Software Engineering and Computer Games

Pearson

Education

——

We work with leading authors to develop the
strongest educational materials in Computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoneduc.com

Software Engineering
and Computer Games

Rudy Rucker

San Jose, California State University

V V¥V ADDISON-WESLEY

An imprint of Pearson Education

Harlow, England « London « New York « Boston « San Francisco « Toronto « Sydney « Singapore « Hong Kong
Tokyo « Seoul « Taipei « New Delhi « Cape Town « Madrid « Mexico City « Amsterdam « Munich « Paris « Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoneduc.com

First published 2003

© Rudy Rucker 2003

The right of Rudy Rucker to be identified as author of this work has been asserted
by him in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1P OLP.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not
offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Pearson Education has made every attempt to supply trademark
information about manufacturers and their products mentioned in this book. A list of the
trademark designations and their owners appears on page xxiii.

ISBN 0201 767910

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Rucker, Rudy v. B. (Rudy von Bitter), 1946—
Software engineering and computer games / Rudy Rucker.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-76791-0 (alk. paper)

1. Software engineering. 2. Computer games—Programming. |. Title.
QA76.758 .R83 2002
005.1—dc21 2002074649

10 9 8 7 6 5 4 3 2 1
07 06 05 04 03

Typeset in 9/12pt Stone Serif by 35
Printed in Great Britain by Henry Ling Ltd., at the Dorset Press, Dorchester, Dorset

Brief contents

Part |

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19

Part Il

Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Chapter 27
Chapter 28
Chapter 29

Introduction

Software Engineering and Computer Games

Projects and games

Basics of software engineering
The Pop Framework
Object-oriented software engineering
Software design patterns
Animation

Simulating physics

Critters

Sprites

Games

Collisions

Listeners

Shooters and bullets

2D shooting games

3D shooting games

Sports games

Selection games

Interesting worlds

More ideas for games

Software Engineering and Computer Games Reference

Using Microsoft Visual Studio
Tools for software engineering
Topics in C++

Programming Windows with MFC
2D and 3D graphics

Windows graphics

OpenGL graphics

Menus and toolbars

Mouse, cursors, and keyboard
Serialization

XXvii

25

57

86
109
129
146
164
198
219
241
253
265
278
294
303
310
319
331

353

355
386
411
439
475
485
504
509
517
536

vi Brief contents

Chapter 30
Chapter 31

Appendix A
Appendix B
Appendix C

Index

Sound
Bitmaps

The Windows keycodes
The Pop help file
Summary of the controls for Visual Studio

556
564

569
572
596

599

Contents

Part |

Chapter 1
1.1

1.2

1.3
14

Chapter 2

21
2.2

Foreword
Abbreviations
Acknowledgements
Introduction

Software Engineering and Computer Games

Overview

Projects and games

Features of a successful program
Concept

Interface

Documentation

Stability

Game design

A fresh look at the dimensionality of games
The intelligence of games
Requirements for playable games
The Pop Framework

Your project

Review questions

Exercises

Basics of software engineering

The Constraint Triangle
Requirements and specifications
Requirements

UML diagrams

Use case diagrams
Requirements gathering

The specification sketch

xXi
xxiv
XXV
XXVii

25

25
27
27
28
29
30
31

viii

Contents

2.3

24

2.5

2.6

2.7

Chapter 3

3.1
3.2
3.3

3.4
3.5

3.6

The software engineering process
Schedule

Design

Project documents

The software lifecycle
Requirements gathering
Architecture

Specification N

Alpha N program

Alpha N User’s Guide

Final design and feature freeze
Beta N program and Beta N User’s Guide
Testing Beta N

Debugging Beta N

Final version and product ship
The development spiral
Managing your project
Tracking the builds
Commenting your code
Working in teams
Communication

Merging code

Team roles

Giving a presentation
PowerPoint

Software demo

Review questions

Exercises

The Pop Framework

Object-oriented simulations

Running and testing the Pop program
The Pop source code

Project files

A component diagram for the build process
The essential Pop classes

UML class diagrams

Inheritance lines

Composition lines

Association lines with navigation
Using the Pop Framework

Extending the Pop Framework

The Game Stub classes

Review questions

Exercises

32
33
35
35
36
39
40
40
41
42
42
43
43
44
45
45
47
47
49
49
49
50
50
52
53
53
55
56

57

57
58
58
60
61
62
65
66
67
68
71
71
72
75
75

Chapter 4

4.1
4.2

4.3
4.4
4.5
4.6

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Chapter 6
6.1

6.2

6.3

6.4

Object-oriented software engineering

00 is the way
Object-oriented analysis
Dive right in

Redraw many times

Keep each diagram simple
Step through use cases
Encapsulation, inheritance, and polymorphism
Composition and delegation
Principles for OO design
The code interface

Review questions

Exercises

Software design patterns

Strategy

Template Method

Command

Composite

Singleton

Bridge

Document-View

Documents and views in Windows programs
The app, the doc, and the view in MFC
Documents and views in the Pop Framework
Controlling multiple documents and views
Review questions

Exercises

Animation

The endless animation loop

Using the onldle method to call animateAllDocs
Processor-independent simulation speed
Measuring a timestep

Improving the animation speed

The animation cascade

Sequence diagram of the animation

The stepboc method

Updating the views

Review questions

Exercises

Contents

86

86
89
90
90
91
91
91
95
100
103
107
107

109

110
111
112
113
114
115
117
118
119
121
124
126
127

129

129
131
132
134
136
139
139
140
141
143
143

ix

x Contents

Chapter 7

71
7.2
7.3
7.4
7.5

Chapter 8

8.1
8.2

8.3

8.4
8.5

Chapter 9

9.1
9.2

9.3

9.4

9.5
9.6

Simulating physics

Parallelism

The laws of motion
Force and acceleration
Implementing forces
Preserving your physics
Review questions
Exercises

Critters

Kinds of critters

Overview of the critter class fields
Basic critter fields

The ccritter reference fields

Critter methods

The Update, Feelforce, and Feellistener methods
The mMove method

The braw method

The Animate method

Randomizing and mutation methods
The Die and bamage methods

The collide method

Critter method overrides

The full ccritter prototype

ccritter initialization

Review questions

Exercises

Sprites

Kinds of sprite

The cSprite class

The sprite braw method

The Animate method

Polygons

Initializing and decorating a polygon
Polygons in 3D

Composite sprites

The cSpriteBubble

Polypolygons

The cSpritelcon class
cSpriteLoop and cSpriteDirectional
Review questions

Exercises

146

147
150
153
154
159
160
160

164

164
165
165
170
173
173
175
177
177
178
178
179
179
179
195
197
197

198

198
199
200
202
203
203
205
205
206
207
208
211
212
212

Chapter 10

10.1
10.2
10.3

10.4

Chapter 11

11.1
11.2

11.3
11.4

Chapter 12
121

12.2
12.3
12.4
12.5

Chapter 13

13.1
13.2
13.3

Games

The cGame class

The game’s timestep cycle

The virtual methods of cGame
The cGame constructor

Seeding the game

How the game adjusts itself
Initializing the view

Initializing the viewpoint critter
The status message

The randomsSprite factory method
Arrays of critters: the cBiota class
Service requests: the Command pattern in action
Review questions

Exercises

Collisions

The critter collide method
Collision-handling

The N-squared problem

A collision-handling architecture
Collision priority

Array or list? An N-cubed issue
Colliding spheres

Colliding walls

Review questions

Exercises

Listeners

How the critters listen to the user input
The ccController utility class

The sequence from keypress to critter
The listeners

Shooting with the listeners

Viewer listeners

How a listener initializes its owner critter
Review questions

Exercises

Shooters and bullets

High-level design for cCritterArmed and cCritterBullet
The ccritterArmed
The ccritterBullet

Contents

219

219
221
223
224
226
228
229
231
234
235
236
239
240
240

241

241
243
244
245
246
247
248
250
251
251

253

253
253
254
255
260
261
263
263
263

265

265
266
268

xi

xii Contents

13.4 damage and draw 271

13.5 Armed players and armed robots 273

13.6 The two-way cCritterArmed/cCritterBullet association 275
Review questions 276

Exercises 277

Chapter 14 2D shooting games 278
14.1 The Spacewar game 278
Specification 278

Design 280

The Spacewar code 282

14.2 The 2D Game Stub 286

14.3 The Worms game 287
Exercises 289

Chapter 15 3D shooting games 294
15.1 The Defender3D specification and design 294
Specification 294

Design 295

15.2 The Defender3D code 296
cGameDefender3D 296
cGameDefender3DPlayer 297
cGameDefender3DProp 299

Exercises 301

Chapter 16 Sports games 303
16.1 The Airhockey game 303
Specification 303

Design 304

The Airhockey code 305

The Robot opponent 306

Exercises 307

Chapter 17 Selection games 310
17.1 PickNPop specification and design 310
Specification 310

Design 311

17.2 The PickNPop implementation 312
Making the score come out even 313

The world rectangles 315

Converting a critter 315

17.3 Other selection games 316

Exercises 317

Chapter 18
18.1

18.2
18.3

Chapter 19
19.1

19.2

Part 1l

Chapter 20
20.1

20.2

20.3

Interesting worlds

The Ballworld side-scroller game
Specification

Design

Games with walls

Sniffing a trail

Exercises

More ideas for games

Commercial games
Emulators

Game consoles
Online games

The Pop Framework games hall of fame
Fall, 1999

Spring, 2000

Fall, 2000

Spring, 2001

Fall, 2001

Spring, 2002

Software Engineering and Computer
Games Reference
Overview

Using Microsoft Visual Studio

Navigating with Windows Explorer

Opening Windows Explorer

Viewing and opening directories and files

Copying directories and files

Avoiding a Visual Studio gotcha

Which version?

Which compiler?

Visual Studio versions

Microsoft Foundation Classes

Dealing with change

Visual Studio, Version 6 versus Visual Studio.NET,
Version 7

The Visual Studio user interface

Appearance of the interface for Visual Studio.NET,
Version 7.0

[Appearance of the interface for Visual Studio,
Version 6.0]

Contents

319

319
319
320
321
323
325

331

331
331
332
332
332
333
335
338
342
342
348

353
353

355

355
355
355
356
357
357
358
358
359
359

360
361

361

362

xiii

xiv

Contents

20.4
20.5
20.6
20.7
20.8
20.9

20.10

Chapter 21
21.1

21.2

21.3

21.4
21.5

Toolbars

Exploring the project files

Output window messages

The Visual Studio help files

Correcting compiler and linker errors

Release and Debug builds

Use MFC in static library or use MFC in shared DLL?

Cleanup

Building blocks of a complete program

Project files: *.sln and *.veproj [*.dsw and
*.dsp (Version 6.0)]

Source code files: *.cpp and *.c

Header files: *.h

A note on precompiled header files

Object code files: *.obj

Static library files: *.lib

Executable files: *.exe, and dynamic link
library files: *.di

Resource description files: *.re and compiled
resource files *.res

Help files

Profiling with Visual Studio, Version 6

Exercises

Tools for software engineering

File names and directory structure
Build directories

WinZip files

Using the Visual Studio debugger
Finding the problem after a crash
Breakpoints

TRACE statements

Finding memory leaks

Testing

Coding defensively

Wwindiff and merging code

Windiff

Merging

Revision control software
Counting lines of code

Help files without tears

Writing the User’s Guide

Which word-processor?

Making an effective help file

The two kinds of help

363
363
364
365
366
367
369
372
374

375
375
376
378
379
380

381

382
383
383
384

386

386
386
388
389
390
391
392
392
393
394
395
395
397
397
398
400
401
401
402
402

Chapter 22

22,1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9
22.10
22,11
22,12
22.13
22.14
22.15

22.16

22,17
22.18

Chapter 23
23.1

23.2
23.3
23.4
23.5

Creating and reading HTML help files

Creating and reading Windows help files

The mixed case: reading HTML help files with a
Version 6.0 build

Exercise

Topics in C++

Classes, objects and constructors

Implicit arguments

Defining a new class

Destructors

The const function declaration

Pass by reference

Instance members and reference members
Parent and child class data

Parent and child constructors and destructors
Virtual methods

Polymorphism

Runtime class information

The scope resolution operator and global functions
Name-mangling

Preprocessor directives

The #include directive

The #define directive

#ifdef and related directives

The typedef convention

Resizable arrays

STL vector arrays

MCF cArray arrays

Real numbers

A randomizer module

Randomizing with the C library

The cRandomizer class

The static cRandomizer::RANDOMIZER object
Exercises

Programming Windows with MFC

Some Windows data structures
The COLORREF type

The RECT structure

MFC utility classes

The MFC application framework
Naming conventions

MFC classes are shallow wrappers

Contents

405
407

408
410

411

411
413
414
415
416
418
419
420
421
422
424
425
426
427
428
428
428
428
429
430
430
432
432
433
434
434
437
437

439

439
439
440
440
441
443
444

XV

xvi

Contents
23.6

23.7
23.8

23.9

23.10

23.11

23.12

Chapter 24

24.1
24.2
24.3

24.4

Chapter 25

25.1
25.2
25.3

25.4
25.5

Navigating app, doc, and view

Walking through the open documents
Levels of Windows

The MFC program flow

All you really need to know

The invisible winMain function

Initinstance, Part 1: Initializing the cMainFrame

Initinstance, Part 2: Initializing the cDocument and CView
Initinstance, Part 3: Putting the Windows on the screen

The MFC run cycle

Messages and message handlers
Program termination

Adjusting the program appearance
The caption bar and the About dialog
The program icons

Tweaking the File dialog

The multiple document interface layouts
The MDI hierarchy

Automatic tiling and maximizing
Splitter views

Adding a dynamic splitter

Adding a static splitter

Portable classes

Exercises

2D and 3D graphics

Vectors and matrices

The graphics pipeline

Matrices in graphics

Attitude

The view matrix

Graphics in the Pop Framework
The cPopView::0nDraw(CDC* pDC)

Windows graphics

The Windows sandwich

A cDc is like a cranky six-legged ant
Persistent display

The onbraw method

Bitmaps or display lists?

Converting real coordinates to pixel positions
A memory-based device context

The cMemoryDC class definition

Declaration and construction of a cMemoryDC

447
447
450
452
453
453
454
457
458
458
459
462
463
463
464
464
466
466
467
469
470
471
472
473

475

475
476
478
478
481
482
482

485

485
486
490
490
490
492
494
495
497

Chapter 26

26.1
26.2
26.3
26.4
26.5

Chapter 27
27.1

27.2
27.3
27.4

Chapter 28
28.1

28.2

28.3
28.4
28.5

Chapter 29

29.1
29.2
29.3

29.4

Writing to the eMemoryDC in OnDraw
Calling the onDraw
Exercises

OpenGL graphics

Linking to OpenGL

The OpenGL state machine
Generic OpenGL code
OpenGL code in Windows
OpenGL in the Pop Framework

Menus and toolbars

Adding menu selections

Handling and updating menu selections
Toolbar buttons

Accelerator keys

Writing to the status bar

Exercises

Mouse, cursors, and keyboard

Mouse messages

Processing a mouse message
Calling the onbraw method
Cursor tools

Changing the cursor

Making a cursor in the Resource Editor
Getting a cursor resource
Using the cursor tools

The mouse wheel

Focus and autofocus

The keyboard

Exercises

Serialization

Serialization summary
Serialization in the Pop Framework
Serialize, operator<<, and operator>>
The &* combination

Serializing an array of pointers

Serializing a CTypedPtrArray Of CObject pointers
Serializing a CArray of CObject pointers by overloading

::SerializeElements
Serializing a pointer array the hard way

Contents

499
501
502

504

504
505
506
506
507

509

509
510
513
514
515
516

517

517
517
518
519
519
521
523
525
528
529
529
533

536

536
537
538
542
543
543

545
545

xvii

Xviii

Contents
29.5
29.6
29.7

29.8
29.9

Chapter 30
30.1

30.2
30.3

Chapter 31
311

31.2
31.3

Appendix A:

Appendix B:

Serializing pointers

Serializing pointer members
Serializing reference pointers
The ccritter serialize

Serializing child classes
Serializing a CRuntimeClass
Serializing the view and version
Exercise

Sound

Adding sound to your program
Resource identifiers

Adding libraries to your project file
An application-wide mute variable
Exercises

Bitmaps

Bitmaps

Bitmap resources

Using a background bitmap
Transparent bitmaps

The Windows keycodes

The Pop help file

About the Pop program

Updates per second

Overview

The Pop display

The games

Keyboard and mouse controls
Player motion controls

Player shooting controls

Standard view controls

View controls using Ride the Player
A hardware Windows bug in the Arrowkey Controls
Spacewar

Getting started with Spacewar
Spacewar details

More about shooting

Other things to try in Spacewar
PickNPop

Getting started with PickNPop

546
546
547
548
550
551
552
555

556

556
559
559
561
562

564

564
565
565
566

569

572
572
572
574
574
575
575
575
577
578
578
579
579
579
580
582
582
583
583

Tips on PickNPop

Airhockey

Defender3D

Ballworld

Dambuilder

Worms

2DStub

3DStub

The cursor tools

Shoot cursor (crosshairs icon)
Pick cursor (arrow icon)

Drag cursor (hand icon)

Pin cursor (pin icon)

Zap cursor (lightning bolt icon)
Replicate cursor (equals sign icon)
The menu controls

File popup

View popup

Game popup

Player popup

Window popup

Help popup

The toolbar controls

The status bar

Using the menu and toolbar controls
File menu controls

View menu controls

Game menu controls

Player menu controls

Window menu controls

Help menu controls

The motion smoothness dialog
Accelerator keys

Contact information

Appendix C: Summary of the controls for Visual Studio

Index

Contents

583
584
584
585
585
586
587
587
587
588
588
588
589
589
589
589
589
589
590
590
590
590
590
591
591
591
592
592
593
594
594
594
595
595

596

599

Xix

Foreword

Rudy Rucker. You may know him as a science fiction author, mathematician,
or technologist who dreams of worlds inhabited by living machines, two-
dimensional creatures, or numbers with names. Or, you may know him as the
guy giving you a test today in your Computer Science class! That’s where I
started . . .

It was some time in the mid 80’s that I first met Rudy, or back then Dr. Rucker.
I was a freshman attending San José State University, triple majoring in Math,
Computer Science, and Electrical Engineering. I had enrolled in an assembly
language class or something similar that he was teaching. I remember arguing
with Dr. Rucker about not getting full credit for a program I had written that
multiplied two numbers together really fast in 8-bit assembly language.
Dr. Rucker didn’t really look at the program closely and assumed I was wrong
since the technique I used was very subtle and very advanced, a standard trick
of a game programmer, but to the untrained eye it couldn’t possibly work . . .
So I went into his office and I convinced him to really look closely at it, and he
did. When he was complete with his analysis, he smiled and said something
like, ‘André you’re right’. From that point on, we spoke more frequently and I
told him about my development of video games. Rudy was very interested in
something that I too had a love for, which was artificial intelligence, emergent
behavior, and cellular automata, all of which began his obsession with ants and
little creepy crawling things that pervade all of his work (and mine).

Back in those days we were all exploring new worlds — we didn’t have a
plan - just looking around and seeing what happened. Out of all the professors
I encountered, only two made an impression on me and Dr. Rucker was one of
them. Of course, his lectures always seemed to be a little from the ‘hip’, or
maybe a better word ‘organic’. I rarely took notes, I listened for the meaning
between the lines, the things he was thinking, but couldn’t really say in a class-
room setting. Crazy things like the possibility of living machines, computers
that have sex, anti-time, and many other concepts that could get you hanged
in these parts. In the end, I confirmed that there are other people that have the
same crazy ideas I do, and that was important.

Time passed, I graduated, and Rudy and I kept in touch. Every now and then
I would ask him something, or vice versa. I would read one of his sci-fi books
once in a while, his name would come up in conversations about William

Foreword

Gibson’s work, or Al, and people couldn’t believe I knew him! They would ask
what he was like, and so forth. Rudy Rucker had a huge cult following based on
his sci-fi work which was really cool, and a part of his personality I never knew
about in detail.

But, the only thing I ever wondered was why he had never written a serious
technical book about computer science? Make no mistake, he is a brilliant
mathematician, but only now did he finally have time or the subject matter to
write a computer science book that really interested him. At least that’s what
I think.

In any case, Software Engineering and Computer Games is a very important
book: it’s the first time that anyone has even attempted to try and make heads
or tails of the software engineering paradigm as applied to the development
of video games. As far as I am concerned, this book should be a requirement
of anyone that wants to write games — period. Every game book I have ever
read, or written for that matter, explains techniques to develop games, graphics,
Al, networking, whatever, but no one ever really explains how to ‘software
engineer’ a game.

After reading Rudy’s book, I was really excited: all the techniques that I had
been using and developing over the years, he had put into a nice, complete
package for others to read and learn from. Additionally, he made a science of
game development. Game programmers are gods, that’s without a doubt, but
this book shows why! Rudy has step-by-step created a game programming
framework which he calls ‘Pop’ (I will let him tell you why) that allows you to
create 2D and 3D games without worrying about all the low level details. So
what, you might ask? Well, the point is that he shows the entire thought pro-
cess, and software engineering cycle of this framework, from UML diagrams to
implementation. This is something I guarantee even the guys that wrote HALO
didn’t do!

Point being, after reading this book you will be a better coder, software
engineer, and game programmer all in one. Not to mention that the book
is all inclusive. It covers object oriented programming, physics, 2D, 3D, C++
techniques, MFC (yuck!), and contains numerous complete projects to illustrate
various techniques.

But, here’s a secret . . . come close . . . read between the lines. In these pages
is a story, a story about something that today we are seeing the first baby steps
of — if you look carefully you will find it. So take advantage of this rare glimpse
of such a fascinating and brilliant personality as Rudy Rucker applied to this
very technical matter of game development and software engineering.

André LaMothe
Computer Scientist/Author

April 2002

Foreword
Trademark Notice

The following designations are trademarks or registered trademarks of the organ-
izations whose names follow in brackets: 3D Studio Max (Autodesk, Inc.);
Ada9S5 (Kempe Software Capital Enterprises); Age of Empires, AppWizard,
DirectX, DirectX Sound, Internet Explorer, Microsoft C#, Microsoft Foundation
Classes, Microsoft Office, Microsoft PowerPoint, Microsoft Project, Microsoft
SourceSafe, Microsoft Visual Basic, Microsoft Visual Studio, Microsoft Windows,
Microsoft Word, Windows Explorer, Windiff, WordPad (Microsoft Corpora-
tion); APL (International Business Machines Corporated); Asteroids, Breakout,
Centipede, Missile Command, Pong (Atari, Inc.); Defender (Williams Electron-
ics, Inc.); Director, DreamWeaver, Flash, Shockwave (Macromedia, Inc.); Doom,
Quake (Id Software, Inc.); Fortran (Compaq); Galaga, Pac Man (Namco Ltd.);
Gauntlet (Midway Games West, Inc.); Half-Life, King’s Quest (Sierra On-Line,
Inc.); Java, Modula (Sun Microsystems, Inc.); KaZaA (Sharman Networks); Linux
(Linus Torvalds); MAME (The MAME Team); Mario, Nintendo GameBoy
(Nintendo of America, Inc.); MIDI (Midi Manufacturers Association, Inc.);
Napster (Napster, Inc.); Netscape (Netscape Communications Corporation);
Photoshop, PostScript (Adobe Systems, Inc.); Rubik’s Cube (Seven Towns
Limited); SimCity (Maxis Corporation); SmallTalk (Xerox Corporation); Space
Invaders (Taito America Corporation); StairMaster (StairMaster Sports/Medical
Products, Inc.); WinZip (WinZip Computing).

Abbreviations

AFX
API
CAD
GUI
GDI
IDE
MFC
MDI
MAME
ooP
0ooD
00A
QA
RAD
RCS
RTF
ROP
SDI
SAD
UML

Application Frameworks
Appication Program Interface
Computer Aided Design

graphic user interface

Graphics Device Interface
Integrated Development Environment
Microsoft Foundation Classes
Multiple Document Interface
Multiple Arcade Machine Emulator
object-oriented programming
object-oriented design
object-oriented analysis

quality analysis

requirements and design

Revision Control Software

rich text format

raster operation

Single Document Interface
specification and design

Unified Modelling Language

Acknowledgements

Special thanks to those of my students whose games | mention in Chapter 19.

Student games marked with a * appear on the book cover; the biggest cover image is from the 3D

Jewel Hunter game.

Fall, 1999 Scott Choi, N. Yen, J. C. Wang Body Defense
Paul Sumares, Jake Woodhams, Puneet Dhaliwal Brick Bugs
Vladi Sankin, Pasha Sadri, Vu Hwang Gardenx
Sue Wilner, Theresa Nguyen, Jean Schundler Grammar
Joe Bond, Keith Shum, Vinh Vu Lunatic
Minh, Sean, Norman Olympod
Supriya, Shimali, Raymond Paratrooper
Wei Zhang, Ramya Parasuram, Chris Feliton Safari
Kelvin Shum, Ken Shitamoto, Tam Minh Shepherd Boy
Spring, 2000 Bryan, Minh, Norman Airstrike
Harry Fu, Kerry Goodman, Rosanna Tse Amazing Mouse
Mark Anderson, Raymond Ochoa, Rina Desai BB Rampage
Bobby Tse, Douglas Andersen, Sarah Levantine Deer’s Revengex
Karissa Huang, Karen-Hoa Do, Kendra Ladeau Pixie Quest:
Naheed Himmati, Smita Joshi, Sunita Gupta Treasure Hunt
Fall, 2000 Chi-Ping Chang, Wyley Dai, Chung Vong City Hunter
Michael Moore, David Dong, Karno Halim, Martina Mesic Climber
Allan Wong, Chetan Jhaveri, Tuan Vu Dash 2000
Sudhir Srikanth, Thu Nguyen, Jason Ngai Four Pieces of Fate
Wen Jin Mei, Stanley Chen, Myat Min LifeSaver
Hung Dinh, Nam Lam, Thanh Phan Pinball
Jeremy Dittrich, Gerry Girard, Nisha Ahluwalia Robonator
Gary Chin, Chi Chan, Uri Rayzberg Soccer
Spring, 2001 Marvin, Alex, Phuoc Alien Invaders
Jimmy Huang, Tony Xu, Duy Nguyen Footsball
Craig Clark, Cherry Yang, Jason Peng Labyrinth Roller
Lee Lacanlale, Andrew Nguyen, Kiminori Inagaki Lost Crown
Dipti Bhatt, Donna Portacio Triangle Stacker
Fall, 2001 Chi Chan, Wyley Dai, Madhuri Potu 3D Blaster
Giavinh Pham, Charlie Tran, Thuy Bui 3D Jewel Hunters:x
Randolph Schmidt, Jose Rivera, Bharat Joshi AntiVirus*
Andy Wu, Sam Wu, Anthony Tu, Nhut Hyunh Bermuda
Don Bernal, Wallun Chan, Frank Chang Ghostcastle
Isabel Zhang, Karen Chow, Yisi Lau GoFishing
Lee Gong, Rich Prillinger, Joseph Cheng TequilaWorm
Spring, 2002 Kwok Wing Tang, Minh Dang, Thuy Nguyen 3D Bug
Chiao-Kai Yang, Raymond Chan, Doug Simmons 3D Rat Race
Jim Cheung, Nithin Reddy, Joko Sutomo JumpSport
Doug Uno, Kenny Moy, Haitham Halloum KillTimex
Kenji Tan, Bao Mai, Rui Chen, Dung Luc Pop Rally
Darrian Hale, David Wong, Ken Pao Smart Cat

Introduction

In developing Software Engineering and Computer Games and its accompanying
software framework I had four broad goals.

e To teach a lively style of object-oriented software engineering.
* To show how to bring a complete program to the level of a commercial release.
e To provide a ‘game engine’ framework of linked classes for game development.

e To create programs that are interactive, rapidly executing, and visually
beautiful.

Software Engineering and Computer Games was originally developed for use as
the primary textbook in my undergraduate software engineering and graduate
software projects courses in the Department of Computer Science at San José
State University (SJSU for short). In these classes we cover the topics of software
engineering in the context of having student teams design and implement
computer games. Depending on the nature of the course, lesser or greater
emphasis can be placed on the student projects.

The book is also meant to be suitable for self-study. Readers are encouraged to
use the book to create their own games. Software Engineering and Computer Games
is specifically designed so as to allow would-be game developers to get their
own games running easily and rapidly.

In order to make it feasible for readers of this book to carry out a game project
without getting lost in endless details, I've created an open source C++ software
framework for developing computer games; this is the ‘Pop Framework,” with
source code available for free download from the book’s website:

www.rudyrucker.com/computergames

As well as working as a software engineering text or as a self-study guide for
budding game-developers, Software Engineering and Computer Games can also serve
as the text for a course on computer games such as the Computer Game Design
and Programming one we have at SJSU. The idea of having university Computer
Science departments teach computer game programming is a fairly new idea.
Software Engineering and Computer Games should serve to show that a course of
this nature can be taught in a sound and academically respectable fashion.

xxviii

Introduction

Software Engineering and Computer Games uses the Windows platform. Why
Windows? Although the death of Windows is regularly predicted, it remains the
most popular operating system on personal computers. Windows is a strong,
mature platform for writing graphics-intensive and/or computation-intensive
programs to run on a desktop machine. By using Windows we get, essentially for
free, a lot of goodies that can otherwise be hard to implement: things like menus,
toolbars, cursor tools, resizable windows, multiple document interface, cutting
and pasting and file handling. Certainly the Java environment can implement
these features, but the process is somewhat easier with the Microsoft Visual
Studio development environment. And in terms of job-hunting, it’s very nice to
have a solid Windows computer game project of one’s own to demo.

As at most other universities, SJSU has no formal Windows programming
prerequisite for the software engineering or software projects courses; in fact
we’ve recently switched our introductory courses to Java. But it’s valuable to
study Windows programs in some upper-division courses so that the students
can gain experience with full-featured real-world desktop projects. Software
Engineering and Computer Games is designed so as to be self-contained, with no
prior knowledge of Windows programming required. A familiarity with C++ is
recommended, but we have a C++ review chapter for those starting with only a
knowledge of Java.

The book has two parts. Part I: Software Engineering and Computer Games is the
essential lecture material to be covered in the course, and Part II: Software
Engineering and Computer Games Reference contains detailed reference informa-
tion about topics essential to fully understanding Part I.

My procedure in using this book as a textbook is to lecture during the first
half of the course and during the second half of the course to help the students
spend the classroom time working on projects in three-person teams. We try and
cover most of the Part I material during the lectures, and the students read from
the Part II material on their own as needed. If using the book for self-study, you
might expect to read through most of Part I and to occasionally refer to Part II. If
your immediate goal is simply to get going on making working games, you can
skip right to Chapter 3, do the exercises at the end to get a first game working,
and then study Chapters 7-17 to see how to make more complicated games.

The necessity of breaking the book into two parts arises from the dilemma of
wanting to teach Windows-based software engineering to people who might not
know Windows programming. Part II covers topics such as the advanced features
of C++, Windows programming, the Microsoft Foundation Classes (MFC), and
the use of Microsoft Visual Studio — which is indeed the standard tool used by
many computer game designers.

The book touches on nine topics.

e Basic software engineering principles and techniques.
e How to organize and complete a substantial software project.
e Practical examples of object-oriented design and programming.

e The design of computer games.

e Simulating physics inside our computer-generated worlds.

e Artificial life, or how to simulate live creatures inside a computer program.

e Using two- and three-dimensional Computer graphics to create a virtual reality.
e Windows programming using the MFC application framework.

e How to develop a project using Microsoft Visual Studio.

The code accompanying the book is called the Pop Framework. The Pop
Framework consists of C++ implementations of a few dozen classes that are use-
ful for constructing two- and three-dimensional computer games. Software
Engineering and Computer Games starts with the basics of software engineering,
and then presents the user with the Pop program, built with the Pop framework
to have a number of different game modes. The game modes include an
Asteroids-style Spacewar, a Picknpop game of picking and popping bubbles, an
Airhockey game, a three-dimensional shooting game, a free-play game called
Dambuilder, a side-scroller stub called Ballworld, and a few more. Each of the
games can be run in two-dimensional or three-dimensional graphics.

The name ‘Pop’ for the framework was chosen in memory of my beloved
father, not that he was at all interested in computers, but what the heck. This is
for you, Pop!

At the writing of this introduction nearly 100 different student projects have
been built using the Pop Framework, with the result that the code has become

[E|Pop. Version 26.2, May 15, 2002, Rudy Rucker. - Pop 2 [_[5]x]
File View Game Player Window Help

DeEYolf-HywSEe®e w205

[E]Pop 4 IS [= B3| Pop 2 [_[O[X]

I =] B3)] PO (D] x]

[E]Pop 3

Player Score: 0. Robot Score: 1. Updates per second: 10. (Slower than Real Time) 4

The Pop Framework running four of its default games

XXix

Introduction

quite solid and easy to extend. In Software Engineering and Computer Games, the
workings of the Pop code is explained within the general context of software
engineering, and the user is guided into extending one of the game modes to
create his or her own computer game.

Why teach something so seemingly frivolous as computer game program-
ming and design in an upper-division computer science class?

e Breadth. Computer games integrate techniques and code from the whole
spectrum of computer science: software engineering, graphics, artificial intel-
ligence, and user interface design.

e Depth. Developing a computer game involves many different levels of skills,
from low-level algorithm implementation to high-level object-oriented design.
Completing a computer game project requires a deep, sustained effort.

e Excitement. The visual and interactive nature of computer game projects can
deeply engage a student’s interest. Because it’s fairly easy to tell if a game
works well, the goal is satisfyingly clear-cut and challenging.

e Simulation applications. Writing a computer game involves creating an object-
oriented real-time simulation of a certain kind of toy world. The skills and
techniques can be transferred to simulating a wide range of other systems.

e Career preparation. A completed computer game is an impressive program
for students to demonstrate to prospective employers, whatever the nature
of the job. In addition, a number of students are interested in getting jobs
specifically as game developers.

Software Engineering and Computer Games uses C++ and an object-oriented
approach throughout. We use Unified Modeling Language (UML) for object-
oriented analysis, we discuss software patterns and how to incorporate them
into our object-oriented design process, and we consistently use the techniques
of object-oriented programming to implement our classes.

Among the special classes in the Pop FrameworKk is a cCritter class to represent
our computer game ‘critters,” and a cGame class for the games themselves. We
also develop some reusable utility classes such as a polygonal and bitmap-based
cSprite objects for putting images on the screen, a cRandomizer with a useful
randomizing function, a eVector class and a cMatrix class for physics and graphics,
and a cPerformanceTimer class to make our animations real-time and processor-
independent. In addition, the Pop Framework includes some sound, toolbar,
menu and dialog resources. The Pop Framework is built upon the underying
framework of the MFC, using some standard MFC classes: CPopApp, CMainFrame,
CChildFrame, CPopDoc, and CPopView. The Pop Framework’s MFC classes are cus-
tomized so as to be easily usable for animated simulations or computer games.

The Pop Framework has a cGraphics class that acts as a bridge between the
framework and any specific kind of graphics implementation. That is, all of our
graphics functions are in the abstract base class cGraphics, with the specific
implementation of the methods being deferred to child classes. We presently
have cGraphicsMFC and cGraphicsOpenGL implementations.

Introduction

The cGraphicsMFC uses standard Windows API graphics calls. These calls have an
undeserved reputation for being slow; the Pop Framework’s speed is in fact more
than adequate for typical computer games, easily achieving update rates far in
excess of the minimal 30 frames per second that one typically needs. The key
trick is to assemble each new frame in an offscreen eMemoryDC object provided
by the Pop Framework, and to then rapidly block copy this image to the screen.
The cGraphicsMFC is optimal for two-dimensional games including sprites and
graphics, but doesn’t have adequate support for fully three-dimensional games.

The cGraphicsOpenGL provides support for three-dimensional graphics, with
z-buffering, lighting effects, and so on. On modern machines with graphics
cards that have hardware OpenGL support, the cGraphicsOpenGL gives acceptable
animation frame rates. As well as supporting polygons, we support bitmap
textures in OpenGL.

Software Engineering and Computer Games was developed through nearly a dozen
draft versions for use in my undergraduate software engineering and graduate
software projects courses over the past 15 years. Above and beyond covering the
syllabi for these courses, my agenda is always the same: to teach the students to
write complete, visually interesting programs that seem to come alive.

Being a programmer — or a computer science professor — is a little like living
on a Stairmaster. Your field never stops changing; your old knowledge is con-
tinually being swept into oblivion. Software Engineering and Computer Games and
the Pop Framework undergo updates and upgrades every semester. It’s never
really finished; there are always more features one could add. The Pop
Framework has many good starting points for further projects, ranging in level
from a homework assignment to a Master’s Degree thesis.

Software Engineering and Computer Games is designed for the latest flavors
of Windows and C++. As of 2003, the flavors of Windows we support are
Windows 95, Windows 98, Windows Millennium Edition, Windows NT 4.0,
Windows 2000, and Windows XP. The current Pop Framework was developed
using the C++ compiler and integrated development environment that are part
of the development product called Microsoft Visual Studio. Strictly speaking,
the part of Visual Studio that we use is called Visual C++, but in this book we
will use the more general ‘Visual Studio’ to refer specifically to the Microsoft
C-++ compiler and development environment.

