar down so as to be continuously shooting,
you will see something that looks like a short stick of bullets coming out of
your player. What’s happening is that the furthest (oldest) bullet keeps being
replaced by the next bullet that you’re shooting out. In order to have your
bullets travel some distance and hit the further away asteroids, you need to
release the spacebar and give the bullets a chance to travel. Once a bullet is
traveling, it will live for three seconds. A bullet will also die if hits an asteroid,

Appendix B 579

a UFO, an enemy bullet, or the edges of the game world. Once a few of your
bullets die off, you can shoot some more bullets.

Your player incurs damage if it is touched by one of the asteroids or by one
of the enemy bullets; ‘damage’ means that the player’s health is reduced by one
point. If the player’s health reaches 0, the game is over. The current health
value is printed in the status bar below the game window.

Use your Arrow keys to run away from enemy bullets and missiles. At startup,
your controls are in the Spaceship Controls mode; this means that the Left and
Right arrows rotate the player’s icon and shooting direction, while the Up and
Down arrows add forward or reverse thrust in the direction that the player’s
icon is currently pointing. If you’ve never played an Asteroids-type game you
will initially find these controls hard to use. The idea is that the player is
supposed to be drifting in empty space and that you are steering it with blasts
from its rocket. If you’re not comfortable with the Spaceship Controls, you can
use the Player menu to select a different control mode; Scooter Controls are
particularly easy to use.

Shooting the asteroids, UFOs, enemy bullets, and enemy missiles increases
your score. Note that you don’t get a score reward for splitting an asteroid or
UFO in two, you only get the score when you actually eliminate one. The current
score value is printed in the status bar below the game window. Increasing your
score by 40 brings on a new attack by a UFO.

When you kill all the asteroids and UFOs, a new wave of asteroids appears,
and the maximum speed of the asteroids and UFOs is increased. Eventually
they overwhelm the player and use up all of the health points.

When your player loses all of its health points, the region of your window
outside the game world goes from gray to black. A message dialog appears. Click
in the dialog or press Enter to restart the game. If you would prefer to play a
different game, use the Game menu.

The status bar below the game window displays the player’s score, the
player’s health, the total number of non-bullet critters on the screen (including
the player critter), and the number of updates per second that your machine is
currently doing for the animation.

Spacewar details

The critters collide with each other and rebound. The critters collide as if they
were spheres with a mass proportional to their size. If two critters have an irregu-
lar shape this means that they will sometimes appear to collide before they
visually touch each other.

When an object hits the edge of the game world it may either bounce, wrap
around to the opposite edge, or die. At startup, the asteroids and the player
wrap, the enemy UFOs bounce, the bullets die at the edge of the game world,
and the enemy missiles bounce. You can force the asteroids to bounce off the
edges by selecting Game | Bounce instead of Game | Wrap. This makes them a bit
easier to shoot because then they can’t run away as well. Note that the UFOs
and blue enemy missiles will bounce off the game edges even if you have

Appendices580

selected Game | Wrap, and that your bullets and the green enemy missiles or
bullets will always die when they hit the game edges.

The starting number of asteroids is eight. When you shoot a larger asteroid,
it will split in two as long as the resulting number of asteroids is not too large.
At some point, if there are too many asteroids on the screen, shooting a large
asteroid will shrink it to a small asteroid the first time you shoot it, without
splitting. Shooting a smaller asteroid will always kill it.

When the player shoots a bullet, the velocity of the bullet is the vector
sum of your own velocity in the bullet’s direction plus the bullet’s muzzle
velocity.

To observe this feature, you can do as follows. Use Player | Shield to make
the player invulnerable, press the Up arrow to get the player moving rapidly,
use the Left arrow to rotate the player to point at right angles to the direction
of motion, and then press the spacebar to shoot bullets. You’ll notice that the
bullets emerge and move off at an angle. Though this is physically correct,
some users find it confusing.

The UFOs don’t obey this ‘bullet velocity = shooter velocity + muzzle velocity’
rule; the game lets them ignore the physics so as to make it easier for them to
reliably shoot right at the player. To sum up, a UFO’s bullet goes exactly in the
direction its gun is pointing, but the player’s bullets go in a direction that’s a
sum of the gun direction and the player’s motion. (If you really, really dislike
this feature, get the Pop source, make the player critter shoot like a UFO critter,
and rebuild the game!)

There are two kinds of UFOs, regular and smart. The smart UFOs can move
twice as fast as the regular UFOs, which makes them harder to shoot. The regular
UFOs split in two the first time you shoot them, no matter how many asteroids
are present. The smart UFOs don’t split. The regular UFOs have polypolygon
sprites and shoot green bullets at you. The green bullets are aimed at you, but
they can be deflected by asteroids. They will die if they hit the edge of the game
world. The smart UFOs have a sprite that’s a picture of a flying saucer; these guys
shoot blue guided missiles at you. The missiles will follow you as you move,
and they will bounce off the asteroids and off the edges of the game world.

Use the spacebar to shoot the bullets and missiles before they hit you, or use
your Arrow keys to move out of the way of these bullets. Note that the UFOs
never wrap around the edges of the game world; the best hope of hitting one is
to first drive it into a corner.

Your score value for killing various creatures is the following. You don’t get
any points when you first shoot an asteroid or a UFO and split it in two, you
only get the score when you shoot the smaller pieces and remove them from
the screen.

• Asteroid 4

• UFO 6

• Green enemy bullet 4

• Blue enemy missile 8

Appendix B 581

Your player’s health is improved by one point for every additional 100 score
points you accumulate. Every time you accumulate 40 more points, a new UFO
will appear, provided that no UFO is currently present.

More about shooting

As mentioned earlier in this help file, the spacebar causes the player to shoot
bullets in the direction in which the player sprite is pointing. Bullets are shot as
long as the spacebar is held down.

In the case where the Shoot cursor is selected, the left mouse button or the
Z key will also shoot. In addition, the left-click or Z key will aim the player in
the direction of the current mouse position before shooting. Using the Shoot
cursor you can fire at targets simply by left-clicking or Z keying on them.

If your player (or an armed enemy) happens to be too near the edge of
the world, it will not be able to shoot bullets, as any bullet near the edge gets
removed.

Using the Player menu you can choose between Deadly Bullets, which split
or destroy the asteroids and UFOs, and Rubber Bullets, which merely push them
around. In a battle game like Spacewar, rubber bullets are of no use. They’re
here so that developers can consider using the feature in a non-violent game.

Rubber bullets are destroyed only when the screen is reseeded or you select
Game | Start or Restart Game. But, as with deadly bullets, if you shoot a steady
stream of rubber bullets, the older ones are repeatedly replaced by the newer
ones. And if you have switched from rubber bullets to deadly bullets, the newly
fired deadly bullets will replace the old rubber bullets. If a deadly bullet and
rubber bullet collide, they both survive.

Other things to try in Spacewar

Try using the Player | Shield to make the player invulnerable so you don’t have
to keep restarting the game.

With the Shield mode on, use the Game | Large Critter Count selection to
bring a large number of asteroids onto the screen. Use the Arrow keys to move
the player around among them. Select Player | Rubber Bullets and shoot rubber
bullets into the crowd. The way the rubber bullets work their way along is a
model of particle diffusion. Try this both with Game | Wrap and with Game |

Bounce. Use Game | Medium to get back to a reasonable number of sprites.
You can turn a background bitmap on or off from the View menu. And you

can use Game | Wrap or Game | Bounce to turn a wrapping feature on and off for
the player, the asteroids, and the rubber bullets. (The UFOs will always bounce
and the deadly bullets will always die at the game world edge.)