There are two versions of Visual Studio in current use, the older Visual Studio,
Version 6.0, and the more recent Visual Studio.NET, which is also known as
Visual Studio, Version 7.0. With regard to our task of building C++ programs,
the two products are quite similar, although there are some minor differences
in the layouts of the controls. When necessary, we distinguish between the two
products by calling them Visual Studio 6.0 and Visual Studio 7.0.

Although most of the Pop Framework was developed while using Visual
Studio 6.0, the most recent builds have been created using Visual Studio 7.0.
The framework code builds with no warnings in either environment. We supply
both Version 6.0 and Version 7.0 project files with the code.

When the text mentions specific control sequences for Visual Studio inter-
face, we will, where necessary, describe both the Version 7.0 [and the Version 6.0]

xXxxii

Introduction

controls, using square brackets around the Version 6.0 controls. Certainly most
readers will be moving to Visual Studio 7.0 soon, but at this point, Visual
Studio 6.0 is still very widespread. Also it may be that some programmers will
prefer to stick with the battle-tested Version 6.0 until more service packs for
Version 7.0 have been released.

We provide a convenient Appendix C to summarize for both versions the
specific Visual Studio control sequences which we discuss. Any problems or fixes
involving the code will be discussed on the book’s web-site www.rudyrucker.com/
computergames. This is also the place to check for new upgrades to the Pop
Framework and for examples of student projects.

Software Engineering and Computer Games will also be useful to individual readers
who are looking for a quick path into Windows MFC programming. Let’s stress
again that you do not need to know any Windows programming before using
Software Engineering and Computer Games. A familiarity with C++ is recommended,
but Software Engineering and Computer Games does include discussions of all the
key C++ topics that we use.

A note on notation. We've tried to consistently use some special fonts for
different purposes.

® C++ Language reserved words, Windows API functions, Windows Data types, built-in MFC
classes and their methods

® Special purpose classes and methods defined for our project
® Names of directories and names of files
® Menu item selections or dialog box controls

® Examples of C++ code

There are already some very good books on many of the coding topics we
treat. For a more traditional software engineering course, it may be appropriate
to accompany the use of Software Engineering and Computer Games with a book
such as Steve McConnell, Software Project Survival Kit (Microsoft Press, 1997). It's
worth mentioning that Steve McConnell’s other books, Code Complete (Microsoft
Press, 1993) and Rapid Development (Microsoft Press, 1996), are wonderful sources
of information about, respectively, program-level and project-level practices to
use for efficient software engineering.

Perhaps the most popular older surveys of the field of software engineering are
Roger Pressman, Software Engineering: A Practitioner’s Approach (McGraw-Hill, 2000)
and Ian Somerville, Software Engineering (Addison-Wesley, 2001). And there
is much to recommend in the more recent book, D. Hamlet and J. Maybee, The
Engineering of Software (Addison-Wesley, 2001). Software engineering texts range
from being very code-oriented to being very process-oriented. Viewed as a soft-
ware engineering text, my Software Engineering and Computer Games is further
towards the code-oriented end of the spectrum than the other software engi-
neering books mentioned.

Ideally, a computer science curriculum might have two software engineer-
ing courses: a broad-based process-oriented course, and an in-depth software
project course using a book like Software Engineering and Computer Games. It

Introduction

would seem that the two courses could be taken in either order, as each would
shed light on the other. On the one hand, it’s nice to have studied the software
engineering process before attempting a big project; on the other hand, it’s
much easier to appreciate the purpose and importance of the software engineer-
ing process after you've actually gone through the experience of building at
least one substantial project.

Two good C++ books are those by Cay Horstmann: Mastering C++ (John Wiley,
1991), and Practical Object-Oriented Development in C++ and Java (Wiley, 1997).
Charles Petzold, Programming Windows 95 (Microsoft Press, 1996) is a classic
general reference for non-MFC Windows programming. The successive editions
of Inside Visual Studio (Microsoft Press, 1997), by David Kruglinski and others,
have good overviews of the Microsoft Visual Studio Developer’s Studio with
many short examples. Alan Feuer’s rich and knowledgeable MFC Programming
(Addison-Wesley, 1997) is an excellent book about MFC. George Shepherd and
Scot Wingo, MFC Internals: Inside the Microsoft Foundation Class Architecture
(Addison-Wesley, 1996), gives a valuable low-level guide to the workings of MFC,
including some material which can’t be found in the official documentation or
in any other books.

Kendall Scott and Martin Fowler, UML Distilled (Addison-Wesley, 2000) is a
very nice little book covering the basics of the Unified Modeling Language. The
standard book on design patterns is the well-written and inspiring book, Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995).

Regarding OpenGL programming, the so-called ‘Red, Blue, and White’ books
(named after the main colors of their otherwise identical covers) are canonical.
These are, respectively, Jason Woo, Jackie Neider, Tom Davis, and Dave Shreiner,
OpenGL Programming Guide (Addison-Wesley, 1999), Renate Kempf and Chris
Frazier, eds, OpenGL Reference Manual (Addison-Wesley, 1999), and Ron Fosner,
OpenGL Programming for Windows 95 and Windows NT (Addison-Wesley, 1997).
These books can also be found on-line. A recent link to the Red Book, for instance,
is http://fly.cc.fer.hr/~unreal /theredbook/about.html.

Finally, let’s mention some recent books on computer game design and pro-
gramming. Andre LaMothe, Tricks of the Windows Game Programming Gurus
(Sams, 2001), is an excellent, wide-ranging book on writing games. LaMothe has
written a number of other useful books as well. David Bourg, Physics for Game
Developers (O'Reilly, 2001), is quite interesting. Ian Parberry, Learn Computer Game
Programming with DirectX (Wordware, 2000), gets the user up and running with a
simple DirectX game framework. Also of interest are David Astle, OpenGL Game
Programming (Prima Tech, 2000); Rouse, Ogden, and Rybczyk, Game Design:
Theory and Practice (Wordware, 2001); Andrew Rollings, Game Architecture and
Design (Coriolis, 1999); and Mark DeLoura, Game Programming Gems 1 & 2
(Charles River Media, 2001).

You are free to use the Pop Framework in developing your own programs.
The Pop Framework source code is explicitly placed in the public domain. This
means that you can freely use any or all of the source code for any purpose,
including commercial products or inclusion in other texts. You do not need a

XXXiV

Introduction

separate permission from the author or his publishers to do this, and you are not
required to acknowledge any use of the code (although a public line of thanks
is always nice!l). You are free to place your own copyright notice on works
which include the source code, with the understanding that the author accepts no
liability for problems caused, and with the stipulation that all of the author’s
code remains in the public domain and may be further re-used by others.

Let’s say a few words about some possible future extensions of the Pop
Framework.

A feasible near-term enhancement of the Pop Framework is an implementation
of a cGraphicesDirectX class which might make faster three-dimensional animations
than cGraphicsOpenGL.

As support for three-dimensional games was only developed in late 2001,
there was not time to develop classes for three-dimensional geometrical objects,
classes to represent complex three-dimensional worlds, or strong examples
of three-dimensional games. This is an area that some of my students will be
working on in the near future. Any useful new code may be incorporated into
new releases of the Pop Framework available on the book’s website.

A less obvious future improvement might be to extend the framework to
support four-dimensional computer games (e.g. a HyperPacMan in a four-
dimensional maze or a four-dimensional Space Invaders). This could open some
interesting new ground. The fourth dimension is a topic dear to my heart.

Networking is lacking from the current Pop Framework. Although the frame-
work supports multiple players, it doesn’t support multiple players on differ-
ent machines. Perhaps a cListenerSocket child of the cListener class could to
be implemented for this. And one would need to research the existing work
on architectures and programming idioms that can keep two game sessions
sufficiently in synch with each other. As future versions of the Pop framework
are tailored to take advantage of Visual Studio.NET, it may turn out that we can
get networking features fairly easily via the use of NET methods.

Experienced gamers will think of many other enhancements that could be
made. The Pop Framework presently has no support for scripting, for joysticks,
for DirectX Sound, or for loading meshes and skins. As the code is open
source and the architecture is resolutely object-oriented, adding these kinds
of enhancements is quite feasible. I gladly offer up these tasks to the more
adventurous readers. As time goes by, the book’s website will post the source
and documentation for any significant improvements to the Pop Framework.

The Pop Framework is written in C++, and it makes essential use of the
Microsoft Foundation Classes for its document-view architecture. Some will
wonder about porting it to Java. The port is feasible, given that: (a) the Pop
Framework classes use solid principles of object-oriented design, (b) most of
the classes are independent of any specific features of C++, Windows, or MFC,
and (c) the class members are, by and large, either primitives or pointers to
other class objects (as opposed to instances of other classes, which Java does not
allow). Regarding Java, the speed of Java applets does seems to be acceptable
for game play; see for instance the prototype Java applet Asteroids game
at www.rudyrucker.com/computergames/java. Nevertheless, there are some dis-

Introduction

incentives to porting the Pop Framework to Java. Among the disincentives
would be that the Java language standard is something of a moving target, that
existing Java development environments don’t seem as powerful and solid as
Microsoft Visual Studio, that deploying a Java package across many platforms
is a ‘write once, debug everywhere’ experience, and the fear that Java may yet
be marginalized. A C++ port might be a liklier opton.

In closing, I'd like to thank my colleagues Jon Pearce, Cay Horstmann, and
Michael Beeson, with whom I've had so many useful discussions about the prac-
tical and theoretical sides of computer science. Thanks also to John Sutherland
and to John Foster who read a final draft of the book and made many useful
suggestions. Any errors that remain are my own.

Special thanks go to the programmers I learned real-world software engineer-
ing with at Autodesk, Inc., in the early 1990s: John Walker, Eric Lyons, Josh
Gordon, Bob Holt, Steve Demopoulos, Eric Gullichsen, Marc LeBrun, and John
Castellucci. Thanks to my wife Sylvia for her patience and support during the
seemingly endless hours of work this project took. And thanks to my many
students, without whom Software Engineering and Computer Games truly could
not have been written.

Rudy Rucker

San Jose, California
August 12, 2002

Part |

Software Engineering and
Computer Games

Overview

The goal of this course is for you to learn some principles of software engineer-
ing and to use these techniques to design and build a Windows-based computer
game. Part I contains the main text. Part II is a reference section containing a
number of secondary topics that you may need to look at from time to time.

Projects and games 1

In this book you’ll learn about software engineering in the context of working
on a computer game project of your own. The purpose of this chapter is to get
you to start thinking about your game project.

Software engineering is the set of techniques used to produce computer pro-
grams which people are willing to buy. In a single phrase, the software engineer’s
goal is: ‘Ship it!” Although shipping a product used to mean putting a disk and
a manual in a shrink-wrapped box, these days it can equally well mean making
a program available for download from the web.

Although there is only one goal, there are many different aspects to software
engineering. If you go into a large computer bookstore and look at the section
on software engineering, you'll find an extraordinary range of books.

In this book we are going to focus on software engineering as something that
programmers do, as opposed to something that managers do. Managers can motiv-
ate and orchestrate the process — but they are not doing the kind of software
engineering that we’re going to focus on. Here we think of a software engineer
more as a programmer, as the kind of person a business is looking for when they
advertise, ‘we are looking for programmers who have shipped an application.’
This book will show you how to make a certain kind of shippable application.

What kinds of applications? We're going to focus on using C++ and the
Microsoft Foundation Classes (MFC) to create Windows applications for per-
sonal computers. And the kinds of programs we look at will be computer games
of various kinds.

All you really need in order to use this book is to have a solid knowledge of
C++ or, at the very least, Java or C. You'll learn about Windows and MFC pro-
gramming as we go along. If you already know some Windows programming,
so much the better!

1.1 Features of a successful program

Here are two reasonable criteria for a successful program. Does it make money?
Is it beautiful?

A program you write can make money in a direct way if it is so attractive that
people are willing to pay to use it. Indirectly, a program can make money for you
if it is good enough to convince someone to hire you for a good job.

Software Engineering and Computer Games

It’s also important for a program to be beautiful. Beautiful things don’t always
make money, but they do have their own value. In trying to make a program
that is profitable and beautiful, there are four areas to bear in mind.

e Basic concept.

e Interface.

e Documentation.
e Stability.

Let’s say a few words about each of these.

Concept

This is the hard one. If your program is to make money, people need some reason
to want it. Your program must do something which people value, and it should do
it better than competing programs. If your program is to be beautiful, it must be
based on an original and interesting idea — and these aren’t easy to come by.

If you look at the kinds of programs people buy, you'll notice that they fall
into a few main categories: tools, games, education, and content.

Tool programs are things like word-processors, spreadsheets, paint programs,
compilers, web browsers, Computer Aided Design packages, and so on. These are
large programs with lots of code and are usually created by big teams of software
engineers. Tool programs are probably the hardest to create and the hardest to
market, and for this reason the author’s manager at Autodesk used to say, ‘Apps
good, tools bad.” App is short for application, which is what executable programs
are usually called in the Windows world. And a really good app is often called a
killer app.

Game programs range from simple solitaire time-wasters up to interactive
virtual realities. And the web has opened up a lot of interesting possibilities for
shared-world games. As with tools, the key to a really massive success is to think
of a completely new kind of game. But even a fairly standard kind of game can
sell well if it is based on an original graphical concept and is soundly executed.
It’s worth noting that games and tools are about the only kinds of software that
people are still willing to actually buy in a shrink-wrapped box.

A game that you play on the screen of a wireless device like a cell phone
will be tiny, but commercially successful console and computer games are huge.
As well as including game-engine code, a game will use lots of data files with
things like sounds, bitmaps and level designs. Some contemporary games are
said to take over 100 person-years of work. The projects in Software Engineering
and Computer Games will focus on smaller games, of a complexity at about the
level of a classic arcade game.

Educational programs cover a wide range. The largest part of educational soft-
ware consists of very low-end programs to teach readin’, ritin’, and 'rithmitic.
Simple educational programs can involve even less code than games; indeed
these are usually developed in a high-level programming environment such as
Microsoft Visual Basic or a Macromedia product such as Director or Flash.

Projects and games

More sophisticated education programs often illustrate scientific concepts
with computer simulations. Simulation programs can model abstract mathematical
ideas like fractals and chaos theory, for instance, or they might model biological
systems using the techniques known as artificial life. The style of programs
known as cellular automata simulate real and imaginary kinds of physics. Arti-
ficial life programs show creatures moving about as if they were little pets inside
a toy world. Higher dimensional programs display objects that can’t fit into
the confines of three-dimensional space. These are some examples of beautiful
calculations that computers are good at doing, but which would be absolutely
impossible to perform by hand.

Content programs are multimedia packages of text, pictures, video, and sound
clips with a computer interface. A content program might be an encyclopedia
or a travel guide. It’s common to have a huge number of support files, includ-
ing bitmaps, sounds, and animations. Many programs are in fact small engines
whose main purpose is to navigate through the contents of a data base. Encyc-
lopedia and reference programs are examples of this. A modern commercial
computer game often includes enough media resources to be a kind of content
program on its own, by the way, with the content presentation driven by the
play of the game.

Although there’s no money in them, it’s worth mentioning that you can also
create programs which are art. The best known examples of art programs are
screensavers. These programs create images that people like to look at. A really
good artistic program can produce such a variety of interesting outputs that
people are mesmerized.

In this book, the programs we focus on will be computer games whose agents,
or critters, have behavior driven by an underlying physics simulation. (We'll
use the Wild-West word ‘critter’ throughout this book for the creatures in our
computer games.) In that the critters are more or less autonomous, the pro-
grams are a simple form of the scientific computer programming known as
artificial life.

We focus on computer games because they’re interesting. To work hard on a
program, it has to be attractive to you in the first place, and to finish a program,
you have to want to see it in action. Just as you need something to write about
in order to learn how to write, you need something to program about to learn
how to program. Games are a rich source of inspiration.

Interface

Hardly anyone is happy with a program that is to be run from a command-line
prompt and controlled by special keyboard combinations. Any serious program
must run in graphical windows, support the mouse and include menus and
dialog boxes. One great virtue of developing for Windows using MFC is that in
this programming environment it’s very easy to implement a rich graphic user
interface.

Of course a good graphic user interface, called GUI for short, takes a lot
of thought. You usually need to try out several interfaces till you get it right.

Software Engineering and Computer Games

Drawing sketches of the interface before you build it is a very good idea. There
are some commonly agreed upon principles of Windows interface design, but
getting a really nice and easy-to-use design is an art in itself.

In a nutshell, to develop a good set of controls and menu selections: test,
watch, pay attention, revise, revise, revise.

It may be that you can envision several different ways in which someone
might want to use your program. In this case it’s a good idea to make the inter-
face user-customizable. That is, you might have menu selections that change
the program’s response to certain kinds of mouse or keyboard controls. Or
you might have menu selections to control the kind of view that the program
displays.

In addition to the user controls, you might also regard the selection of your
games graphics and sound media files as being a part of the interface design. Of
course if you plan to work primarily as a programmer, there’s a good chance
that you yourself won't be responsible for interface design. Nevertheless, in the
projects we do in Software Engineering and Computer Games, you will be develop-
ing the entire package: code, interface, media files, and documentation. It’s
good to have some hands-on experience with interfaces, so that you have a
clear idea both of what kinds of interface are possible, and also of how to pro-
vide code hooks to work with various kinds of interface controls.

A final interface-related feature is file-handling. If you can support file-
handling, you allow the user to save and reload the current state of the pro-
gram, including all of the current parameter values. Alternately, file-handling
can be used as a way to extend user-customizability, perhaps by allowing the
user to load different graphics backgrounds or sound files into your program.
Depending on what files get loaded, your program can behave in very different
ways. It’s worth mentioning that bug-free file-handling can be tricky to main-
tain, so programs often settle for simplified kinds of saving and loading.

Documentation

This is often the last thing that software engineers think about. But you
should really think about it right from the start, and in this book we’ll stress the
importance of working on your User’s Guide at the same time as you work
on your code.

You should keep in mind that the important thing about your documenta-
tion is that it has useful and accurate information, not that it has a whiz-bang
web-like interface. The user cares more about real information than about the
exact way in which the topic windows are indexed and linked. Programmers
tend sometimes to get lost in the maze of help file design.

The User’s Guide should include an explanation of why your program is
interesting, a guide to installation and quick start, and a feature by feature
explanation of all of the menu and dialog controls.

Projects and games

The User’s Guide is both the printed manual and the online help file. These
two are normally based on the same document. Your work, once again, is in
making this a good document, rather than worrying about giving it an intricate
interface. As it turns out, there is a tool called the Help Workshop that makes
it quite easy to convert your documentation file into an online Windows help
file to distribute with your program. With a certain amount of additional work,
you can eventually give your help file a wide range of hypertext features.

It's worth mentioning too that you should also put a lot of documentation
into your code in the form of comments to help future programmers who might
work on your project — or to help you when you come back to the code in six
months and have forgotten why you made some of the choices that you did.

Stability

It goes without saying that your program shouldn’t crash. Its behavior should
be stable and consistent no matter what the user does. Attaining this goal
means putting energy into testing and debugging. Of course every program
has bugs. Keeping them down to a manageable level takes a sustained effort on
the part of the software engineer. Bug management has several parts: coding
defensively, inspecting and testing the code to find existing bugs, and fixing
those bugs.

Another aspect of stability means that you, as a programmer, should be will-
ing to leave out a flaky feature that always causes trouble. The tendency to
include unnecessarily complicated features is sometimes known as ‘developer
gold-plating.” You have to have the willpower and big-heartedness to disable or
comment out the flaky code when you ship.

1.2 Game design

Many programmers have at some point in their lives been obsessed with com-
puter games. Programming itself is the ‘big game’, the meta-game, a game made
the more enticing by the fact that the points you score can be real-world fame
and fortune. Programming has a lot of the elements of gaming at its best. Why
settle for gaming when you can program?

Of course when you're programming, you need something to program about,
and this is where computer games are useful in another way. Not only do com-
puter games get you started with the computer, they are in and of themselves
interesting things to try and program. Even a simple game program is reasonably
challenging, and it’s very easy to tell if a simple game works or not. And once
you get started with game programming, you have the possibility of building up
your program until it becomes something quite large and impressive. Another
plus is that it’s often possible to get your friends and family to play with your
games, which is rewarding.

Computer games are especially interesting as programming projects because
they draw on such a wide range of skills, including the following.

Software Engineering and Computer Games

e Computer graphics - to get the game on the screen.

e Physical simulation - to make the objects move realistically.

e Artificial intelligence — to make your virtual enemies worthy opponents.
e Computer art — to provide beautiful images.

e Computer sound - to provide effects and background music.

e Interface design — to make the game interesting and intuitive to use.

e Code optimization - to make the runspeed high enough.

Another good thing about computer games is that the lessons that we learn
from designing games can be carried over into our non-game programs. So let’s
make some games!

A fresh look at the dimensionality of games

Ordinarily people speak of games being either two-dimensional, three-dimensional
or two-and-a-half-dimensional. The first two are fairly easy to explain: the older
arcade games with flat shapes moving in a plane are two-dimensional, while
the newer console and computer games where the player moves about in a
virtual reality are three-dimensional. The 2.5-dimensional case refers to those
games that view a three-dimensional world from a fixed direction — popular
examples of this are the Maxis games SimCity and The Sims. We don’t regard
these games as fully three-dimensional because we aren’t able, for instance, to
move our viewpoint down into the streets of SimCity and look up at the build-
ings as we could in a truly three-dimensional game. From a programming point
of view, 2.5-dimensional games are closer to being two-dimensional than to
being three-dimensional; one builds up a 2.5-dimensional game by drawing a
limited number of two-dimensional layers.

But now, for the rest of this subsection, we want to use a quite different
and somewhat idiosyncratic way of talking about the dimensionality of games.
Temporarily set aside your usual ideas about game dimensionality and get ready
to look at things in a novel way. What we will do here is to talk about three
separate dimensionalities: the player motion, the world motion, and the viewer
motion.

Just to make sure we'’re in synch here, recall that a dimension is a degree of
freedom. The motion of a barnacle on a rock is zero-dimensional, it never moves.
A car on a road or a bug crawling along a thin twig is moving one-dimensionally,
it can go forward or backwards and that’s all. A horse galloping across a prairie
enjoys two-dimensional motion, and birds and fish move three-dimensionally.
A person’s motion upon the surface of the earth is largely two-dimensional,
although at small length scales you do have three-dimensional freedom: you
can jump up and down, and you can zoom your hands around.

All computer games have two key elements: the player and the world. In
many games the player is in some way represented on the screen: as a cursor tool,
as a moving figure, or as a hand holding a weapon. The world is the scenery and
objects that you see on the screen. We can try and classify games in terms of

Projects and games

Table 1.1 The dimensionalities of some familiar kinds of games.

Games Dimensionality of Dimensionality Dimensionality
player’s motion of the world of the viewer
motions motion
Shooting gallery type 0 1 0
Space Invaders 1 1.1 0
Centipede 1 1.5 0
Galaga 1 1.5 1
Defender 2 1.25 1
Slot Car Race 1.25 1.25 0
Atari Rally Race 1.75 1.1 1.75
Pong, Breakout 1 2 0
Asteroids 2 2 0
PacMan 1.25 1.25 0
Tetris 2 1 0
Mario 1.5 1.5 1
King's Quest 2 2 2
Gauntlet 2 2.5 2
SimCity, The Sims, 2.5 2.5 2.5
Age of Empires
Doom, Quake, Half-Life 3 3 3
Flight simulators 3 2.5 3

the dimensionality of the player’s motion, the dimensionality of the motions of
other objects in the world and the dimensionality of the viewpoint motion.

Table 1.1 gives the names of some games and numbers for the three kinds
of dimensionality for each. In some cases we’ve used a fractional dimension
to suggest the idea of being in between two dimensions. If you happen to have
heard of the mathematical shapes called ‘fractals,” you might wonder if the
fractional dimensions in this table are meant to be like fractal dimensions in
the mathematical sense — and the answer would be no. The fractional dimen-
sion numbers are used here in a somewhat loose and metaphorical fashion.
Thus a motion dimension of 1.25 is used here to refer to a two-dimensional
motion which is in some way constrained to be close to straight-line motion,
and a motion dimension of 1.5 is used to mean a two-dimensional motion
that’s a bit less constrained.

Harking back to the notion of ‘2.5-dimensional’ games mentioned at the start
of this subsection, we can see that this fits in with our new usage, if we regard a
2.5-dimensional world as a three-dimensional world in which the inhabitants
are constrained to move in certain orderly ways, being mostly limited to moving
in a particular plane.

In looking at the table and reading the discussion, keep in mind that if there
are some number values you disagree with, it’s possible that you're right. The
point is to get you to start thinking about computer games in a novel way, not
to pronounce certain number values as being true once and for all.

10

Software Engineering and Computer Games

We will sometimes speak of a game whose dimensionalities are, respectively,
a, b, and c as having an (a, b, ¢) ‘dimension signature’.

The most rudimentary games are the shooting gallery type in which the user
controls a little gun sitting still at the bottom of the screen. A row of targets —
things like bullseyes and ducks — moves across the middle of the screen. The
user presses a key to shoot bullets up at the objects. The user’s motion is zero-
dimensional, for the gun never moves. And if all that the targets do is move
along a steady line from right to left, we can think of the world as being essen-
tially one-dimensional. Admittedly there is a two-dimensional element here
because the gun’s bullets do move vertically, unlike the horizontally moving
targets. But, this is hardly a motion at all really, for the only thing the bullet’s
motion does is to establish a fixed time-lag between when the user presses the
shoot key and when the target might explode.

Like most of the early computer games, the shooting gallery type has a zero-
dimensional viewer motion, which is just another way of saying that the user
has no control over the viewpoint. In the early games one simply sits above the
world, looking at all of it at once.

In a variation on the shooting gallery game that was called Missile Command,
the user was allowed to rotate the barrel of the gun so that it shoots in different
directions. In a typical game like this, the user might be firing missiles at plane-
shaped targets. We can think of the gun rotation as a degree of freedom, so for
these games it would make sense to say the user’s motions are one-dimensional.

In a Space Invaders style game, the user has a gun at the bottom of the
screen, but now the gun can move back and forth. And instead of moving across
the screen, the objects are now moving steadily downward. The player is trying
to shoot the objects before they touch the bottom. In non-violent variations of
this game, the user is ‘catching’ the falling objects rather than shooting them.

Note that if the gun can move back and forth it usually can’t rotate. This is
because giving a user too many degrees of freedom in the controls can make the
game confusing to play.

In classic Space Invaders, the steady, unrelenting downwards-only motion
of the game objects is just a shade above one-dimensional. This is because the
enemies jiggle back and forth in synch with a sound the game makes. But the
jiggling is quite restrained; thus one might call the motion 1.1-dimensional.

More advanced offshoots of the Space Invaders game, such as Centipede,
have target objects which swoop wildly back and forth as they move down.
This isn’t a true two-dimensional motion, since the objects always do move
downwards, so let’s put 1.5 in the table. Centipede also had the fresh feature of
having the dead creatures leave obstacles on the screen.

Galaga was a game of the Space Invaders family in which the enemies
swooped about quite wildly. As an additional point of interest, this game had
a visually scrolling background, with new targets emerging from the top of the
screen and disappearing at the bottom, giving an effect that one is looking down
at a player object which is continually flying upward through space. Although
the user can’t directly control the viewpoint motion, the visual effect is of a
viewpoint that moves with one degree of freedom.

Projects and games

Defender was a game in which the player is limited to the left half of the
screen, but is free to move a bit forward and backwards as well as up and down.
The enemies come in from the right with slight variations in their motions. The
background scrolls to the left.

How about a game that doesn’t involve shooting? A common kind of game
is Slot Car Race. In a game like this, you look down on a race-track from a fixed
aerial view, seeing the whole track at once. The player and some rivals are little
cars that race around the curves of the track. You control the player by turning
a bit to the left and the right, by speeding up and slowing down. It would be an
exaggeration to say you have two-dimensional motion, as you have to stay on
the track. 1.25 dimensional motion is more like it, with the rivals having about
as much freedom as the player.

There’s another way to make a car-racing game, and this is to try and
immerse the player in a three-dimensional world. In a very early Atari car Rally
Race game, there is a player which is a car near the center of the screen, near
the bottom of a triangle that represents a road. Little rectangles flick past on
either side; these are fence posts along the road. You move left and right from
one side of the ‘road’ to another to avoid obstacles that appear; this is one
dimension of your motion. Your second dimension of freedom is how fast
you drive forward. Although this is nominally a three-dimensional world, you
can’'t hop up and down, so you don't get any use out of the third dimension.
The world is effectively a plane that you are looking at from the side. And, as in
Slot Car Race, you can’t drive off the track. Even so, there’s a more dimensional
feeling in this game, so let’s call it 1.75. That might seem too stingy, really,
given that the world is, in principle a three-dimensional one. But if you look at
your degrees of freedom, the number does seem pretty low.

Most of the obstacles in the Rally Race world appear and move down the
screen towards you as predictably as the monsters in Space Invaders, with only
a small amount of oscillation, so let’s call their motions 1.1-dimensional. (Note
that we're well into a debatable gray zone here; remember that the purpose of
this discussion is to get the gears turning in your head, not to lay down any
absolute facts.)

In the Rally Race game the viewpoint is attached to the player’s car. The
viewpoint shares in the dimensional motion of the player. It's worth mentioning
here that in almost all games which begin to try and show three-dimensional
space, player motion, the viewer and the player are attached.

The Tetris game is an interesting non-violent game which is a kind of vari-
ation on the Space Invaders style game. Here objects are falling, but rather than
being a gun or a basket at the bottom of the screen, the player is essentially a
controller that sits upon each block as it falls. The player is able to move the
block he or she is on back and forth and in addition can rotate the block. So we
can think of the player as having two degrees of freedom, with the understand-
ing that the second degree is rotation rather than motion.

Pong and Breakout were the first kinds of games with truly two-dimensional
world motions. Here something like a ball is moving around on the screen, and the
user moves a paddle back and forth along the bottom or side of the screen to keep

11

12

the ball from escaping there. Note that the player motions are one-dimensional
and the viewer, which sees the whole world, is still zero-dimensional.

Asteroids was the first game with two-dimensional player motion. The asteroids
move along two-dimensional paths, and the user’s ship moves two-dimensionally
as well. What makes the controls for Asteroids intriguing is that rather than
directly moving the ship with left/right up/down controls, the user moves the
ship via a pair of controls affecting the strength of the ship’s rocket and the
direction the rocket is pointing in. Unlike any previous games, Asteroids uses a
little bit of physics: the ship has inertia, and tends to keep moving in the same
direction until you rotate it and send a pulse of rocket energy the opposite way.
The ship is also able to shoot bullets; these always travel along the same direc-
tion as the ship’s rocket currently points.

PacMan was the first great maze game. Here the user and the objects move
somewhat two-dimensionally, but they are constrained to move around inside a
maze. So we speak of the motions as 1.25-dimensional. We use a number so close
to 1 because the maze branches very little, and there aren’t all that many places
where the user does indeed have two degrees of freedom in the motion choice.
Programming a maze game takes a little extra work because you need to put in
the maze-wall objects and arrange for your moving objects to notice the walls.

Historically, the next big advance after PacMan was the Nintendo family
of ‘side-scrolling’ games like Mario. In these games, the player’s figure moves
across a landscape that runs indefinitely along to the left and right. The player

[EPop. Version 26.2, May 15, 2002, Rudy Rucker. - [Pop 1] M[E B
[A File View Game Player Window Help =181x|
DY fnoshEBaoRn@ N &% 0

/ \

4 \

| - < - \\
/ - 8
s - = oy

Scaore: 3. Health: 10. Total Critters: 34. Updates per second: 47.]

The Pop Dambuilder game showing a 3D view of a 2D game

Projects and games

can jump up and down a little bit, so we think of the player’s motion as, say,
1.5-dimensional. Most of the objects in the landscape move pretty much one-
dimensionally, but a few of them hop up and down a bit too. What made this
game unique was that here we had a moving viewpoint that mattered. Unlike
the scrolling star fields of Galaga and Defender, we move through a world with
interesting new features (though parts of the backgrounds do repeat).

We mentioned before that in games with a moving viewpoint, the motion is
normally attached to the player. In a side-scroller like Mario, the viewpoint moves
along through the world with the player. The next advance in games was to
look down on a big world in which the viewpoint moves two-dimensionally.
King’'s Quest and Gauntlet were examples of this. In both of these games, the
viewpoint is set to always keep the player in view. That is, the viewpoint won’t
actually move till the player bumps into an edge of the screen; at that point the
viewpoint will scroll (or jump) so as to keep the player onscreen.

King’s Quest was a room-based or tile-based game; that is, the player moves in
jumps from one screen to the other by passing across the edges. As mentioned
above, we say a game has an (a, b, c) dimension signature if the player has
a degrees of freedom, the world’s motions are b-dimensional, and the viewer
motions are c-dimensional. In and of itself, each screen of King’s Quest has a
(2,2,0) dimension signature; that is the player and world objects move two-
dimensionally and the viewpoint doesn’t move. The twitching of the viewpoint
from room to room gives the game as a whole its (2,2,2) dimension signature.

In Gauntlet we have a more distant view of the world, we see several rooms
at once, and the viewpoint scrolls when the player touches the edge rather than
jumping. An additional aspect of the Gauntlet game is that here we begin to use
a two-and-a-half-dimensional view of the game world. Rather than being shown
as a flat pattern seen from above, the world is drawn as if seen from a fixed
angle a bit to one side in space. This kind of view is also known as ‘isometric’.

SimCity and Age of Empires are games that take the two-and-a-half dimen-
sional view and run with it. In these games the user can design huge cities or
even civilizations. In a sense there is no onscreen player, as the gamer is the all-
pervasive ‘creator’ of these worlds. This said, the user can at times have the
experience of an embedded player by temporarily taking control of one of the
world creatures or, in SimCity, by controlling a cursor that acts as the ‘Finger of
God’. Although these games are isometric view, they give something almost like
an effective third dimension of viewer motion by allowing the user to zoom in
on close-up views.

The next wave of games were ‘first-person shooters’ like Doom, Quake and
Half-Life. In some ways these games are like three-dimensional PacMan. The
player moves through a three-dimensional maze of rooms, hallways and staircases,
enjoying a motion that we might call 2.5-dimensional (although once in a
while in these games you get a chance to swim underwater and you have some-
thing like pure three-dimensional motion). The motions of the objects appear
truly three-dimensional; they sometimes bounce around all over the rooms.

Although the viewpoint location is attached to the player in the first-person
shooters, we have additional extra freedom in the viewpoint because we have

13

14

Software Engineering and Computer Games

two degrees of freedom in controlling which way the player looks — which is
the direction in which the player’s weapon gets aimed as well.

It’s often said that first-person shooter games are excessively violent. Certainly
it would be interesting to see more games like this in which you did something
other than shoot everything that moves. An aspect of the first-person shooter
games that seems a little sad is that the image of the player is generally nothing
more than a hand holding some kind of gun. There are, however, other immers-
ive three-dimensional games that are not primarily about shooting things.

We haven't talked about flight simulators yet. In principle the idea of a flight
simulator seems very promising: you're going to fly around in three-dimensional
space. But there are two big problems. First of all, the space that you fly around
in often doesn’t feel three-dimensional at all. In the lower-end simulators, you're
always way up in the ‘sky’ looking down at a map. It feels like you're in a two-
dimensional map world with a weak third degree of freedom that involves
magnifying the map. A second problem with flight simulators is that they tend
to be so closely coupled to the mechanics of how airplanes actually fly. Rather
than just getting out there and enjoying pure bird-like flight, you're worrying
about complicated machine-age technology like ailerons, rudders, and stall speeds.
But some players enjoy mastering this. In some of the newer computer games,
the flight is more natural and less mechanical: you're flying through all sorts of
interesting objects, like a fish in a reef or a bird in a forest, and you're flying as
naturally and as effortlessly as you fly in your dreams.

Have we reached the end of the dimensions with three? Not necessarily.
In mathematics there is such a thing as a fourth dimension, a dimension per-
pendicular to every direction of our space. One way in which we think about the
fourth dimension is via analogy based on the notion of a two-dimensional world
called Flatland. The fourth dimension is to us as the third dimension would be
to Flatland. But there’s not room to say more about the fourth dimension here.
Suffice it to say that it would be really cool to write a four-dimensional PacMan
game or a four-dimensional Asteroids. To get some ideas about how to start,
you can download the Hyperspace 98 program from the author’s home page.
The Pop Framework is in fact designed in such a way that it would be relatively
easy to extend it to four-dimensional space; more on this topic can be found
in the comments at the start of the vectortransformation.h header file, and any
progress in this direction will be posted on the book’s website.

Looking back over this section, what can we conclude about the dimension-
ality of the games that we should try and design? Certainly more dimensions
tend to make a game more interesting. The risk in adding too many dimensions
is that a game can become confusing and hard to use. Another cost of more
dimensions is that you need to provide more furniture to put into your world.

When proposing a project, be sure and think about what dimensionalities you
plan to use for the motions of your player, his or her opponents, and the view-
point. In this author’s courses, shooting gallery or Space Invader game projects
aren’t acceptable for term projects as they’re too easy and too dull. (Later we'll
do Space Invaders as an introductory exercise.) What’s wrong with choosing a
really easy project? In grading a projects course, it’s reasonable for the professor

Projects and games

to base at least part of the grade for a project on the difficulty. This is an
instance of how it is important to get good feedback during requirements gath-
ering. The very best student projects not only create a challenging game, but also
implement some new classes to make the game work.

The intelligence of games

A really well-designed game like Tetris forces the player to behave intelligently.
In Tetris you need to think ahead about which block to place where, keeping in
mind which blocks are coming. A game like Space Invaders requires very little
intelligence. You simply shoot everything you can as fast as you can.

It is exceedingly difficult to design a game which incorporates an inherently
challenging puzzle. The whole trick in a game of this nature is to give the user
several possible courses of action at all times, and to balance the consequences
of the actions so that there is some real difficulty in deciding which strategy to
use. Games are highly sensitive to very small tweaks in their play parameters, and
it’s a long-drawn-out process to get the values just right. But, you should try.

A simpler way to make your games intelligent is to give your game’s creatures
various kinds of behavior. In a shooting game like Asteroids, for instance, you
can have the asteroids check the player’s location and make a point of head-
ing towards the player. Or you can let the asteroids access the locations of
the bullets you shoot, and allow them to try and move out of the bullets’ way.
(The asteroids in the Pop Spacewar game do both.)

We're not talking about a huge amount of intelligence here, we’re simply
talking about giving your game creatures some rudimentary abilities to gather
and use information about the player’s activities. Of course you can’t make the
enemies impossible to beat, as then there’s no game.

A good design trick might be to let the enemies do annoying things like
chasing the player and avoiding the bullets, but to have an enemy’s abilities
differ in a random fashion from one to the other. You might even have some
‘dumb and clumsy’ enemies who do exactly the wrong thing; these guys might
head towards bullets, for instance. This way the player is unable to be sure what
will happen when a new enemy is attacked.

Requirements for playable games

It goes almost without saying that a game should be attractive to look at, that it
shouldn’t run too fast or too slow. A game should also be relatively platform-
independent, that is, it should be able to behave well at different screen resolu-
tions and processor speeds.

Here are some less obvious principles that we might also keep in mind.

e The game needs a good interface.

e The user should get instant visual feedback from game actions, with sound
feedback for major events.

15

16

Software Engineering and Computer Games

e The user should have a score or some other way of keeping track of how well
he or she is doing overall.

e There should be clear goals for the game and a clear termination point.
e There have to be advances and setbacks.

e Doing well should involve strategy as well as manual dexterity and quick
reactions.

* You may want to give the user the possibility of using different tools.

e Things should happen at a human pace, that is, not too slow or not too fast.
In particular, things shouldn’t change instantaneously.

The issue of good interface can’t be stressed enough. Most of all, the interface
must be simple. As a developer, you tend to want to put in lots of controls. The
Pop Framework games, in particular, are loaded with tons of menu selections.
These selections are really just present to help you look at some of the different
ways that the games might be configured. When you actually complete and dis-
tribute a game, almost all of the menu selections should go away. In the words
of the game developer Will Wright (designer of SimCity, SimAnt and The Sims),
‘A user interface isn’t done until there’s nothing left to remove.’

The most important part of the user interface relates to the actual game con-
trols rather than to the more or less rarely used menu selections. People can
only handle a few controls. Generally you shouldn’t expect to use more than
these: mouse moves, mouse clicks, arrow keys and the space bar. And maybe
not even all of those.

Regarding sound, it's worth mentioning that sound can be used to set an
emotional tone, to signal critical events, and to speak clues and information. In
a pure Windows program, we're limited to playing sounds that are stored in the
*.wav file format, as described in Chapter 30: Sound. It is, however, possible to
make a fairly simple extension of the Pop Framework to use the more powerful
sound capabilities of the DirectX library.

Any significant game event should be accompanied by visual or audio feedback.
At the barest minimum, you maintain some health and score numbers in the
status bar where the user can see them. But really the feedback should occur
directly within the game world. If you damage a critter, the critter should blink,
or send out fragments, and there should be a sound as well. When you gain
some health or score points there ought to be a sound, or perhaps a brief change
in your player icon.

The score is an all-important feedback to the user about their overall per-
formance. Once you have a specific score number to work with, you can tell if
you're getting ‘better’ at a game, and you can compete at the game with your
peers. The point of a game is to make the users feel good, so you don’t want to
be stingy with your score numbers, though you don’t necessarily have to go
overboard and start dishing out scores in the billions. Another point to note is
that the more aspects of the game that affect the score, the better. Try and find
a way to award scores for each of the interesting kinds of things that a skilled
player can do.

Projects and games

Another issue relating to the interface is raised by Bruce Shelley (designer of
Age of Empires). You should evolve your game by playing it. Shelley suggests
that you play, test, and adjust your game daily while it’s being developed, and
that you use your own instinct as a gamer for guidance. When we discuss
an ‘Inventor’ software lifecycle model for developing our game projects, we’ll
factor in the notion that in the early part of the project you will be repeatedly
testing and revising your game.

Regarding goals, a fully engaging game will have a hierarchy of goals. There
will be cycles of success or failure applicable to different levels of time: say the
ten second level, the one minute level and, in advanced games, the one hour
or even one day or one week level. In order to make a game really successful,
you need to have users be interested in it for a fairly long period of time; an
‘infectious’ period longer than a week is necessary if you hope for your users to
recruit new users.

Let’s say a bit about advances and setbacks. One of the things that makes
an activity a game is that there has to be some sort of conflict. There need to be
advances and there need to be setbacks. The classic board game ‘Chutes and
Ladders’ is a really simple example of this. Some actions move you forward,
others drag you back. Playing roulette or craps has the same kind of rhythm, you
alternate between gaining and losing. In Asteroids you blow up an asteroid,
but then something hits you and you lose one of your lives. We need to make
it possible for the user to do ‘bad’ things as well as ‘good’ things. The game
should be geared so that the player should be able to do well. He or she should
sweat, but in the end, the player should win.

Regarding strategy, a game is more involving if the changes depend on things
you do. In an arcade ‘twitch game’, the issue is simply to react fast enough so as
to do the right things rather than the wrong things. In a turn-based strategy
game like chess, the issue is to figure out the right thing to do. The best kinds of
games involve some physical skill and some thought. If a user has a choice,
there should be something good about both possibilities, rather than some-
thing bad about both possibilities. A decision shouldn’t be trivial in the sense of
there being only one right answer, nor should it be random in the sense of it
not really making a difference which option you choose.

Will Wright remarks that it makes the decisions in a game fun if you
allow the player an occasional chance to be subversive, to go against what
might seem like the official and correct way to play the game. He gives the
example of allowing players in SimCity to remove buildings with their virtual
bulldozers.

Regarding the pace and strategy of a game, Bruce Shelley remarks that in a
game, the player should be the one having the fun, not the programmer or the
computer! The player should feel like the hero.

One type of strategy decision is to let the user choose different kind of tools for
his or her onscreen player. The simplest example is in a shooting game, where
the user selects which kind of gun to blaze away with. In adventure games, the
player may pick up or acquire all sorts of health packs and weapons that can
then be strategically deployed.

17

18

Software Engineering and Computer Games

The issue of having things happen at a human pace ties in with the notion of
feedback and playability. The player needs to see things happen at a reasonable,
comprehensible rate.

All this said, none of the simple games we work on in this introductory book
are likely to rise to these high levels of design finesse. But it’s good to be aware
of what we’d really like achieve.

1.3 The Pop Framework

There are a zillion different projects that people can dream of. In Software
Engineering and Computer Games, we're only going to help you do a few specific
kinds of projects. The book describes a framework called the Pop Framework
which will make it easy for you to build programs suitable for computer games
or for other kinds of simulations.

If you want to get a quick idea of what the Pop Framework can do, download
the Pop program from the book website, start up the Pop program and look at
some of the different game modes you can choose with the Game menu. A
recent version of the Pop help file is printed out as Appendix B, should you
wish to spend some time with it right now.

It turns out that the code for the Pop demo program is the same as the code
that we call the Pop Framework. Though getting a program to run is hard, it’s
even harder to design your code so that it is extensible enough to warrant being
called a framework.

You can call the code for a particular program a framework in the case
where the code has been designed to be very easy to extend to different types of
programs. Ordinarily, a framework is a set of files that make up a complete,
buildable project. The files contain implementations of some classes that are
reasonably easy to tweak and/or extend so as to make the program do different
things. The Pop Framework files are based on a ‘document view’ framework
generated by Microsoft Visual Studio. We'll call this underlying framework the
MEFC framework.

The Pop Framework is actually a bit more than just a collection of new
classes, it’s the notion of arranging these classes according to certain kinds of
patterns. By the same token, the MFC framework is both a collection of new
classes, and a certain way of arranging these classes. The special arrangement of
MEC classes is called the AFX framework, where the ‘AFX’ stands for application
frameworks. Instead of just speaking of the MFC framework, people sometimes
speak of the AFX/MFC framework. But for simplicity we’ll stick to just saying
‘MFC framework’.

Terminology aside, the idea for your project is simple. You build it on top
of the Pop Framework, which is in turn built upon the MFC framework (see
Figure 1.1).

The complexity of the kinds of programs people want keeps getting higher.
In order to stay afloat, software engineers are continually devising ways to
work at higher levels, and to spend less time on low-level tasks. The use of

Projects and games

Your project

Pop Framework

MFC framework

Figure 1.1 Building on frameworks

object-oriented methods is one way to work at a higher level; instead of
designing the same kinds of structures over and over, we encapsulate them
into reusable classes. Learning how to apply software design patterns is another
way to work at a higher level; instead of reinventing ways of making your
classes relate to each other, you arrange your classes into a familiar pattern.
Finally, the use of frameworks provides software engineers with a huge amount
of leverage. A framework comes with a number of classes already organized into
useful patterns. Frequently you use a framework simply by deriving off a few
child classes from the basic classes it comes with; this is in fact what you'll do
to make your computer game project with the Pop Framework.

To introduce you to the Pop Framework, let’s list the basic requirements it
was designed to satisty.

(1) We want to be able to open more than one window within the program.
The different windows can correspond either to different game sessions or
to different views of the same session. A Windows way of putting this is
that we will use the multiple document interface (MDI for short) rather
than the single document interface (SDI for short).

Strictly speaking it’s not really that necessary to have multiple
windows for most games. But as the MFC framework gives us this pretty
much for free, we're going to use it so as to make our framework as
powerful as possible.

So as not to confuse the users unnecessarily, the Pop Framework’s
default behavior is to show a single maximized view that fills the main
window. It will automatically tile additional views into the main window.

Another feature of the MDI is that we use a document-view architecture.
This means that we conceptually break the program into three main pieces:
the application, the document, and the view. These will be represented by
classes called, respectively, CPopApp, CPopDoc, and CPopView. The application
is the thing in charge of running your executable program. The document
holds the data involved in your game: things like the characteristics and
positions of the game pieces. The view is the graphical object in charge of
displaying your window on the screen.

(2) The graphics objects in a window must be stable and persistent, that is,
they shouldn’t disappear if we resize the window or temporarily cover
it with another window. This is a standard expectation, but it turns out
to be something you have to do a little bit of work to make happen. You
don’t get this for free. One way to achieve visual persistence is to maintain

19

20 Software Engineering and Computer Games

3)

4)

®)

(6)

an array that holds information about the appearance of your objects.
This array lives inside your document, and it is used whenever you need
to refresh the appearance of your view.

We use templates for our arrays so that they’ll be resizeable. Rather
than using the C++ Standard Template Library (STL) array templates, we'll
use a special Microsoft MFC array template called CArray.

We should have menu and toolbar commands for changing program
parameters and controlling the program flow. Once you have menu com-
mands in place, making them into toolbar buttons is quite easy with
Visual Studio.

An MFC program handles messages by putting message-handler func-
tions into some of its classes. As it turns out, a message can be handled
either by the app, by the document, or by the view. Generally we try
and partition out the responsibilities in a reasonable manner. Thus, a
program-wide switch for turning the sound off would be handled in the
app, a command for restarting a game would be handled by the doc, and
a command for switching between solid and wire-frame graphics would
be handled by the view.

We'll support mouse and keyboard input. These inputs normally go
directly to the view, but we pass them on from there to the game and the
game objects. Most people expect to use arrow keys to control computer
games. But for more complicated game play we'll use the mouse and have
the option of changing the ‘cursor tool’ and appropriately changing the
action of the mouse.

We want to have flexibility in the set of function calls that we use to put
our graphics onscreen. The Pop Framework is developed in a somewhat
graphics-neutral fashion, so that it can use standard Windows graphics
calls or OpenGL graphics calls, with the option of eventually adding sup-
port for DirectX graphics calls.

We want the graphic images to be independent of the window size and
the screen resolution, that is, we want to see the same kind of pattern in
the window no matter what size it is. This is a somewhat non-standard
notion. There are many computer games that take over the whole screen,
throw it into some fixed resolution and don’t allow you to use resizable
windows at all. In effect these kinds of programs are making your
Windows machine behave like a dedicated arcade-station or like an
old DOS machine.

Many full-screen programs of this type give you a range of possible
resolutions you can choose from, but even so, once the game starts the
resolution is no longer adjustable.

The author’s feeling in designing the Pop Framework was that it’s
more elegant to have the game run in a well-behaved standard window
on your desktop, a viewport window with graphics that adjust to fit the
size of the window. We do this by saving our objects’ positions in terms
of real-number-valued vectors which we’ll convert into pixel positions

)

®)

)

(10)

(11

(12)

(13)

(14)

(15)

(16)

(17)

Projects and games

depending on the size of the viewport. We write the tools for this con-
version in Windows graphics; we get it pretty much for free in OpenGL
graphics.

We want to have the option of displaying either 2D or 3D game worlds.
Note that the Windows graphics of the Pop Framework supports only the
2D worlds, and to see the 3D worlds, you need to use the OpenGL option.

The objects in the program should move around on their own even
when you're just sitting there watching, that is, we should have real-time
animation. We want to have an animation speed of at least 20 frames
per second.

The animation should be flicker-free. This is a less obvious requirement
than some of the others, but it takes a special effort to keep a graphics
program from flickering. The technique used is often called ‘double
buffering’, meaning that as well as writing to the videocard buffer (which
is what a normal graphics call does), you also make use of a memory-
based video buffer. In the case of Windows graphics, it is the framework’s
job to construct and maintain this memory buffer; in the case of OpenGL
graphics, the buffering happens more or less automatically.

The apparent speed of the game objects’ motions should be independent
of the number of frames per second that are being displayed by the par-
ticular combination of processor and videocard. Like being flicker-free,
this is a less obvious requirement that takes a certain amount of work. The
trick is to link the simulated motion per frame to the actual real-world
time elapsed between frames.

We want to be able to save and to load files that contain the current state
of the game or process being shown. This is fairly easy to do in MFC, by
making use of an overridden Serialize function.

We want to have character sprites based on geometric objects like polygons
and polyhedra. These objects should be able to change dynamically, that
is, rotate, change size, flex, etc.

We also want to have character sprites which are based on bitmaps in
addition to objects that are based on geometrics such as polygons and
polyhedra. It should be possible to flip through sequences of bitmaps to
achieve character animation.

Our objects should have easily alterable virtual functions controlling
their behavior. This way we can give them virtual personalities that are
easy to customize.

We should handle collisions between moving objects in a physically
reasonable way.

We should try and develop code which is as reusable as possible. This
means encapsulating our code into classes with the proper function calls
for making the classes fit together in an easily usable framework.

Finally, and most difficult of all, we would like to make playable games.

21

22

Software Engineering and Computer Games

1.4 Your project

As mentioned before, the best way to learn programming is to have some pro-
ject that you yourself want to work on. Read through this section and then take
a look at the exercises at the end of the chapter. Exercise 1.1 is designed to get
you into a mind-set where you're thinking about things you might possibly do,
and Exercise 1.2 encourages you to take the initial step towards specifying a
game project you can build with the Pop Framework. It would be a good idea to
actually write out your answers, especially to Exercise 1.2.

Once you’ve come up with some ideas about what you might want to do for
your project, remember to keep thinking.

Don’t lock in on a particular project idea too early. Keep an open mind. You
should plan on getting feedback and revising your project idea several times
before you finalize anything. This iterative process is an example of what'’s
called requirements gathering. Here are some suggestions for your requirements
gathering.

First of all, you'll want to become familiar with the Pop code we’re using so
as to get an idea of what kinds of technical things will be easy to do.

Secondly, you'll need to make sure you find a project of the right level of
difficulty. You don’t want a project that’s trivially easy, on the other hand you
don’t want a project that’s too hard to finish within the available time. Given
the realities of software development, it’s wiser to pick something on the easy
side, as software projects always take longer than you first expect them to. Your
professor can help you gauge this.

Thirdly, you may be using this book in a course where you're expected to
work with a team, and you're going to need to have a project that all of the
team members can commit to.

Fourth, don’t plan for your game to be an exact clone of an existing game
such as one of the Nintendo games, and don’t plan on using bitmaps or char-
acter names from any commercial games or other media sources such as Disney
or Warner Brothers. Although you may want to use the basic design and play of
an existing game, you must come up with your own, independently developed
name and graphics theme. Otherwise you will be (a) violating copyright or
trademark and (b) writing an ‘imitation’ game that is going to forever look
second-rate compared to the ‘real’ version of it. Regarding the copyright issue,
you might feel that a big game company wouldn’t bother to come after a student
project — and you're probably right. But what if your project turns out really
well and you want to put it up on the web for free download? At this point
you actually do stand a chance of running afoul of a corporate webcrawler.
Regarding the issue of being second-rate, students sometimes feel that using a
commercial game’s graphics will make their game seem better. The opposite is
true. Reminding users of a real Nintendo game when they play your game is
only going to make your game look weak! Your game needs to stand or fall on
its own qualities, not on the borrowed glamour of some other work.

A fifth thing to keep in mind is that sometimes it only takes one good con-
cept to really make a game interesting. Try and think of an original concept

Projects and games

that is fresh and not over-familiar. Don’t be afraid to be inventive or even
downright weird! Even an easy project can seem fresh and new if it has a
good concept.

Take, for instance, our Spacewar game. This is more or less a copy of the
familiar Asteroids game. It has nice code in it, but the appearance isn't fresh.
Perhaps the simplest kind of projects that students do is to take Spacewar
and to add something to make it seem new. One might, for instance, have
the player be a fairy with a wand, and have the enemies be bees. Or one might
have the player be a swimmer with a harpoon and have the enemies be sharks.
Or have the player be a photographer with a camera and have the ‘enemies’
be wild animals seen on a photo-safari. Or have the player be a deer who's
shooting at hunters. Or have the player be a shepherd who’s chasing away
wolves. In each case, you'd still be using the same guns-and-bullets code of
Spacewar, but you’d be clothing the program in a concept that made it look
a little fresher.

A more powerful notion than redecorating an existing game is to come
up with some wholly new elements in the game. You might, for instance, have
a game like Spacewar, but specify that, to start with, the enemies are all inside
a box and the player is outside the box. And then have the enemies come
tunneling out one by one. Or have a treasure that the player has to pick up as
well having to shoot enemies. Or have your player racing the enemies through
a maze or around a track.

Also keep in mind that a game doesn’t have to be like Spacewar at all. There
are several other examples of games in the Pop program, and you may think of
still more.

The best of all is if you can think of some completely new idea. If you look
at the range of commercial games for arcade machines, game consoles and
personal computers, you'll notice that there are a handful of games totally
different from the others. These are the killer apps, the ones that nobody’s
thought of before.

A final suggestion is that you should take a look at some of the descriptions
of past student projects in the Hall of Fame section of Chapter 19: More Ideas
for Games.

Review questions

A What are the features of successful programs?

B What are the three kinds of dimensions used to describe a computer game? What are
the values of these dimensionalities for Space Invaders? For Pong? For PacMan? For
Quake?

C What are some of the basic principles of good game design?
D What is a software framework?

E What is the Pop Framework?

23

24 Software Engineering and Computer Games

Exercises

Exercise 1.1: Beginning to think about your project

In the following series of questions, you begin trying to work out what level of project you
might do.

(a)

(b)

What are two computer programs you really like? Say what it is that you like about
them. These can be any kind of program at all.

What is a ‘dream’ program you would like to write if you were the world’s best pro-
grammer and had all the time in the world? Write out some of the great features
you’d like for this program to have. If you have ideas for several different dream pro-
grams put them all down.

What are some areas of programming you think you’d need to learn about to write
some really great programs? Try to be as specific as you can.

What is an easy program you’'re fairly sure you might be able to do, assuming that
you got a little help along the way? If you have several ideas put them all down.

What are some features you could add to an easy program to make it more like a
great dream program? If you have several ideas put them all down.

Exercise 1.2: First specification sketch for your game

Spend a half hour running the Pop program. Assume that you’re going to build a project
by extending this code. Now write up an idea for a game project you think you might like to
do. This document will be what we call a specification sketch. It should have four parts:
(a) explain the concept of the game, (b) draw a picture of how you think your game screen
might look, (c) say how the user controls might work, and (d) describe how the play of the
game will run. Don’t forget to draw a picture, no matter how rough it looks; pictures are
all-important in the early stages of conceptualizing a game.

Basics of software 2
engineering

Before talking any further about your specific project, let’s look at some basic
software engineering issues. How should you organize your effort and your
time? How do big programs get written?

In this chapter we lay out some of the basic software engineering principles
and tools that you need to carry out the goal of the course, which is to produce
a fairly large and complete computer game program based on an existing
object-oriented framework.

Software Engineering and Computer Games focuses on showing you how to
carry out one particular kind of software project. We are not going to give you a
complete or advanced treatment of the whole field of software engineering
here. Rather than attempting a broad-based survey, we are out to give you the
tools to carry out one kind of task in depth. And while discussing this task
we’ll also show you some things about the practice of object-oriented software
engineering.

Hopefully the lessons you learn here will give you a better insight into
the more theoretical principles of software engineering when you encounter
them in some other context. If this chapter gives you an appetite to learn
more about software engineering, consult some of the books suggested in the
Introduction.

2.1 The Constraint Triangle

If there’s one single thing you should know about software engineering it’s the
Constraint Triangle (see Figure 2.1).

Cost is the measure of how many programmers are hired to be on your team.
Time is the measure of how long you have to finish the project. Quality is the
measure of how many features your software will include and of how extens-
ively it will be tested.

Controlling time, cost, and quality are all important goals. You want to manage
time so that your project will be ready by its deadline. You want to control
development costs so that the project will be affordable and even profitable.
And you want the quality of the software to be good enough to make the soft-
ware attractive to users.

26

Software Engineering and Computer Games

Time

Cost Quality

Figure 2.1 The Constraint Triangle

In a fantasy world, we’d like for our projects to be done instantly, to cost
nothing, and to be of infinitely good quality. But in the real world, we have to
compromise. The reality is that in order to change one of the time, cost or quality
goals we need to provide some slack by adjusting one of the other goals.

* You can decrease the time needed for your project, but to do so means
increasing the cost by hiring more programmers and/or reducing the quality
by eliminating features and perhaps cutting corners on the product testing.

* You can reduce the cost of your project by using fewer programmers, but
this means you'll need more time and/or to reduce the quality.

* You can opt for a very high level of quality, but this means your project
must take more time and/or cost more.

Any change to one goal must be compensated for by a change to one or both
of the other goals.

If you let your customer (or your manager) arbitrarily specify all three
corners of the Constraint Triangle, your project is doomed to fail. Any change
to one corner must be balanced off by changes to the other corners.

The moral is that if your project is to be successful, you must be permitted to
make a realistic assessment of cost, time, and quality, and you must be permitted
to make the necessary adjustments to at least one of the goals. Unless you are
allowed to realistically adjust at least one corner of the Constraint Triangle,
your project will fail.

In the 1990s, NASA briefly adopted the slogan: ‘Faster, cheaper, better.” This
was followed by a series of unsuccessful projects — and then they abandoned the
slogan. It’s important to realize that, pushed to the limit, the ‘Faster, cheaper,
better’ slogan is impossible to satisfy. It’s as absurd a statement as ‘I can fly’ or
‘I can turn rocks into gold.” There’s a saying among software engineers that a
correct statement of NASA’s praiseworthy but impossible goal is this: ‘Faster,
cheaper, better: pick two out of three.’

At some point in your career you're likely to be saddled with a manager who
thinks a rah-rah, can-do attitude is enough to get things done. Always speak
up and protest if you hear anything like ‘faster, cheaper, better.” Don’t accept it
if your manager suddenly decides to halve the cost, halve the time, or double
the quality without making any compensatory changes to the other corners of

Basics of software engineering

the Constraint Triangle. If you let so foolish a plan stand, it will come back to
haunt you. Mention the Constraint Triangle and draw a picture of it. Explain
that it is a simple impossibility to arbitrarily specify all three corners.

Unless you are in a fairly powerful position, you usually don’t have much
control over the time and cost corners. In particular, if you're a student doing
a team software project in a course, you aren’t going to have any control over
the time you have to do the project, and you aren’t going to have much to say
about how many programmers you get to have on your team. The only corner
of the Constraint Triangle that you have control over is the quality corner.

The way to economize on the quality corner is not to say, ‘Well, I'll write a
program with lots of bugs and I won't fix them.” The idea is, rather, to say, ‘we’re
going to strictly limit the number of features that our program will have.’

In limiting features, we need to avoid gold-plating, which is the mistake
of accepting overly strong requirements for the program. In addition, we need
to avoid feature creep, which is the tendency to keep adding cool new features
as the program goes on.

2.2 Requirements and specifications

Requirements

The development of a software product begins with a requirement for a certain
kind of program and a brief specification for what such a program might be. The
requirement is a little like a question and the specification is like an answer. Put
a little differently, the requirement is like a request and the specification is a
proposed solution.

The usage of the words ‘requirement’ and ‘specification’ is somewhat fluid, and
you will find different conventions in different books on software engineering. In
Software Engineering and Computer Games, we treat the requirement as a request
for a certain kind of software and a specification as a proposed description of
the software. And we stress that there is considerable interplay between the
requirement and the specification. During this requirements gathering process, the
stakeholders in the project try to converge on coming up with a requirement
and a specification that match each other. The stakeholders might include
corporate customers, investors, the managers, the programmers and perhaps a
sampling of eventual users.

So, once again, a software requirement says what the target program is
supposed to do. A requirement might be something as clear-cut as, ‘Write a pro-
gram which displays our inventory data in an attractive format,” or something
less precise like, “Write a Web browser that runs on cell phones,” or something
open-ended like, ‘Write a really nice game.” At the preliminary level, the initial
requirement can also be called a vision or a software concept.

As well as saying what the program is supposed to do, a requirement may list
some specific features that the program is expected to have. Sometimes a soft-
ware requirement starts out very detailed, but more often it will be brief.

27

28

Software Engineering and Computer Games

In industry, another aspect of a software requirement is that it will include
some ideas about the marketability of the intended product. An industrial soft-
ware requirement will say why the program is worth doing and why people
will want to have it. Managerial types have a very persistent way of asking,
‘What is the intended market?’ So usually a software requirement will address
this question as well as the question of what the program will do.

UML diagrams

In recent years there’s been a movement to consolidate the different kinds of
ways that software engineers talk about what they do. The result is a loosely
defined set of names and conventions called the Unified Modeling Language, or
UML. UML is primarily used as a methodology for drawing diagrams relating to
the creating of programs. The fact that it is ‘unified’ means that UML includes
the contributions of many different computer scientists, to the point where it
is a bit of a catch-all. There are at least nine different kinds of UML diagram: use
case, class, object, activity, statechart, sequence, collaboration, component, and
deployment. We should also mention that much, though not all, of the UML
assumes that you are using an object-oriented style of software engineering like
we’ll be discussing in this book.

In Software Engineering and Computer Games we'll discuss only these five kinds
of UML diagrams.

e Use case diagrams for software requirements.

e Component diagrams for the dependencies of the source-code files.
e Activity diagrams for program execution flowcharts.

e (Class diagrams for the high-level structure.

e Sequence diagrams for interactions of program objects.

A basic thing to remember about UML diagrams is that they’re meant to be
quite simple. The primary purpose of UML diagrams is to make it easy for a pro-
ject’s various stakeholders to communicate with each other about the project.
Keep in mind that a number of the stakeholders are likely to be non-technical.
There’s nothing like putting some UML diagrams on a white-board to get a
discussion going. UML use case diagrams are of particular value during require-
ments gathering.

Another purpose of UML diagrams is for what is called forward engineering,
where we move from a concept towards actual code. UML class diagrams are
particularly useful when you are in the stage of working out the high-level
design for your program. The UML activity diagrams are useful for understand-
ing the overall program flow. And the UML sequence diagrams are good for
working out the details of how your objects interact.

A third purpose of UML diagrams is for reverse engineering, that is, for under-
standing how an existing program works. This is in fact the situation that the
readers of Software Engineering and Computer Games are in. In order to use the
Pop Framework to build a new game, you need to have some understanding

Basics of software engineering

of the Pop program’s design structure and running behavior. This is also the
situation that you’re usually in when you start working for a big company.
They have some large body of code in place, and you're supposed to start main-
taining or extending it. UML diagrams are a perfect tool for getting started with
the process.

A use case diagram can help you understand what the program is supposed
to do. A component diagram lays out the interdependencies of the source-code
files. An activity diagram shows the overall program flow. Class diagrams show
you the interrelationships between the kinds of objects the program uses. And
sequence diagrams can clarify the details of how the objects interact.

Use case diagrams

In a UML use case diagram, you represent your program as a big rectangle.
Outside the program you put one or more stick-figures corresponding to the
actors, that is, the people or other programs who might make requests to your
program. Inside the program box you put ovals corresponding to use cases,
which are things the actors might ask the program to do. You may also draw
relationship lines from actors to use cases to indicate which kinds of actors get
involved with which kinds of use case.

Even more than other UML diagrams, use case diagrams are exceedingly
simple. The stick-figures are a low-tech bit of psychology to make you to feel
more engaged with what is really little more than a list of requirements.

A use case diagram for the Pop Framework code might look like Figure 2.2.

Since Pop is both a program and a framework, its use case diagram mentions
two kinds of actors: the users who play the Pop games and the programmers
who use the Pop Framework to build new games.

Check progress

Player Programmer

Load & save @

feE

Figure 2.2 A use case diagram for the Pop Framework

29

30

Software Engineering and Computer Games

Rather than going into a high level of detail about how we will display our
graphics, we simply have the ‘watch’ use case to express the idea that the game
should be pleasant to look at. The ‘resize’ case expresses the requirement that
the game should be resolution independent. The ‘adjust’ use case expresses the
fact that we require an ability to be able to do things like selecting game levels
or resetting the game. The ‘check progress’ use case leads to a requirement that
the game should display the current score, player health, and so on.

On the programmer side of things, we mention an ‘extend’ use case and a
‘test’ use case. Requirements coming out of the ‘extend’ case are that the code
should have clear, easily extended classes, and that the various numerical
parameters should be easy to find and easy to change. Requirements arising
from the ‘test’ use case might be that the framework should have methods for
randomizing parameters for so-called black-box testing, as well as an autorun
mode in which the game ‘plays by itself’.

Requirements gathering

A software requirement is a more or less detailed request for a certain kind of
program. A requirement asks, “Will you write a program to do such and such
which appeals to so and so and runs on the following platforms?’

A software specification is a more or less detailed description of a program. A
specification arises as an answer to the question posed by a requirement. A
specification answers a requirement by saying, ‘I can write a program with the
following features, and its appearance and behavior will be something like this.’

As mentioned before, the key thing to realize is that — like so many aspects of
software engineering — arriving at a final requirement and specification is an
iterative process. This is the process we call requirements gathering.

It is essential to spend a good amount of time on requirements gathering
before writing a single line of code!

Without enough requirements gathering you run the risk of spending a lot of
energy writing a program that your customer doesn’t want.

In order to discuss requirements gathering a bit more, let’s think of a simple
situation where you are the lead software engineer planning to create a pro-
gram for some customer. The customer proposes a requirement, you propose a
specification and show it to the customer, the customer alters the requirement,
you alter the specification, and the process is continued until the customer has
figured out what he or she really wants, and you have figured out an answer
which the customer finds satisfactory. This is an example of requirements
gathering.

What about the situation where you are developing a program on speculation,
without any investors or corporate clients involved? Well, you really shouldn’t
try to develop a program for an imaginary customer that exists only in your
head. You need to get out and talk to real people, to people other than yourself.
If you're developing for the mass market, your ‘customer’ might be possible

Basics of software engineering

users. If you're well-funded, you might have a formal focus-group of users. If
you're upgrading an existing product, your users might be your customer base.
If you're pretty much on your own, your sample users might be whatever
friends or family you can find who are interested in what you're doing.

In most situations there are project stakeholders other than customers.
If you're starting a company, one of your stakeholders might be a venture
capitalist. If you're an executive of a company, a key stakeholder might be
an executive at another company that’s contracting for you to write a specific
program. If you're a low-level employee at a company, your most important
stakeholder is your boss. If you're a student in a software projects class, your
stakeholders are your professor, the other members of your team, and any
sample users you can manage to talk to.

In each case one of the stakeholders proposes some more or less vague
requirements and it’s up to you to come up with a specification of a program
such that (a) all the stakeholders agree that the specification satisfies the require-
ment and (b) you feel you can complete the program given the existing time,
cost, and quality constraints.

Condition (b) means that in the requirements gathering phase you need
to keep the Constraint Triangle well in mind. It’s a mistake to ‘gold-plate’ the
requirement and insist that you will be able to include a huge list of fancy
features. Always remember the Constraint Triangle of cost, time, and quality. If
there are some absolutely necessary fancy features which are bulking up the
quality corner, you need to make sure you get allowances to the cost and/or
time corners to compensate. If your customer, or your boss, or your marketing
department, won’t accept a realistic feature set, you should quietly start looking
for a new customer or a new job. It’s too stressful to work on a project that’s
doomed from the outset by unrealistic estimates.

The specification sketch

It's a bad idea to code without having any written plan at all. If you have a written
plan, looking at it can keep you from going off on tangents that may not be
crucial. And a short written plan makes a good starting point for discussions with
others. So you really do need to write up a specification before starting to code.

What should a specification look like? We distinguish between two kinds
of specifications: a short, casual one called a specification sketch, and a longer,
cleaner, more formal one called a full specification.

An ideal full specification might consist of your class header files and a com-
plete User’s Guide for the program. Realistically, you usually aren’t in a position
to correctly write a full specification until your program’s nearly done! That'’s
why, to start with, we settle for a specification sketch. Better a sketch than
nothing.

It’s liberating to accept that it’s unreasonable to want to write out a full
specification before you write a line of code. In the real world, it helps to play
with some code while you're thinking and to try a few things out so that you
have some idea of what your possibilities are.

31

32

Software Engineering and Computer Games

This is where the notion of a specification sketch comes in. If you feel like the
only possible specification you can write up is a full specification, you're going
to be tempted to not make any kind of specification at all and just start right
in on coding. But if all you have to write up is a one or two page specification
sketch, the process feels more like a helper than like an obstacle.

As your program evolves, your specification will gain more and more detail.
Some aspects of the specification may not be worked out until you've written
several builds of the code.

The specification sketch should describe four basic areas: (S1) the concept,
(S2) the appearance, (S3) the controls and (S4) the behavior of the program.

e (S1) Concept. The concept states what the program is about, and describes
the unifying theme of the program.

e (S2) Appearance. The appearance should be specified by a few drawings of
what you expect the screens of your program to look like. For a very large
project you might go so far as to make software mockups of sample screens,
creating these either as paint program bitmaps or as outputs of a quick and
dirty prototype program. But for a small project, a pencil drawing on a piece
of paper may be enough.

e (83) Controls. The controls should be specified by saying how the keyboard,
mouse, and more important menu controls will work.

e (S4) Behavior. The description of the behavior should mention the main
features of the program. It’s often useful to step through how the program
would respond to user actions in a typical use case scenario. Also describe
how a typical user will get started with the program, and mention some
expected tips for successfully using the program.

Suppose that your requirement is to write a computer game. A proposed
specification sketch might be based on, for instance, the concept for a game
resembling the PacMan game. (S1) The sketch’s concept would also need to
include an idea for a coherent graphical theme distinct from the graphics of
PacMan. (S2) The sketch would include a drawing of the screen of your game.
(S3) The controls are simply the arrow keys. (S4) Regarding the behavior, the
sketch would have some details about how many enemies there will be, what
the score for eating a power pellet will be, what the shape of the maze will be,
and how the successive levels of the game might differ.

Of course the customer’s response to such a specification might be, ‘I want a
new kind of computer game, not a clone of an existing game.” And then you’d
need to find a way to make your PacMan specification more original, and con-
tinue on through the next cycle of requirements gathering.

2.3 The software engineering process

A software project consists of both the code and the process by which you develop
the code. It is important to formalize the process that you use. This means that

Basics of software engineering 33

you should have a set of documents describing your process, and that you should
frequently look at and revise the documents while the project is underway.

There are many ways to separate out the different aspects of the software
development process (as distinct from writing, testing, and debugging the code).
Here we'll view the process as having four pieces.

* Requirement and specification.
e Schedule.
e Design.

e Project documents.

We already discussed requirements and specifications. Now let’s say a bit about
the next three areas.

Schedule

We put a number of things under the category of schedule: lifecycle, mile-
stones, task list, QA plan, and risk management.

A software lifecycle is plan for what to do when, i.e. what order to carry things
out in. Different projects use different kinds of lifecycle models. The lifecycle is
a large enough topic that we’ll devote a whole section to it a little later on in
this chapter, eventually focusing on the Inventor lifecycle that you will use for
your game project.