Try turning Wrap on, setting Player to Shield and Rubber Bullets, and now use
the rubber bullets to get all the critters moving in one direction. Then turn
around and shoot rubber bullets till they move the other way. Turn off the View

| Background Bitmap and use View | Wireframe to see the motions more clearly.
Set Player | Auto Play and sit back and watch the shapes zoom around.

Appendices582

Use Window | Additional View of Current Game to open a second view. Shoot
some bullets. Notice how the action in the game is reflected in the second view.

PickNPop

Getting started with PickNPop

You’ve gotten a package in the mail! You set it down and open it; it’s full of
white disks and a few colored disks. We call the white disks packing peanuts and
we call the colored disks jewels. Your goals are to pop the peanuts and to move
the jewels out of the yellow packing box and into the pink target box. When a
jewel is fully inside the target box it changes its appearance. If you don’t drag it
fully inside, it will fly back out.

In this game, the cursor tool can take the form of a Pin or a Hand. You can
change cursor tools with the toolbar buttons, the mouse wheel, or with the
accelerator keys 3 and 4.

You can click and drag the critters with the Hand (also called the Drag cursor).
If you click on a critter with the Pin cursor, you kill it. Note that you have to
click once for each kill action.

To get the maximum score, you must pop all the peanuts and drag all the
jewels into the target area. A perfect game gives you a score of 1000 at the game
end. You can save a bit of strain on your hand and forearm by using the Z key
in place of the left mouse button when dragging.

The game lasts only 45 seconds. It ends when 45 seconds are over, or when
all the peanuts are popped and all the jewels are popped or in the target box.
At game’s end, the white background changes to black.

To make the maximum possible score be exactly 1000, a correction term
may be added on at the end.

Tips on PickNPop

If the game update rate is too slow, make sure to use View | 2D Windows Graphics

rather than View | 3D OpenGL Graphics. PickNPop is essentially a 2D game, even
though the program enhances the visual interest by spacing the critters along
the z-axis in the 3D OpenGL Graphics mode.

If you are running the game in 3D, and you don’t have a fast graphics card,
it may be that PickNPop will be running at a rate slower than real time. A note
in the status bar will alert you to this. In this case, the 45 seconds the program
measures will in fact be longer than 45 real-world seconds.

You can go to the View menu and select Wireframe view in place of the
Solid view so that you can see what lies under a given critter. Use Window |

Additional View of Current Game to open a second window and then use View |

Wireframe to change the second view to a Wireframe view.
Note that a left-click affects a critter if the click point is inside a visible part

of the critter. You can’t click on a critter if it is completely beneath other critters.
A click only affects one critter at a time.

Appendix B 583

Left dragging the cursor means moving it while the left button or the Z key
is held down. The Pop program allows you to use the Z key in place of the left
mouse button when using cursor tools.

When you click a critter with the Drag cursor tool, the critter is visually moved
to lie above the other critters. This is not the case in 3D OpenGL Graphics.

If your mouse has a wheel, you can switch between the Pin and the Dragger
by turning your mouse wheel in either direction.

Airhockey

This is based on the familiar airhockey game in which you and a ‘robot’
opponent try and knock a sliding puck into each other’s goals. Your opponent
has the face of Professor Rucker, your player is shaped like a disk with a triangle
tail.

Try and knock the puck into your opponent’s goal, and to prevent the puck
from being knocked into your goal. Each time the puck goes into your home
goal, the robot gets a score point. Each time the puck goes into the robot’s goal,
you get a point.

The status bar shows your and the robot player’s scores.
The game is set up so that you and the robot opponent each have to stay on

your own side of the center line.
The game ends when either you or the robot opponent reaches a score of

seven points.
You may enjoy using the Player | Scooter Controls instead of the default Player

| Mouse Controls.
This game also looks very nice if you select View | 3D OpenGL Graphics,

although on some machines it will then run too slow to be fun to play.
Your chances of getting the puck past the robot are better when you bank

the puck off one of the side walls.

Defender3D

This is a nice 3D game, a little like Space Invaders. You are riding the player,
which appears as a circle on the screen like a gun sight. You can move the
player left/right, up/down and, to a limited extent, forward and backwards.

Falling towards you are polygonal slabs. Shooting the slabs adds to your
score.

If the slabs get past you and hit the back of the world, you lose a health
point. In order to give the player a little more of a chance, whenever the player
has lost a health point, the player is immune to damage for the next half
second or so. This means that if two slabs get past you at once, the first one will
damage your player’s health by hitting the back wall, but you will be immune
to damage when the second slab hits – meaning that you’ll only get one health
point damage for the two closely-spaced slabs.

Appendices584

When you shoot a slab it releases a shower of coins that bounce along the floor.
If you can maneuver your player to collide with a coin, it increases your health.

Try using View | Ride the Player to toggle off the default behavior of riding
the player. This gives you a different view of the world.

Ballworld

This is a side-scroller game. Your player starts at the left end of the world. Your
goal is to use the Arrow keys to move your player to the right end of the screen
and jump into a hoop you’ll find there.

There are balls bouncing along the bottom of the world from right to left.
When you collide with a ball, the effect on you depends on your height relative
to the ball. If the player’s low edge is higher than the ball’s center, the player
gets a score point. But if the player’s position is lower than this, the player loses
a health point. In either case the ball is destroyed.

The player here uses the Hopper Controls. The idea is to hop over the balls and
maybe land on top of them. The Hopper Controls move the player left and right
with the Left and Right arrow keys. The Up arrow key hops the player up into the
air, but continuing to depress the Up key will not produce a continued hopping
effect. You need to tap the Up key repeatedly if you want to add a hop to a hop.

Every time a ball is destroyed a new one is added to the world to the right of
the player.

At the right end there is a hoop that gives you extra score when you jump
into it. After you jump into the hoop, the player is moved back to the left end
of the world.

In the Ballworld game, the View | Keep Player in View is turned on at the
game start. This means that when your player moves off an edge of the visible
area, the window will automatically scroll to keep the player in view. To keep
the Ballworld game from looking wobbly, the player tracking doesn’t move the
view up and down, it only moves the view left and right. If you were to zoom
in a lot with View | Keep Player in View turned on, this means the player might
be able to move out of sight above or below your view.

The game becomes trivial if you use the Mouse Controls. If you use the
Mouse Controls or the Arrow or Scooter Control, the player is not subject to
friction or gravity. Really the game only makes sense with the Hopper Controls,
the other options are simply there so you can explore possibilities.

This game looks pretty nice in View | 3D OpenGL Graphics.
Ballworld is not a polished game. It’s here for programmers to use as a start-

ing point for a classic side-scroller-style game.

Dambuilder

This is a design for a game that has never quite been finished. The idea is to use
the default Drag cursor to drag the dam walls around. Try and make the falling

Appendix B 585

flow of the polygons as slow as you can without actually stopping the flow. You
can use the Replicate cursor (the = sign) to make extra walls, and you can use
the Pin cursor to remove them. Note that you can flip through different cursor
types by using the mouse wheel. To work as a game, Dambuilder would need a
clear goal and a mechanism for having advances and setbacks.

Most programmers instead use Dambuilder for a starting point for an adventure
game. Typically they turn the gravity off, and arrange the walls in a more maze-
like pattern. The player can then be hunting certain food or power-up critters,
and avoiding certain rival critters.

We don’t attach any gravity to the player in Dambuilder, so you can use Car
Control without any confusion.