Setting milestones means (a) figuring out some definite, identifiable stages to
reach, and (b) setting dates for when you plan to hit these milestones. As well
as the finish-line milestone of shrink-wrap (or of posting your package on the
Web), you have many preliminary milestones.

In a typical classtoom project, your main milestones might be these.

e Preliminary specification sketch (followed by requirements gathering).

e PowerPoint presentation of an approved specification sketch and a UML
class diagram for the design.

e Classroom demo of an alpha build.
e (Classroom demo of a beta build.

e Final demo.

Several times during the semester, you and the professor (the project stake-
holders) need to make out a list of your remaining class meeting dates and
figure out reasonable delivery dates for the milestones.

If you're using this book for self-study, pretty much the same kind of schedule
might apply — with the difference that you’ll want to find friends or relatives to
discuss the specifications with you and to view and test your demos.

One thing to realize about the milestones and the schedule is that they need to
be continually revised — like everything else in software engineering. Managers
often make use of the Microsoft Project software to keep track of their schedule
and their milestones.

34

Software Engineering and Computer Games

As well as the main milestones, you may also want to think in terms of
smaller milestones. In the case of a PacMan style game, getting to a presentable
alpha build would involve, for instance, the milestone of creating a eMaze class
or writing a method that simply builds such a maze out of cCritterWall objects.

When thinking about how to fit the smaller kinds of milestones into your
schedule, it’s useful to have a task list. This would be a list of all the things you need
to do before the project is done. Particularly on your first few projects, you tend to
underestimate the number of little extra tasks you're going to have to do near
the project’s end. These might include getting the bitmaps or art ready, making
demonstration files, checking the help file against the program, and so on.

In making a schedule it’s also important to allocate time for testing the pro-
gram and testing how well the documentation matches the behavior. This is
why software projects are usually divided into an alpha phase and a beta phase.
The beta phase is when the testing and debugging takes place.

The process of testing is called QA, for quality assurance. It's important to
allocate sufficient time to this, and to accept that you really need to retest after
each new beta build. It’s not unusual for a bug fix in one spot to break some-
thing somewhere else. In making out the schedule you need to consciously
plan in enough time for sufficient QA. We'll say more about the testing process
in Section 2.3: The Software Lifecycle.

As mentioned above, when you manage a software project you have to keep
going back over your schedule and making sure that it matches the reality of
what you've currently done. The process of risk management means looking
ahead and trying to anticipate some of the possible ways in which you may go
off schedule.

There are two main parts to risk management: monitoring and recovery.
Monitoring means that you have to honestly admit what the most dangerous
problems are so that you will immediately recognize them if and when they
start to happen. If your program hinges on your being able to integrate a
certain kind of image file into your code, there is a risk that you're not going to
be able to do it. Monitoring means facing the fact that the worst can happen -
and persistently asking if it's happened yet. The risk of not being able to use a
type of image remains until it's been demonstrated that it can be done. Because
this task is a risk, it is not left until the very last minute.

The recovery aspect of risk assessment means formulating a Plan B, an alternate
strategy to pursue if a given fear comes true. If, say, such and such a team member
is unable to integrate *.gif image files into your code by the second alpha build,
then you will reduce the risk by using, say, only *.omp image files. If the team
member who was supposed to provide your enemy creature’s behavior algorithm
stops coming to class or answering email, then someone else better start work-
ing on it, and if no one can, then you better figure out how to have a game in
which the enemies simply use a default framework behavior algorithm.

Risk assessment monitoring is about having your team be honest with your-
selves and not hiding your heads in the sand. Risk assessment recovery is about
formulating Plan B, and, to mix up the metaphors, being willing to throw the
stove and food out of your balloon basket if that’s what it takes to stay aloft.

Basics of software engineering

Design

Design breaks into two levels: the high-level design and the detailed design. The
high-level design is also known as the architecture, which tends to sound a bit
more impressive.

The architecture or high-level design involves specifying the program’s
‘nouns’ and its ‘verbs’, that is, the program’s classes and the program’s runtime
behavior. The detailed design involves getting more specific about the classes
and beginning to write out prototype code for them.

When we are doing the high-level design, we use a process known as
object-oriented analysis to help figure out what classes we should use. This is a
matter of singling out the key concepts used by your problem, and thinking
about how best to represent the concepts as classes. Once you’ve decided which
classes to use, the process known as object-oriented design helps you find the best
way to make your classes work together.

Recall that we use ‘UML’ to stand for ‘Unified Modeling Language’. A good way
to talk about your class design is to use a UML class diagram, which is a bunch
of rectangles representing classes, with lines showing the relationships among
the classes. Drawing a class diagram is a good way to get a useful discussion
going about the spec, and can be helpful in moving from the architecture to
the detailed design. A class diagram on a whiteboard makes a focus for a group
discussion of class design, and provides a non-technical channel by which
coders and managers can usefully interact. Look ahead at the class diagrams of
the Pop Framework in Chapter 3: The Pop Framework (Figures 3.4 and 3.10).

Describing the program’s runtime behavior means figuring out the order
in which things happen. How, for instance, does an animation program update
itself? When a user clicks the mouse, what is the sequence of events we expect
to have? UML sequence diagrams are very useful for sketching this out. Look
at, for instance, some of the sequence diagrams in Chapter 6: Animation, for
instance Figure 6.3 showing the sequence diagram of how our Pop programs
animate the creatures onscreen.

The detailed design for your program states what members and methods
your classes will have. In C++, the detailed design can consist of explicit defini-
tions of the classes you will use; a good way to be precise about your classes is
to go ahead and start writing up the formal class definitions as *.h header files.
You can postpone the *.cpp implementation of the class methods for a little
while. But you will find, once you do get into implementing a class’s method,
that you often need to rethink the original class design. This kind of back and
forth is one of the enjoyable parts of object-oriented design. We say more about
this in Chapter 4: Object-Oriented Software Engineering.

Project documents

The most visible project document is the User’s Guide, whether in printed or in
help file form. For now suffice it to say that the User’s Guide might typically
include sections called Overview, Getting Started, Things to Try, and Controls,

35

36

Software Engineering and Computer Games

Table 2.1 Documents for software development.

Specification Revised requirement document
Specification sketch with concept, appearance, controls, behavior

Scheduling Calendar with ‘milestones’
Risk list
Design UML class diagram

UML sequence diagrams
Class headers

Documentation All of the above, plus User’s Guide

where the last section exhaustively describes the effect of each control found in
the user interface.

Looking back over the first three parts of our project process, we can imagine
making a document (or set of documents) for each of them, that is a specifica-
tion document, a schedule document, and a design document - all these in
addition to the User’s Guide document.

Table 2.1 lists software process stages and some of the documents that might
accompany them.

All documents should be visible to all the stakeholders involved in the project:
the managers, the coders, and the customers. On a really well-run project, one
might put all four pieces up on a website, possibly an intranet site or password-
mandatory site rather than a public one.

None of these documents is set in stone. We expect that each of them
is going to change somewhat during the project lifecycle, although there will
normally be a ‘feature freeze’ date after which no further changes to the specifica-
tion documents are allowed. But, up until that point, we are going to learn
more about our project from the code, from the early builds, and from the way
we see the schedule unfolding, so it’s reasonable to keep changing things.

There are various models for how to update the documents. Either one
person is in charge of maintaining each document, or they are changed during
group meetings, or stakeholders might be allowed to ‘check out’ a copy of the
document for revision, with the earlier versions being preserved.

2.4 The software lifecycle

Whether you're working alone or working as part of a large team, there will be a
plan of action for how to design, code, test, debug, and document the software.
A plan like this is usually called a software lifecycle. In this next section we’ll dis-
cuss a couple of possible lifecyles and then describe an Inventor lifecycle to use
for the kind of exploratory, time-constrained project that we’ll do in this book.
If you do not consciously choose a particular software lifecycle, you end up
in fact using a scenario known as ‘code and fix.” It means making no plan at all,

Basics of software engineering 37

Requirement

Specification

Architecture

Detailed design

Coding

Testing and debugging

Ship

Figure 2.3 The Waterfall lifecycle

but instead simply diving in, writing code, and trying to fix each new problem
as it develops. Code and fix is considered one of the most inefficient ways of
developing software.

You should always take some time before starting a project to try and figure
out what you are going to do. A good rule of thumb is to estimate how much
time you should spend planning — and then plan for three times this long. One
well-spent hour of planning can save hundreds of hours in coding and fixing
further down the line. When you have a really clear vision of what you want to
do, writing the code to do it does not in fact take all that long. The hard part is
in getting the vision.

There are a number of tried and true software lifecycles which involve a
good measure of planning. The most traditional model is called the ‘Waterfall’
software lifecycle. This model describes a straight-through process: completely
plan what you want, specify how the program will behave, nail down the
architecture, work out the detailed design, and only then begin coding, finally
testing and debugging. The stages of the Waterfall are given in Figure 2.3.

In practice, people tend not to use a pure Waterfall approach, because it
is difficult if not impossible to completely specify and plan your program in
advance of writing any code. It’s more common to see a lifecycle that resembles
the linear Waterfall approach but which allows for the possibility of ‘swimming
upstream’ and revisiting the earlier stages. It would be quite reasonable, in
other words, to draw additional upwards arrows from the specification, archi-
tecture, detailed design, coding, and testing and debugging boxes.

38 Software Engineering and Computer Games

Software concept

Requirements development (includes N stages of specification)

Architecture and high-level design

Stage 1: detailed design, coding, documentation, testing, debugging

Stage 2: detailed design, coding, documentation, testing, debugging

Stage N: detailed design, coding, documentation, testing, debugging

Final release

Figure 2.4 The Staged Delivery lifecycle

Another popular lifecycle is known as the Staged Delivery model. In this life-
cycle we organize the requirement phase so as to break the program into several
stages of functionality. The plan is that at the end of each stage the program
should be fully releasable. But stage one might include only basic functionality,
stage two a richer set of features, and perhaps stage three will have lots of bells
and whistles, while stage four will be incredibly deluxe. So as to be sure of
being able to deliver some kind of product when the time runs out, the Staged
Delivery method completely finishes stage one, then stage two, and so on. The
sketch for this lifecycle is given in Figure 2.4. Note that here we try and fix the
architecture early in the process, but we allow for changing the detailed design
at each stage. Note also that we try and figure out all of the features that we
want right at the start so that then our architecture will be roomy enough to
accommodate all of our planned functionality.

Names and descriptions for many other software lifecycles can be found, for
instance, in Steve McConnell, Rapid Development (Microsoft Press, 1996), from
which our description of the Staged Delivery model is taken.

In this book we’re going to use a somewhat exploratory software develop-
ment process where we tend to be occasionally groping in the dark. For this
we’ll use a model which is a linear process with two repetitive loops in the
middle. Just to have a name for it, we call it the Inventor lifecycle, to suggest
that it’s a reasonable lifecycle to use when you're exploring an area that’s
new to you and are planning to discover new things about how to use your
tools and your framework, possibly developing some entirely new features as

Basics of software engineering 39

Requirements gathering

Architecture

Specification N and detailed design N

Alpha N program and alpha N User’s Guide

Final design and feature freeze

Beta N program and beta N User’s Guide

Testing and debugging beta N

Final version and product ship

Figure 2.5 The Inventor lifecycle

well. The name isn’t meant to rule out the possibility that you might use
the Inventor lifecycle to make a highly polished final product. The Inventor
lifecycle goes as shown in Figure 2.5.

We expect to develop our program though a number of builds. The builds
break into the alpha and the beta stage. In the alpha stage we still don’t know
exactly what features we’re going to have, so we allow for the possibility of
changing our specification several times. When we see our deadline coming
into sight, we switch into beta mode by freezing our feature set and focusing on
testing, and debugging.

Now let’s discuss each stage of our Inventor lifecycle.

Requirements gathering

As discussed above, in the requirement phase you start with one or more soft-
ware concepts and try them out on the other stakeholders, who will be your
professor and your other team members in a classroom situation. If you're using
this book for self-study, you might try and involve at least two other people as
stakeholders — if only in the role of interested on-lookers. After several cycles
of requirements gathering you arrive at a basic plan for how the program will
behave. You get a specification sketch describing the program and including

40

Software Engineering and Computer Games

some drawings of how the screens will look. The specification sketch should
have the four components (S1) concept, (S2) appearance, (S3) controls, and (54)
behavior.

Architecture

Before doing any coding, you need to figure out what classes you are going
to use. It is likely that your class structures will change somewhat as time goes
on, but it is important at the outset to make an honest effort to separate out
your classes and, above all, to think about how they will inherit from existing
classes. The most common design mistake that beginning programmers make is
to block copy an existing class’s code for a new class when it would be so much
cleaner and easier to have the new class be a child of the existing class. UML
class diagrams are a good tool for working out the high-level design.

Once you have a high-level design and a specification that’s been honed
by requirements gathering, you can put these together into a document some-
times called the ‘RAD’ for ‘requirements and design’. (Presumably by the end
of the requirements gathering, the requirement and the specification match.)
Of course, in an exploratory classroom or individual project, we can expect the
specification to get more detailed and feature-rich as time goes on.

Specification N

Once your requirement and basic architecture has the go-ahead, you need to
figure out what members and methods go into your classes. You will also need
to work out a more detailed draft of the User’s Guide so that you know exactly
what you want your program to do.

The specification N is a list of the features you expect the program to have,
and the detailed design includes all the methods you need to implement them.
When you get into the low-level design, what you will often be doing is to
write out C++ headers for your classes. You can start the process informally, but
given that you must eventually write the code, it’s not a bad idea to simply do
the low-level design by actually writing real headers. New inspirations will
come as you try and implement the methods, get them to compile, and make
them work in the program.

As time goes by, you will of course think of new features to add to your pro-
gram - and this is why we talk about specification N and detailed design ‘N’,
where N is a number that starts at 1 and usually ranges between ten and several
hundred. In practice you will end up cycling through steps specification and
detailed design N and alpha N many times. As you develop your program, more
and more new features will suggest themselves, and it would be foolish not
to include the good ones simply because they aren’t on some list you made
up before you really knew what you were doing. Conversely, you may also
find that some features you’d planned to include will be too difficult or time-
consuming; reduce your risk by throwing them out.

Basics of software engineering

It seems odd to admit that it’s not possible to fully control the development
process, but this is a reality of contemporary software development. There
seems to be no way around it. A completed program is such a large and com-
plex object that it’s impossible to fully predict the form of the finished object
when you start. It seems likely that software engineering is intrinsically chaotic
in the formal sense of not being entirely predictable. It’s entirely possible that
software engineering never will become an exact science. [There’s an interesting
book about this notion: David Olson, Exploiting Chaos: Closing in on the Realities
of Software Development (Van Nostrand Reinhold, 1993).]

This fact leads some people to question if we should really call it engineering.
If you ask a mechanical engineer to build a bridge, he or she can tell you pre-
cisely how long it will take, how much it will cost, and what the finished bridge
will look like; but thanks to the chaos of complex systems, it’s hard to make
firm predictions about a software project. Of course your managers will ask
for predictions anyway. Try and buy yourself as much time as you can, and if
there’s still not enough time, remember the Constraint Triangle, and negotiate
to reduce the feature set or to add programmers to your team.

Alpha N program

The nearly-finished version of a program is usually called the beta version, and
the alpha versions are the ones that come before that. An alpha version of a
program is normally somewhat rough and unfinished.

The very first version of the program - the alpha 1 - is sometimes more of a
‘prototype’, which is a quick and dirty version of the program simply to prove
that your concepts will work. Very commonly there will be some existing pro-
gram that you use as a Kind of ‘seed’ or ‘starter dough’ to get your program
going. These are prototypes of a kind. But for your real alpha 1, you need to make
the program show at least some minimal functionality in implementing your
required features. If there are several possible approaches, you will sometimes
want to prototype all of them so that you can compare. So in some situations
you may have several competing alpha 1 programs. But, by the time you get to
alpha 2, there should be only one version of the program.

As mentioned above, you can expect to run through at least ten or 20, and
more typically over 100 alpha versions of your program while developing
it. One thing to be careful about is that you don’t get stuck with some sloppy
design that happened to get into the alpha 1. During the early stages of alpha
development you should keep thinking about your class structures. If anything
is crude or awkward, now is the time to fix it, before the program goes on and
gets a lot more complicated.

Usually you’ll run through two or three alphas before going back and chang-
ing the design, so it’s more like you’ll do a specification and detailed design
step, a couple of alpha programs, then another specification and detailed design,
then a few alpha programs, and so on.

The most important practical thing of all when doing multiple versions of a
program is to keep the versions straight. There is so much to say about this

41

42

Software Engineering and Computer Games

issue that there is a File Names and Directory Structure section in Chapter 21:
Tools for Software Engineering.

Alpha N User’s Guide

Just as there is a distinction between a detailed design and actual code, there is
a distinction between a specification and actual User’s Guide documentation.
While doing new versions of the program, be sure and keep your documenta-
tion current. Put your documentation in a handy text file, and every time you
change a feature in your program, write this change down in your documenta-
tion. At the early stages, you do not want to be involved with a technical writer
or an expensive technical publications division. The alpha documentations
should be quick and light, preferably written by the programmers. The alpha
documentation doesn’t need to be anything fancy, but it does need to clearly
state what the controls are and what the ranges of the control parameters
are. Otherwise you're likely to forget. This is particularly important if some
of your controls are still in the popup or hot-key stage. In a way, the ongoing
documentation acts as notes for the next specification. It’s also a good idea to
keep a separate document listing known bugs and desired features.

The User’s Guide should include an explanation of why your program is
interesting, a guide to installation and quick start, and a feature by feature
explanation of all of the menu and dialog controls. Often working on the
documentation will give you ideas on how to improve the user interface.

You should make your documentation as tight and neat as your code.
Use good clear English sentences, and always be sure to use a spell-checker on
your documentation. Avoid repeating obvious things over and over, and avoid
uninformative statements like ‘The Change Size control changes the size.’
Instead explain what size is being changed, what the allowable range of size
values is, why someone might want to change size, and give examples of relevant
behavior at the lower and higher ends of the range.

As well as the User’s Guide, there is another kind of documentation which
you can create: the programmer’s documentation. Most of the programmer’s
documentation appears inside your code: as dated logs at the beginning of the
main program files, as short comments on individual lines of code, and as
extensive comments next to the ‘tricky’ parts of the code. In addition there
might be a short overview document that explains to a new programmer how
all of your project files fit together.

Final design and feature freeze

In developing software, you are usually faced with some kind of temporal
deadline. You can’t go on changing and adding to the program forever if you
are going to hit your ship date. Polishing up the program and getting the final
bugs out is usually going to take more time than you expected. In fact there’s a
saying among software engineers: ‘The first 90% of the program takes the first
90% of the time, and the last 10% takes the second 90% of the time.’

Basics of software engineering

The final design has a set-in-concrete nature that the alpha N designs do not.
Once you get to this point, this is what you are going to finish, and nothing
more or less. ‘Feature freeze’ means, of course, that you are not going to be
adding any more features, no matter how enticing they may seem.

Regarding how long it takes add things to a program, the author often thinks
of a fractal such as a coastline. Standing on one rocky outcropping of a coast,
you might look along the coast towards the next promontory and think it’s an
easy walk. But coasts and programs are fractals, and you're likely to find inlets
blocking your way, inlets with further smaller inlets along them.

Beta N Program and Beta N User’s Guide

At this point you know exactly what the program is supposed to do. The problem
is to make this really true. So now you alternate making new versions of the
beta N release with testing and debugging the release. This phase is also when
you get really serious about your User’s Guide.

In software companies, the creation of the documentation is often farmed
out to a technical writing division within the company. The final specification
and detailed design acts as a good starting point for the tech writers; although it
is easier for them if you have been dutiful about your alpha N documentations.
In general it is not a good idea to let the tech writers get started before you have
done your feature freeze and gotten your final design together, otherwise they
may waste a lot of time working on documentation for features which are still
subject to change.

What’s wrong with that? The problem is that your company will account the
cost of the tech writers’ time as part of your project’s expense, making your
work appear much less cost-effective.

Testing Beta N

It’s hard to anticipate all of the bugs that a program may contain. The more
people you can get testing it the better. Often the writers working on the docu-
mentation function as a kind of testing staff; they try writing down what the
specification says the program does, and they see if this is true as they write it.

While testing your program, always run it in debug mode (by pressing the
F5 key) so that if and when it crashes, you will be able to use the debugger
information.

It’s a good idea to develop an ‘autorun’ mode for your program under which
it will run and do things without any user input. This is a type of automated
testing that can be pushed pretty far; you can, for instance, have your automated
test periodically change values of the program parameters as if a user were doing
things.

Larger companies will have a special group devoted to testing the software;
this is sometimes called the QA group. The fact is, developers don’t want their
code to break. Whether consciously or not, they know which kinds of tests
to avoid. Only a dispassionate QA tester can really find the problems in your

43

44

Software Engineering and Computer Games

code. By way of testing the Pop program, the author has let successive waves
of students try to find bugs in it, with extra homework points going to those
who succeed.

If a lot of people are interested in your program, you may be able to hand
out beta versions to them and have them try the program out.

As with the sequential alpha versions, you need to be careful to keep the
successive beta versions distinct. Another issue is that of bug tracking. You
should have a big document (or data base file) which includes a brief descrip-
tion of each bug and how to reproduce the bug, along with a record of what
has been done to fix the bug. For the purposes of a student project, a simple
text document with a name like bugs.txt can do the job. You might keep such a
file in with your source code and revise it as time goes on.

Debugging Beta N

There are a lot of special techniques software engineers use to try and keep bugs
out of their code.

Using the object-oriented language C++ instead of C is one good way for
avoiding bugs. C++ allows you to encapsulate closely related variables and
functions into the special kinds of types we call classes. (The instances of
your classes are your objects.) With the object-oriented approach, your code
becomes simpler to read and to understand, and this means it is less likely to
have major bugs in its logic. The use of ‘operator overloading’, for instance,
enables you to write something like a = b + ¢ to stand for, say, vector addition
just like you would want it to.

Another good thing about object-oriented programming (called OOP for
short) is that it allows you to code up some frequently used routine only once,
and to provide interfaces so this same piece of code can be used over and over.
It is much easier to perfect and maintain a piece of code if it lives only in one
place instead of having variant versions copied all over the place. OOP also pro-
vides a kind of access-protection for the member variables of objects, which
makes it harder to carelessly alter a variable without taking into account the
side-effects that this change may have. Instead of arbitrarily changing member
variables, you use special ‘mutator’ functions that you have written so as
(hopefully) to nail down all side-effects once and for all.

Still another gain from OOP is the use of constructor and destructor func-
tions. These functions, which you write yourself for each class you define,
take care of initializing the fields of your objects to default values, allocating
necessary memory and resources for your objects, and freeing up memory and
resources when you are through with an object.

A final benefit to C++ is the availability of template libraries which include,
for instance, templates which encapsulate the notion of a linked list, a map
(also known as a hash table) and an array. The MFC templates for these useful
classes are called CList, CMap, and CArray, respectively. A CArray template class, for
instance, takes care of the memory management issues involved with allocating
and deallocating space for an array.

Basics of software engineering

It should go without saying that learning how to use the debugger is all-
important. Beginning and intermediate programmers tend to avoid the debugger,
as it seems too confusing. But really and truly, the debugger is your friend. While
developing a program you should primarily be building the ‘Debug’ version of
the program as opposed to the ‘Release’ version — there is a switch for selecting
between the two in the Microsoft Visual Studio compiler (see Appendix C for
the control sequence). See Chapter 21: Tools for Software Engineering in Part II
for more detailed information about using the debugger.

Final version and product ship

Putting together the final version can involve figuring out things like how to fit
it all on the required number of disks, and how the users are going to install the
software from the disks. Lots of issues relating to the documentation will arise as
well. Often you will want to provide screen-shots for use in the documentation.

In a truly Staged Delivery cycle, it’s conceivable that after you reach this level
you jump all the way back to the specification and detailed design N stage, and
implement a new layer of features. Note, however, that this is time-consuming, as
once you start adding new features, you need to take them through the repeated
alphas to get them working, and then take them through multiple betas to get
them tested and debugged.

Trying to add new features late in the lifecycle is risky, but sometimes the
pressure is irresistible. The urge is known as feature creep. Unless you know that
you're going to have enough time to fully test the new features after imple-
menting them, resist feature creep.

The development spiral

We mentioned above that there’s a kind of software lifecycle known as the Spiral
lifecycle. This means thinking in terms of spiraling clockwise around and around
through four stages: analysis, design, implementation, and maintenance.

Analysis Design

Maintenance Implementation

The analysis phase involves figuring out what you want the program to do.
This is similar to making a software requirement. In reality, we don’t immediately
know all the things we want the software to do, so actually we pass back through
this stage numerous times.

The design phase involves several things. One part is the object-oriented design:
figuring out which classes to use, and what the class methods should be. Another
part is the program design, figuring out how to break your code into modules,
and how to hook the modules together with global variables and function calls.
A third part of the design means figuring out your user interface. All this is too

45

46

Software Engineering and Computer Games

much to do at once; what you do is to keep extending and improving the designs
as you pass through the design phase over and over.

The implementation phase means writing the code. As with design there are
at least three types of coding you need to do: the class method coding, the pro-
gram flow code, and the user interface code.

As used here, the maintenance phase includes the debugging and tweaking that
goes into the program to make it work properly. The first time you implement
something it rarely works just as you wanted it to. You may need to fix a bug,
alter a function’s behavior, or change a dialog box design.

After each cycle through the four phases, you look at what you have and
try and document it. The documentation is itself a kind of analysis, and as you
get a deeper understanding of your program you’re ready to alter the design,
implement the new design, do some maintenance on the new implementation,
analyze what you’ve done, and so on.

Like most lifecycles, our Inventor lifecyle is a kind of cross between the
Waterfall and the Spiral lifecyles.

Some students are disappointed when they take a course in software engineer-
ing. They had hoped to learn a clear and simple series of steps to follow so as
to build a program. But the process turns out to be neither clear nor simple.
Like it or not, software engineering is a fuzzy discipline which involves a certain
amount of creativity.

A main design methodology we're going to be using in this book is the
object-oriented approach described in Chapter 4: Object-Oriented Software
Engineering. To begin with, we're using the object-oriented language C++, but we
need to do more than write in C++ to make our design and our code truly object-
oriented. More than anything else, doing object-oriented software engineering
involves iteration and successive levels of refinement.

Here’s a relevant passage from a classic book on object-oriented software
engineering:

B. Curtis studied the work of professional software developers by videotaping
them in action and then by analyzing the different activities they undertook
(analysis, design, implementation, etc.) and when. From these studies he
concluded that ‘software design appears to be a collection of interleaved,
iterative, loosely-ordered processes under opportunistic control . . . Top-down
balanced development appears to be a special case occurring when a relevant
design schema is available or the problem is small . .. Good designers work
at multiple levels of abstraction and detail simultaneously.’

Most software systems are highly unique, and therefore their developers
have only a restricted basis of experience from which to draw. In such cir-
cumstances, the best we can do during the design process is to take a stab at
the design, step back and analyze it, then return to the products of the design
and make improvements based upon our new understanding. We repeat this
process until we are confident about the correctness and completeness of the
overall design.

[Grady Booch, Object-Oriented Design (Benjamin/Cummings, 1991), p. 189]

Basics of software engineering
2.5 Managing your project

Remember to regularly pause from your team’s mad programming frenzy to put
your heads up and think about the lifecycle and the schedule of your project.
What build are you on, is it an alpha or a beta, when’s your next demo, how
much time is left, who's doing what now, and what are the major risks to
finishing your project on time?

At the beginning of the project your team (possibly a team of one, if you're
working alone!) is in the prototype phase; this is the phase when you barely
know what you're doing and are still trying things out. Later on you're in the
alpha phase where you're got a basic handle on things and you're adding neat
features to the program as fast as you can. And then the team has something
you can show people, and that’s your alpha 1. Then you incorporate feedback
from your demos, add more features, clean it up a bit and get to alpha 2. And so
on. Eventually your team gets to the beta phase where you're not allowed to
change things anymore and you have to focus on getting everything to work in
the nicest possible way.

In the early stages of a software project you have to keep going back over it
to make your design cleaner and simpler. When you first add some features,
you're likely to do this in a messy, hurried fashion. As soon as you see that they
work, you want to go back and clean them up. If your team leaves anything
messy in your program it’s going to cause you trouble later on after the pro-
gram grows — maybe a lot of trouble.

In a simpler world, perhaps we would know what our programs are going to
do before writing any code at all. But this is impossible when you're in a process
of learning new programming tools and exploring new intellectual concepts.
And, given the rapidly changing nature of the software business, a programmer
is always in the process of learning new programming tools. The new features
never stop, and it’s a shame not to learn how to use them. Remember that process
and project-management can be something you do to make things easier. Don’t
let it be an empty ritual done only to appease a boss.

Tracking the builds

Let’s say a bit about how to describe the build you're currently on. How can
you tell the difference between alpha and beta builds? Entering beta means that
you've frozen your features and are now focusing on polishing and debugging.
So before that you're in alpha phase. Is each new build an alpha? It’s really just
a matter of taste. Some software engineers call each successive build an alpha
build.

It’'s more common to call a build a new alpha only if you plan to show it
to people outside your group, that is, only if the build is in some sense a big
deal, a rounding off point. In this way of thinking, the first true alpha of a pro-
gram would be the first version that has the program'’s basic functionality and
architecture in place.

47

48

Software Engineering and Computer Games

Of course for a programmer what really matters is which version number of
the program is being built. You start with version 1, and you go on from there,
and you never ever mix up the code from different versions. Given the fractal
nature of software development (remember the crinkled coastline), you some-
times will do a number of builds without changing the version number - in
these cases be sure to add a date to the caption bar of the program and to the
name of the directory where the code lives. It's worth the small extra organiza-
tional effort to avoid losing track of which is the latest build.

A formal name like ‘the alpha 1 build’ has more to do with your relationship
to society than it does with your relationship to the code. That is, if you're in a
software projects class, the professor is going to want you to hand in an ‘alpha
1’ build of your program, so whatever build you have done by that date is per-
force your alpha 1. If you're writing a program for fun, the first build that’s
good enough for you to feel like showing it to your friends is your alpha 1. If
you’re working in a company, and there’s going to be a little demo for a key
manager, the program you get working for that first demo is your alpha 1. The
boundary line between your prototypes and your alphas is hazy. It can very
well happen that the ‘alpha 1’ is ‘build 5’ of your program.

By the same token, you will probably develop a bunch of intermediate builds
between your official alpha 1 and your official alpha 2. If your professor wants
an alpha 2 version of your project, that doesn’t mean you're only supposed to
rebuild the program once after the alpha 1! And of course in a business environ-
ment, the expectation is that the alpha 1 is going to be a springboard that
suggests all kinds of improvements you can still make before the alpha 2. It
might happen that you have two, three, or more version builds in between your
official alphas.

No matter whether you call a build an alpha or a beta, it’s extremely import-
ant to be fanatically, obsessively, compulsively organized about which files belong
to which version of your program. By far the best strategy is to assign numbers
and dates to the successive versions of your program, and to keep the code
for the separate versions in separate directories whose names include the
version number and the calendar date of the most recent build. Generally,
before starting to make extensive new changes, you should copy the directory
of the most recent successful build and change the directory name to include
the new date. That way, if something goes wrong, you haven’t thrown out the
last good build.

A modern way to handle this is to use a revision control tool like Microsoft
SourceSafe or the RCS (Revision Control Software) commonly used on Linux
systems. A complicating factor with using a revision control tool is that there
needs to be one master server directory which all team members use for
checking out and checking in their code. Since a laboratory course will often
involve teams of students working at home on disparate machines and with-
out access to a single server site, Chapter 21: Tools for Software Engineering in
Part II presents a cruder form of ‘manual’ directory-based revision control. But
once you get more serious about software engineering, you will definitely want
to learn how to use something like SourceSafe.

Basics of software engineering

Commenting your code

Always try and construct the code so that it’s easy for you or other programmers
to understand it, and to tweak it. In this subsection we’ll first give some very
specific suggestions and then some more general ones.

It’s a lot easier to read code that’s properly indented. A good way to enforce
this is to always use tabs for your indents, and never use spaces, the reason
being that it’s easier to be inconsistent with spaces for indents, you might easily
vary between using three, four, or five spaces. In its default setting, the Visual
Studio editor will muddy the water by sneaking and replacing tabs by spaces.
To block this behavior, use Tools | Options dialog, go to the Tabs tab, check Keep
Tabs instead of Insert Spaces. Regarding the Auto Indent selection below that, it’s
not a bad idea to work with it set to None so that you have full control over
your tab indents. The basic principle is simple: each new block level is indented
one more tab. When lines run off the right of the page you break them with an
Enter, and add another indent to the typed lines.

As a rule, comments should be indented one tab more than the lines they
are commenting on; it should be easy to scan down some code and see where
the actual lines are. Every now and then, for a really long comment, particu-
larly at the start of a block of code, you can bring it over to the leftmost margin.
Indenting the comments is a little bit of work because as you edit a comment,
say by adding a long phrase in the middle of a paragraph, you'll mess up the
line breaks and have to keep going through them and reorganizing the tabs
and Enters. Code editors like Visual Studio don’t do automatic line-wrap like a
text-processor.

Where should you comment? It’s easy to tell someone to comment every-
thing, but that’s neither helpful nor practical. One useful rule of thumb is to
comment the ‘intense’ parts of your code. If your heart actually beats faster
when you are writing some code, this is definitely a spot where you should add
a comment. Common coding emotions are confusion, pride, and anxiety.

When you’re confused you’re kind of feeling around in the dark, and the
comment will be helpful if you need to change what you tried. If you're proud,
it means you thought of some cool trick that needs some explanation. Or this
might be a place where it took you a while to get things to work right, and now
you've finally gotten out the bugs. Tell about it, so that others can learn. When
you're anxious, it means you've gotten something to work that you or some-
body else could easily break again, so you should explain what not to do.

2.6 Working in teams

Communication

Make sure to exchange email addresses and phone numbers at the earliest
opportunity. Make an address alias in your email program including the addresses
of all the team members. Try sending a message to the whole team at least once

49

50

Software Engineering and Computer Games

per week, and preferably at least once between each class meeting. To supplement
email, you can also bring copies of printed texts to team meetings to make
double sure that everyone gets the message.

Practice doing code hand-off. The idea is to (a) clean out the unnecessary
files from your source directory (we supply a clean.bat batch file for doing this),
(b) use the well-known WinZip utility to make a *.zip file, being sure to include
all files needed for a successful build, and (c) hand off the code by emailing it as
an attachment or putting it on a disk. Doing this right takes a little practice, so
make sure before handing off your zip that you can in fact build the executable
from the unzipped files. Take the time to test it. We discuss this a little more in
Chapter 21: Tools for Software Engineering.

Don’t overdo the sending of attachments. It can be a burden to get a large
*.zip file over email. It’s also possible to exchange your new files in class, bringing
them in on disk, or copying them across the lab’s high-speed local network.

In exchanging informational documents, remember that you can just paste
the document into the email instead of making it a Word attachment. Due
to macro viruses, people are increasingly uneasy about opening attached text
documents. It’s easy to do an Edit | Select All on a text document, followed by
an Edit | Copy in the document and then an Edit | Paste in the email document.
If you do get a Word document you're uncomfortable in opening, use Windows
| Programs | Accessories | WordPad to open it, as this app doesn’t support macros.

Merging code

Unless you happen to be working completely alone, other people are going to
be working on other code modules at the same time you work on the modules
you're responsible for. Every day, or every few days, you'll have to merge the
modules. That is, you put all the updated modules into one directory and
try and build the program from there. Usually you'll have to fix a few things
to get all of the new modules to build together. When working in a group it is
especially useful to maintain a ‘log’ section of comments at the beginning of
the modules you are changing.

Merging the code is a bit tricky when two people have worked on the same
module, but sometimes that can’t be avoided — it might be, for instance, that
they’ve added new functions to their own modules, and these functions need
to be called from the main module. In this case the two developers will each
have changes to the main module. When two people have changes to the same
module, someone needs to use a utility program which can locate the lines
where similar files differ. Chapter 21: Tools for Software Engineering describes
how to use the Microsoft Windiff utility.

Team roles

There are a number of separate tasks involved in making a complete program.
Seven of the main tasks are the following.

Basics of software engineering 51

e Coming up with the design.

e Writing and debugging the code.

e Integrating the code and building the executable.

e Testing the code.

¢ Creating the written documentation and the help files.

e Creating images and sounds to be used in the program, or finding public
domain ones that you can copy.

¢ Giving public demonstrations of the product.

In a company, these roles might be filled by seven completely different
departments. Management might come up with the program design, the tech-
nical department might write and debug the code, the so-called ‘build’ or
‘development’ group would integrate the files and build the executables, the
quality assurance or ‘QA’ department would test for bugs, the technical publica-
tions department would create the documentation, the multimedia department
would provide bitmaps and sound files for use in the program, and marketing
would go out and give demos of the program.

On a small team of students a more typical situation is that the group jointly
arrives at a design they all can agree on. And then each of the students might
write some of the code. From week to week, it’s necessary to integrate the code.
It’s important to have one single individual in charge of the code integration
each week, as otherwise there will be uncertainty about which is the ‘real’ new
build. Let’s call this person the ‘builder’. It is the responsibility of the builder to
bring in the executable for the current class presentation or professor evalua-
tion. If the builder fouls up and doesn’t do his or her job, the team can get a
poor grade. Remember to do code hand-off when it’s time to change builders.