Dambuilder has an interesting appearance if you use View | 3D OpenGL

Graphics. In order to have good speed, you should use View | Solid Background

or View | No Background to turn off the background bitmap, which tends to be
expensive in 3D. While in this mode, drive around the world, looking things over.
You are riding the player. Try using Ctrl+Up/Down to alter your point of view.
Even though this is essentially a 2D game, the program enhances the visual
interest by making the walls higher than the critters in the 3D mode. While still
in 3D mode, use View | Ride the Player to turn off Ride the Player so you can
see the whole world from above. Now try zooming in on the world with Ins,
and select View | Keep Player in View so the player is always visible.

Worms

The player has an animated sprite that cycles through a series of colors. There
are other critters with face icons and ‘worms’ made up of worm segments,
which are polygon-shaped critters that tag after each other as if playing follow
the leader.

If the player touches a worm segment, it reduces the player’s health by 1.
The player’s bullets are small polypolygons.
When a player bullet hits one of the worm segments, the number of sides

in the worm segment’s polygon decreases, down to a minimum of three, after
which the segment disappears, effectively splitting the worm in two.

The face critters shoot out ‘food’ bubbles at a right angle to the direction
towards the player, and the food bubbles avoid the player. The player gains
score points by running into the bubbles, effectively eating them. The value of
the food bubble goes up with the square of its size. The bigger the bubble the
better. The bigger the face, the bigger the food bubbles it shoots out.

When a player bullet hits one of the faces, the face will grow, up to a certain
size upon which it pops and disappears. So you should shoot each face until it’s
just short of popping and then eat its bubbles.

Meanwhile, whenever a worm segment bumps a face, it makes it smaller, so
you need to try and keep the faces away from the worms. This is tricky, as the
faces run away from you.

You can use the Game | Large Critter Count to make longer worms.

Appendices586

2DStub

The 2DStub is close to being a game, though it’s primarily meant to be a piece
of code for the developer to improve.

In the 2DStub game, besides the player, there are two kinds of critters: rivals
and props. The rivals have bitmap sprites, and the props have polygonal sprites.

The rivals shoot bullets at the player. They run away from the player bullets
so fast that your only hope of killing them is to chase them down.

Chasing them down is made harder by the fact that they wrap around the
world, but your player doesn’t.

The props run away from the bullets of the rivals and from the player bullets.
If the player runs over a prop, the player’s health is improved by one point. The
props are like health-packs.

Unlike the Spacewar game, the player needs to move around a lot to do well
in 2DStub. Trying to sit in the middle of the screen and shoot is a losing strategy,
as the rivals are so evasive and since the props need to be chased down.

The player’s default controller is the Scooter Controls.
The game world is larger than a single screen, and we start with a zoomed-in

view.

3DStub

This is not a game at all, simply a little demo to show some possibilities. You can
look at the view in this game, trying out the various Viewpoint and View direction
controls, looking at the appearance and running speed you get with different kinds
of sprites, flying the player around, and testing out the Ride the Player option.

With the Ride the Player on, try using Home to roll your player and shoot
rubber bullets while you are rolling.

The world is equipped with some non-critter furniture objects. The critters
do not interact with these shapes. It’s sort of interesting to fly the viewpoint to
the inside of the teapot and look around.

The cursor tools

The cursor on a Pop Framework view takes on a different appearance according
to which cursor tool is active for that view. Left-clicking on a critter has an
effect that depends on the currently active cursor tool. Do note that not all of
the games have all of the cursor tools enabled. If a cursor tool isn’t enabled, it’s
corresponding toolbar button will be grayed out.

Note that if you have currently selected the Player | Mouse Controls, you can’t
use any cursor tools, as the cursor is busy controlling your player.

If your mouse has a wheel, you can switch among the active cursor tools by
turning your mouse wheel in either direction. Otherwise you can select a cursor
tool with the toolbar buttons, with View menu selections, or with accelerator keys.

Appendix B 587

For purposes of detecting a click, critters are treated as circles. That is, a
cursor tool affects a critter if the click lies within a circle around the center of
the critter’s sprite with a radius equal to the outermost point of the sprite.

Whenever you click on a critter it becomes the focus critter. All views of
a game have the same focus critter. The focus critter is drawn with a circle
around it, and its motion across the screen is paused. The size of the focus
critter circle is slightly larger (10%) than the size which the critter is regarded as
having. Sometimes you’ll barely notice the circle, but for the wall critters in the
Dambuilder game, the focus circle will look surprisingly large.

There does not necessarily have to be a focus critter. If you click on an
unoccupied part of the game world, then there will be no focus critter, and all
the critters for that game will move about freely.

The Pop Framework allows you to use the Z key in place of the left mouse
button when using cursor tools.

In 3D worlds, the cursor tool click is thought of as acting on the line that
runs from the viewpoint to the cursor. This means that clicking on a critter will
affect it, just as in the 2D case.

Shoot cursor (crosshairs icon)

Clicking with this cursor aims the player in the direction of the click and makes
the player fire a bullet. You can use the Z key instead of the left-click. In 3D, the
default is to pick the aiming point to lie in the same plane as the player, that
is, it is the point where your line of sight to the cursor cuts the player’s plane.
However, in 3D if you are using the View | Ride Player, the aiming point is
picked to be the spot on the far wall in the direction you are looking in, that is,
it is the point where your line of sight to the cursor cuts a vertical wall parallel
to the screen.

Pick cursor (arrow icon)

The Pick cursor is a default cursor that has no effect on the games.

Drag cursor (hand icon)

The Drag cursor is used to drag critters to new locations on the game world.
In a 3D game world such as 3DStub, you can drag a critter only in the plane

of its body.
In 2D or in 3D, if you drag a critter against a boundary such as a wall or the

edge of the world, the critter will slide along the boundary, using whatever
component of the drag motion lies parallel to the surface of the obstacle.

In the 2D Windows Graphics view, when you click a critter with the Drag
cursor tool, the critter is visually moved to lie above the other critters. In 3D
OpenGL Graphics, the critter’s relative depth location is not changed like this
by the Drag cursor.

Appendices588

Pin cursor (pin icon)

The Pin cursor kills a critter when you click on it. If you kill off some of your
critters and restart the game (for instance by pressing Enter) the same number of
critters are created as the current count. You need to make a separate left-click
for each kill action, that is, dragging the Pin cursor has no additional effect.

Zap cursor (lightning bolt icon)

The Zap cursor mutates the critter that you click on. It can be used on the player
as well as on the other critters.

The active hot spot of the Zap cursor is the upper left tip of the lightning bolt
icon.

To ‘mutate’ a critter means to change its size, and possibly the appearance of
its sprite.

Replicate cursor (equals sign icon)

This makes an exact copy of the clicked critter at a location near to the clicked
critter. You are not allowed to replicate the player critter. Note that if you go
wild and replicate dozens and dozens of critters, your updates per second will
drop down, eventually making the game run too slow.

The menu controls

Here are the names of all the Pop menu controls and the toolbar controls that
are visible when a game is open. The menu controls which have a corresponding
toolbar button have an asterisk after them.

File popup

Start or Restart Game
New Game Window * Open...*, Close, Save...*, Save As...
Recent File
Mute *
Pause *, Motion Smoothness...
Exit

View popup

3D OpenGL Graphics*, 2D Windows Graphics*
Reset Viewpoint
Keep Player in View, Ride the Player
No Background, Solid Background, Bitmap Background
Solid Objects, Wireframe Objects

Appendix B 589

Shoot cursor *, Pick cursor *, Drag cursor *, Pin cursor *, Zap cursor *, Replicate
cursor *

Toolbar, Status Bar

Game popup

Wrap, Bounce
Spacewar, PickNPop, Airhockey, Ballworld, Dambuilder, Worms, 2DStub,

3DStub, Defender3D
Small Critter Count, Medium Critter Count, Large Critter Count, Huge Critter

Count
Mixed Sprites *, Bitmaps *, Asteroids *, Bubbles *, Simple Polygons *, Fancy

Polygons *, Polypolygons *

Player popup

Shield
Arrow Key Controls, Scooter Controls, Car Controls, Spaceship Controls,

Hopper Controls, Mouse Controls
Deadly Bullets, Rubber Bullets
Auto Play

Window popup

Additional View of Current Game, Cascade, Tile, Arrange Icons, Split
Autotile, Autofocus

Help popup

About The Pop Framework..., Your System’s OpenGL Graphics Support, Pop
Program User’s Guide

The toolbar controls

Each toolbar button has the same effect as selecting the corresponding menu
control. From left to right, the buttons of the Pop toolbar correspond to these
menu selections:

New Game Window, Open..., Save...,
Mute, Pause
Pick Cursor, Shoot Cursor, Drag Cursor, Pin Cursor, Replicate Cursor, Zap

Cursor
Mixed Sprites, Bitmaps, Simple Polygons, Asteroids, Bubbles, Fancy Polygons,

Polypolygons
2D Windows Graphics, 3D OpenGL Graphics

Appendices590

The status bar

The standard status bar displays the player’s score, the player’s health, the total
number of non-bullet critters in the game (including the player critter if one is
present), and the number of updates per second that your machine is currently
doing for the animation.

For some games such as Airhockey, the player health information is not use-
ful, as in those games the player’s health is always the same.

As was mentioned in the Updates Per Second section, the updates per second
number is a rolling average over a period of time, so it will take a while for this
number to stabilize when you do some change to the current game – such as
changing the number or the types of the critters. The program is designed not
to demand more than your graphic card’s current updates per second, so you
will never see an update number higher than that value.

As discussed in the Motion Smoothness Dialog section below, the program is
geared to match the size of the critters’ simulation time steps so that the critters
take the same time to cross the game world irregardless of how fast your com-
puter runs.

When you open a menu, the status bar shows a tip about the currently high-
lighted menu selection.

Using the menu and toolbar controls

File menu controls

File | Start or Restart Game starts the animation of the game. If the game has
already been run once, this control re-initializes the game and resets the player.

The File | New Game Window control creates a default Spacewar game.
The Open..., Save and Save As... opens or saves all of the currently active Pop

game, critter, and sprite information. The Pop Framework does not save or reload
the particular View menu settings such as viewpoint, view direction, using solid
or wireframe sprites, using a background bitmap, etc.

A somewhat annoying feature of the Pop Framework is that you can’t open
a given file if a file of the same name is already open. So if you have saved a file
as test.p20 and then leave it open and let it run for awhile and then try to
reopen it to get the old state back, nothing will happen. You need to close the
current run of the game and then do a fresh open to get the saved test.p20

version back.
When you load a saved game, the game waits for you to press Enter to make

it start running.
Mute toggles the sounds of the games on and off.
Pause toggles the motion of the critters on and off.
The Motion Smoothness... selection opens the Motion Smoothness dialog. The

dialog is documented below.

Appendix B 591

View menu controls

The 3D OpenGL Graphics and 2D Windows Graphics options select between a
visually interesting, slower-running 3D view and a crisp, flat, rapidly running
2D view.

Reset Viewpoint moves the viewpoint and view direction back to a standard
location. It also sets the zoom back to the standard size. This is useful if you’ve
gotten lost and can no longer see any of the game world.

Keep Player in View toggles an option whereby the view will adjust itself so
that the player always shows. This is useful in a large world or in a zoomed-in
view where the player can easily slide off the edge of the screen. When this
option is in effect you cannot set the viewpoint and view direction so as to look
away from the player.

Ride the Player attaches the viewpoint to a ‘saddle’ a bit behind and above
the player, and the view direction is set to look out ahead of the player. When
this option is in effect, the Ctrl+Up/Down keys affect the height above the
player which the viewer rides, and the View Direction controls have no effect.
Instead, you change the view direction by turning the player.

The No Background, Solid Background, and Use Bitmap Background controls let
you have a neutral wireframe background, a solid rectangle of color for the
background, or a rectangular bitmap for the background. The background
resizes itself along with the window and adjusts itself to match the view. In 3D
worlds, the background is viewed as one face of the world box.

The Solid Objects and Wireframe Objects selections toggle between a normal
view of the sprites and a wireframe view. In wireframe mode, the polygons are
drawn with no filling, and the bitmaps are drawn as rectangular bounding
boxes surrounded by circles sized to match the sprite radius.

Depending on the game, you can select among some of these five different
cursor tools: Pick, Shoot, Drag, Pin, Zap and Replicate. See the Cursor Tools section
for more information about the actions of these tools.

Game menu controls

The Wrap control causes the critters to wrap around the border box from left
to right and top to bottom as they move. Note that the wrapped sprites are
clipped by the border box. Note also that when a sprite moves off an edge or
corner, it is simultaneously drawn as coming in from the other side or sides.

The Bounce control makes the critters bounce off the edges of the game
world. Wrap and Bounce are mutually exclusive.

The Spacewar, PickNPop, Airhockey, Ballworld, Dambuilder, Worms, 2DStub,
3DStub, and Defender3D selections switch the Game mode. Note that making
one of these selections may also affect the current cursor, the background, the
available cursor tools, and other settings.

Small, Medium, Large, and Huge Critter Count set the number of critters to,
respectively, 4, 8, 25, and 80. You can further tune the number of critters by
killing off unwanted critters. Note that if you have a huge number of critters,
your program will run slowly. Check the updates per second in the status bar.

Appendices592

Although the critter count controls have no effect in the Airhockey game, they
aren’t disabled for this game.

Mixed Sprites, Bitmaps, Asteroids, Bubbles, Simple Polygons, Fancy Polygons,
and Polypolygons set the sprites to various kinds of shapes. All of the sprites
align themselves with the critters’ motion, with the exception of the bitmaps in
the 2D Windows Graphics. There’s no easy way to rotate bitmaps in Windows
graphics, but it is in fact possible to turn them in 3D OpenGL Graphics.

The sprite change controls are disabled for some of the games. In Dambuilder
selecting a sprite change control doesn’t change the sprites of the walls.

The Mixed Sprites control selects a mixture of the following kinds of sprites.
The Bitmaps are a variety of bitmaps stored as resources in the program.

The bitmaps present are variously based on resource workshop drawings, on a
computer-generated fractal graphic, and on a scanned photograph. The bitmap
sprites have transparent backgrounds like cursor icons.

The Asteroids are irregular and spiky. They are drawn filled, and they can
have thick or thin edge lines.

The Bubbles are circles which may be drawn with rectangular highlights or
with pie-slice highlights.

The Simple Polygons are filled triangles, squares and pentagons.
The Fancy Polygons are regular and star polygons, with the regular polygon

having between two and nine vertices, and the star polygons having between
five and 14 vertices. (A polygon of two vertices is simply a line segment.) In
addition, the fancy polygons have the possibility of having thick lines for their
edges and the possibility of having dots, or small circles, at their vertices.

The Polypolygons are fancy polygons which have a copy of a tip polygon at
each vertex. The tip polygons are fancy polygons as well. The tip polygons
rotate in a symmetric synchronization with each other, but independently of
the main polygon.

Player menu controls

The Shield switch makes the player invulnerable; that is, in Shield mode the
player is unaffected by collisions with enemy critters. Even though the Shield
control has no purpose in games like Airhockey, it may still be enabled for
some of these games.