As well as being a position of responsibility, being the builder is a position of
some power, as it’s up to the builder to decide which pieces of the code to put
in, and which pieces to change or to leave out. For this reason, it’s a good idea
to let the position of ‘builder’ change from one student to another every couple
of weeks, so that each student has the experience of being the builder.

Another key role during the project is the ‘documenter.” It’s the documenter’s
responsibility to produce the written User’s Guide and (later on) the help files.
As the periodic project evaluations are based on the current executable and the
current documentation, it’s the builder and the documenter who determine the
team’s grades. As with the ‘builder’, it’s a good idea to let the ‘documenter’ role
change every couple of weeks.

A third element in the project evaluation is the ‘presenter’, that is, the student
who stands up in front of the class and explains the current state of the program.
Each student should be the ‘presenter’ at least once.

At this level, it’s not always useful to think of any one student as being a
‘team leader’. All the students are still learning, and it’s a good idea to try and
let everyone have a go at a variety of roles. If anyone is really the ‘leader’ it’s
probably the ‘builder,” which is why it is important to let this role shift from
student to student every few weeks.

52

Software Engineering and Computer Games

In parceling out the coding duties, the fact that we'll be using object-oriented
design is helpful. Once the team agrees on a class’s members, it is (theoretically)
possible to have someone implement the class members separately from some-
one who's writing code to use the class. In practice, though, these tasks need to
be done hand-in-hand, as you always find that the way you plan to use a class
will change your ideas about what the class’s methods should be. And it’s not
really practical to write code that uses a class without having the class already
implemented so you can test it.

An easier kind of coding division is between the program and its interface.
Sometimes it is practical to have one person working on the way the program
runs while having someone else work on the menus and the dialog boxes.

A common pattern is that two students get very involved in the coding, while
the other one or two members do not. The students who write less code should
try and do more in the other areas: the documentation, the testing, and the art.

By the time you get down to the project’s end and the last build, you'll have
a good idea of which individual is going to do the best job at the final coding
push, and this will be the person the team should pick for the final builder. By
the same token, there will be a person who works best with the documentation,
and that person should handle the final documentation. Finally there will be a
student who's going to be your best candidate for the presenter. For the final
version of your program, use the most appropriate team member for each role.

Inevitably the members of the team are going to be better at different things.
It’s important for each member to find some area that he or she ‘owns’ and is
responsible for during the final push. For fairness, nobody should do every-
thing, and everybody should do something.

In order to try and balance the contributions of team members, the author
usually groups together students who have accumulated similar cumulative
point totals on the assignments and tests given before the teams are assigned.

Although a reasonable standard policy is to give the same grade on a project
to each member of the team there can occasionally be some variations within
the team’s grades based on the individual contribution.

2.7 Giving a presentation

As a software engineer you can expect to have to give two kinds of presenta-
tions. First there are presentations in which you might discuss the concept,
specification, and design of your program. These days, presentations of this sort
are almost universally made into a series of PowerPoint slides. Second, there are
the presentations in which you show a live, running demonstration of your
program in its current state.

The two most important rules for either kind of presentation are these.

e Face the audience. Resist the tendency to turn your back to the audience and
stare at the screen. This is a particular risk when you’re presenting a software
demo. For software demos you really need one person to be at the computer
running the demo while another person talks.

Basics of software engineering

e Speak loudly, clearly, and not too fast. Speaking loud to a group can be
psychologically difficult if you've never done it before. It’s said that fear of
having to speak to a group is one of the most widespread phobias. Practice
with your family or friends in advance if you get a chance. And when you
make your presentation, try and think of the group as not being hostile or
judgmental. Think of them as friends.

PowerPoint
Here are a few basic rules to remember about a PowerPoint style demonstration.

e Content, not graphics. You can be sure that your audience has seen Power-
Point presentations before. What is going to impress them is the content of
your material, not the fancy themes or colors that you use. Work the content
out first, and think about the graphics frills second - or not at all.

e Make the slides have good contrast. Yes, black text on white background
seems boring when there are so many other possibilities. But the person in
the last row is going to be unable to read your slides if they’re green on beige
or some such. PowerPoint is simply a medium for getting your words across.
Don’t let it get in the way. If you'd rather be different and use white text on
black background, that’s okay, but you’ll need to make the font a bit larger,
as this color-scheme is slightly harder to read.

e Use a big font. You shouldn’t try to squeeze more than three or four lines
of text onto a slide. Even if the font is still readable, too much information
on a slide loses your audience. When necessary, split a thought into two
or three subthoughts, start with a ‘contents’ slide listing the two or three
thoughts you're about to discuss, show a slide for each thought, and when
you're done come back to the contents slide to summarize.

e Supplement with paper handouts. It's often not possible to fit a complicated
UML diagram onto a slide and still have it legible. You can break the UML
up into small pieces or, if this doesn’t seem to communicate the pattern
properly, you can print out copies of the full UML and hand it out. People
like getting a few paper handouts at presentations. It gives them something
to make notes on, and it reminds them of what you said.

Software demo

Software engineers refer to something called the ‘demo effect’. This is a weird
force which sometimes makes your wonderful program turn into a buggy piece
of junk in front of a large audience. Here’s a little law, gleaned from some years
of experience:

The strength of the demo effect is directly proportional to the size of the audi-
ence times the importance of the demo to your career.

53

54

Software Engineering and Computer Games

The ideal method is to bring your demo on a laptop, but sometimes you
won't be allowed to do this. In a course using this book, it’s reasonable to
require the students to use a classroom machine which is hooked up to the
classroom computer projector. If you build your project on an individual self-
study basis, you might eventually take it to a friendly gamers’ group and show
it on a projector there.

If you have to bring your demo in portable form, there is the issue of getting
it to fit onto a disk. Floppy disks have a 1.44 Meg maximum size. If your game
includes a lot of bitmaps, it may well be larger than this size. But if the exe itself
is less than 1.44 Meg, put it alone on a floppy and put any support files like
*.hip or parameter files or sample source code on another disk.

If you can't fit your exe on a floppy, you can consider using a compress util-
ity like WinZip, or burning a CD or even DVD with your game on it.

Theoretically you can use the old-style DOS Backup utility to back a file up
onto two disks, but it can be tricky to get the command prompts for this right,
especially in a stressed situation. There are also other backup utilities that one
can download from various software sites on the internet, but they’re not much
easier to use. Forget backup utilities.

A typical sequence on demo day in a classroom might be that the students
bring their disks up, the professor gets all the executables copied or unzipped
from the floppies (or other types of disks), and puts them all into a directory on
a network drive, and then the students come up in teams and run the executables
on the classroom machine. If you're doing a demo at a conference or a meeting,
it’s more likely that you yourself would be responsible for plugging in your own
laptop or for copying your software to the demo machine.

Here’s a list of tips for avoiding the demo effect, starting with our two prin-
ciples of scale and speed independence.

e Write your program so its behavior is independent of the resolution of the
display.

e Write your program so its behavior is independent of the speed of the
machine.

e Bring your program on your laptop if you can. But do keep in mind that
there’s a real chance that for some reason you won’t be able to use your
laptop; it’s not uncommon for people to have a problem in connecting
their laptop to a computer projector. Any task can become surprisingly hard
in a stressed situation with people watching you and giving you advice. If
at all possible, test your laptop with the projector during a break before
your demo.

e Understand that your demo machine may well be a randomly configured
rental machine with no Internet hookup that was delivered to completely
non-technical people (who are likely as not Windows-hating Mac-lovers)
five minutes before you go on.

e Before the demo be sure and test your program on a variety of machines.
Carry a disk with your *.exe around and try to run it other machines. If

Basics of software engineering

you're running it on someone else’s machine, you should ask permission
and, if possible, run the program from your floppy rather than cluttering up
their hard drive. Note by the way that WinZip actually lets you double-click
on a zipped executable and run it without formally unzipping the file.

Bring your program to the demo in more than one medium: laptop, floppy
disk, CD ROM, on the Web for download, etc. For a really challenging event
— like if you are flying to another country to do your demo - give yourself
some insurance by bringing transparencies of some sample screens. If all else
fails you can show the slides with an old-fashioned overhead projector.

If you bring your program on a floppy disk, bring an extra copy of the floppy
in case the floppy goes bad. All floppies die, sooner or later. On the same
theme, use a new floppy for your big demo.

If you do bring your program in compressed *.zip form, bring a disk with an
unzipping utility program on it, just in case you need to install the utility on
the spot. If the demo is important enough, the demo machine (a) will not
have an unzip utility and (b) will not have an Internet hookup that would
let you download one.

If it’s at all possible, get a half an hour of ‘quality time’ alone with the demo
machine and projector so you can properly install your program.

Remember that what you see on the screen is not necessarily the same
as what goes over the computer projector. Projectors often don’t like high
resolutions. You can set the demo machine to a lower screen resolution by
right-clicking on the desktop and going to Properties | Settings.

In the case of a Pop Framework program, remember that, as a last measure,
there is a File | Run Speed... dialog that might possibly help if your demo
machine goes too slow or too fast.

Imagine the most horrible scenarios you can conceive, and then expect
something worse!

Don’t cry or lose your temper. How you look and act and talk is as import-
ant as anything your audience sees, or doesn’t see, on the screen.

Review questions

G M m o O W >

What is the Constraint Triangle?

What is the relationship between requirements and specifications?
What does ‘UML’ stand for? What are some kinds of UML diagrams?
What is requirements gathering?

What should a specification sketch include?

What are some examples of project milestones?

What is risk assessment?

Software Engineering and Computer Games

H What are high-level and low-level design?

What are some documents that will be associated with your project?

—

Diagram the three software lifecycles: Waterfall, Staged Delivery, and Inventor.
What stage separates the alpha builds from the beta builds?
At what point in the software lifecycle should you start work on the User’s Guide?

Draw a picture of the development spiral.

zZ =z r x

What sort of name should you use for the directory where your most recent build
lives? What are some other ways to keep track of your build version?

o

What are the steps of code hand-off?
What are the two most important rules for giving a presentation?

Q What are some steps you can take to help ensure a successful software demo?

Exercises

Exercise 2.1: Use case diagram

Suppose that you had a requirement for an online concert-ticket-ordering service. The
requirement might go like this.

A client can visit the server and search a schedule for a concert. A concert specifies a
performer, a venue and a date. After selecting a concert, the client sees a list of some avail-
able tickets, specifying seat and price. The client can view a map to see where the seats
are located. The client can select tickets and add them to his or her order. The client can
buy the order by filling in an address form and giving credit card information.

Draw a use case diagram indicating some of the possible scenarios.

Exercise 2.2: Scheduling

If you are using this book as the text in a projects class, make out a preliminary schedule
for your project, indicating target dates for the following milestones: initial specification
sketch, completion of requirements gathering, high-level design (architecture), detailed
design and first build, alpha demo, beta demo, final demo.

Exercise 2.3: Specification sketch

Write a preliminary draft of a specification sketch for a game project based on the Pop
Framework. Show it to friends, fellow students, and/or your teacher in order to get started
on your requirements gathering.

The Pop Framework 3

3.1 Object-oriented simulations

One of the reasons why computer games are a good kind of programming
project is that writing computer games gives you some experience with creating
computer simulations of something like real-world processes. Simulation is one
of the most important things that we can do with a computer. In a simulation,
we set up a model of some real-world system we are interested in. By watching
the behavior of the simulation we can gain insights about the real world.

Things that have been simulated include factories, industrial machinery,
the stock market, people’s buying behavior, automobile traffic, the formation
of stars, nuclear weapons explosions, the spread of disease, the solar system,
organic molecules like human DNA, and games like golf and tennis. The entire
business of computer aided design, or CAD, is about simulating the appearance
of physical objects in mathematical space, and these days nearly everything
that is manufactured is first modeled in some CAD program.

Even something like a telephone or Internet control system is a kind of
simulation, insofar as the users and routes are being represented as data struc-
tures which the program manipulates. Payroll programs are again a kind of
simulation, with data fields standing in for dollars and employees. Spreadsheets
are one of the oldest kind of simulation programs; the power of a spreadsheet
lies in the fact that you can alter a single entry and automatically simulate the
changes that propagate out from it.

Obiject-oriented design (OOD) lends itself very well to simulation. The reason
is that when we have a system to simulate, the system tends to naturally break
into interacting objects, each object with its properties and behaviors. A class is
a very natural kind of model for an object of this kind. One of the big differ-
ences between C++ and C is that while in C we can have struct objects to hold
collections of data, in C++ we can have class objects that not only hold data but
also hold specific methods that act on the data. This is encapsulation.

Another good thing about OOD is that it makes it easy to give your simulation
objects a uniform behavior, such as is enforced by physical laws. Let’s explain this
a bit more. If you are modeling physics, all of the objects should obey Newton’s
laws of motion. By using the OOD mechanism of inheritance we can avoid having
to reprogram Newton’s laws over and over and over. Instead, we define a base

58

Software Engineering and Computer Games

class with, say, a move(dt) method embodying Newton’s laws, and then we derive
all of our simulation classes from the base class. Thanks to inheritance, the
child objects will all obey the same laws of motion as the parent class.

The OOD technique of polymorphism is useful for expressing the fact that,
although real-world objects tend to group themselves into classes of similar
objects, it’s also the case that there will be subclasses that have their own dis-
tinctive behaviors. And each object knows on its own how to behave. By using
polymorphism, we’re free to think abstractly, and say something like ‘let each
of the objects move a time increment step now,” and be able to trust our indi-
vidual objects to know to use their own specialized styles of motion. Thanks to
polymorphism we can ignore the differences between objects when working at
a high level — as when we form an array of them - and still be sure that on the
low, individual, level, the objects will be ‘smart’ enough not to exhibit simple
generic behaviors.

In our discussions, we are going to focus on depth rather than breadth.
Instead of talking about a wide range of processes to simulate, we’ll concentrate
on simulating one particular kind of thing: material objects moving around
according to the laws of physics. And we are going to place these objects into
the context of computer games built with the Pop Framework.

3.2 Running and testing the Pop program

At this point, the reader should get familiar with the sample Pop program that
we have built using our Pop Framework of classes. Read through the Pop help
file while running the Pop program, so as to get an idea of the code we’re going
to be working with. While you’re doing this, you can also get some experience
with software testing. Write out some answers to Exercise 3.1.

Before starting work, make sure that you have downloaded the very latest
version of the Pop program and help file from the course website. Even if two
builds have the same version number, it may be that their build dates differ;
compare the build date in your executable’s caption bar to the build date given
for the latest version of the downloadable program.

If you don’t like reading help files onscreen, we’ve also printed a version of
the help file as Appendix B, although this printed form will inevitably become
outdated at some point; compare the dates in the printed help file and in the
online help file. Note that when you open an electronic help file, you can use
File | Print to make a hard copy of it.

3.3 The Pop source code

Pop is a program built using the files listed below. In the first group we have C++
files for each of which there is a *.h header file and a *.cpp implementation file.
To save space, we simply list each of these file names once, with the under-
standing that each name represents two files, the *.h and the *.cpp.

The Pop Framework

We can roughly group these files according to their purpose. The MFC
Class files control things having to do with the program’s standard Windows
appearance. The Game files describe the different game modes that the Pop pro-
gram allows. The Critter files specify the moving objects in the game programs
and the Sprite files describe the appearances of these objects. The Physics files
implement classes used to define the shape and the physics of the world. The
catch-all category of Utility files includes a number of specially crafted files
used, among other things, to make graphical animations run smoothly. There is
no significance to the fact that some of the file names happen to be capitalized
and some are not. This is simply an accident resulting from the ways the author
typed in the new file names over the years. The Visual Studio compiler ignores
the case of file names.

MEFC Class files
childfrm

mainfrm

pop

PopDoc

popview

stdafx

Game files
game
gameairhockey
gameballworld
gamedambuilder
gamepicknpop
GameSpacewar
gamestub
gamestub3d

Critter files
biota

critter
critterarmed
critterwall
critterviewer

Sprite files
sprite
spritebubble
spriteicon
spritepolygon
spritemultilcon

59

60 Software Engineering and Computer Games

Physics files
VectorTransformation
realbox

force

Utility files
controller
listener
metric
Randomizer
timer

Graphics files
graphics
graphicsMFC
graphicsOpenGL
memorydc
RealPixelConverter
texture

glshapes

Dialog file
SpeedDialog

We also have a few files used for holding certain constants and parameters.
These files do not appear in both the *.h and *.cpp format.

Parameter-holding files

static.cpp (and NO static.h)

graphicsconstants.h (and NO graphicsconstants.cpp)
RealNumber.h (and NO RealNumber.cpp)

In addition we have the Project files, which tell Visual Studio which files to
compile and how to link them together.

Project and resource files

In order to build an executable file from a collection of source code and resource
files, we need a Project file to orchestrate how the files are to be combined. A
Visual Studio project is described by two levels of files, a primary higher-level
project file called a Workspace or Solution file, and one or more secondary
lower-level files simply called project files. Generically any or all of these kinds
of files may occasionally be termed ‘project files.’

Microsoft changed the standard file extensions for their project files when they
replaced the older Visual Studio, Version 6.0, by the newer Visual Studio.NET,
also known as Version 7.0.

Table 3.1 will clarify the situation.

The Pop Framework 61

Table 3.1 The old and new Visual Studio names for project files.

Version of Visual Studio High-level main project file Lower-level project file
extension, and name extension, and name

.NET Version 7.0 *.sln, Solution file *.veproj, Project file

Version 6.0 *.dsw, Workspace file *.dsp, Project file

Another essential part of the source code is the Resource files. In a Windows
program, a ‘resource’ can be, among other things, a menu, a toolbar, a dialog
box, a bitmap, an icon, a cursor icon, or a sound. resource.h and Pop.rc describe
which resources to use, and the res subdirectory holds the digital information
used in the resources themselves.

Don't forget that you need to keep the res subdirectory in order to be able to
rebuild your executable; you must include it when you hand-off your source
code to someone else.

Resource files

resource.h

Pop.rc

*.bmp Bitmap files, *.ico Icon files, *.cur Cursor files, *.wav Sound files, etc.
[Note that these last files are located in the res subdirectory.]

One final file that we usually include with our source code is pop.clw, where
CLW stands for ‘CLass Wizard’. This file keeps track of the names of all your
classes, and the class members and methods. You don't really have to keep this
file, as Visual Studio can rebuild it if necessary. But it saves time to keep it
around.

A component diagram for the build process

A UML component diagram shows the dependencies among a set of the phys-
ical components involved with your program build. In this section, we’ll use
‘physical component’ to simply mean a file (or group of files) on your hard
drive.

In a component diagram we draw nodes for different kinds of components
and we draw dotted arrow-lines to indicate a dependency. An arrow from node
A to node B means that A depends on B.

If you look at Chapter 20: Using Microsoft Visual Studio, you’ll find quite a
bit of detail about how the different kinds of files are combined to build an exe
file. We can summarize some of that information with a component diagram
(Figure 3.1) that shows how different kinds of files depend on each other when
we build an exe file. In this figure, all the little names are kinds of file extensions.

The way we use these files is that we open the main Project file (sometimes
called a Solution or a Workspace file) with the IDE (integrated development

62 Software Engineering and Computer Games

veproj [dsp]
4
sin [dsw]
A
h bmp cur wav ico
A . A X ¥
cpp rc
: +
obj res
AN v

Figure 3.1 Component diagram for file types used in a Windows build

environment) program such as Visual Studio, use the IDE to edit the h and cpp
files like text files, use the IDE to edit the rc file in a WYSIWYG fashion, and
possibly create or import some additional resources of the types bmp, cur, and
the like. If we like, we can use the IDE to change the build parameters of the
Project files. Part of the Project file information is stored in a subsidiary Project
file, though this is not something we normally notice.

As shown in Table 3.1 above, the extensions and names of the main and
subsidiary ‘project’ files differ between Visual Studio Version 6.0 and Visual
Studio.NET, also known as Version 7.0.

When you compile, the h and cpp are pulled together into obj files and the rc
and resource files are combined into a res file. The linker wraps the obj together
into an exe and then binds the res into the exe as well.

Another point to make about this diagram is that all of the files from epp and
rc up are text files, that is, simple ASCII files that we can edit with a simple text
editor. (By the way if you ever happen to edit one of these files with a word-
processor, be careful to save it in text-only format and make sure the file name
gets the proper extension.) The obj, res and exe files, on the other hand, are
binary files consisting of raw zeroes and ones.

3.4 The essential Pop classes

To help organize this discussion, let’s start with a UML class diagram of some of
the main classes involved in the Pop Framework. We'll give a more detailed
explanation of how to ‘read’ UML class diagrams in Section 3.5. For this initial
diagram, we use three conventions.

First, we represent a class by the class name inside a rectangle. Second, we
represent the class relationship of composition by a line with a diamond at one
end. The composition relationship means that a class object of the type at the

The Pop Framework

diamond end owns or has as members class objects of the type at the other end.
You can think of the diamond as a ‘socket’ where we ‘plug in’ one or more
instances of the class at the other end of the composition line. We express the
composition relationship by the phrase ‘has a’ (see Figure 3.2).

cCritter <>— | cSprite

Figure 3.2 Composition. Read as ‘a cCritter has a cSprite’

Third, we put a star at the end of a composition line to indicate that the
‘owner’ class may have more than one instance of the other class. We express
this relationship by the phrase ‘has a number of’. See Figure 3.3.

*

cGame [>—— cCritter

Figure 3.3 Multiple composition. Read as ‘a cGame has a number of cCritters’

Okay, so now here’s a class diagram (Figure 3.4) of some of the main classes
involved in the Pop Framework.

CPopApp <>— cPerformancetimer

CPopDoc <>—— CPopView <>———— cGraphics

<>——— cSprite

cGame <>——— cCritter <>—— clListener

<>——— cForce

Figure 3.4 Class diagram for Pop Framework classes

The most central class is the cCritter class. cCritter objects are our game pieces:
players, enemies, bullets, furniture, and even the camera through which we look
at the world. The word ‘critter’ is a colloquial Wild-West variation on the word
‘creature,” chosen for no better reason than that it’s fun to say. We often use
the word ‘critter’ to stand for ‘cCritter object’.

63

64

Software Engineering and Computer Games

We have quite a number of child classes derived from eCritter, specifying
different kinds of critters. These classes include cCritterArmed, cCritterBullet,
cCritterArmedPlayer, cCritterArmedRobot, cCritterWall, cCritterViewer, etc. (These child
classes are not shown in Figure 3.4.)

A unifying notion behind the critters is that they are implemented in such a
way that their motions obey a reasonable simulation of physical laws. Why
should our game objects move like physical objects? In order for a game to
engage the user’s attention it needs to feel in some way realistic. You want the
user to feel immersed within the world of the game. Given how accustomed we
are to the laws of physics, a game whose motions approximate physics is going
to be easier to relate to. Keep in mind that we are going to allow ourselves to be
fairly arbitrary about the kinds of interactions and ‘force fields’ that we put into
our worlds, so the use of some basic physically-inspired laws of motion is not
going to be a drastic limitation. We'll talk about the physics of eCritter objects in
Chapter 7: Simulating Physics.

One of the principles of OO is to not make one class do too much. In line
with this principle, we let a separate eSprite class be responsible for a critter’s
appearance.

The most important method of the cSprite class is its draw method, which is
overridden in various ways for the different eSprite child classes. The child
classes include cPolygon, cSpritelcon, cSpriteDirectional, cSpriteLoop, cSpriteCircle,
cSpriteBubble, etc. We often speak of ‘eSprite objects’ simply as sprites.

Each ccritter will have a pointer to a cSprite object. We say that a critter
delegates the task of drawing to its sprite. Delegation is a very useful technique
in OO. Rather than having a class be responsible for a given task, you use com-
position to give it a member class that handles the task.

One of the advantages of the delegation approach to drawing critters is that
after we develop a critter’s behavior, we can change its appearance without
having to create a new class. It would be tedious, for instance, to develop a
cCritterArmedRobot and to then have to derive off cCritterArmedRobotWithBitmapSprite
and a cCritterArmedRobotWithPolygonSprite. Since we’ve delegated the drawing task
to a cSprite member, we define a single cCritterArmedRobot class and then, accord-
ing to the needs of the game we’re writing, we put either a cpolygon* or a
cSpriteIcon* into the _psprite field of our cCritterArmedRobot objects.

A computer game, or other kind of simulated world, will contain a number
of critters, each with its own sprite. We have a eGame class which holds a special
array of critters. The eGame class has several important duties. A game initializes
the critters of its game world. A game carries out repeated updates of the critter
simulations, and makes calls to display the updated critters on the screen. A
game keeps track of the critters’ status and displays information about the
status of the game. The game method that updates the world is called step(dt); it
takes a real number argument dt that represents how big a slice of time is to be
simulated in this update.

We attain resolution independence and the possibility of simulating physics
by having all of our critter and game data stored in terms of real numbers. The
game exists in a two- or three-dimensional mathematical plane or space. We
have a class called eVector to specify the points or vectors in the world. cVector is

The Pop Framework

equipped with a wealth of methods and overloaded operators. There is a related
cMatrix class that's heavily used for three-dimensional graphics. As class members
of this type are so all-pervasive we don’t include them in Figure 3.4.

In line with simulating physics, we allow for each ecritter to be influenced by
any number of cForce objects, or forces. Rather than making a force an essential
part of a critter’s implementation, we delegate out the forces, so that we can
‘plug in’ whatever forces we like to each critter. Examples of our child class
forces include cForceGravity, cForceDrag, cForceObjectSpringRod, cForceObjectSeek,
cForceEvadeBullet, etc.

We also delegate out the task of listening to the user’s input from mouse
and keyboard. At each update, each critter’s cListener member, called simply a
listener, is given access to the current mouse and key state, and is allowed to
change the critter’s motion or other states. The default listener does nothing,
usually we attach meaningful listeners to only two of our critters: firstly the
critter that the eGame recognizes as the ‘player’ to represent the user on the
screen, and secondly the cCritterViewer object that acts as a camera to determine
the active window’s point of view. Listener child classes include cListenerArrow,
clListenerScooter, cListenerCursor, cListenerViewerRide, etc.

We also use some MFC class files that were defined automatically by the
Visual Studio AppWizard when the original Pop application was created. Over
time, of course, the files for these classes have been edited so as to override and
alter the behaviors of the base classes.

The CPopApp is an application object or simply the running instance of the
program. It has an overridden Onldle method that the system calls whenever the
program has no other tasks to do. We use the Onldle call as the ‘pump’ to drive
our animation; our CPopApp::Onlidie uses an instance of our cPerformanceTimer class
to find the time dt elapsed since our previous update and then sets off a cascade
of calls that lead to invoking the eGame step(dt) method.

The cPopDoc document holds the data associated with your windows. The
document serves to hold the data about the game you are running.

The cPopView is a view that controls how your data is displayed in an onscreen
window and also does the initial processing on user input with mouse and
keyboard. We’ll say more about the Document and View pattern in Chapter 5:
Software Design Patterns.

The cPopView delegates the details of drawing graphics to a cGraphics class
object. The eGraphics class embodies a kind of software pattern known as the
Bridge, which means that it can work as a stand-in for such widely varying kinds
of graphics implementations as standard Windows graphics and OpenGL. These
are embodied in the eGraphics child classes cGraphicsMFC and cGraphicsOpenGL.

3.5 UML class diagrams

As we've mentioned before, a UML class diagram is a good way to think about a
program’s class structure. Now that we have some familiarity with the classes of
our Pop Framework, we can use the relations between these classes as the basis
for a more detailed discussion of UML class diagrams.

65

66

Software Engineering and Computer Games

Keep in mind that UML diagrams are meant as visual tools to be used to
clarify the structure of your program. They are not formal, precise objects like
pieces of code. The vagueness — or even, horrors!, the downright sloppiness —
of a UML diagram is a reality that you simply have to get used to. It’s a bit
inimical to a programmer’s usual way of thinking. This is because UML is
meant to be a communication channel that non-programmers (like customers
and managers and computer-science theorists) can use as well as programmers.
Always keep in mind that the point of drawing one of these diagrams is to clear
things up. The point is not to show every possible detail. And remember that,
unlike code, there is not, and never will be, any objective standard for being a
truly correct UML diagram. Code either compiles and runs or it doesn’t — but a
UML diagram is simply a springboard for thought and discussion.

There are, by the way, a number of programs which will automatically generate
UML diagrams from a directory containing your C++ (or, for that matter, Java) code.
But often a hand-drawn and custom-designed UML diagram is more informative.

The basic principles of drawing a UML class diagram are pretty simple. First
you write down the names of the most important classes in your program, draw-
ing rectangles around them. One way to find out the names of all the classes in
an existing Visual Studio project is to take a look at the Class View, using
View/Class View (Version 7) [or View/Workspace/Class View (Version 6.0)]. And
then you draw lines among your classes expressing their relationships. Of
course if you haven’t written the program yet, then you need to first give some
thought to what classes you might need to use — we’ll say more about this process
of ‘object-oriented analysis’ in Chapter 4: Object-Oriented Software Engineering.

There are three main kinds of relationships that classes can have with each
other: inheritance, composition, and association.

Inheritance lines

Say ClassA and ClassB are classes. If I say ClassB inherits from ClassA, this means
that ClassB has the same members and methods as ClassA plus some possible
new members and methods. It’s also possible that ClassB overrides some of the
ClassA methods to implement them differently. When ClassB inherits from
ClassA, we also say that ClassB is derived from ClassA, or that ClassB is a child
class of ClassA. Most concisely, if ClassB inherits from ClassA, we say that
‘ClassB is a ClassA.’

In a UML class diagram, we use a single line with a big hollow triangle-
arrow at one end to express the relationship of inheritance. If ClassB is a child
of ClassA, we draw a line with an arrow pointing from ClassB to ClassA. In
other words the arrow points at the parent; this is a kind of ‘ancestor worship’
situation in which the parent is pointed out rather than the child! In the case
where we have a number of child classes beneath a single parent, we use a
horizontal bar to combine the three inheritance arrows into one, thus cleaning
up the picture a little bit.

Figure 3.5 is a picture of some of the classes that are used by the eGameStub class.

One thing you'll notice is that we are allowed to ‘fork’ an inheritance line.
That is, in order to reduce clutter, if ClassB and ClassC both inherit from ClassA,

The Pop Framework 67

cGame cCritter
N
cCritterArmed cCritterBullet cCritterStubProp
N N
cGameStub
cCritterStubPlayer cCritterStubPlayerBullet
cCritterStubRival cCritterStubRivalBullet

Figure 3.5 UML diagram of some Game Stub classes

we can draw a single hollow-triangle-headed arrow to ClassA and have the
arrow’s shaft fork in two to have two tails, one ending at ClassB, one ending
at ClassC.

Just to make sense out of what these classes refer to, you might want to run
the Pop program and choose the Game | 2DStub option to see these classes
game in action. The cGameStub itself inherits from the base class cGame. If
you look at the game onscreen, you'll see a variety of moving critter objects.
The triangular critter that you move with the arrow keys is a cCritterStubPlayer
object, and it shoots cCritterPlayerBullet objects. The critters that look like
bitmaps are the cCritterStubRival objects, that is, your enemies. They are shooting
cCritterStubRivalBullet objects at you. The polygonal critters are cCritterStubProp
objects, and they are not shooting anything, since they inherit from ccritter and
not from cCritterArmed.

Composition lines

We use the word composition to refer to the situation where ClassA has a ClassB
object as one of its members. The operative phrase here is ‘ClassA has a ClassB.’
In this situation we often say that a ClassA object owns a ClassB object. And if
you have a ClassA objectA with a ClassB objectB member, the objectB can say
that objectA is its owner.

Regarding composition, note that there are two different ways in which a
ClassA can have a ClassB member: either ClassA has a ClassB object, or ClassA
has a pointer to a ClassB object. That is, either ClassA has a member field
ClassB _bmember Or it has a ClassB* _pbmember. (In C++ we very commonly
start our member field names with an underscore _.) The former kind of ClassB
member is called an embedded member or an instance member of ClassA, while
the second kind of ClassB member is called a pointer member or a reference
member. If the ClassB *_pbmember is truly related to ClassA by composition, we
expect that (a) the ClassB constructor will initialize _pbmember with a new
call and (b) the ClassB destructor will destroy _pbmember with a delete call.
Condition (b) is sometimes expressed by saying the ClassB reference member
of ClassA satisfies the ‘cascading delete’ condition.

68

Software Engineering and Computer Games

*

cGame [K——— | cCritter

Figure 3.6 cGame and cCritter composition with multiplicity

The word aggregation is used for a weaker version of composition where ClassA
may have a class ClassB reference member without this member satisfying the
cascading delete condition. That is, if a reference member object is not deleted
when its owner object is deleted, then we have an aggregation relationship rather
than a composition relationship. Making such fine distinctions when discussing
class relationships can sometimes be counter-productive, and we are not going to
say much more about the difference between composition and aggregation.

We draw a composition line with a diamond at one end — which we might
as well call the tail. This is used to mean that the class object at the diamond
end owns or has as members the class objects at the other end. As mentioned
before, you can think of the diamond as a ‘socket’” where we ‘plug in’ one or
more instances of the class at the other end of the composition line.

Another enhancement to the composition line is to write a little numerical
symbol like 1, 2, or * at the head (the non-diamond end) of a composition line
to indicate either how many different ClassB objects might belong to a given
ClassA object. The “*’ symbol stands for any number from one on up. A ¢Game can
own any number of cCritter objects, so we put a * by cCritter (see Figure 3.6).

If we don’t put multiplicities on a composition line, we will usually mean that
there’s meant to be only a single member object at the head, although it’s also
permissible in UML to take a lack of numbers to mean that you simply don’t feel
like mentioning (or haven’t thought about) the number of members.

Some UML experts like to graphically distinguish between the composition
relationship and the weaker aggregation relationship by filling in the diamond
with solid black for composition and leaving it hollow for aggregation. But we
won’t do this here, we’ll use the hollow diamond to stand for (usually) com-
position or (rarely) aggregation. In a nutshell, the diamond-headed line means
‘has a’ or, if there is a star at the end, ‘has several.’

A final thing to mention about composition lines is it is not considered accept-
able to ‘fork’ a composition line in analogy to the way we can fork an inheritance
line.

Association lines with navigation

The notion of being related by association generalizes the notion of composi-
tion. If two classes are related by composition, we can also say they’re related by
association, but we can use the association relationship more broadly than that.
We might say ClassA and ClassB are associated in any of the following cases.
ClassA and ClassB are associated if (a) each ClassA object has a ClassB object as
an explicit member (the same as composition); or if (b) ClassA has a method
that returns a ClassB object. Working the other way around, we also say ClassA

The Pop Framework

cGame cCritter

Figure 3.7 cGame and cCritter association

and ClassB are associated if (c) each ClassB object has a ClassA object as an
explicit member (the same as composition), or if (d) ClassB has a method that
returns a ClassA object.

In speaking of association, we don’t distinguish between actual objects and
pointers to objects; that is, we think of case (a), for instance, as true regardless
of whether the ClassB member is an instance member or a reference member.

We use a plain line to indicate the association relationship (Figure 3.7). It’s
pretty clear that a eGame object is associated with cCritter objects.

Occasionally people will even speak of ClassA and ClassB as being associated if
one of the ClassA methods takes a ClassB as an argument, or the other way around.

Given how easy it is for two classes to be thought of as associated, you might
fear that UML diagrams would turn into spider-web diagrams very much like
what’s known in graph theory as a ‘complete graph’, in which every node is
connected to every other node. But in practice we don’t draw every conceivable
association line.

Part of the job in drawing class diagrams is knowing what to leave out. It’s
usually better to have three or four small, simple class diagrams instead of one
large, complicated one.

As well as the hollow-triangle-headed inheritance lines, the diamond-tailed
composition lines and the plain association lines, UML class diagrams also have
navigation lines. A navigation line is an association line that has been decorated
with barbed arrow heads at one or both ends. If a barbed arrow points from ClassA
to ClassB, this means that ClassA has a way of ‘navigating’ to some specific
ClassB objects. This would be the situation in cases (a) and (b) mentioned
above: ClassA has a ClassB member or has access to a method that returns a
ClassB object. We'd put an arrow pointing from ClassB to ClassA in the cases (c)
and (d) mentioned above.

To ‘mavigate’ to an object might mean being able to get a copy of the object or
get a pointer to it. Or, in a broader sense, to ‘navigate’ to an object might just mean
being able to do something to it, perhaps by calling some kind of mutator method.

In the Pop Framework, a cGame owns an array that lists all of its member cCritter
objects, and each cCritter actually has an accessor that returns a pointer to the
cGame that owns the cCritter. SO we can navigate in both directions (see Figure 3.8).

As with the composition line, we can put multiplicities on association or naviga-
tion lines. Here we can put multiplicities at either end to indicate either how many
different ClassA objects might associate with the same ClassB object or how
many ClassB objects might associate with a given ClassA object (see Figure 3.9).

cGame cCritter

Figure 3.8 cGame and cCritter navigation

69

70

Software Engineering and Computer Games

cGame cCritter

Figure 3.9 cGame and cCritter navigation with multiplicity

In true composition cases with cascading delete, it only make sense for a
ClassB object to belong to one single ClassA object, so we assume by default
that the multiplicity at the diamond tail of a composition line is 1. So we will
often see lines in which there is a diamond at one end and a star at the other,
as Figure 3.10, indicating that a given class is composed with multiple instances
of another class.

cGame cCritter

Figure 3.10 cGame and cCritter with composition and navigation

If we don’t put multiplicities on an association line, we will usually mean that
it’'s a 1 to 1 association, although it’s also permissible in UML to take a lack of
numbers to mean that you simply don'’t feel like mentioning (or haven’t thought
about) the multiplicities. Always keep in mind the UML is meant to be a fairly
loose way of expressing things, and not a precise language like computer code.