Arrow Keys, Scooter Controls, Car Controls, Spaceship Controls, Hopper Controls,
and Mouse Controls allow six different ways of having the player respond to the
arrow keys. See the keyboard and mouse controls section for details about this.

The player can shoot two kinds of bullets: Deadly Bullets and Rubber Bullets.
In a battle game like Spacewar, rubber bullets are of no use. But the rubber
bullets might be useful in a world where you use them to herd critters around.

The Auto Play switch is mainly for use in doing demos or for testing the pro-
gram. It makes the program behave as if you are holding down the Up key, the
Left key, and the spacebar, except that the player will be turning at the slower
of the two possible turn speeds. The Auto Play is geared for use in the Spacewar
program, but could be implemented for other games.

Appendix B 593

Window menu controls

Additional View of Current Game and Split. These controls open up new views of
the same game. You can have different View menu settings in the different
views. When you resize a split window, the size of the left pane will stay fixed,
and the size of the right pane will vary depending on the window’s size. If there
is no room left for a right pane while preserving the size of the left pane, the
right pane is eliminated.

Cascade and Tile. These are standard Windows controls. Cascade arranges the
open windows like a stack of file cards. Tile arranges them like a grid of cells in
a table.

Autotile. This feature automatically maximizes any single child window, and
automatically tiles multiple child windows into the outer frame. When Autotile
is active, opening a new view or a new file will retile the window so that all the
windows show. It’s a useful feature added to the Pop Framework that doesn’t
happen to be standard for Windows programs. This is on by default.

Autofocus. When this feature is on, the focus will move to whatever window the
cursor is over. Ordinarily one has to click on a window to select it, but Autofocus
selects a window automatically. This is convenient if you are using the cursor tools
in several different windows. If you have many windows open, this feature can be
inconvenient, as the focus will change if you move your mouse up to the menu
bar or toolbar to make a selection. This is another useful non-standard feature
added to the Pop Framework, but as it can be confusing, it’s turned off by default.

Help menu controls

The About The Pop Framework dialog displays some contact information. The Pop

Program User’s Guide selection shows this document. Rather than being a multiple-
topic help file, the Pop help file is a single long document suitable for printing.

The motion smoothness dialog

This dialog is opened from the File menu. It has an informational Updates Per
Second field and a Motion Smoothness field that you can edit. The Motion
Smoothness index number changes how smoothly and slowly your critters
seem to move. A high value of the Motion Smoothness is like running in slow
motion, a low value is like running in fast forward.

The informational Updates Per Second field on the Motion Smoothness dialog
shows the current number of game updates per second. This should be the same
number that you see in your status bar. The Motion Smoothness dialog can’t
change the updates per second; the only way to change the updates per second is
to change the size of the game window or the settings of your system graphics.

The Motion Smoothness control has a number that you can set between 1 and
10. These are artificial index numbers that have nothing to do with the numerical
value of the Updates per Second. Lower smoothness values produce faster, jerkier
motion. Higher smoothness values produce smoother, slower motion.

Appendices594

The default Motion Smoothness value is 5. At the default Motion Smoothness
of 5, the simulation time per processing step matches the actual real time that
elapses between updates. The games based on the Pop Framework are designed
to function best with Motion Smoothness 5.

The reason for having a Motion Smoothness control at all is that if you
have a slow machine, then there will be a long time step per update, which
entails a longer simulation time step, which entails a greater distance step in
each critter’s update. This will produce unpleasant, jerky-looking motion.
Therefore, if you have a slow machine, it is advisable to select a higher Motion
Smoothness index.

Another time you might want to increase the Motion Smoothness is if a
game seems to run too fast for you. If you have a fast machine and would like
to see the critters acting very hyper, you can select a lower Motion Smoothness.

If you change the Motion Smoothness setting, this new setting stays in effect
even if you use the Game menu to select a different game.

Accelerator keys

Start or Restart Game Enter

Open Game Param file Ctrl+O

Close Game Window Ctrl+F4

Save Game Param file Ctrl+S

New Game Window Ctrl+N

Mute Ctrl+M

Pause/Unpause Ctrl+P

Close Pop Program Alt+F4

Reset Viewpoint Ctrl+R

Shoot Cursor 1

Pick Cursor 2

Drag Cursor 3

Pin Cursor 4

Zap Cursor 5

Replicate Cursor 6

There are also a few standard Windows accelerator keys that aren’t listed here.

Contact information

The Pop program is shareware by Rudy Rucker, Copyright © 2002 all rights
reserved. Contact rucker@rudyrucker.com for further information.

Appendix B 595

Appendix C:
Summary of the controls for
Visual Studio

Action

Open the Pop project

Edit Visual Studio
directory paths for include
and library files (usually
not necessary)

Open the File View

Open the Class View

Open the Resource View

Open the Output window

Open a view of the Call
Stack

Open a file for editing

Determine the directory
of a file in the project

Add a file to the project

Visual Studio.NET,
Version 7.0

Click pop.sln in Explorer
or use File | Open
solution...

Tools | Options... |
Projects | VC++
Directories

View | Solution Explorer

View | Class View

View | Resource View

View | Other Windows |
Output

Debug | Windows | Call
Stack, or select Stack
Frame on the Debug
Location toolbar

File | Open | File... or
double-click the file name
in the File View

Open the File View,
highlight the file, select
View | Properties
Window

Project | Add Existing
Item...

Visual Studio, Version 6.0

Click pop.dsw in Explorer
or use File | Open
workspace...

Tools | Options...
|Directories

View | Workspace | File
View tab

View | Workspace |
ClassView tab

View | Workspace |
Resource View tab

View | Output

View | Debug Windows |
Call Stack

File | Open . . . or double-
click the file name in the
File View

Open the File View, right-
click the file, select
Properties

Project | Add to Project |
Files...

Add event handlers for
a menu item

Import a bitmap

Set the active
configuration to build

Open the Project Settings
dialog

Select which
configuration’s settings
are being viewed in the
Project Settings dialog

Set the output file name
and directory

Select how to use MFC
(dll or lib)

Add an additonal library
to the project

Run the program in the
debugger

Right-click the item and
select Class Wizard...

Insert | Resource | Bitmap
| Import...

Build | Set Active
Configuration

Project | Settings...

Open the Project Settings
dialog and use the Settings
for combo box

Open the Project Settings
dialog, select which
configuration to change,
and edit Link | General |
Output File Name

Open the Project Settings
dialog, select which
configuration to change,
and edit General |
Microsoft Foundation
Classes

Open the Project Settings
dialog, select all
configurations, and edit
Project | Settings | Link |
General | Object/Library
Modules

If necessary, use Build |
Set Active Configuration
to select the Debug
Configuration, then select
Build | Start Debug | Go,
or press the shortcut key F5

Right-click the item and
select Add Event
Handler...

Project | Add
Resource... | Import...

Build | Configuration
Manager and scroll the
Active Solution
Configuration box

Open View | Solution
Explorer and highlight the
Pop project (not the
solution), then select
View | Property Pages...
or press Shift+F4

Open the Project Settings
dialog and use the
Configuration combo box

Open the Project Settings
dialog, select which
configuration to change,
and edit Configuration
Properties | Linker |
General | Output File

Open the Project Settings
dialog, select which
configuration to change,
and edit Configuration
Properties | General | Use
of MFC

Open the Project Settings
dialog, select all
configurations, and edit
Configuration Properties
| Linker | Input |
Additional Dependencies

If necessary, use Build |
Configuration Manager
to select the Debug
configuration, then select
Debug | Start, or press
the shortcut key F5

Action

Appendix C 597

Visual Studio, Version 6.0 Visual Studio.NET,
Version 7.0

Run the program in
without debugging

Key shortcut to build the
program

Key shortcut to build only
the active file

Appendices598

Build | Execute, or the
shortcut key combo Ctrl+F5

F7

Ctrl+F7

Debug | Start Without
Degugging, or the shortcut
key combo Ctrl+F5

Ctrl+Shift+B

Ctrl+F7

Action Visual Studio, Version 6.0 Visual Studio.NET,
Version 7.0

#define directive 103, 106, 107, 428
#ifdef and related directives 103,

428–9
#include directive 428

1.1-dimensional motion 10
2.5-dimensional games 8, 9, 13
2D and 3D graphics

matrices in 478–81
attitude 478–80
view matrix 481

pipeline 476–8
in the Pop framework 482–4
vectors and matrices 475–6

2D game stub 286–7
2D shooting games 278–89
2DStub 587
3D Blaster 342, 343
3D Bug 348
3D Defender 584–5
3D Jewel hunter 344
3D Rasterization 478
3D Ratrace 348, 349
3D shooting games 294–301
3DStub 587
abstract method 94
acceleration 153–4
accelerator keys 595
accessors 94
Ada 95 94
‘adjust’ use case 30
advances 16, 17
AFX (application) framework 18
Age of Empires 13, 17
aggregation 68
Airhockey game 164, 172, 303–7,

584
code 305–6
design 304–5
Robert opponent 306–7

specification
appearance 303
behavior 304
concept 303
controls 304

Airstrike 335
Alien Invaders 342
alpha build 47–8
alpha N

program 41–2
User’s Guide 42

alpha-testing 211
Amazing Mouse 336
animate method 177–8
animateAllDocs 131–2
animation 129–43

animation cascade 139–41
sequence diagram of the animation

139–40
stepdoc method 140–1

endless animation loop 129–32
using Onldle method to call

animateAllDocs 131–2
processor-independent simulation

speed 132–8
improving animation speed

136–8
measuring a Timestep 134–6

updating the views 141–3
AntiVirus 344, 345
APL 86
App 4
application 4
application object 65
AppWizard 119, 399
architecture 35, 40
arrow key controls 576

hardware Windows bug in 579
art programs 5
artificial intelligence 8

Index

artificial life programs 5
assert 394–5
association 68–70
Asteroids 12, 14, 15, 17, 23
autofocus 529

Ballworld side-scroller game 585
design 320–1
specification 319–20

appearance 319
behavior 319–20
concept 319
controls 319

BB Rampage 336
Bermuda Triangle 344, 345
beta build 47–8
beta N

program 43
debugging 44–5
testing 43–4

N User’s Guide 43
binary files 62
BitBit operation 477, 500, 566–8
bitmaps 490–2, 564–8

background 565–6
resources 565
transparent 566–8

black box code ruse 96
black-box testing 30
Body Defense 333
BOOL variable 443
Breakout 11–12
breakpoints 391–2
Brick Bugs 333
Bridge pattern 115–16
buffer-swapping 477
buffered graphics output 492
bug management 7
bug tracking 44
build directories 386–7

numbering and dating 387
build, tracking 47–8
builder, role of 51

C 3, 57, 86
C# 94
C++ 3, 44, 57, 86, 411–37

classes, objects and constructors
411–12

compiler 358
const function declaration 416–18
defining a new class 414–15
destructors 415–16
detailed design in 35
implicit arguments 413–14

Index600

instance members and reference
members 419

name-mangling 427
OOP features 94
parent and child class data 420–1
parent and child constructors and

destructors 421–2
pass by reference 418–19
polymorphism 424–5
preprocessor directives 428–30

#define directive 103, 106, 107, 428
#ifdef and related directives 103,

428–9
#include directive 428
typedef convention 103–4, 429–30

randomizer module 433–7
cRandomizer class 434–7
randomizing with C library 434
static cRandomizer::Randomizer object

437
real numbers 432–3
resizable arrays 430–2

MFC CArray arrays 432
STL vector arrays 430–1

runtime class information 425–6
scope resolution operator and global

functions 426–7
Standard Template Library (STL)

arrays 20
virtual methods 422–4

CAD 57
Call Stack window 390
candlesticks 139
car controls 576–7
CArray class 20, 44

of CObject pointers by overloading
::SerializeElements 545

cBiota class 166, 170, 220, 222, 236–9,
424

CCmdTarget class 125
cController utility class 253–4
cCritter

child classes 164
class 63, 64, 69, 70, 73, 93, 424–5
full prototype 179–94
initialization 195–7
reference fields 170–3
serialize 548–50

cCritterArmed 266–8
high-level design for 265–6

cCritterArmedPlayer 273–5
cCritterBullet 266, 268–71

high-level design for 265–6
cCritterBulletPlayer 273–5
CDC class 442, 486–9

CDocument class 92, 121, 122, 124, 125,
441, 457–8

Centipede 10
cForce 153–4

child classes 154–8
cGame class 64, 67, 68, 69, 70, 219–21

virtual methods 223–36
cGame constructor 224–6
cGameDefender3D 296–7
cGameDefender3DPlayer 297–9
cGameDefender3DProp 299–301
cGameSpaceInvaders class 71–2
cGameStub class 66–7
cGraphics class 65, 71, 116, 475
cGraphicsMFC class 116, 485
cGraphicsOpenGL class 116, 485
‘check progress’ use case 30
‘Chutes and Ladders’ 17
City Hunter 338
class attributes 87
classes 87
cleanup 372–4
Climber 338, 339
clip box 490
CList class 44
cListener classes 159, 255–60
CMainFrame class 121
CMap class 44
cMatrix class 65
cMaze class 34, 321–2
cMemoryDC

class definition 495–6
declaration and construction 497–9
writing to, in OnDraw 499–501

cMemoryDC class 494–5
cObject 425–6, 540
CObject pointers

CArray of 545
CTypedPtrArray of 543–5

code
commenting 49
counting lines of 398–9
interface 103–7
merging 50
optimization 8, 358

code and fix scenario 36–7
collide method 179, 241–3
collisions 241–51

collision-handling 243–8
array vs list 247–8
collision-handling architecture

245–6
collision priority 246–7
N-squared problem 244–5

colliding spheres 248–50

Index 601

colliding walls 250–1
critter Collide method 241–3

COLORREF type 439–40
combinatorial explosion of classes 96,

98
Command pattern 112–13
common files directory 387
communication 49–50
compiled resource files 382
component diagram 28, 129
Composite pattern 113, 114
composition 95–100

relationship 62–3
computer art 8
concept, basic 4–5
const function declaration 416–18
const static variable 104, 106
Constraint Triangle 25–7, 31
content programs 5
copyright 22
cost 25–7
cPerformance Timer class 132, 133,

134–6
CPoint utility class 440
cPolyPolygon 205–7
CPopApp class 19, 131, 453–4
CPopDoc 19, 70, 442
CPopView 19, 70, 116, 442, 450
CPopView::OnDraw 482–4
cRandomizer class 434–7
cRandomizer::Randomizer object 437
CRect utility class 440
critters

cCritter initialization 195–7
class fields 165–73

basic 165–70
cCritter reference fields 170–3

full cCritter prototype 179–94
kinds of 164
method 173–9

animate method 177–8
collide method 179
die and damage method 178
draw method 177
move method 175–7
randomization and mutation 178
update, feelforce and feelistener

methods 173–5
method overrides 179, 180–1

CRuntimeClass 95, 551–2
CSize utility class 440
cSprite class 64, 70, 199–203

animate method 202–3
child classes 198, 199
Draw method 200–2

cSpriteBubble 205–7
cSpriteDirectional 211–12
cSpritelcon class 208–11
cSpriteLoop 211–12
CString

class 515
utility class 441

CTypedPtrArray of CObject pointers
543–5

cursor tools 519–28, 587–8
changing the cursor 519–21
getting a cursor resource 523–5
making a cursor in the Resource Editor