It’s not considered good form to draw an arrow on a line with a diamond
at one end, so if we want to show the composition relationship along with the
navigation from ccritter to cGame we draw a diamond line for the composition
and an arrow line for the navigation as in Figure 3.10.

Now let’s draw a big UML diagram showing the relationships among our
custom Pop Framework classes and the MFC-generated classes CPopDoc and
CPopView. This is given as Figure 3.11.

Regarding Figure 3.11, note that the author had to redraw it a number of times
to try and make it as useful as possible. If your UML diagram makes things seem
more confusing, then you need to keep working on it. It usually takes a few tries
to get a UML class diagram into its most useful form. A typical thing that happens,
for instance, is that you have lines crossing each other, and then you will, if
possible, want to rearrange the locations of the classes so that the lines don’t
cross. Or you might leave out some of the less important associations. Or you
might split the diagram into several pieces. In this case, we split off the standard
MEC part of the diagram from the computer game-oriented Pop Framework
part of the diagram that is shown here. The MFC part is shown in Figure 5.14.

With an eye to the diagram, let’s say a bit more about how the Pop Frame-
work works. Once again, the moving objects one sees in the game are cCritter
objects. Each cPopDoc document holds a single cGame* _pgame pointer. A ¢Game
holds an array of pointers to all the active cCritter objects. The actual appearance
of a ccritter is separated off into a separate object called a eSprite; each cCritter
holds a csprite* _psprite.

The Pop Framework 71

* 1

o . .
CPopDoc CPopView [>—— | cGraphics
I |
cGraphicsMFC cGraphicsOpenGL
1
(>—— - cSprite
1 . 1
>

cGame cCritter |<—— clistener

(>—— cForce

Figure 3.11 Class diagram for Pop Framework classes using navigation arrows

The motions of the critters are affected by user input, which is often fed in
from a clListener, and also by various simulated physics forces. Each critter has an
array of cForce objects. The sprites, listeners, and forces don’t need to maintain
a pointer to their owner critter. (We do in fact pass a pointer to the owner as a
function argument when we call the listen and force functions of the cListener
and the cForce, so a case could be made for having navigation arrows go from
clListener and cForce back to cCritter.)

The display of the game objects is the responsibility of the CPopView. A
cGraphics object is used to convert the critters’ real-valued positions into pixel-
valued positions within the visible window of the cPopView. We have two kinds
of cGraphics implementations, the c¢GraphicsMFC and the cGraphicsOpenGL.

3.6 Using the Pop Framework

In this section we’ll talk about how to use the Pop Framework to make a game
of your own. To be quite concrete, we’ll work through the steps necessary to
use the Pop Framework to make a version of one of the simplest and oldest
arcade games, the Space Invaders game of the early 1980s.

Extending the Pop Framework

To use the Pop Framework to create a computer game, you take over all of the
Pop code and then make some changes to it: either by changing some of the
files, by adding some new files of your own, or both.

The fact that this is fairly easy to do means that the Pop code is actually a
framework, where a framework is, once again, a collection of powerful code that
is written in such a way that it is easy to tailor it to your needs.

By way of making the Pop code into a usable framework, the code is designed
so that a fairly complete description of a game can be fitted into a single class
extending our basic eGame class. Thus, if you were to make a game called, say,
Space Invaders, you might do this by creating a new cGameSpacelnvaders class

72

Software Engineering and Computer Games

which extends eGame. The class declaration for cGameSpacelnvaders would live in a
new file called gamespaceinvaders.h, and the implementation of the class methods
would be in a file called gamespaceinvaders.cpp.

With good planning and object-oriented design, your project need not involve
much more new code than is found in, for example, the two gamespacewar files.
How will you add files to the project? An easy way is to use copy-and-paste in
Windows Explorer to copy some existing similar files, then rename the files,
then edit them using the Visual Studio editor, and then use the Visual Studio
Project/Add Existing Item... dialog [or Project | Add to Project | Files... dialog
(Version 6.0)] to add your new files to the project. If your game is very similar
to, say, the Pop Framework’s Spacewar, you might use the gamespacewar files as
the ones to copy and rename, otherwise you might use one of our other sample
pairs of game files such as gamedambuilder, gamestub, Or gamestub3d.

What other new code might you need? You may need some new kind of
behaviors for the moving objects onscreen. This involves extending the cCritter
class. So as to make your code easier to work with, it’s usually a good idea to
define your new kinds of critters within your two game class files; that way you
still only have two files to open and close.

Another area that you will eventually change in building your game is the
appearance of the bitmaps and the background, not to mention the menus and
the toolbar. These are all resources that live in the res directory.

The Game Stub classes

[EPop. Version 26.2. May 15. 2002, Rudy Rucker. - [Pop 1] M B
[A File View Game Player Window Help =8|
DA YL +tidshEmeReNanw 0s

Las

Score: 1. Health: 12. Total Critters: 85. Updates per second: 6. (Slower than Real Time)

Game stub with solid background, Open GL view, and mixed sprites

The Pop Framework

> cGameStubPlayer K>——— cGameStubPlayerBullet

cGameStub [>——— cGameStubProp

> cGameStubRival K>—— cGameStubRivalBullet

Figure 3.12 UML diagram of the Game Stub classes

In the exercises at the end of this chapter, you will actually carry out a series of
changes to the Game Stub classes that turn it into a Space Invaders game. For
reference, let’s get an overview of what the Game Stub classes are. To begin
with, Figure 3.12 shows a UML diagram of the important Game Stub classes.

Each class has its own constructor, of course. This is where we internally set
the characteristic features of the object, such as its behavior and its appearance.

The ccritter child classes generally override damage, collide, update and some-
times in the case of a player critter the reset method. The cCritterBullet children
often don’t need to override anything, but will sometimes override the
initialize(cCritterArmed *pshooter) method that gets called right after the bullet’s
constructor. The eGame child class overrides a few more methods; the most
important ones will turn out to be seedCritters and adjustGameParameters. This is
illustrated in Table 3.2.

Table 3.2 The special classes used in the Game Stub code.

Parent class Child classes Overrides

cGame cGameStub constructor
Serialize
reset
seedCritters
adjustGameParameters
statusMessage
InitializeView
collide

cCritter cCritterStubPlayer constructor
cCritterStubRival damage
cCritterStubProp collide
update
reset

cCritterBullet cCritterStubPlayerBullet constructor
cCritterStubRivalBullet initialize

73

74

Software Engineering and Computer Games

Just for example, here’s what two of the class prototypes look like in a recent
version of Pop. Note that our UML diagram (Figure 3.12) wasn't fully detailed.
There is actually an intermediate Pop Framework class called cCritterArmedPlayer
between cCritterStubPlayer and cCritterArmed; and cCritterRivalBullet derives from a
special kind of Pop Framework bullet called cCritterBulletSilver. You can find
more information in the gamestub.h file.

class cCritterStubPlayer : public cCritterArmedPlayer //Our player.
{
DECLARE_SERIAL (cCritterStubPlayer) ;
public:
cCritterStubPlayer () ;
//overrides
virtual void reset();
virtual int damage (int hitstrength) ;
virtual BOOL collide(cCritter *pcritter);
virtual void update (CPopView *pactiveview, Realdt) ;
virtual cCritterBullet* shoot();
}i

class cGameStub : public cGame
{
DECLARE_SERIAL (cGameStub) ;
//Name your statics here
static int PLAYERHEALTH;
static int DEFAULTRIVALCOUNT;
static int DEFAULTSEEDCOUNT;
private:
int _rivalcount;
public:
cGameStub () ;
//overrides
virtual void Serialize(CArchive& ar); /*Override for
_rivalcount */
virtual void reset();
virtual void adjustGameParameters () ;
virtual CString statusMessage () ;
virtual void initializeView(CPopView *pview) ;
virtual void initializeCritterViewer (cCritterViewer *pviewer);
//To change the default view direction.
virtual void seedCritters();

virtual BOOL collide(cCritter *pcriti, cCritter *pcritj);

The Pop Framework 75

Review questions

Why is an object-oriented approach useful for simulation?

What are some of the different game modes that the Pop program runs in?
What is the difference between a *.h file and a *.cpp file?

What do the *.res file and the *.sIn or *.dsw file do?

Draw the component diagram of the Windows build process.

Draw a class diagram for the Pop Framework.

What is the relationship between cGame, cCritter, and cSprite?

I & m m o O W >

What is the difference between composition and inheritance?

How many files do you need to edit to write a game with the Pop Framework? How do
you get started?

Exercises

Exercise 3.1: Testing the Pop program

Any large program’s code is likely to have bugs in it, and it’s even more likely that there are
places where the documentation is out of sync with the actual behavior of the program.
While going through the help file and testing the Pop program, look for these three kinds
of problems.

Bugs. A bug is when the program does something that seems wrong. Crashing is the
extreme case, but other kinds of odd behavior can be bugs as well. For a useful bug
report, explain exactly how to reproduce the bug. Note that it possible that something the
tester thinks of as a bug may be what the programmer thinks of as a feature.

Bad features. Features of the program that you find bad or confusing or which look like
bugs. Explain what you don’t like. If many testers have the impression that a feature is a
bug, then the feature needs be changed or, at the very least, better documented.

Bad documentation. Find cases where the help file description does not seem to
match the behavior of the program. Also note cases where some program feature is not
well-explained.

Exercise 3.2: First build

Install Visual Studio. Put the Pop code onto your hard drive, find the pop.sin file (Version 7.0)
[or pop.dsw file (Version 6.0)] file in the Windows Explorer and double-click on it to open
up the project in Visual Studio. Press Ctrl+Shift+B (Version 7.0) [or F7 (Version 6.0)] to
build the Pop program, watching the messages that go by in the Output pane that can
be found at the bottom of the Visual Studio window. If you get a successful build, press
F5 to run the Pop program inside the Visual Studio debugger. If you have any problems or
questions check Chapter 20: Using Microsoft Visual Studio for more information. After the
build, use Windows Explorer to see what kinds of files have been added to your disk by
the build.

76

Software Engineering and Computer Games

Exercise 3.3: Code hand-off

First clean your Pop code directory by closing Visual Studio, using Windows Explorer to
navigate into the directory, and clicking on clean.bat. After clean.bat runs, use Windows
Explorer to see if there are any *.exe still in the directory. If there are, delete them so as
to minimize your directory size.

If you don’t have WinZip on your machine, go to www.winzip.com and download and install
a free evaluation copy. Choose the ‘Classic’ settings as your preferred WinZip default.

Right-click on your Pop code directory and select WinZip from the context menu to zip
it up.

Note these considerations about the WinZip settings. Let’s assume you are running
WinZip in the ‘Classic’ interface mode and that you are using the current (as of Spring,
2002) Version 8.1. WinZip will save your directory name, which is good, as the directory
name will probably have version and date information. Also WinZip automatically saves
your directories subdirectories, which is good, as you need the res subdirectory to be able
to rebuild the code.

In the Options field of the Add dialog box, don’t check Save Extra Folder Info. You
don’t want to check Save Extra Folder Info because, for portability, you don’'t want to
include the full path to directory where your files live. Even if this isn’t checked, WinZip will
save the name of the directory you are zipping.

Choose the name mypop1.zip for your zip file and save it somewhere where you can find
it, perhaps in the C:\Temp directory. Don’t save it in with the same code that you're zipping.
After its been zipped, find mypop1.zip and unzip it (not into the same location as the original
Pop code that you were working with). Open its pop.dsw with Visual Studio and see if it will
build. If this works, try sending mypop1.zip to yourself as an email attachment, see if you
can then unzip it and build it. Practice these steps until you can do them all.

Exercise 3.4: Changing the date information for your build

Set the date of your Pop build to match the current date in three places. (a) Put a version
number and a build date into the name of your executable file. In Visual Studio, Version 7.0,
first make sure that you have View | Project Explorer open and that you have clicked on
the Pop node, and then use View | Property Pages | Linker | General | Output File. If
another node is active, Property Pages will open up a different dialog. [In Version 6.0, you
can always simply use the Program | Settings | Link | General | Output File Name.]
Change the name of the executable both for the Release build and the Debug build. You
switch between them in either Version 6.0 or 7.0 by using the settings for control in the
upper left-hand corner of the dialog box with which you are editing the output file name.
(b) Open the Resource view. You can do this in Version 7.0 with View | Resource | View.
[In Version 6.0, use View | Workspace | Res, where you'll find the ‘Res’ as a tab at the
bottom of the Workspace window.] Click on the String Table resource in Resource View
and then click on IDR_MAINFRAME to use this string to include the build number and the
date; this string is what appears in the caption bar of your *.exe. (c) Change the name of
the directory where you code lives by highlighting the the directory name in Explorer and
pressing F2 so you can edit it.

Exercise 3.5: Look at some Pop code files

With the Pop project in Visual Studio, use File | Open to open the gamespacewar.h and
gamespacewar.cpp files to get an idea of how much code goes into a game definition.
You'll see that it’s not all that much, as you only need to mention the methods that you

The Pop Framework

plan to override. Now look at the game.h and game.cpp files to get an idea of what kinds
of methods cGameSpacewar inherits from cGame.

Now take a brief look at the critter.* and critterarmed.* files. This code is fairly gnarly
(in the sense of ‘complex’), but we’ll explain a lot of it later on. For now just scan over
critter.h to get an idea of what the cCritter methods are.

Exercise 3.6: Look at the Pop resources

Open the Pop project in Visual Studio and then open the Resource View. You can do this
in Version 7.0 with View | Resource View. [In Version 6.0, use View | Workspace | Res,
where you'll find the ‘Res’ as a tab at the bottom of the Workspace window.] Now click on
the various items in the Resource view to view them — the way this works is that anything
with a + next to it is like a directory to be opened up. Click down through the things with +
till you get some bottom level things like bitmaps, menus, etc. Find the TDB_BACKGROUND
bitmap and the 1DR_POPTYPE menu. Note that the Resource view of the menu is ‘live,’
that is, you can open up the menu selections and edit them. This is useful as, later, when
you want to turn Pop into a single game, you can simply remove the menu references to
the other game modes so that the users won’t have the possibility of going into them.

Exercise 3.7: Renaming a game

Changing the names of a game that appear in copies of existing files is a little tricky. In this
problem we ask you to practice. In Windows Explorer, select the gamestub *.h and *.cpp
files, and use Ctrl+C and Ctrl+V to copy them. Highlight the file names one by one, press
F2 and change the names to, say, gamemyproject.h and gamemyproject.cpp. Now open up
the Pop Framework in Visual Studio and use the Project | Add Existing Item... dialog
(Version 7.0) [or Project | Add to Project | Files... dialog (Version 6.0)] dialog to add your new
files to the project. Edit the files in Visual Studio to replace every instance of the phrase
‘Stub’ by the phrase ‘MyProject,” being sensitive to upper and lower case. That is, you must
replace ‘Stub’ by ‘MyProject’, ‘stub’ by ‘myproject’ and ‘STUB’ by ‘MYPROJECT'. You can do
this by using Ctrl+H to do a search and replace several times in each file, with the Match
Case checkbox turned on. Now see if you can get the altered project to compile. This may
take a couple of tries, especially if you weren’t careful about case sensitivity in the search and
replaces. If you've totally messed things up (always easy to do when starting out!) make
fresh copies of the files and start over. Once it compiles, edit the CPopDoc constructor in
the popdoc.cpp file so that the default start up game class is eGameMyProject. You'll have
to add a line #include “gamemyproject.h” to popdoc.cpp so this will compile. If you
want to do a bit more, look at Chapter 27: Menus and Toolbars and figure out how to add
and implement a My Project option on the Game menu.

Exercise 3.8: Expanding a UML diagram

The UML diagram given for the cGameStub in this chapter is missing the classes
cCritterArmedPlayer, cCritterArmedRobot, and cCritterBulletSilver. Redraw the picture, with
these intermediate classes squeezed into the tree of inheritance.

Exercise 3.9: Writing a Space Invaders game

The rest of the problems on this chapter have to do with converting the Game Stub game
into a Space Invaders game.

77

Game stub modified to resemble a Space Invaders game

The Pop Framework

Rather than carrying out the slightly tricky task of changing all the names in the
gamestub.* files, let’s just use these files as is, and make some changes in them. You
might want to save off reference copies of these files called gamestubold.* in case you
want to get the old code back after a while. Or simply make sure that you do your work in
a fresh copy of the whole Pop source directory.

The following exercises describe a specific series of changes to make to the files. The
purpose is simply to have you get a feel for how you might make your own game out of the
Pop code. Don’t feel you need to be able to understand all of the code you see, just go
ahead and carry out the following steps to see how you might work with it.

Just in case you've never seen a Space Invaders game, the idea is that the player controls
an upwards-pointing critter that can be moved left and right along the bottom of the screen
with the arrow keys. The critter shoots a bullet upwards when the spacebar is pressed.
Falling down from the top of the screen are enemy critters. Shooting enemies gives the
player score points, and each time an enemy survives to touch the bottom of the screen, the
player loses a health point. Whenever all the falling creatures have been shot, a new wave
of them appears; alternately we can bring in new enemies as fast we kill them off. Typically
the player starts with three or maybe five health points and plays until he or she loses them
all. The new waves of enemies move faster than the earlier waves, so that as time goes on,
the game gets harder and harder to play, inevitably ending in the player’'s death. The score
points accumulated are a measure of how long the player managed to stay alive.

A Space Invaders style game is generally not considered to be an acceptable project for
a course taught with the Software Engineering and Computer Games textbook. The reason
is that (a) this project is too easy and (b) the one-dimensionality of the Space Invaders game
player motion makes the game pretty boring. Once you finish the Space Invaders game in
this section, you should set it aside and make a fresh start for your real course project.

Exercise 3.10.1: Change the default game. Beware the wrong-directory-gotcha

When you get into tweaking one particular game mode, it saves time to have the Pop pro-
gram start up in the game mode that you want to play with. The way to control this is to edit
the CPopDoc constructor in poepdoc.cpp. Simply comment in exactly the one setGameClass
line corresponding to the game you want to play. If you make a new game class, add a line
for it. For the following exercises, have your startup game be cGameStub.

CPopDoc: :CPopDboc () :

_pgame (NULL)

{

/* Choose the type of game you want at startup by commenting in ONE
setGameClass line. The setGameClass sets brandnewgameflag to TRUE. */

// setGameClass (RUNTIME_CLASS (cGameSpacewar))
// setGameClass (RUNTIME_CLASS (cGameAirhockey)
(RUNTIME_CLASS (cGameBallworld)
// setGameClass (RUNTIME_CLASS (cGameDambuilder
// setGameClass (RUNTIME_CLASS (cGamePickNPop))
(
(
(
(

i

)
// setGameClass)
))

7

// setGameClass (RUNTIME_CLASS (cGameWorms)) ;
setGameClass (RUNTIME_CLASS (cGameStub)) ;

// setGameClass (RUNTIME_CLASS (cGameStub3D)) ;

// setGameClass (RUNTIME_CLASS (cGameDefender3D)) ;

}

79

80

Software Engineering and Computer Games

If you do this exercise and the game still starts up in the original Spacewar Game
mode, it’'s very likely that you edited the wrong copy of popdoc.cpp. One of the gotchas of
Visual Studio is that when you use the File | Open command, the file selection dialog
doesn’t make it clear which directory you are in. Visual Studio has a certain persistence of
state, and if you open a file in DirectoryA, the next time you open a file the dialog is likely
to search in DirectoryA again, even if you are now working on a project in DirectoryB. One
often has multiple copies of the Pop Framework code on one’s disk, and it is easy to be
editing a file in the wrong directory.

A sure sign that you're editing the wrong files is if (a) your program always compiles
and runs with no warnings or error messages and (b) the appearance of the executable
looks the same after each ‘build.’

How to avoid this gotcha? If you see signs of (a) and (b), close all your files, close your
project, reopen your project in your desired directory, and then open your file, only this
time use the File | Open dialog to back a step or two up the directory tree to find out what
directory you’'re really in, and then go back down into the correct directory.

Exercise 3.10.2: Change the cGameStub world

We edit some of the e¢GameStub methods in the gamestub.cpp file to change the appear-
ance of the game world.

(a) Our goal here is to make a simple Space Invaders game. Let’s not use the
cCritterStubRival at all, let’s just have dumb non-shooting cCritterSpacelnvadersProp
falling down on us. We can do this by changing the two static critter count numbers that
are used in the cGameStub constructor to initialize _rivalcount and _seedcount.
The statics are defined right before the cGameStub::cGameStub() constructor. Change
the lines to read:

int cGameStub::DEFAULTSEEDCOUNT = 8;
int cGameStub::DEFAULTRIVALCOUNT = 0;

(b) Let’s make our world tall and thin. We can do this by changing a line in the

cGamestub::cGamestub constructor. Take the line _border.set (60.0, 40.0), and
change it to _border.set (20.0, 40.0).

(c) We don’t want to start out zoomed in on the world. Find the code for the void
cGameStub::initializeViewpoint (cCritterViewer *pviewer) method and
comment out two lines.

//pviewer->zoom(4.0) ;
and
//pviewer->zoom(2.0) ;

(d) We don’t want the view to move with the player, so find the wvoid
cGameStub::initializeView (CPopView *pview) code and comment out a line.

//pview->pviewpointcritter ()->setTrackplayer (TRUE) ;

The Pop Framework

Exercise 3.10.3: Change the ccritterStubPlayer

(a)

(e)

Before changing the constructor, change the value of a static variable used in the
constructor. At the start of the gamestub.cpp file, change the PLAYERHEALTH line to
this.

int cGameStub::PLAYERHEALTH = 3;

Now we're going to add some <code to the end of the
cCritterStubPlayer::cCritterStubPlayer (cGame *pownergame) code in
gamestub.cpp.

We want to use the arrow keys to move our player. Either add this line to the end of
the constructor, or alternately use it to replace the existing setListener line with
this line.

setListener (new cListenerArrow()) ;

To make the arrow key motion a little peppier, give the player a higher maximum
speed (which is the speed the arrow moves it at). Add this line.

setMaxspeed(30.0); // Careful not to write setMaxSpeed

Limit the player to moving back and forth along the bottom of the screen. This means
we want to change the player’'s cRealBox _movebox field.

We do this in the player’s constructor. Our framework is set up so that in this
code block you can assume that the player’'s _movebox has already been set to
match the game’s _border box. We now want to use setMoveBox to change the
_movebox.

The setMoveBox call takes a cRealBox as argument. The cRealBox constructor we
use here takes cVector specifying two opposite corners as arguments, the lower left
front corner and the upper right back corner. Add this block of code to the end of the
constructor code. What we’re doing here is to move the ‘high corner’ down almost to
the bottom of the _border box.

/* At this point the player’s _movebox matches the _border it got
from pownergame.
Now we want to make the _movebox just be the bottom edge
of the world. */
setMoveBox (cRealBox (
_movebox.locorner (),
_movebox.hicorner () -
//Move high corner almost to the bottom of world.
(_movebox.ysize()-2*radius())* cVector::YAXIS
))

Another aspect of a Space Invaders game is that the player’s gun always points
straight up. We’ll make this change in the cCritterStubPlayer constructor. Change the
old cCritterStubPlayer constructor by adding these lines to the bottom of it.

81

82 Software Engineering and Computer Games

setAttitudeToMotionLock (FALSE) ;

/* The default for _attitude motion lock is TRUE, which means
that by default a critter turns its heading to match its direction
of motion. We turn this behavior off so the player can always
point up. */
setAttitudeTangent (cVector: :YAXIS); /* Call this AFTER turning off
the lock setAimVector (cVector::YAXIS); */

Exercise 3.10.4: Change the ccritterStubProp constructor

Now we make some changes to the bottom of the
cCritterStubProp::cCritterStubProp (cGame *pownergame) code in
gamestub.cpp.

(a) Let’s have the props automatically be positioned up near the top of the world. Since
the cCritterStubProp constructor uses a cGame argument, its base class constructor
will have set its _movebox to match the game’s _border. To move the critters up to
the top of the world, add these lines.

randomizePosition (cRealBox (
_movebox.locorner () +
(_movebox.ysize() - 2*radius()) * cVector::YAXIS,
_movebox.hicorner ()
))

(b) Let’s put a force of gravity on the cCritterStubProp critters. Usually when you have
gravity, it’s a good idea to put in some ‘air friction” as well. Add these lines to the
end of the constructor code.

addForce (new cForceGravity());
addForce (new cForceDrag()) ;

(c) Let’s soup up the game by allowing the critters to fall a bit faster. Add this line. You
might find the value 8.0 to be a shade too low or high.

setMaxspeed(8.0); //Careful not to write setMaxSpeed

(d) Now let’s try having the cCritterStubProp critters run away from the bullets. Try adding
a line like this. You may not like the effect of this, so it’s optional.

addForce (new cForceClassEvade (4.0, 1.0,
RUNTIME_CLASS (cCritterStubPlayerBullet))) ;

The Pop Framework 83

Exercise 3.10.5: Change cCritterStubProp::update

Each critter has an int _outcode field that is an OR combination of bit flags telling you
which, if any, edge of its cRealBox _movebox the critter touched during its last move.
The bit flags, which are defined in the realbox.h file, have simple names like Box_1.0Y. We
will use the _outcode to take action when a cCritterStubProp hits the bottom or the top
of the screen.

When one of the cCritterStubProp critters hits the bottom of the screen, we want to kill
off the critter and reduce the player’s health by calling its damage method.

If you have called setWrapflag(cCritter::WRAP), then the cCritterStubProp might
get to the bottom by going around the top. When our cCritterStubProp run away from
bullets they might sometimes do this. It would unfairly punish the player if we let the
cCritterStubProps get away with that, as then they would be in a position to cross back
and the game might think they landed on the bottom. Therefore if a cCritterStubProp hits
the top of the world we Kill it off without charging the player a damage point.

We do all this by changing the cCritterStubProp update method to look like this.

void cCritterStubProp::update (CPopView *pactiveview, Realdt)
{
cCritter::update(pactiveview, dt); //Always call this first
if (_outcode & BOX_LOY) //Landing damages me
{
pplayer () ->damage (1) ;
die();
}
if (_outcode & BOX_HIY) //So they don’t sneak around over the top.
die();

Exercise 3.10.6: Change ccritterStubPlayer::collide

Let’s eliminate the feature of cGameStub which rewards the player for bumping into a
cCritterStubProp critter. This means you should comment out this line from within the
lines from the cCritterStubPlayer::collide(cCritter *pcritter) code

// setHealth (health() + 1);

Exercise 3.10.7: Change ccritterStubPlayer::shoot, and the cCritterStubPlayerBullet
behavior

(a) In the gamestub.cpp file, try giving yourself prop-seeking missiles for your bullets.
Change the code of the cCritterStubPlayer: :shoot () as follows.

That is, give your bullets a cForceObjectSeek so they turn into smart missiles that
hunt down whichever critter was closest to the line you aimed along. If you think it
makes the game too easy or too hard, leave it out or perhaps use a smaller value for
the argument 50.0 passed to the cForceObjectSeek constructor.

cCritterBullet* cCritterStubPlayer::shoot ()

{
cCritterBullet *pbullet = cCritterArmedPlayer::shoot () ;
cCritter* paimtarget =

84

Software Engineering and Computer Games

pgame () ->pbiota () ->pickClosestAhead (cLine(position(),
aimvector()), this);

/* Find the critter closest to your aiming line. Including
“this” as the second argument means to exclude
yvourself from consideration as the closest critter.
Note that you can use additional params with
pickClosestAhead to narrow the angle the critter
“sees” and also to limit the possible targets to
certain kinds of critters, see biota.h for details. */

pbullet->addForce (new cForceObjectSeek (paimtarget, 50.0));
return pbullet;

(b) You may now find the game is now hard to play because your bullets die at the
screen edges and sometimes do this before hitting a prop. Fix this by adding this line
to the cCritterStubPlayerBullet::cCritterStubPlayerBullet() constructor.

_dieatedges = FALSE;

(c) A downside of (b) is that you'll now notice that some silly bullets bounce off the top
and get confused and bumble around on the bottom of the world. To fix this, you
have to override the void cCritterStubPlayerBullet::update (CPopView
*pactiveview, Real dt) as follows.

Add this line to the prototype in gamestub.h.

virtual void update (CPopView *pactiveview, Realdt);
Add this code to gamestub.cpp.

void cCritterStubPlayerBullet: :update (CPopView *pactiveview, Realdt)
{
cCritterBullet: :update(pactiveview, dt);
//Always call base update first
if (_outcode & BOX_LOY || _outcode & BOX_HIY)
//Landing damages me
die();

Exercise 3.10.8: Change the cGameStub::adjustGameParameters

(a) To make this more of a game, it's better to have the action be non-stop. As it
presently stands, you can kill off all the attackers. We fix it so each time you kill an
attacker, some new ones come in. We do this by adding this code to the bottom of
the cGameStub: :adjustGameParameters code.

int propcrittercount =
pbiota()- >count (RUNTIME_CLASS (cCritterStubProp)) ;
if (propcrittercount < _seedcount)
new cCritterStubProp (this);
//The constructor automatically adds the critter to the game.

The Pop Framework

Note that if you've killed, say, three cCritterStubProps all at once, it will take the game
three steps of calling adjustGameParameters to restore the full cCritterStubProp
count. This is fine, as visually it's just as well not to change the game too rapidly.

(b) What about making the game get harder as you play it? This step is optional.

You could keep track of the cGame::score(), and each time this gets larger than
some increment size, make the game harder in some way, perhaps by increasing the
size of _seedcount.

Or you could add a cCritterStubRival whenever the score passes a certain size,
similar to how the Spacewar game adds cCritterUFO. To make this effective you
might need to tweak the cCritterStubRival methods a bit.

Exercise 3.11: Hand in a Space Invaders project

This is an assignment the author usually gives his classes fairly early in the semester.
Typically, the credit assigned for the three parts of this problem is in a 25%, 50%, 25%
ratio for, respectively, mechanics, basics and improvements.

Even if you're studying this book on your own, you will find it worthwhile to carry through
the mechanics steps so as to have experience in putting your code into a form that can
be handed off.

Mechanics. Hand in the following: (1) A sheet of paper with a little ‘User’s Guide’ describ-
ing the controls of your game and listing any special features you added. (2) Two floppy disks:
one disk with a release build of the executable in the root directory, and another disk with
clean, minimal-sized, buildable source code. Label the disks with your name and with a
word to indicate if this is the EXE or the SOURCE disk. You will probably need to WinZip your
source and probably your executable to fit onto floppies. If the *.zip is larger than 1 Meg
you probably haven’t cleaned your source directory properly (or you've included a lot of
extra big sounds and bitmap files). Another option is to write the information onto a CD-ROM.
Emailing your homework to the professor as a gigundo attachment is forbidden! (3) Put disks
and paper in a two-pocket folder with your name on it. (4) Put your name on the program
caption bar. To change the caption bar, see Section 23.9 of this book.

Basics. Carry out the steps outlined in the series of Space Invaders exercises 3.10.1—
3.10.8 just above. You don’t necessarily need to use all the exact same parameter values
suggested. Get the program working so that the critters are neither too hard nor too easy to
hit, the game itself should be neither too hard nor too easy. You may need to tweak some
parameters to get it right.

Improvements. Possibilities: change the background, use different kinds of sprites, add
code to make the game use levels that get progressively harder, change the code so that
the enemies jiggle back and forth like in the traditional Space Invaders rather than running
away from bullets. Add sound effects. Have some enemies that shoot at you. Have the
enemies change appearance when you hit them before disappearing, maybe have them
shatter or show a cSpritelcon or cSpriteLoop explosion bitmap for a few seconds. Looking
at the gamespacewar.cpp or the gamedefender3d.cpp files may provide inspiration.

85

Object-oriented software 4
engineering

4.1 00 is the way

As computer science continues to evolve, our programs get more and more
powerful, using larger and larger amounts of code. The Pop program has some
10,000 lines of code, and if we were to take into account the code for the
underlying Windows functions, we’d be looking at hundreds of thousands of
lines more. How can we deal with such large programs?

Our only hope is to continually move to higher levels. We learn to design and
program in higher-level and more abstract ways. In the earliest days, software
engineers worked very close to the hardware writing microcode to directly control
the processor chip. Machine language is a step up from this, consisting of coded
instructions that the processor can read and execute. Assembly language is
human-readable code quite close to the machine language level, but which
allows the programmer a few higher-level constructs like macro statements to
abbreviate having to write out repetitive blocks of code.

Assembly language gave way to a range of high-level languages designed to
be something much closer to something a human can read. Some of the earlier
languages were Fortran, APL, Modula and Pascal. Eventually these converged on
C, which is still something of an industry standard. Libraries of C functions are
available so that programmers don’t continually have to reinvent the wheel.
With the advent of object-oriented languages like C++ and Java, computer science
moved to a new still-higher level of programming and design. There’s no turning
back. An object-oriented approach (OO for short) is the way.

We can draw a UML dependency diagram to illustrate the progress, with
the arrows indicating that the higher levels depend on the lower levels (see
Figure 4.1).

Simply using C++ or Java doesn’t guarantee that you are doing object-
oriented software engineering. Object-oriented techniques can be used at a
variety of levels. Software engineers often distinguish among three kinds of
OO: object-oriented analysis (OOA), object-oriented design (OOD), and object-
oriented programming (OOP).

The idea behind OO software engineering is to break your programs up into
independent self-sufficient objects. If you don’t plan to alter an object’s behavior,
you don’t need to worry about how its code works. All you need to know is

Object-oriented Software Engineering 87

Object-oriented language (C++, Java)

High-level language (C, Pascal)

Assembly language (Intel assembly language)

3
Machine language (ultimate output of compiling and/or assembling a program)

Microcode (tells the processor how to interpret machine language instructions)

Figure 4.1 Levels of language

what the object does. The object becomes like a black box with input/output
jacks. You feed things into it and you get things out, and you don’t worry
about what's inside.

The objects of OO are instances of data structures called classes. A class is
like a C structure, except that it has functions, or methods, inside it as well as
data fields (see Figure 4.2). A class is like a high-level data type. And an object is
an instance of a class. To make the distinction between class and object quite
clear, you might compare a class to a type like int, and an object to a specific
integer like 2.

There is some variability in the language that people use to talk about
classes. The data fields of a class can also be called class attributes. And the
methods of a class can also be called the class’s functions or its operations.

The OO approach suggests that instead of trying to analyze a problem in
terms of a zillion small tasks, we look at the problem in terms of a few high-
level classes. Figuring out which classes to use for your program is the process
of OOA. Deciding what members and methods your classes should have is a
matter of OOD. And actually implementing the code for the classes is the work
of OOP.

The three stages do blend together a bit, so if we list the expected outcomes
of the OOA, OOD, and OOP processes, it makes sense to list some outcomes in
two lines.

Figure 4.2 A class has data and methods

Software Engineering and Computer Games

Table 4.1 Three stages of the OO0 process, with expected outcomes.

0O0A Which classes? UML diagrams
00D UML diagrams, *.h header
OOP *.h header, *.cpp implementation

A preliminary way of describing the stages is to say that OOA involves look-
ing at a problem with the aim of understanding it. OOD means defining and
designing an appropriate solution. And OOP is building that solution. These
three steps are really part of any reasonable approach to problem solving (see
Table 4.1). Now let’s look into what we do to make the steps object-oriented.

The OOA stage is a high-level design phase in which we figure out which
classes to use and what data and methods to put into them. Initially you might
simply write out class names and key data and methods. But after a bit, you
want to actually start moving down towards the detailed design phase and
writing out correct C++ class headers.

The OOA phase shades into the OOD phase when we begin thinking in
some detail about what to put into the classes. The OOD phase of the process
continues through the writing of the *.h header files, while the OOP part kicks
in when you write the *.cpp files where the implementation of the methods
lives. You shouldn’t think that first you finish the OOA and OOD, and then
you move into OOP without ever coming back to OOA and OOD again.

The reason you can’t just finish one stage off completely and then start on
the next stage is that it’s so hard to design a program. You're rarely going to
nail it right off the bat. Of course you do need a design to get started, but every
time you finish a new alpha build, you should step back and take a long look at
your design. A good place to start is by looking at the ugliest, most complicated
parts of your code, the parts that you feel most uneasy about. Ask yourself how
this could be made simpler. And, as long as you're revisiting your design, think
about what features you want to add to your program next, so that you can lay
the groundwork for them.

OOA is about figuring out how to arrange a collection of classes that does a
good job of representing your real-world problem in a format which a computer
program finds easy to deal with. OOD is about what kinds of data and methods
go into your classes and about how the classes relate to each other in terms of
inheritance, membership and function calls. OOP is about making the class
implementations work. The three go hand in hand. You need to do some OOA
and OOD before you OOP, and after you OOP you learn enough new things
about your program to go back and improve the OOA and OOD. Like so many
other things in the software engineering process, it’s a feedback loop that you
can run through as many iterations as your schedule allows. And, again like
other things in software engineering, the precise boundaries between OOA,
OOD and OOP can be somewhat fuzzy.

A useful terminology that people sometimes use is to speak of a distinction
between ‘top-down’ design and ‘bottom-up’ design. In our present context, we're

Object-oriented Software Engineering

thinking of OOA and OOD as a top-down process where you use some high-
level abstract thinking to figure out which classes to use and how to design
them. And then you move down into the details. This describes a top-down
movement from OOA to OOD into OOP.