521–3
using 525–8

cVector class 64–5, 166, 475–6
CView class 92, 121, 122, 124, 125,

441–2, 450, 457–8, 515
CWinApp class 92, 121, 124, 125, 441

damage 271–3
Dambuilder 164, 321–2, 323, 585–6
Dash 2000 338
destructors 415–16, 421–2
Deer’s Revenge 336, 337
Defender 11, 13
Defender3D

code 296–301
cGameDefender3D 296–7
cGameDefender3DPlayer 297–9
cGameDefender3DProp 299–301

design 295–6
UML diagram 295–6

specification 294–5
appearance 294–5
behavior 295
concept 294
controls 295

delegation 64, 95–100
demo effect 53–5
design 35

detailed 35
final 42–3
game 7–18
high-level 35
object-oriented 35

developer gold-plating 7
die and damage method 178
dimension signature 10
dimensionality 8–15
Director 4
directory maintenance 387–8
DirectX 16

graphics 20, 116
display lists 490–2

Index602

documentation 6–7
documenter 51
Document-View architecture 19, 117
Document-View pattern 117–26

app, doc and view in MFC 119–21
documents and views in the

Framework 121–3
in Windows programs 118–19

Doom 13
drag cursor 588
drag force 156
draw method 177, 271–3
dynamic link library files 381–2
dynamic MFC library 358–9

education programs 4–5
emulators 331–2
encapsulation 57, 91–5
enqueued messages 130
Euler integration 151
executable file 374, 381–2
‘extend’ use case 30

feature creep 45
feature freeze 42–3
feedback 15, 16
feelforce method 173–5
feelistener method 173–5
file-handling 6
file menu controls 591
file names and directory structure

386–9
file popup 589
final design 42–3
final version 45
Flash 4
Flatland 14
flight simulators 14
focus and autofocus 529
Foosball 342
force 153–4

implementing 154–8
Fortran 86
forward engineering 28
Four Pieces of Fate 338, 339
frame buffer 138, 476
frameworks 18–19
friction 156
full specification 31

Galaga 10, 13
game consoles 332
game menu controls 592–3
game popup 590
Game Stub classes 72–4

games 219–39
arrays of critters

cBiota class 220, 222, 236–9
command pattern in action 239

cGame class 219–21
timestep cycle 221–3
virtual methods of cGame 223–36

cGame constructor 224–6
game adjustment 228
initializing the view 229–31
initializing the viewpoint critter

231–4
randomSprite factory method 235–6
seeding the game 226–8
status message 234–5

Garden 333, 334
Gauntlet 13
Ghostcastle 346
goals 16, 17
GoFishing 346, 347
Grammar 334
graphic user interface (GUI) 5
graphics see 2D and 3D graphics;

OpenGL graphics; Windows
graphics

graphics pipeline 476–8

Half-Life 13
header files 374, 376–9
help files 383, 400–10

creating and reading HTML 405–7
creating and reading Windows 407–8
effective 402
HTML with Version 6.0 build 408–10
kinds 402–5
menu controls 594
popup 590
project file 374, 383
wordprocessor selection 401
writing User’s Guide 401

Help Workshop 7
high-resolution performance counter

135
homogeneity 146
hopper controls 577
HTML format 401
human pace 16, 18

ICMainFrame 454–7
IDE (integrated development

environment; compiler) program
61–2, 357

correcting errors 366–7
selecting 358

inheritance 91–5

Index 603

instance member 67
integer hint field 141–2
intelligence of games 15
interface 5–6, 15, 16, 94

design 8
Internet Explorer 355
Inventor lifecycle 38–9
Inventor software lifecycle model

17

Java 3, 86
OOP features 94

JumpSport 349

keyboard 529–33
keyboard controls 575–9
keycodes, Windows 569–71
KillTime 350
King’s Quest 13

Labyrinth 322, 336, 337
lifecycle 33
LifeSaver 340
listeners 253–63

cController utility class 253–4
cListener classes 255–60
initializing its owner critter 263
sequence from keypress to critter

254–5
shooting with 260–1
viewer 261–3

locality 146
Lost Crown 342, 343
Lunatic 335

Macromedia Dreamweaver 119, 397
MAME (Multiple Arcade Machine

Emulator) 331–2
management of project 47–9
Mario 12–13
matrices 475–6

in graphics 478–81
mazes 321–2
MDI hierarchy 466–7
memory buffer 138
Memory game 316
memory leaks 392–3
menus and toolbars

accelerator keys 514–15
adding menu selections 509–13
handling and updating menu

selections 510–13
toolbar buttons 513–14
writing to the status bar 515

merging 397

Microsoft Foundation Classes (MFC) 3,
5, 359

application framework 441–2
array 20
framework 18
program flow 452–63

initializing the CDocument and CView
457–8

initializing ICMainFrame 454–7
invisible WinMain function 453–4
messages and message handlers

459–62
program termination 462–3
putting Windows on the screen

458
run cycle 458–9
sequence of function calls 453

shallow wrappers 444–6
use in static library or shared DLL

369–72
utility classes 440–1

Microsoft Visual Studio see also Visual
Studio

milestones 33
Missile Command 10
model-view-controlled 124
Modula 86
Motion Smoothness dialog 594–5
motion

laws of 150–2
player, world and viewer 8

mouse controls 575–9
mouse messages 517–19

calling the OnDraw method 518–19
processing 517–18

mouse wheel 528
move method 175–7
MSB 460
multiple document interface (MDI) 19,

119
mutation 178
mutators 94

navigation line 69
Nintendo 12, 22

object code files 374, 379–80
objected-oriented analysis (OOA) 35,

86–9, 89–91
principles 100–1

object-oriented design (OOD) 57–8,
86–9

inheritance 57–8
polymorphism 58
principles 101–2

Index604

object-oriented programming (OOP) 44,
86–9

principles 102
object-oriented software engineering

86–107
code interface 103–7
principles 100–2

Observable-Observer pattern see
Document-View pattern

Olympod 335
OnDraw method 490, 499–502, 518–19
Onldle method 65, 131–2
online games 332
OnUpdate 141–3
OpenGL graphics 20, 21, 116, 138

generic OpenGL code 506
linking to OpenGL 504–5
OpenGL code in Windows 506–7
OpenGL in the Pop Framework

507–8
OpenGL state machine 505

PacMan 12, 14, 32, 34, 171, 321
page-flipping 138, 477
parallelism 146, 147–9
Paratrooper 335
Pascal 86
PatBit function 501
payroll programs 57
Per-Fragment operations 478
physical simulation 8
physics, laws of 146
pick cursor 588
PickNPop 583–4

design 311–12
implementation 312–16

converting a critter 315–16
making the score come out even

313–14
world rectangles 315

specification 310–11
appearance 310
behavior 310–11
concept 310
controls 310

pin cursor 589
Pinball 340
Pixie Quest 337–8
player menu controls 593
player motion 8, 9

controls 575–6
player popup 590
player shooting controls 577–8
PlaySound 557–9
point hint 142

polygons 203–5
initializing and decorating 203–5
3D 205

polymorphism 91–5, 419
polypolygons 207
Pong 11–12
Pop code 58–60
Pop Dambuilder 12, 122
Pop display 574–5
Pop Framework 14, 16, 18–21, 57–74

component diagram for build process
61–2

essential Pop classes 62–5
extending 71–4
menu controls 589–90
project files 60–1
Resource files 61
running and testing 58
UML class diagrams 65–71

composition lines 67–8
inheritance lines 66–7

using 71–4
Pop help file 572–95
Pop Rally 350
Pop Spacewar 15
PowerPoint demonstration 52, 53
presentation, giving 52–5
presenter, role of 51
product ship 45
project documents 35–6
project file 374, 375
Publisher-Subscriber pattern see