The bottom-up part of the process comes about like this. When you go about
implementing a design you find out a lot of things about it that you hadn’t
anticipated — some things work out easier than you’d hoped, and a few things
turn out to be harder. So then you change your design to make the hard things
work better. This describes a bottom-up movement from OOP into OOD and
OOA.

The OOD expert Grady Booch puts it like this.

Our experience indicates that design is neither strictly top-down, nor strictly
bottom-up. Instead . . . well-structured complex systems are best created
through the use of ‘round-trip gestalt design.” This style of design emphasizes
the incremental and iterative development of a system through the refine-
ment of different yet consistent logical and physical views of the system as
a whole . . . Object-oriented design may seem to be a terribly unconstrained
and fuzzy process. We do not deny it. However, we must also point out that
one cannot dictate creativity by the mere definition of a few steps to follow
or products to create.

[Grady Booch, Object-Oriented Design (Benjamin/Cummings, 1991), p. 188]

4.2 Object-oriented analysis

The first part of the OOA stage is figuring out what classes you will use and
what some of their main methods might be. How might this work? Suppose that
you have completed the requirements-gathering stage, and you’ve come up with
a written summary of what the software is supposed to do. A good way to start the
OOA process is to review a printed copy of the requirement summary and mark
it up. Circle the noun and noun phrases in one color ink and circle the actions
in another color ink — or use boxes and circles. The nouns are likely to be either
classes or member fields of classes. The verbs are likely to be class methods.

In keeping with our book’s theme of being a case study about software engin-
eering a computer game framework, let’s look at a requirement for this.

Requirement: a framework for computer games with moving critters. The critters
are drawn as polygons, bitmaps, or animated loops of bitmaps. The critters
update themselves on the basis of the world around them. The world may include
forces like gravity and friction. The critters listen to mouse-keyboard controls.
The critters can shoot bullets. It is possible to open more than one view of the
game. The games can use 2D or 3D graphics.

e Nouns: game, critter, polygon, bitmap, animated loop, world, force, gravity,
friction, controls, mouse-keyboard controls, bullets, view, graphics.

e Actions: move, draw, update, listen, shoot.

89

90 Software Engineering and Computer Games

cGame cCritter

cCritter * _critters|] cVector _position _velocity, _acceleration
cWorldBox float _health, _age

step(float dt) move (), update(), feellistener (), shoot ()

Figure 4.3 UML classes with members and methods

Once you have the two lists you can think about how best to group the nouns
into classes, and about which class should be responsible for which action. Do
be aware that often there will additional classes involved that aren’t explicitly
mentioned in the specification.

During this process you can draw a more detailed kind of UML picture of a
class, wherein you list some of a class’s members and methods inside the box
that stands for the class. Two horizontal lines separate the class name, the class
members, and the class methods. In these kinds of diagrams we often leave out
the argument lists of the methods and the type declarations of the members.

Two of the classes you come up with for the game framework example might
look as shown in Figure 4.3. Do note that not all of the members and methods
are shown here. Also note that our final Pop Framework implementation of the
cGame and ccritter will be a bit different from the preliminary design we’ve
drawn here.

In UML diagrams we generally only show the things that are important for
the point of the particular diagram being made. It's often better to draw two
diagrams to make two different points than to have one diagram try to make
two points.

Once you begin to get have a handle on which classes you might use, you
can start to think about the UML class diagram. One part of becoming skilled
with OOA is to draw a lot of UML class diagrams. Programmers often have a
little trouble getting started with this process. Here are some pointers.

Dive right in

UML diagrams can be drawn at many levels, from the very simple to the very
detailed. Usually a fairly simple diagram is all you need. Remember that UML
class diagrams are supposed to be easy, so easy that anyone with a stake in the
project can understand them. Don’t approach them as if you're writing code
that has to compile; the whole point of UML diagrams is that you should be
able to get them done quickly and easily. They don’t have to be perfect. To start
with, the main thing is simply to get something down on paper.

Redraw many times

Typically you might start by drawing boxes with the names of all the main
classes that you use (or plan to use) in the program. And then you add in the
hollow-headed inheritance arrows, the diamond-tailed composition lines, and
the solid-headed association-with-navigation arrows. Typically you’ll end up

Object-oriented Software Engineering

with several lines crossing each other. Though there’s nothing strictly ‘wrong’
about this (you can always erase a little space in one line to indicate the lines
pass under or over each other), it doesn’t look nice. It makes the diagram harder
to read. So, really, you should redraw it. The process of redrawing the UML class
diagram is not at all a waste of time. For while you're doing this, you’ll begin
thinking more concretely about your classes and the class instances as being
definite entities that you are moving around. Drawing a UML diagram is as
much about the process of drawing it as it is about the finished product. Since
you're going to redraw it many times, its not a bad idea to do it with a pencil
and a few sheets of paper to hand. It is possible to use special UML-drawing
software that automatically generates a diagram from your code — in this case
you'll usually get a diagram that has more detail than you want, and your
revision process will involve pruning the thing down and rearranging the
boxes. Try to avoid drawing your initial diagrams with an interface that’s hard
to use, and which discourages revision. If, for instance, you're drawing your
UML diagram by inserting boxes and arrows with the Drawing Toolbar of
Microsoft Word, it’s a real pain to move things around, and you're not going
to do it as much as you should. It's much better to always do a few first drafts
with pencil, an eraser and a large, clean piece of paper.

Keep each diagram simple

Don't feel that you have to get every single class into one diagram, and don’t
feel you have draw every possible association line. A big program is like the
Grand Canyon or the Rockies, you can’t show all of it in one picture. Instead, you
pick a telling vantage point and crop your frame to include only the features
you are currently interested in. In order to give a fairly complete accounting of
your classes, it’s usually better to draw several UML class diagrams rather than one.
Thus, when talking about the Pop Framework, we might use several different
UML diagrams: one for the MFC framework classes having to do with document
and view, one for the custom Pop Framework classes, one for the details of the
various critter child classes, another for the sprite child classes, and so on.

Step through use cases
In order to tell if your UML diagram describes an architecture that will work
you need to ‘test out’ the diagram. A good procedure is to step through the
stages of various use case scenarios, thinking about which kinds of collaborator
objects each object needs for the different steps of the scenario.

You'll find some examples of OOA problems to work on at the end of the
chapter.

4.3 Encapsulation, inheritance, and polymorphism
The technique of putting data and methods inside a single object is called

encapsulation. The two other words most commonly used when talking about
OO are inheritance and polymorphism.

21

92 Software Engineering and Computer Games

Inherited data

New data

Inherited method
(possibly overriden)

New method

Figure 4.4 A class and a subclass

The idea behind inheritance is that if you already have a class that’s almost
like something you need, its a good idea to define a new class that is a child
class of the existing class, recoding or overriding some of the new class methods
so that they behave differently from the old class. We can draw a picture of
inheritance as in Figure 4.4.

When an inherited method calls the code of the base method and then does
something additional, we can say that it extends the method as well as saying
that it overrides it. Thus, if classe inherits a foo () method from classg, we say
that classB overrides foo so long as classs redefines the implementation code
for foo in any way at all. And we can say that classe overrides and extends foo
if the redefined code for foo has a form like classB::foo () {ClassaA::foo();
doMore () ;}.

The MFC framework provides you with some key base classes called CWinApp,
CDocument, and CView. Rather than reinvent the principles of Windows program-
ming, we code our Pop program as a Windows application by implementing a
CPopApp, CPopDoc and CPopView which are children of the standard MFC base
classes. As we discussed in the last chapter, we draw pictures of inheritance
relationships by drawing a hollow-headed arrow from the child to the parent
class (see Figure 4.5). These kinds of drawings are the UML class diagrams that
we mentioned before.

CWinApp CDocument CView
CPopApp CPopDoc CPopView

Figure 4.5 Inheritance diagram for basic MFC classes

Object-oriented Software Engineering 93

cCritter
N
cCritter Armed cCritterBullet cCritterWall
N
cCritterArmedPlayer cCritterArmedRobot

Figure 4.6 Class diagram for cCritter child classes

The notion of polymorphism is that an object ‘knows’ what class it belongs
to, and when you have it call some method, it will be sure to use the version of
the method that’s coded up by its class. This takes on special significance when
you have a collection of objects belonging to disparate classes.

As a concrete example of polymorphism, let’s think about having some
classes that inherit from a class called cCritter. The cCritter class has an update()
method that changes a critter object’s state according to the current situation of
the game world. Now it might be that we have several different kinds of critters
in our program. This is illustrated in Figure 4.6. (As before, to make the UML
class diagram cleaner, we use horizontal bars to combine into one arrow what
could otherwise be drawn as separate inheritance arrows.)

Now suppose we were to have an array called biota which is an array of N
pointers to cCritter objects. The prototype might be something like ccritter=
biota[N]. And then we’d be able to update all the critters at once with a line
like for (int i=0; i< N; i++) biotali]->update (). And each biotali] cCritter
pointer object would know exactly which kind of ecritter child it was pointing
to, and would know to use the appropriate version of the cCritter move method.

One annoying C++ gotcha is that in C++, a variable that can have child class
values assigned to it will only show polymorphic behavior if it is a pointer
variable.

That is, if the biota in the example just given were to be defined as ccritter
biota[N] and the loop were to call biota[i].update (), then we would unhappily
find that even if the various biotali] objects were supposed to be differing
kinds of ccritterchild classes, the base class cCritter::update would be executed
for each of the biota[i] objects, with the actual child class information about
these objects being totally ignored. The cause of this problem is that, in order
to put a cCritterChild object childcrit into one of the biotali] array slots, you'd
actually need to ‘upcast’ it into a base eCritter object (cCritter)childcrit, thus
losing its child class information. But a pointer variable works alright because a
cCritterChild *pchildcrit pointer can be placed into a cCritter * pointer
variable without having to change anything about the pointer.

94

Software Engineering and Computer Games

This issue doesn’t come up in Java, as all class object variables in Java are
automatically pointers anyway. The moral is to use pointer-objects whenever
you're planning to have them behave polymporphically. More information
about this can be found in the reference Chapter 22: Topics in C++.

The two languages most used for OO these days are C++ and Java. This is not
to say that there aren’t others, such as Smalltalk and Ada 95. And Microsoft is
currently promoting a new OO language called C# (pronounced ‘C sharp’).
Certainly most new applications are written with object-oriented code. This
said, there are certainly a number of legacy applications that are in plain old C;
this is particularly true for low-level programs such as device drivers.

Regarding Java and C++ for OOP, both have their pros and cons. At this
moment in the history of computer science, a software engineer would do
well to know both languages. C++ is a language of choice for stand-alone OO
programs on a desktop machines, and Java is popular for distributed Web
applications. By learning both languages you allow yourself a wider range of
platform options. A less obvious point is that many aspects of OO only become
really clear when you’ve learned more than one OO language. Learning Java
has certainly increased this author’s understanding of C++. And if you happen
to know Java but not C++, learning C++ will undoubtedly increase your under-
standing of Java.

For a review of C++ and its OO features take a look at Chapter 22: Topics in
C++ now. You may not want to read every detail of the chapter at this time, but
at least skim through it, so that you’ll know what information is there, and
then you’ll know where to look when you need it.

A little more terminology. The public methods for a class are sometimes
called the class’s interface. We often like to think of an object as a black box
whose internals are hidden from the other objects. The interface to a black box
like this is the methods you can use to make it do things.

A class normally has several different types of methods besides the constructors
and the destructor. Specifically, accessors return information about an object’s
internal members, and mutators make changes to an object’s members.

Occasionally we want to have a base class which doesn’t actually have imple-
mentations of its methods. We can do this by giving the methods empty in-line
code definitions, as in void dosomething () {}; or we can explicitly indicate that
this method is not implemented at all with a line like void doSomething () = 0;.
A method of the second type is called abstract, and a class with an abstract
method is called abstract as well.

A base class with no data members and trivially defined or abstract methods
is often called an interface. In the Java language there actually is an interface
language construct that you can use in place of class to specify a base class with
abstract methods.

Thus we can use the word interface in two senses. (a) If ClassB inherits
from ClassA, then ClassB will have an interface (set of methods) that extends
the interface (set of methods) of ClassA. (b) If ClassA really has nothing more
than its set of methods, then we can simply speak of ClassA itself as being an
interface.

Object-oriented Software Engineering 95

ClassA

_datafield

foo()
ClassB ClassA
ClassA *_pA <>——— _datafield
foo(){_pA->foo();} foo()

ClassB

foo(){ClassA::foo();}

Figure 4.7 Inheritance and composition

4.4 Composition and delegation

We say that ClassB is composed with ClassA if ClassB has a ClassA or ClassA*
member; for short we can say ClassB has a ClassA. And, as before, ClassB inherits
from ClassA if ClassB is derived from ClassA as a child class; for short we say
ClassB is a ClassA.

As it turns out, you can always replace an inheritance relationship by a com-
position relationship as indicated in Figure 4.7. If ClassB has a ClassA member
object *_pA, then (a) a ClassB object gets a set of ClassA data fields wrapped up
inside *_pA and, (b) ClassB can implement the same methods as ClassA simply
by passing these method calls off to *_pA. When you pass method calls to a
composed object, this is called delegation.

Note that you can also do composition and delegation by using a member
object ClassA _mA, but we prefer pointer members because they permit poly-
morphic function calls.

Why would you want to use composition in place of inheritance? There are
several reasons.

First, C++ code using multiple inheritance tends to be a bit difficult to main-
tain, and there are special MFC CRuntimeClass methods and macros that would
need to be overridden if you want to use multiple inheritance. If you have
a ClassB that you'’d like to have inherit from both ClassA and ClassC, you can
instead use composition for ClassA or ClassC. Figure 4.8 shows how this looks if
we compose ClassB with ClassC.

ClassA ClassC ClassA
ClassB ClassB [<>——-—- ClassC

Figure 4.8 Use composition to avoid multiple inheritance

96 Software Engineering and Computer Games

—1 ClassAChild1
—1 ClassAChild2
ClassB
ClassA *_pA [&— ClassA < ClassAChild3
t_pA(...
St PAC-) —! ClassAChild4
—1 ClassAChildS

Figure 4.9 Composition makes dynamic change possible

Second, inheritance locks in a class’s behavior at link time, while composi-
tion allows you to change the behavior of a class during runtime. This is illus-
trated in Figure 4.9. The ClassB has a set_pa member method to delete the old
*_pa and install a new one. In the Pop Framework, when you use the Player
menu to change the player’s controls, you are actually changing the kind of
cListener *_plistener member which the player eCritter is composed with.

Third, inheritance is sometimes called ‘white box’ code reuse, because when
you inherit from a class its internals are visible to you. Composition, on the
other hand, is called ‘black box’ code reuse because (unless you've unwisely
used a friend statement) the internals of the class you compose with are hidden.
A practical advantage of black box code reuse is that you're less likely to break
things that are used by classes other than your own. A useful mental model
when using composition is that you're making a class by snapping together pre-
existing components.

A fourth and final reason why we often prefer composition to inheritance
is that composition lets us avoid the ‘combinatorial explosion’ that we end up
with if we try to separate out a class for every possible combination of the
behaviors that we would otherwise delegate out to a composed member.

Of course there are still many situations where inheritance is the appropriate
design method. Particularly if you're interested in having a polymorphic set
of objects, it’s good to have the objects inherit from a common base class. In
the case of the Pop Framework, the cCritter base class plays this role. The indi-
vidual ecritter child classes have constructors which compose specialized critters
by ‘snapping together’ some component classes. And the individual cCritter
update methods are usually overridden. We use inheritance so as to have a
uniform list of ecritter child objects, and we use composition both to create
new Kinds of ecritter child classes and to possibly change the cCritters while the
program is running.

Look, for instance, at the diagram of the critters and the classes they com-
pose with (Figure 4.10). We see two kinds of critters, two Kkinds of sprites, two
kinds of listeners, and two kinds of forces, eight classes in all. Now suppose that
we wanted to avoid composition and put all of the behavior into the classes.
Unless we use multiple inheritance, we’d end up with 18 classes: cCritter and

Object-oriented Software Engineering 97

cCritter

| cSpritePolygon
cSprite *_psprite <>——o cSprite <+—

— cSpritelcon

— cListenerCursor
cListener *_plistener <>—— cListener <t+——

— clistenerScooter

* — cForceGravity

CArray<cForce*> *_pforcearray >—— cForce <+—

— cForceEvadeBullet
update ()

]

cCritterArmed

update ()

Figure 4.10 Critters and classes they are composed with

cCritterArmed, with eight child classes each, one child for each of the eight ways
of choosing polygon/icon, cursor/fly, or gravity/evade. This is illustrated in
Figure 4.11. But if we can use composition to farm out the choices to helper
classes, then we end up with a smaller number of classes in all.

Now let’s say a bit about the practicalities of composition and delegation.
When you compose ClassB with a ClassA member _mA (or with a *_pA member)
the owner ClassB will need to use ClassA accessors and mutators to get at
the ClassA object’s data. You can get around this by having ClassA declare
ClassB as a friend, but generally we try to avoid friend statements as they break
encapsulation.

When you use composition with delegation as illustrated in Figure 4.7, you
need to explicitly declare and implement a ClassB function like foo() which is
intended to pass off the call to the ClassA member method foo(). This is differ-
ent from inheritance, where a child class automatically gets the methods of the
parent class. In the case of composition, you of course don’t have to give the
ClassA method the same name as the ClassB method which it calls. In fact it is
likely to make your code easier to understand if you give the ClassA method a
name like ‘feelfoo’ or ‘dofoo’ or ‘callfoo.’

A fairly trivial example of composition is that we give both our eSprite and
our cRealBox classes a cColorStyle*_pcolorstyle member which holds things
like the £i11 color to be used for the shape. The color-related mutators and
accessors for cSprite and cRealBox pass the calls on to their _pcolorstyle members.
This is shown in Figure 4.12.

N

cCritterPolygonCursorGravity

cCritterPolygonCursorEvade

cCritterPolygonFlyGravity

cCritterPolygonFlyEvade

cCritter e —

cCritterlconCursorGravity

cCritterlconCursorEvade

cCritterlconFlyGravity

cCritterlconFlyEvade

cCritterArmedPolygonCursorGravity

cCritterArmedPolygonCursorEvade

cCritterArmedPolygonFlyGravity

cCritterArmedPolygonFlyEvade

cCritterArmed <t———

cCritterArmediconCursorGravity

cCritterArmediconCursorEvade

cCritterArmedIconFlyGravity

cCritterArmediconFlyEvade

Figure 4.11 Combinatorial explosion of classes

cSprite

cColorStyle *_pcolorstyle

setFillcolor (col) {_pcolorstyle->setFillcolor (col) ;} <>— cColorStyle

_fillcolor

cRealBox

[>— setFillcolor (col)

cColorStyle *_pcolorstyle

setFillcolor(col) {_pcolorstyle->setFillcolor (col);}

Figure 4.12 Simple composition

Object-oriented Software Engineering

Why didn’t we just make eSprite and cRealBox inherit from, say, a common
cUsesColorStyle class? The reasons were that (a) other than being drawable with
colors, the two classes really have nothing in common and, more importantly and
(b) as we move from two-dimensional graphics to three-dimensional graphics, we’d
like to allow the possibility of using richer and more complicated kinds of eColorStyle
child classes to specify the colors and styles of our sprites and world boxes.

A less obvious point about delegation is that when ClassB delegates a method
like foo(), you often want foo to be able to access and mutate the members of
ClassB. If ClassB has a ClassA *_pA member, the correct way to delegate foo() so
that it can access and mutate ClassB is the following.

ClassB::foo()
{

_pA->foo(this) ;
}

ClassA::foo(ClassA *powner)
{
/* Use ClassA accessors and mutators to read and change the fields

of powner */

In the specific example of the eCritter and the cListener *_plistener that
it’s composed with, we have the following code.

void cCritter::listen(Real dt)
{

_plistener->listen(this); /* We pass the pointer “this” to the
listener so that it can change the fields of this calling
cCritter as required. */

}
void cListenerScooter::listen(cCritter *pcritter)
{

cController *pcontroller = pcritter->pgame ()->pcontroller();/*The
caller critter’s pgame() holds the cController object that
stores all of the keys and mouse actions you need to possibly

listen to in here.*/

//Translate
if (pcontroller->keyonplain (VK_UP))
pcritter->setVelocity (pcritter->maxspeed() *
pcritter->tangent ()) ;
/* I want to move the critter position. But I don’t just
use a moveTo because I want to have a correct _velocity
inside the critter so I can use it to hit things and

bounce and so on. So I change the velocity. */

//Etcetera....

100

Software Engineering and Computer Games

In other cases it may be that the foo call does some setup code before passing
the call off to the composed object. This is the situation where cCritter delegates
some of its draw call to its csprite *_psprite member. The matrix manipula-
tions serve to translate and rotate the graphics frame of reference to match the
critter’s position and orientation.

void cCritter::draw(cGraphics *pgraphics, int drawflags)
{
pgraphics->pushMatrix () ;
pgraphics->multMatrix (attitude()) ;
_psprite->draw(pgraphics, drawflags);
pgraphics->popMatrix() ;

4.5 Principles for 00 design

In this section we list some principles for object-oriented software engineering.
As kind of an intellectual game, we’ve made an effort to label each principle with
an OOA, OOD, or OOP, according to at which stage of the software engineering
process the principle is most likely to come into play. The idea is that principles
marked OOA are things you can work out when you’re doing the high-level
design, the OOD are things that you'll get into when you work out the detailed
design for the classes, while the principles marked OOP are design details that
you're more likely to think of after you start coding. Don’t take these labels too
seriously!

e OOA: An object is an organism. Make class objects responsible for all their
behavior. A class should own every method it needs to do things.

e OOA: Let your classes multiply. Freely derive classes from your base classes to
implement variations on behavior. Remember, you want to start thinking of
defining a class as something easy. Move as much code as possible up into
helper functions that live in the base class; this makes deriving the children
easier.

e OOA: Use utility classes in place of primitives. Most of your class members
should be other classes, or pointers to other classes. Admittedly, somewhere you
will need to have data that is of a primitive type such as int, float and char.
But, so far as possible, you should wrap these primitives up inside of classes that
are closer to the way you think. Thus we use the MFC cString objects instead
of char arrays, and we use our cVector objects instead of pairs of float x, y.
With practice, you can learn to think of creating a new class as something
easy and helpful, rather than as something arcane and risky! Figure 4.13
illustrates the kind of class nesting that you might expect to see in an OOD.

e OOA: Keep your classes light. Don’t make one single class do too much. You
wouldn’t want to have only one class called Main, with all of your program’s
data and methods in it! It makes the code easier to develop and maintain

Object-oriented Software Engineering 101

Figure 4.13 The dots are primitives, the shapes are classes

if each class has only a limited number of related responsibilities. Delegat-
ing a given functionality off into a separate class gives you the option of
implementing it in some standard way in a base class with child classes for
alternate behaviors.

e OOA: Reuse classes. When appropriate, inherit from or compose with other
people’s classes, or classes that you've used in other programs. Be aware of
what classes are available for you in the MFC framework, for instance.

e OOA: Prefer object composition to class inheritance. If you use composition it
makes it easier to have each class be focused on one kind of task. Composi-
tion also prevents a combinatorial explosion of classes.

e OQOD: Think like an object. In trying to determine a class’s methods, try and
read through your code taking the viewpoint of one of your class objects.

e OOD: Use pointer members rather than instance members. When you give a
ClassB a member object of ClassA, you can either declare it as ClassA _mA or
as ClassA *_pA. The former is an instance member, the latter is a pointer
member. Using pointer members is a bit more work because you need to
remember to construct and destroy the object it points to. The virtue of
a pointer member is that you can put child class variables into it with-
out having to upcast them to the base class as you would with an instance
member. This makes polymorphism possible; that is, if a pointer member
is of type ChildA* instead of type ClassA*, then it will use the overridden
methods of ChildA.

* OOD: Program to an interface, not to an implementation. When thoroughly
carried out, this principle means that you have abstract, implementation-
free classes at the top of your class hierarchies. This gives all of the derived
classes identical interfaces. When less thoroughly done, this simply means
that you try and think always in terms of what your classes have in common.

102 Software Engineering and Computer Games

An example of this in action would be to have your object variables be
given the highest base class type possible rather than a specific child class
type. Thus, it would be better to have, say, a cCritter* variable than to have a
cCritterSpaceWarGameAsteroid* variable. The reason is that if your code only
mentions the base class cCritter, then the code is more reusable.

e OOP: No forgery. Avoid storing the same data in two different places. Any copy
of a data object is a ‘forgery’ which may be corrupt. Thus, it would be a mis-
take to try and maintain an int _crittercount member in the cGame class,
because the same information is already present in the carray<cCritter*s
_pbiota cGame member, and can be accessed as _pbiota->GetSize(). If
we kept a separate _crittercount variable, we’d repeatedly have to worry
about keeping the ‘forged’ _crittercount in synch with the ‘genuine’
_pbiota->GetSize().

e QOOP: Don’t write the same code twice. Avoid writing the same code in two
different places. If you have more than three or four lines of code that you
use twice, put this code inside a method that you call in the different places.
The reason for this is that if you have the same code in two places, then over
time (bug-fixes, development) the two versions may drift apart and become
different. Sometimes you will want to encapsulate the code inside a class
that you can compose with.

e QOOP: Encapsulate methods. If you use some piece of data as an explicit
or implicit argument to function calls more than two lines in a row, think
about giving the class that owns the data a method that accomplishes these
lines with a single call. Thus, if we have a eVector v object, instead of writing
Real mag = sgrt (v.x()*v.x() + v.y () *v.y () +v.z()*v.z()), we give cVector
a magnitude method that does the calculation and allows us to just write

Real mag = v.magnitude ().

e OOP: Don’t ask objects their class type. If you're doing a switch on the type
of a class, you should replace the switch with a polymorphic function call
so you don’t need to find out the class’s type. This said, there are times
when we will use the MFC GetRuntimeClass method to condition an action on
the type of an argument object. But always think twice to see if it’s really
necessary.

e OOP: Don'’t break encapsulation. Avoid friend statements like the plague. Make
most data private or at least protected. Conceal the actual implementation
structure of your class, and reveal only the few basic public methods that
others need to call. It takes only seconds to write in-line accessor and mutator
methods like rReal age () {return _age;}; void setAge (Real age) {age =
_age; }. If a method is in-line and non-virtual, there is no computational cost
whatsoever in using it, because the preprocessor replaces each occurrence
of, e.g., ‘age ()’ by ‘_age’. So why bother? Because, with reference to the
age example, at some point you may decide to associate another age-related
variable with the _age variable, and then you may want to change the accessor,
the mutator, or both.

Object-oriented Software Engineering

4.6 The code interface

There’s two ways of thinking of your body of code: the semantics and the syntax.
The semantics of your code has to do with what it means, and the syntax has to
do with what the text in your files actually looks like.

At the semantic level, your code is used to prototype and implement classes
and to weave some class objects together into your program'’s run-cycle. That’s
what we’ve been talking about so far in this chapter.

In this section we’ll say a little about your code syntax, and how you can
make the syntax more ‘object-oriented’ — in the sense of being more like a black
box with an interface of clearly accessible switches and settings.

Of course code is really more of a white box, since you can open up the files
and read every bit of them. The point is that if you organize your code in a nice
way, you can put something like an interface into it. Here we're not using ‘code
interface’ in the sense of the class prototypes found in the header files — those
are the class interfaces. By code interface we mean a collection of tricks and
idioms that experienced programmers use to make their implementation files
more tweakable.

C++ language features useful for creating a good code interface include the
following.

e #define switches for #ifdef code blocks.
e typedef statements for renaming types.
e static variables.

e static methods.

Detailed information about #define and #ifdef can be found in the Pre-
processor Directives section of the Part II Chapter 22: Topics in C++. Quite
briefly, if you have two possible versions of some code, or a piece of code that
you only want to turn on sometimes (for instance when debugging), it’s a
good idea to use a #define and an #ifdef. SO you might have something like this
example taken from critter.cpp.

//#define DRAWMOVINGTRIHEDRON
/* This draws red, blue, yellow lines for each critter’s
_tangent, _normal, _binormal. It’s useful in debugging motion

problems. */
Intervening code . . .

void cCritter::draw(cGraphics *pgraphics, int drawflags)
{
pgraphics->pushMatrix(); pgraphics->multMatrix(attitude());
_psprite->draw(pgraphics, drawflags);
#ifdef DRAWMOVINGTRIHEDRON
cColorStyle dummy;
dummy . setLineColor (cColorStyle: :CN_RED) ;

103

104

Software Engineering and Computer Games

pgraphics->1line (cVector: :ZEROVECTOR, 2.0 * cVector::XAXIS, &dummy) ;

dummy . setLineColor (cColorStyle: :CN_BLUE) ;

pgraphics->line (cVector: :ZEROVECTOR, cVector::YAXIS, &dummy) ;

dummy . setLineColor (cColorStyle: :CN_YELLOW) ;

pgraphics->line(cVector: :ZEROVECTOR, cVector::ZAXIS, &dummy) ;
#endif //DRAWMOVINGTRIHEDRON

pgraphics->popMatrix () ;

When you have #define-controlled switches like this, be sure to put the
#define line up at the top of the *.cpp (or *.h) file where it’s used, and follow it
by a long comment explaining the consequences of turning this switch off or
on by, respectively, commenting it out or leaving it in.

Another type of code interface switch uses typedef. In the Pop Framework we
use a lot of floating point real numbers. So as to avoid having to permanently
commit to whether we want to use the faster float or the more accurate double,
we have a file realnumber.h that includes these two lines.

//typedef double Real;
typedef float Real;

At present we’re going for more speed and less accuracy, but if it ever seemed
better to have more accuracy at the expense of speed, we would only need to
edit those two lines. And everywhere in our files where we need a real number,
we always use the defined type Real, rather than fleat or double. For this to work,
of course, we have to have an #include realnumber.h in all of these files.

A simpler kind of code interface setting is a parameter whose value affects
the way the program works. Always try and avoid putting raw ‘magic numbers’
in our code. Instead of a raw number you should either use a #define or, better, a
static variable.

Using static variables is an example of a good OO practice that is more
common in Java programming. In Java it’s very easy to declare and initialize a
static variable, you simply place it right into your class definition. In C++ it’s a
bit harder. You declare the static variable inside your class header, but you have
to actually set the variable’s value down inside one of your *.cpp files. As we
show in Figure 4.14, a class will have multiple object instances, but all of these
are thought of as showing the same static variables, and they all agree on the
values of these variables.

Sometimes we make our static variables public; in this case they’re the
closest thing to a global variable that OOP allows. A static variable that you set
once and for all is typed as a const. In Windows programming, a color is coded
up as a 32-bit integer with the three right-most byte fields representing the
red, green, and blue intensities, which can range from 0 to 255. An RGB macro
assembles three intensities into a color-coding integer. To avoid having to
remember all this, we can make public static const int variables in, say, a cColorStyle
class. The colorstyle.h header would have code like this.

Object-oriented Software Engineering 105

object 1

object 2

Figure 4.14 Objects share the static members of the class

class cColorStyle: public CObject
{
public:
//Color constants.

static const int CN_RED;
//More code. ..
}i

And the colorstyle.cpp would instantiate the static variable, giving it a place to
‘live’ by using a line like this.

const int cColorStyle::CN_RED = RGB(255, 0, 0);

The line does not appear inside any method, it’s simply in the file as is. Note
that when you instantiate a static you also are allowed to initialize it. Unlike
Java, C++ won'’t let you initialize a static inside the class prototype in the header
file. (Well, actually ANSI C++ will let you do this if it’s a const static, but
Microsoft C++ won'’t in any case.)

If a static variable is public, we can access it in any file of our code, assuming
that file has included the header where the static’s owner class is protoyped. A
typical use of a static looks like this.

ppolygon->setFillColor (cColorStyle: :CN_RED) ;

As a matter of good programming, we always prefix a reference to a static by
its owner class name and the scope resolution operator “::’. You don’t actually
need this prefix if you are using the static within a method of the static’s owner
class, but it makes the code more uniform and easier to follow. It’s also good
practice to consistently use a different name style for statics; in the Pop Frame-
work we always capitalize them.

We typically instantiate our statics in the *.cpp that matches the *.h file
where they're declared. The statics specific to cGameSpacewar are initialized in
gamespacewar.cpp, the statics specific to cGamePicknpop are initialized in gamepickn-
pop.cpp and so on.

106

Software Engineering and Computer Games

The ‘code interface’ aspect of statics involves using them for parameters that
we may wish to change during successive builds of the program - unlike a fixed
constant like cn_rEp. When you write a game, there are a lot of values that
you may want to change repeatedly. If these are statics initialized (and well-
commented) at the head of the *.cpp file, it's easy to keep adjusting them until
you see the performance you like.

A few more facts about static variables. You can, if you like, instantiate a static
in any *.cpp file you like. Generally it’s easier to find them if they live in the file
that goes with the header that declares them. But sometimes you may want to
group a bunch of statics together, particularly if their initialization values depend
upon each other. In the Pop Framework, for instance, we instantiate the ‘mutation
flag’ statics all inside a file we created called static.cpp. The reason is so that we
can make sure that these single-bit flag variables don’t have conflicting values.

const int cCritter::MF_NUDGE = 0x00000001;
const int cCritter::MF_POSITION = 0x00000002;
const int cCritter::MF_VELOCITY = 0x00000004;
const int cSprite::MF_RADIUS = 0x00000008;
const int cSprite::MF_ROTATION = 0x00000010;
//Etc.

If a static has the const modifier, that means you aren’t allowed to change its
value anywhere in the code, other than in the line where you initialize it. Other
statics can in fact be changed. One use of a non-const static might be a variable
to keep track of whether any instance of a given class has been initialized yet.
Thus we declare a static BOOL FIRSTTIME variable in graphicsopengl.h, instantiate
it in the *.cpp as BOOL cGraphicsOpenGL: : FIRSTTIME = TRUE, and have some code
that, if FIRSTIME is TRUE, sends some informational output and sets FIRSTTIME to
rFaLsE. Or you might use a static int INSTANCECOUNT to track how many objects
of a given type have been created, initializing 1nsTaNCECOUNT to O and letting
the class constructor and destructor respectively increment and decrement
INSTANCECOUNT.

There are a number of reasons why it’s better to use static variables rather
than #define parameters.

e Type checking is performed on static variables, but not on #define parameters.

e Since the initialization of the statics is inside a *.cpp rather than inside a *.h,
when you change the value of a static parameter, you don’t need to recompile
as much of your code.

e If you always put the class name and scope resolution operator in front of
your static names, this adds a level of self-documentation to your code that
#define names don’t give you.

e Static variable names are less likely to cause namespace conflicts than #define
names. That is, if you #define a name like cCRITTERSPEED in two different files,
your compiler won't like this. But if you have a cGameRunner: : CRITTERSPEED
and a cGamewWalker: : CRITTERSPEED there’s no conflict.

Object-oriented Software Engineering

e Using statics is a good habit to get into because it’s useful for having
OO-correct versions of things very much like global variables, such as the
single static cRandomizer cRandomizer::RANDOMIZER object defined in our
randomizer.h and randomizer.cpp files. This way, whenever we need a randomizer
anywhere in our program, we just use cRandomizer: : RANDOMIZER.

e Since a static is a variable, you can change it inside your code. Thus, for
instance, many of our eGame child classes change the value of the static Real
cCritter::MAXRADIUS as a way of altering the default maximum size of all
the critters.

e Java doesn’t allow the #define statement, so you might as well start learning
to live without it.

Review questions

What are OOA, 00D, and OOP? What are some outcomes of these processes?
What are some basic principles for drawing UML diagrams?

What are encapsulation, inheritance, and polymorphism?

How can you replace inheritance with composition? Draw a UML diagram.

What is meant by the interface of a class?

What does it mean to delegate a method to another class? Draw a UML diagram.

Why do you sometimes use the argument this when delegating a method?

I & m m o O mw >

Why are pointer members preferable to instance members? What is the additional
burden of having a pointer member?

What do we mean by ‘no forgery’?
What is the combinatorial explosion of classes, and how can you prevent it?

How do you use #ifdef?

r X -

How do you declare and instantiate a static variable?

Exercises

Exercise 4.1: OOA for a concert ticket site

Let’s revisit the ticket-site example that was mentioned in Exercise 2.1. Here’s the
specification again.

A client can visit the server and search a schedule for a concert. A concert specifies a
performer, a venue and a date. After selecting a concert, the client sees a list of some
available tickets, specifying seat and price. The client can view a map to see where the seats
are located. The client can select tickets and add them to his or her order. The client can
buy the order by filling in an address form and giving credit card information.

Figure out a set of classes based on some or all of the nouns in the description and
arrange them into a UML diagram. Test the completeness of your diagram by tracing
some use cases through it. Draw the diagram at least three times, improving it each
time.

107

108

Software Engineering and Computer Games

Exercise 4.2: OOA for a music sharing site like the old Napster

A couple of years ago the music-sharing site called Napster ran a ‘share-server’ that satisfied
the following specification. A client can log into the share-server. The share-server maintains
a ‘share pair list’ of ‘share pairs,” where a share pair consists of a song name and a link to
a client who has this song available. When a client logs in, the share-server adds share pairs
for the client’s songs to the share pair list. A client can request a song, and the share-server
displays a sublist of the share pair list showing share pairs for that song. If a client selects
a share pair, the song is transferred to this client from the client mentioned in the share pair.