Document-View pattern

QA group 43
Quake 13
quality 25–7
quality assurance (QA) 34, 51

Rally Race 11
randomization 178
randomSprite factory method 235–6
RECT structure 440
reference member 67
replicate cursor 589
requirements 27–8

gathering 22, 27, 30–1, 39–40
requirements and design (RAD) 40
‘resize’ use case 30
resource description files 382
resource files 374, 382
reverse engineering 28
revision control software (RCS) 48,

397–8
rich text files 383

Index 605

Ride the Player
mode 323
view controls 578–9

risk assessment monitoring 34
risk assessment recovery 34
risk management 34
Robonator 340, 341
Runge-Kutte integration 151
runtime binding 422

Safari 335
schedule 33–4
scooter controls 576
score 16
screensavers 5
serialization

array of pointers 543–6
CArray of CObject pointers by

overloading ::SerializeElements 545
CTypedPtrArray of CObject pointers

543–5
pointer array the hard way 545–6

cCritter serialize 548–50
child classes 550–1
CRunttmeClass 551–2
pointers 546–8

members 546–7
reference pointers 547–8

in the Pop Framework 537
Serialize, operator<< and operator>>

538–43
&* combination 542–3

summary 536–7
view and version 552–5

SerializeElements 545
Serialize, operator<< and operator>> 538–43

&* combination 542–3
setbacks 16, 17
Shelley, Bruce 17
Shepherd Boy 335
shoot cursor 588
shooters and bullets 265–76

armed players and armed robots
273–5

cCritterArmed 266–8
cCritterBullet 268–71
damage and draw 271–3
high-level design for cCritterArmed and

cCritterBullet 265–6
shooting classes 266
two-way cCritterArmed/cCritterBullet

association 275–6
shooting gallery type game 10
SimAnt 16
SimCity 8, 13, 16, 17

Sims, The 8, 16
simulation programs 5
single document interface (SDI) 19
Singleton pattern 114–15
Slot Car Race 11
Smalltalk 94
Smart Cat 351
sniffing a trail 323–4
Soccer 340, 341
software concept 27
software demo 53–5
software design patterns 109–26
software engineering process 32–6
software lifecycle 36–46
software requirement 30
software specification 31
Solution file 61
sound 8, 16, 556–63

adding libraries to your project file
559–61

adding to your program 556–9
application-wide mute variable 561–2
resource identifiers 559

source-code files 374, 375–6
SourceSafe (Microsoft) 48, 397
Space Invaders 10, 11, 14, 15
spaceship controls 577
Spacewar game 23, 164, 278–86,

579–83
code 282–6
design 280–2

draft of header file 280–2
UML diagram 280

details 580–2
getting started 579–80
specification 278

appearance 279
concept 278
controls 279
game play 279–80

specification 27
specification N 40–1
specification sketch 31–2

appearance 32
behavior 32
concept 32
controls 32

Spiral lifecycle 45–6
spreadsheets 57
sprites 64

composite 205–7
cSprite class 199–203

animate method 202–3
Draw method 200–2

cSpriteBubble 206–7

Index606

cSpritelcon class 208–11
cSpriteLoop and cSpriteDirectional

211–12
kinds of 198–9
polygons 203–5

initializing and decorating 203–5
3D 205

polypolygons 207
stability 7
Staged Delivery lifecycle 38
standard view controls 578
state operator 151
static library codes 374, 380–1
static MFC library 358, 359, 369–72
status bar 591
steering forces 154
stepdoc method 140–1
stock objects 487
strategy 16, 17
Strategy pattern 110–11

task list 34
team leader 51
team roles 50–2
teams, working in 49–52
Template Method pattern 111–12
TequilaWorm 346, 347
termination 16
‘test’ use case 30
testing, program 393–4
Tetris 11, 15
text files 62
textures 477
three-dimensional games 8
time 25–7
timer 134–6
tool programs 4
toolbar controls 590
toolbars see menus and toolbars
tools 16, 17
TRACE statements 392
transform operator 151–2
Treasure Hunt 338
Triangle Stacker 342
‘twitch game’ 17
two-dimensional motion 9
typedef convention 103–4, 429–30

Unified Modeling Language (UML)
diagrams 28–9

activity diagram 28, 129
class diagram 28, 29, 35, 92–3, 129
sequence diagram 28, 35, 117, 118,

129
use case diagram 28, 29–30, 129

update method 173–5
UpdateAllViews 141–3
updates per second 572–4
User’s Guide 6–7

alpha N 42
beta N 43
writing 401

vectors 475–6
view direction 578
view location controls 578
view menu controls 592
view popup 589–90
view zoom control 578
viewer motion 8, 9
vision 27
Visual Basic (Microsoft) 4
Visual C++ 358
Visual Studio 18, 49, 60–1, 62, 357, 358

cleanup 372–4
correcting compiler and linker errors

266–7
help files 365–6
use MPC in static library vs shared

DLL 369–72
Release and Debug builds 367–9
summary of controls 596–8
toolbars 363
user interface 361–5
versions 358–9

Visual Studio AppWizard 65
Visual Studio debugger 389–95

coding defensively 394–5
memory leaks 392–3
testing 393–4

Visual Studio Version 6 358, 360–1
appearance of the interface 362
profiling with 383–4

Visual Studio.NET (Visual Studio
Version 7.0) 60–1, 62, 358, 359,
360–1

appearance of the interface 361–2
exploring project files 363–4
help files 365
output window messages 364–5

vortex force 156, 157

‘watch’ use case 30
Watch window 390
Waterfall software lifecycle 37
wav file 16, 556
whirlpools 156
white box code reuse 96
Win32 case 439
Windiff (Microsoft) 50, 395–8

Index 607

window menu controls 594
window popup 590
Windows

adjusting the program appearance
463–5

caption bar and the About dialog
463–4

File dialog 464–5
program icons 464

data structures 439–40
levels of 450–2
multiple document interface layouts

466–9
automatic tilting and maximizing

467–9
MDI hierarchy 466–7

naming conventions 443–4
navigating app, doc and view 447–9
portable classes 472–3
splitter views 469–72

adding a dynamic splitter 470–1
adding a static splitter 471–2

walking though open documents
447–9

see also Microsoft Foundation Classes
Windows API 358
Windows Explorer

copying directories and files 356–7
managing files 357
navigating with 355–7
opening 355
viewing and opening directories and

files 355–6
Windows graphics 116

CDC class 486–9
converting real coordinates to pixel

positions 492–4
memory-based device context

494–502
calling the OnDraw 501–2
cMemoryDC class definition 495–6
declaration and construction of a

cMemoryDC 497–9
size of a bitmap 498–9
size of a class object 496–7
writing to the cMemoryDC in OnDraw

499–501
BitBit function 500
PatBit function 501

persistent display 490–2
bitmaps or display lists 490–2
OnDraw method 490

Windows sandwich 485–6
Windows sandwich 485–6
WinMain function 453–4

WinZip files 388–9
Word (Microsoft) 401
wordprocessor selection 401
Workspace file 61, 375
world motion 8, 9

Index608

Worms game 157, 287–9, 586
Wright, Will 16, 17

zap cursor 589
Z-buffer 477–8