Figure out a set of classes based on some or all of the nouns in the description and
arrange them into a UML diagram. The diagram will primarily have composition lines con-
necting the boxes. Test the completeness of your diagram by tracing some use cases
through it. Draw the diagram at least three times, improving it each time.

Exercise 4.3: OOA for a music sharing site like KaZaA

Napster was successfully sued by the record companies for maintaining a share-server like
this. In 2001 a possibly legal work-around emerged. Companies like KaZaA added another
layer to the architecture. Rather than maintaining a share-server, they maintain a meta-server
which directs clients to other client machines that are acting as share-servers.

Show how to add a meta-server to the UML diagram you got in the last exercise.

Exercise 4.4: Writing a utility class

Write a few lines of code to implement a utility container cCritterPair class to hold two
cCritter * pointers as private members. The class should have a constructor that takes a
pair of pointers as arguments and two accessors to get at the member pointers. Don’t bother
with mutators. Assume that cCritterPair should not delete its members in its destructor.

Exercise 4.5: Tweaking static variable values in the Spacewar game

Here we make some changes to the initializations of the static variables in gamespacewar.cpp
and see what happens. When you change a static, it’s usually wise to leave the original
value as a comment to the right so you can get it back if necessary.

Increase cGameSpacewar: :WORLDSIZE and notice how much bigger the world gets
relative to the critters.

Increase cCritterAsteroid::DARTACCELERATION and cCritterAsteroid:
:DARTSPEEDUP and notice that it becomes nearly impossible to shoot an asteroid.

Change cGameSpacewar: : ASTEROIDHEALTH to four and notice how many times you
have to shoot and split up an asteroid before finally getting rid of it.

Exercise 4.6: Composition and inheritance

Draw two pictures to represent the inheritance and composition relationships shown in
Figure 4.8, but have your pictures represent classes by egg-shaped images as were used
in Figure 4.5.

Software design patterns

Every year people’s expectations of software get higher and every year the job
of being a software engineer gets harder. The only way we can hope to keep our
heads above water is to continually improve the tools of our discipline.

Software engineers are always looking for a higher-level way of working,
a tower to climb to get some perspective. We go from low-level languages to
high-level languages, we use object-oriented methods, and over time we learn a
number of reusable idioms. And now there’s a new route to higher ground: the
use of software design patterns. Adding another layer to the UML dependency
diagram (Figure 4.1) we now get Figure 5.1.

While object-oriented software engineering encourages us to think about
encapsulating our data and methods into classes, software design patterns show
us good ways to get our classes to collaborate with each other.

It turns out there are certain useful but non-obvious ways in which one can
have classes interact with each other, and a certain limited number of these
design patterns recur over and over again. The simpler kinds of patterns are
simply idioms, but the more complicated ones are what we call software design
patterns. In recent years, software engineers have taken to cataloging software
design patterns.

Software design patterns

Object-oriented language (C++, Pascal)

High-level language (C, Pascal)

Assembly language (Intel assembly language)

B

Machine language (ultimate output of compiling and/or assembling a program)

Microcode (tells the processor how to interpret machine language instructions)

Figure 5.1 Levels of design

110

Software Engineering and Computer Games

Repositories of these patterns can be found online and in textbooks such as
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley, 1995). The pattern
names used in the Design Patterns book include Abstract Factory, Builder, Singleton,
Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy, Chain of
Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer,
State, Strategy, Template Method, and Visitor.

A software design pattern is usually described in terms of being a solution to
a certain type of problem in a particular context. In this chapter’s brief over-
views, seven patterns are documented by describing the kind of problem the pattern
is useful for, and giving a brief summary of the solution presented by the pattern
followed by a mention of how the pattern is used in the Pop Framework.

5.1 Strategy

The Strategy pattern is an example of delegation, the general object-oriented
idiom that was mentioned in the last chapter. Before starting, we should mention
that in discussing implementations of patterns such as the Strategy pattern it
will be helpful to use obvious, illustrative class names like Context and Strategy,
as in Figure 5.2. But of course when you use the software patterns in your own
code you can call your classes anything you like.

The problem addressed by the Strategy pattern is when we have a range of
objects, all members of the same class called, let’s say, Context, and we want to be
able to change the behavior of the behave method of a Context object without
having to change the class the object belongs to.

The solution is to create a Strategy class that holds a behavealgorithm
method. The Context class will have a strategy *_pstrategy member, and a
Context: :behave () {_pstrategy->behavealgorithm(this) }.

The reason you need to pass the ‘this’ to the behavealgorithm is so that the
method can use the Context mutators and accessors to view and to alter the data
of the Context object. Possibly behavealgorithm may call some other Context
methods as well.

Context

Strategy *_pstrategy K>— Strategy

behave () virtual behavealgorithm(cContext *pcaller)
{_pstrategy->behavealgorithm(this) ;}

T

Strategyl Strategy2

behavealgorithm(...) behavealgorithm(...)

Figure 5.2 The Strategy pattern

Software design patterns

If you find it useful, you can use the same name for the context: :behave ()
and Strategy: :behavealgorithm methods

The Strategy pattern plays a role similar to the role of function pointers in
old-style C programming. One of the motivations for using the Strategy pattern
is to avoid having a combinatorial explosion of classes. Rather than having to
derive off new subclasses for new kinds of behavior, we use the Strategy pattern
to let classes ‘plug-in’ whatever behavior they need.

In the Pop Framework, the ccritter: : feellistener() method calls a cListener::lis-
ten(cCritter *pcritter) method. In particular, we give each cCritter a cListener *_plis-
tener. The cCritter::feellistener() calls _plistener->listen(this).

The cListener::listen(cCritter *pcritter) method takes input from the mouse or
keyboard and affects the owner critter in different ways.

The fact that a Strategy object can be dynamically changed means that when
you are running the Pop program, for instance, you can use the Player menu to
select different kinds of controllers for the player. When you are doing this, you
change the player’s listening strategy.

5.2 Template Method

The problem arises when you have a range of different child classes with a
common base class. You want each child class to execute some fixed sequence of
methods in the same order, but you want to be able to vary what the individual
calls of the sequence do.

The solution, as shown in Figure 5.3, is to place the sequence of method calls
into a non-virtual templateMethod function that is not overridden by the child
classes. The Template Method has calls to various virtual hookMethod calls that
can be overridden.

BaseClass

virtual hookMethod1 ()
virtual hookMethod2 ()

templateMethod ()
{
hookMethodl () ;
hookMethod2 () ;
}
ChildClassA ChildClassB
hookMethodl () hookMethodl ()
hookMethod?2 () hookMethod2 ()

Figure 5.3 The Template Method pattern

111

112

Software Engineering and Computer Games

In the Pop Framework, the cGame::step method is a template that holds
a sequence of calls to eGame methods that update and show the critters in a
certain order, with certain calls that you might override located at a certain
positions within the sequence. In this case the methods you might override are
cGame::adjustGameParameters and cGame::gameOverMessage.

The cSprite::draw method is another example of the Template Method pattern;
it has some special ‘don’t touch me’ code nested around the virtual method
cSprite::imagedraw that the sprite child classes override.

5.3 Command

The problem is that you may want to ask an object to do something, but you
don’t know exactly when the object will carry out the request or exactly how
it will do it.

The solution, as shown in Figure 5.4, is to create a Command object that repres-
ents which command you want executed, possibly with information about
which target object is supposed to be affected by the command’s execution.

Often the Command pattern is used in partnership with a CommandProcessor
that holds the collection of commands that still need to be executed. The
CommandProcessor can be derived from an array template or a linked list template.

The Windows operating system uses something like the Command pattern,
although the pattern is not implemented in a fully object oriented way. In
Windows all commands are stored as message structures that have an integer
messagelD specifying the type of command to be executed. Rather than indi-
vidually implementing an execute method, the messages pass off the execution
task to a big switch statement in the Windows code, with the switch looking
at the value of the messagelD.

CommandProcessor >— Command
addCommand (Command *) int _commandinfo
processCommands () Target *_preceiver
execute ()
N
CommandTypeA
execute ()
CommandTypeB
execute ()

Figure 5.4 The Command pattern

Software design patterns

In the Pop Framework, we do a similarly half-hearted implementation of
the Command pattern; we use a cServiceRequest structure and pass the task of
executing the command off to switch in the code of a cBiota object that holds
our command queue.

A bit more detail. When we carry out an update of the game world, we walk
through a list of critters and call an update method for each of them. When an
object dies, it’s not practical to remove it from the simulation until we're done
updating all the other objects, otherwise one of the not-yet-updated objects may
still need to finish interacting with the about-to-die object. What we do is main-
tain an array of cServiceRequest objects, where each cServiceRequest holds a cCritter
*_pclient and cstring _request field. And at a certain time specified by the
cGame::step template, we make a call to the cBiota: : processServiceRequests method
that carries out each of the pending commands.

5.4 Composite

The problem is that you may have a set of Primitive objects which you also group
into Composite objects, and you want to be able to treat the primitive and the
composite objects the same. You also want to be able to have composites made
of mixtures of composites and primitives, and so on.

The solution is to have a base class called, say Component, with both the Primitive
and Composite classes inheriting from it. Compoesite has a member, typically an
array, which holds any number of Component objects.

When you use a Composite pattern the Component class usually has some
virtual method doSomething() that you override in the child classes. Typically the
primitive children of Component override doSomething() in various particular kinds
of ways and the Composite child class overrides doSomething() to (a) walk through
a loop to call doSemething for all of _pchildren(i] and (b) possibly do some
additional step peculiar to the particular Composite class.

*

Component

7

Primitive 1 — Composite

Component *_pchildren[] K>———

Primitive 2 —

Composite 1

Composite 2

Figure 5.5 The Command pattern

113

114 Software Engineering and Computer Games

Figure 5.6 A Composite pattern tree

It's sometimes useful to think of a Composite pattern in terms of a tree. The
Primitive objects are the leaves of the tree, and the Composite objects are the forks.
When you call the doSomething at some fork, you end up working your way out
to all the leaves above this fork. Thus, in Figure 5.6, if we supposed that *pa
points to the object in the small circle, then the call pa->doSomething () will
cascade down to all of the other objects included in the large oval.

In the Pop Framework we use the Composite pattern with our graphical sprite
objects. That is, we have a base class eSprite with a some ‘primitive’ sprite child
classes: cSpriteBubble, cSpritelcon, and cPolygon. We also have a cSprite child class
called cSpriteComposite, and this class has a cArray _pspritechild of cSprite* objects.

Java uses the Composite pattern for its graphics classes: there is a base
Component class which has as child classes (a) Primitive classes such as Button
and Scrollbar, and (b) a Composite class called Container, which holds an array of
Component objects. In addition, the Container class has (c) child classes Panel,
Window, Frame, Dialog, etc.

5.5 Singleton

The problem addressed here is that one may have a class that one only wants to
have one single, easily accessible instance of.

The solution, as shown in Figure 5.7, is to give the Singleton class a single
static Singleton *_pinstancncesingleton member. Initially this member
is NuLL. You give the Singleton class a public static accessor pinstance()
that (a) initializes pinstancncesingleton if it’s still nurL and (b) returns
pinstancncesingleton. An additional wrinkle is that, in order to prevent the
users of this class from making additional Singleton instances, you make the
Singleton constructor private.

Singleton

private static Singleton *_pinstancesingleton;

private Singleton() ;
public static Singleton* pinstance();
public:

//Useful Singleton methods...

Figure 5.7 The Singleton pattern

Software design patterns

The static singleton *_pinstancesingleton pointer instance resides in
singleton.cpp and is initially set to nuLL with a line like this.

Singleton* Singleton::_pinstancetancesingleton = NULL;

So when does _pinstancesingleton get initialized? The trick is to have
pinstance() initialize it the first time it’s called. That is, we use code like the
following.

Singleton* Singleton::pinstance()
{
if (_pinstancesingleton == NULL)
_pinstancesingleton = new Singleton();

return _pinstancesingleton;

In the Pop Framework, the cRandomizer class is a Singleton class. There are a
large number of useful eRandomizer methods for returning random integers, reals,
vectors, colors, and so on. In order to call these methods, we need a cRandomizer
object to call them. The methods that return random values can’t be static
because the internal state of the cRandomizer object is changed by each of these
calls. The internal state has to change so that the cRandomizer doesn’t repeat
itself any sooner than necessary.

An annoying but seemingly unavoidable side-effect of having a pointer
singleton instance Singleton *_pinstancesingleton is that we need to have the app
remember to delete this instance at exit. In the case of the cRandomizer, we have
a static crandomizer: :deleteSingleton () method that we call in the cPopApp
destructor. (In Java or C#, with automatic garbage collection, this isn’t an issue
you’d have to worry about.) In most cases, deleting this little Singleton object
isn’t really that important, since you are, after all, terminating the program, at
which time any remaining memory is freed up anyway. But the Visual Studio
debugger does give you a nagging warning if you fail to free all your memory,
so it’s just as well to do the right thing.

Why not just have the static Singleton member be an instance that we
declare as singleton Singleton::_instancesingleton;? And then go ahead
and in-line the pinstance method as singleton::pinstance(){return
&(Singleton::_instancesingleton);}?

If we took this approach with eRandomizer, it would in fact work in most ver-
sions of the Pop Framework. But the approach is risky. The risk has to do with
the fact that in a multi-file C++ project, the programmer has no sure control
over the order in which the static objects declared in the various *.epp modules
get initialized. So it’s possible that the constructor of some static object might
call singleton::pinstance() before the singleton::_instancesingleton got
initialized, and disaster would ensue.

By using the Singleton::_pinstancesingleton, we can make a fail-safe
pinstance () that expressly initializes _pinstancesingleton the first time it’s
called.

115

116

Software Engineering and Computer Games
5.6 Bridge

The Bridge pattern is a kind of super Strategy pattern, that is, it is a way of
encapsulating alternate versions of a whole range of methods rather than
encapsulating alternate versions of just one method.

The problem is that you may have a set of methods that you contemplate
implementing in two or more completely different ways. You don’t want
to have to mess up the rest of your code with the details of the different
implementations.

The solution is to write a base class Interface that includes more or less empty
implementations of the methods you need, and then to derive off Implementation
child classes that provide concrete implementations of these methods. In the
rest of the program, you program towards the somewhat abstract interface of the
Interface object without worrying about the details of the Implementation children.

The UML diagram (Figure 5.8) is very similar to that for the Strategy pattern.

Learning about the Bridge pattern was crucial for the development of the
Pop Framework code. The author had initially targeted the code throughout for
Windows graphics calls. But then the time came to try and support OpenGL
graphics. How to port to OpenGL graphics without losing all the work done
implementing for Windows graphics and without, God forbid, developing two
alternate versions of the same program. The solution was to abstract out an
interface of all the graphics calls needed for Windows graphics or OpenGL
graphics and to form a eGraphics class with prototypes for all these methods.
Derived from this class are the cGraphiesMFC class and the cGraphicsOpenGL class. The
CPopView window object owns a cGraphics *_pgraphics member which can in
fact be dynamically changed between being cGraphicsMFC or cGraphicsOpenGL. For
each ‘behave’ graphics call inside CcPopView the code is now passed to a virtual
_pgraphics->behavealgorithm call. Depending on the type of _pgraphics, the
behavealgorithm call is then dynamically shunted to the Windows graphics or
to the OpenGL graphics code.

Context

Interface *_pbridge K>— Interface

behavel () virtual behavealgorithml (cContext *pcaller)

{_pbridge->behavealgorithml (this);} virtual behavealgorithm2 (cContext *pcaller)

behave? () virtual behavealgorithm3 (cContext *pcaller)

{_pbridge->behavealgorithm2 (this);}

behave3 ()

{_pbridge->behavealgorithm3 (this);} Zﬁ
Implementationl1 Implementation2
behavealgorithml (...) behavealgorithml (...)
behavealgorithm2 (...) behavealgorithm2 (...)
behavealgorithm3 (...) behavealgorithm3 (...)

Figure 5.8 The Bridge pattern

Software design patterns

Now that we have this instance of the Bridge pattern in place, a further port
to DirectX graphics should be non-problematic (emphasis on should because
one never knows with software engineering projects)!

5.7 Document-View

The Document-View pattern is also known as the Document-View architecture.
In this section we'll discuss a refined version of the Document-View pattern that
allows for an event notification mechanism. This refined version is sometimes
called the Observable-Observer pattern, or the Publisher-Subscriber pattern.

The problem arises when you have a number of different representations of
the same data. How do we keep the representations in synch with each other?

The solution, as shown in Figure 5.9, is to have one Document (or Publisher)
class that holds the core data, and to have a range of View (or Subscriber) classes
that display the data. To smooth out our exposition, we’ll write ‘document’ or
‘view’ to mean, respectively, a Document object or a View object.

The document needs to be able to add and remove views from its active list.
And it needs to have a UpdateAllViews method that tells all of the views that
some of the data may have changed.

A view needs to have a getDoc() method that returns a pointer to the owner
document. When the document calls UpdateAllViews, each view executes an
OnUpdate method which checks the data in the document and updates the state
of the view accordingly.

Another aspect of the Document-View architecture is that the view not only
needs to be able to access the data in the document, it should also be able to
mutate the data in the document. Part of the implementation of the document
mutators must be that when document data is changed, the document calls
UpdateAllViews so that all of the active views will show the new data. This acts
as a roundabout way for the views to communicate with each other. We can
represent this by a UML sequence diagram as shown in Figure 5.10.

As this is our first sequence diagram, we need to mention that UML sequence
diagrams are used to show how the objects in a program interact over time. The
diagram is set up as a series of columns, with one column for each object. Each
column has a vertical lifeline showing the lifetime of the object. Arrows are
drawn from lifeline to lifeline to symbolize the passing of messages via method
calls. We normally label a message with the name of a method being called,
and this method is expected to be a member method of the class column that
the message points to. Use a dotted arrow line when the caller object is not
shown. A call that an object makes to itself is drawn as an arrow that starts and

Document . View

add (View *pview) >— Document* getDoc () ;
UpdateAllViews () OnUpdate ()
mutator () {...; Notify();}

Figure 5.9 The Document-View pattern

117

118 Software Engineering and Computer Games

Document:Doc View:vewl View:view?2
E editbDoc - E
L mutator]
updateAllViews 1
onUpdate — .

onUpdate D

Figure 5.10 Sequence diagram of a view editing a document

ends on the object’s own lifeline. The labels at the heads of the columns can
either be class names or, if you want to distinguish among multiple instances of a
class, you can use object names which are written in the format class:0bjectl.

In this diagram, we see how the viewl object can edit the poc data and
mutate it. The document mutator uses an UpdateAllViews call to ‘publish’
the changed data out to both viewl and view2. Presumably there has been a
call to Document : :updateallviews before the start of this sequence diagram, so
that viewl is in fact looking at a current view of the poc before beginning
to edit it.

Documents and views in Windows programs

Most Windows programs use variations of the Document-View pattern to
simultaneously show multiple views of multiple documents. Putting this a
bit differently, the Document-View architecture allows you to have different
views of the same set of data, and it also allows you to display different views of
different sets of data.

In a Windows Document-View architecture program you can get new views
in two ways. (a) You can use a command with a name like File | New or File |
Open to open an additional document, or (b) you can use a command with a
name like Window | New to open an additional view of the currently active
document. In case (a) what you have is a completely new set of data inside the
new window, while in case (b) you get a different view of the data of one of
the windows you already had open (the window which currently had the focus,
i.e. the window that had the highlighted caption bar).

Software design patterns

Each onscreen window view shows the data in an associated document. It is
possible to have several view windows showing the same document, but it is
not possible to have one view window showing more than one document.

One can imagine, say, a financial analysis program in which you might
want to view the same numerical data both as a table and as a bar graph at the
same time. These would be two different views of the same document, with the
document being the set of numerical data. Or consider a computer game in
which you want to show both a 3D rendered view of what virtual player sees,
and a 2D overview map of the landscape. Here again, we’d have two views of
the same document, where the document might have information like the
game level, the positions of the players in the landscape, and the players’ scores
and strengths. In a word-processing program, the document is the text you're
working on. If you use a splitter window, then the two subwindows represent
two different views of the same document. In a paint or photo-retouching pro-
gram, the document is the image you're working on, and you have a variety of
possible views showing, for instance, different zoom levels, different layers of
the image, and so on.

Having the different views show the same data is not something that you get
for free. You have to write code to make it happen. It used to be fairly hard to
write a Document-View architecture program, but now, thanks to MFC and the
‘AppWizard’ (the Visual Studio tool for creating projects), it’s pretty easy. When
you use the AppWizard to generate some starting code for a new project, its
default choice is to use the Document-View architecture. The default program
architecture chosen by the AppWizard is called MDI. This uses the Document-
View architecture.

In Windows, Document-View architecture programs used to keep all of their
views of all their documents inside a single-frame window. But now it’s becom-
ing the fashion to have a different frame window for each document. In the
versions of Word starting with Word 2000, for instance, you'll find that the
program pops up completely different frame windows when you open different
documents. Some programs, such as Macromedia Dreamweaver, even pop up
separate frame windows for each view, visually shattering the program into
something like a sea of dialog boxes. But under the hood and on their menus,
these are still Document-View architecture programs in which one executable
manages a set of documents, each with its own set of views.

The app, the doc, and the view in MFC

Table 5.1 summarizes how MFC sets up the Document-View architecture for the
Pop Framework.

As we discuss below, not all of your application’s data is supposed to go into
the CcDocument. A flag saying whether or not you want to mute the speaker
might go into your CWinApp. And a flag saying whether you want to show
you graphical objects as solids or as wire-frames might go into your CView.
It’s only the data that relates to the description of what you're looking at that
goes into the CDocument.

119

120 Software Engineering and Computer Games

Table 5.1 The application, the document, and the view in MFC.

Colloquial name Pop class Inherits from Code is in
Application CPopApp CWinApp Pop.*
Document CPopDoc CDocument PopDoc.*
View CPopView CView PopView.*

This raises the point that you may want to be able to refer to one of the
classes from inside one of the others. Suppose, for instance, that one of our
CPopView methods wants to look at a _soundflag that lives inside CPopApp.
And surely, our CPopView is going to need to find the data that’s in the CPopDoc.
If we're writing code inside a CPopApp, CPopDoc, or CPopView method, is there a
way to talk about the other classes?

It turns out that in terms of navigating among the app, the docs, and the
views there are four tasks that we normally care about.

e First, we need (but not very often) a way for any doc or view to get a pointer
to the app that owns them.

e Second, we need a way for any view to get a pointer to its ‘owner’ doc.

e Third, we need a way for a doc to tell all of its views to update themselves,
and we prefer to do this without having to individually list the views.

e Fourth, we need a way for a document to know which of its views, if any,
is the active focus window of the user interface.

The first task is done by the global method ::AfxGetApp(), as in:
CPopApp* papp = (CPopApp*) (::AfxGetApp());//cast CWinApp*

The second task is accomplished by the CView::GetDocument() method, as in:
CPopDhoc* pdoc = GetDocument () ;

As it happens, you don’t need the cast on GetDocument; because GetDocument is
redefined for each child of cview to include the cast. (To make this clear, you
can look at the definition of CPopView::GetDocument() in popview.h.)

The third task is accomplished by the CDocument::UpdateAllViews method,
which cascades a call to CView::0nUpdate down to each of the doc’s views.

The full prototype of this third method is veid UpdateAllViews(CView* pSender,
LPARAM IHint = 0, CObject* pHint = NULL). The first argument isn’t used very often.
The second argument is used for a document to signal to its views if it is in
some different-looking state, for instance if a game is over, the doc might put a
number into 1Hint to tell the views to change color. The third argument is a
catch-all where a doc can put pretty much anything it likes to pass to its views.
That is, a doc can wrap some information up inside a class object and then pass
the view a pointer to the class with the information.

Software design patterns

As we mention in Chapter 23: Programming Windows with MFC in Part II,
there actually is a way to individually step through a doc’s views, but this is a
technique that you should use only rarely. Using UpdateAllViews is a higher-level
and cleaner way for your doc to pass information to its views.

The fourth task can be accomplished by a special CPopDoc::getActiveView()
method that we wrote for our CPopDoc class; see the Levels of Windows section
in Chapter 23 for details.

Documents and views in the Pop Framework

Using the Document-View architecture forces a programmer to think about
where to declare his or her variables. In this subsection we talk about this issue
in the Pop Framework.

Your program is normally going to have a number of variables that describe
the data being displayed by the program as well as the current state of the
program. These are the kinds of variables that you might once have made
into global variables or into static variables living inside your main function.
In MFC programming you will usually put these variables either into your
CDocument class or into your CView class — well, actually they go into your app’s
specific children of these classes (which are called cPopDoc and CPopView in our
example program). Once in a while you might store a particular variable in the
CWinApp class or in your CMainFrame class instead; an example of this kind of
variable might be a global switch that specifies whether or not to pause your
program when another program is in the foreground. But the overwhelming
majority of your variables will live in your CDocument and your CView. But in
which one?

The cDocument variables tend to be either the kinds of file variables that you
might want to save, or the kinds of temporary helper objects that you might
want to share among several views. And variables whose values are specific to
an individual view go into the CView.

Let’s say more about the Document-View distinction in terms of a computer
game program such as we'll be writing in this book. In a computer game you'll
often have an array of ‘critters’ moving around on top of a bitmap background.
Each of your critters will have a position, a velocity, a health-index, and so on.
(Normally one of the critters will represent you, the player, and its actions will
be controlled by your input rather than by the program code. But it’s still just a
critter.) As the user plays the game, he or she will see the critters moving inside
a window. It may be that if the user wants the game to run faster, he or she will
have the choice of showing the critters in simple outline instead of in colorful
detail. The variable controlling this choice would probably be stored at view
level rather than at document level. Another example of a situation where there
might be a view-specific variable might be the user’s ‘point of view’. This would
be a factor if the critters’ world is larger than the window, and the user can
scroll the view this way and that. Or perhaps the world has a lot of detail and
the user can zoom in or out. Or perhaps the game is three-dimensional, and the
user will have the option of changing the angle of view.

121

122 Software Engineering and Computer Games

[ElPop. Version 25.6, May 6. 2002, Rudy Rucker. - Pop 1

File View Game Player Window Help
DAY e nfovh S etr@Na® 08
Bropiz_____ mem|Eea =

Score: 0. Health: 1. Total Critters: 32. Updates per second: 26.

Two views of a Pop Dambuilder game document

In our computer games, we’d expect the critters and the background bitmap
information to live in the CDocument. But, as mentioned, the switch that deter-
mines whether or not to show the critters in detail would live in the CView, as
would the variable (perhaps a real-valued rectangle or a matrix) that specifies
the user’s point of view. If you were to ‘save’ your game, you’'d normally only
want to save the states of the critters, that is the document data. But it could
happen that you might want to save some information about the view as well,
e.g. the current location of the player’s point of view.

It isn’t always easy to decide whether to put a given variable into the docu-
ment or into the view, but as we go along in our example programs the process
should become a little clearer. Very often there is no one ‘absolutely right’ way to
program something. (But there are plenty of things that are absolutely wrong!)
For a beginning programmer, the number of choices is daunting, and it’s easy
to feel paralyzed with indecision. Well, the only real way to learn is by doing,
so go ahead and program, but keep an open mind and be willing to go back and
rewrite what you did before. Another way of putting this is that learning pro-
gramming is a matter of first making every possible mistake, so the faster you
make your mistakes the faster you're learning!

Here’s how the cPopDoc updates the game. First, the stepDoc method calls
_pgame->step, where the eGame *_pgame reference member object holds the data
of the game document. And second, the stepDoc uses UpdateAllViews to update
the views to display the newly updated _pgame data.

Software design patterns 123

void CPopDoc: :stepDoc (Real dt)
{

CPopView *pview = getActiveView() ;

_pgame->step (dt, pview); /* Move the critters for timestep dt.
Maybe add or delete some critters. Critters might use the
pview to sniff out the pixel colors near their current image
locations (rarely used). */

cTimeHint timehint(dt); //Wrap dt up so we can pass it to the views.

UpdateAllViews (NULL, 0, &timehint); /* Redraw all the views and
possibly animate their viewpoints with the dt inside
timehint. */

As a sequence diagram, this looks like Figure 5.11. Since we only have one
object of each class type in this picture, we just label the columns with the class
names.

cPopDoc cGame CPopView
stepDboc —— E E
step . |
updateAllViews -
r E E
E onUpdate [i

Figure 5.11 Sequence diagram of the CPopDocument::stepDoc cascade

124

Controlling multiple documents and views

How do you fit the Document-View pattern into your application if you want
more than document? And how do you send messages to the various pieces of
the program?

One solution is to have an App class that holds an array of Document objects,
and to have App, Document, and View inherit from a base class Target. This is the
architecture used by the MFC framework when you go for a MDIL.

[E]Pop. Version 25.6. May 6. 2002, Rudy Rucker. - Pop 1 [_[2]x]
File View Game Player Window Help

DY oltndg vh=tem@NaylE

[EPop 1 [_ O[]

Scare: 0. Health: 10. Total Critters: 9. Updates per second: 81. (Near Max) %

Pop showing two game documents

The idea is to use an App class in addition to a Document and a View class. In
the MFC Application Framework, these classes are called CWinApp, CDocument,
and CView.

What we have here is close to a pattern called ‘model-view-controller.” In
the model-view-controller pattern the ‘model’ plays the role of the Document,
the ‘view’ is a View in the same sense we’ve already talked about, and the
‘controller’ is an abstraction of the user interface controls. Stretching things a
bit, you might think of the controller as being the App, so that Document-View-
App becomes a close analog of model-view-controller.

This analogy is, however, imperfect, because in the specific example of MFC
we actually process user commands with any of the three Document-View-App
components, which in MFC are the CDocument objects, the CVview objects, and
a CWinApp object. In an MFC program, all three of these classes can process
messages and act like a ‘controller’.

Software design patterns

CCmdTarget
N
CWinApp CDocument CWnd
T i T
CPopApp CPopDoc CPopView

Figure 5.12 Inheritance diagram in a multiple document pattern

In any case, this is a good place to say a bit about how MFC processes user
commands. In MFC there is a general base class called cCmdTarget. A CCmdTarget
object is characterized as being an object that you can send Windows messages
to. Put differently, a CCmdTarget is something that can process, say, menu item
selection messages such as OnCommandGamePlaySounds. (As it so happens, in the
Pop program this message was originally processed by the cPopDoc, and later we
changed it so that the message is processed by the cPopApp.) Now we can send a
message either to a document, to the application, or to a window, and Figure 5.12
expresses that notion. Just to make the diagram a little bigger, we’ve put in the
three child classes CPopDoc, CPopApp, and CPopView as well.

This diagram shows inheritance; now let’s talk about composition and naviga-
tion. As we’ve already said, the CWinApp class corresponds to the program as
a whole, and the CDocument class corresponds to the files that the program
currently has open. Although a CWinApp does not have a set of CDocument
objects as explicit members, we certainly think of it as associating with the
CDocument class. As for navigation, MFC happens to have a global ::AfxGetApp
method that returns the current CWinApp, so we can navigate from CDocument to
CWinApp. And, although it’s not simple to describe, there is also an accessor-like
process by which a cWinApp can walk through a list of its CDocument objects, so
we can say that we can navigate from CWinApp to CDocument. (If you're curious
about the details of Windows programs, see Chapter 23: Programming
Windows with MFC). So we draw a composition line in one direction with a
navigation line coming back the other way. A CWinApp can open as many views
as we like (by using Window | New), but a CDocument has only one associated
CWinApp. So we put a * by CDocument at the end of the composition line. This is
shown in Figure 5.13.

This is entirely analogous to how a Document relates to a View (Figure 5.14).

" <
CWinApp CDocument

Figure 5.13 App and documents

125

126 Software Engineering and Computer Games

P S— .
CDocument CView
Figure 5.14 Document and views
CObject
N
CCmdTarget
N
. |
CWinApp CDocument CWnd
N N AF
\ |
CView CFrameWnd
CMDIChildWnd CMDIFrame
CPopApp CPopDoc CPopView CChildFrame CMainFrame

Figure 5.15 Class diagram of the Pop Framework MFC classes

For the sake of completeness, let’s draw one more UML diagram (Figure 5.15)
showing some of the relationships among our Pop Framework MFC classes.

You might say that this UML diagram is primarily about the Windows
operating system, and the UML diagram of the Pop Framework classes in the
last chapter was primarily about the Pop program. It make sense that cPopDoc
and CPopView appear in both diagrams, because these classes are designed by
MEFC to contain, respectively, the application’s data and the application’s
appearance. The CPopView, your app’s onscreen image, is where it makes contact
with the Windows operating system.

Review questions

A What are software design patterns?

B Give examples of the design patterns we discussed: the Strategy pattern, the Template
Method pattern, the Command pattern, the Composite pattern, the Singleton pattern,
the Bridge pattern, and the Document-View pattern.

Software design patterns

C For each pattern draw a relevant UML class diagram.

D What are the standard Document and View classes called in MFC programs? What are
some other basic classes used in MFC programs?

Exercises

Exercise 5.1: Strategy Pattern and sales chart display

Suppose that you have a cSalesData object with a drawGraph() method. Draw a UML
including a few lines of code to show how you could use a Strategy Pattern to select at
runtime between drawing a bar graph or a pie graph of the data.

Exercise 5.2: Template Method pattern and opening diverse file types

When you use Visual Studio you can open various sorts of files, edit them, and then save
them. Text files are shown as text and bitmap files are shown as images. We might suppose
that there is a FileOpen(CString filename) method. Some of this code will act the same no
matter what kind of file you open, but part of the code will act differently depending on the
kind of file. Describe how this might be accomplished by using the Template Method.
Draw a UML diagram and write out some very rough code, simply using made-up names
for the functions you use.

Exercise 5.3: Command pattern and a word-processor’s Undo and Redo

Experiment a bit with the effect of Ctrl+Z (for Undo) and Ctrl+Y (for Redo) in your word-
processor. What do you think might be a WordProcessorCommand in this context? What are
the methods that WerdProcessorCommand must implement? What kind of data structure
might you need for holding the WordProcessorCommand objects? Draw a simple UML class
diagram.

Exercise 5.4: Composite pattern and building a virtual city

Say that you want to develop a cStructure class for describing doors, walls, rooms, floors of
buildings, buildings, city-blocks, cities, and so on. Draw a UML showing how to do this using
the Composite pattern.

Exercise 5.5: Singleton pattern and preserving a connection

On many home computers you can to click some desktop icon to connect to the Net via
a conventional modem or a broadband modem. Some email and browser software will
try and make a connection even if one exists. Trying to make a connection when a connec-
tion is already open sometimes spoils the existing connection in such a way that it's
impossible to reconnect without rebooting the machine. How might your operating system
use the singleton pattern to avoid this problem? Draw a UML diagram.

Exercise 5.6: Bridge pattern and the look and feel of windows

In Java it’s possible to change the ‘look and feel’ of your windows. This includes, for
instance, how you draw a window frame, draw the caption bar, draw a button, and draw a

127

128

Software Engineering and Computer Games

scroll bar. You can select, for instance, a Windows, a Mac, or an XWindows look and feel.
Draw a UML diagram showing how this can be done by using the Bridge pattern.

Exercise 5.7: Document-View pattern and guestbook conversation

Say that a number of clients are viewing a web page on a server. Suppose that the web
page holds a guestbook that a client can update in real time by typing in characters and
pressing a Send button. Draw a sequence diagram to show the steps by which Clientl
can send a message to and get an answer from Client2 by using the server.

Animation 6

In this chapter we’ll talk about how to write a program which continually
updates itself onscreen. There are four tasks in an animation program.

e Place an animation update call in the app where you loop back indefinitely
often.

e Calculate an appropriate timestep dt for each update.

e Cascade update calls from the app down to the individual data elements of
the documents, passing them the current dt.

e Update the views after the data is updated.

In this chapter, we’ll have one section on each of these four tasks.

6.1 The endless animation loop

In a game program like Pop, the images keep changing even when you're not
giving it input. Things move. The program animates itself. Where is the point
in the program that we can repeatedly loop back to for new updates?

Another characteristic thing about game programs is that the user can give
input at any time, using the mouse or the keys to move the player icon. How
do we synchronize these inputs with the game updates?

In any Windows program, the internal update processes and the user input
processes are concurrent or parallel flows, that is, the updating is computed by
the machine and the inputs are ‘computed’ by the player, with the two systems
acting independently.

We'll draw a new kind of UML diagram to show how this fits together. Recall
that UML has quite a range of diagrams. The use case diagrams are good for
requirements gathering. Component diagrams are useful for mapping out the
interdependencies of a project’s source-code files. Class diagrams show how the
classes inherit and associate. Sequence diagrams show the order in which pro-
gram events happen. We're going to talk about more sequence diagrams in this
chapter and also about one more kind of UML diagram: an activity diagram.
Sequence and activity diagrams are for showing how a program runs. When
you design a program you need to think not only about its classes but also
about its run-cycle or work flow.

130 Software Engineering and Computer Games
Onldle:

Measure dt and

call the critters’ move(dt)

Check message queue and Check user actions and
process any messages enqueue any messages

Not in exit state Not in exit state

Program in exit state Program in exit state

Figure 6.1 Activity diagram of the Windows program flow

A UML activity diagram is similar to a traditional flow-chart. We draw
rounded rectangles around activities in the program and draw little diamonds
to indicate test points. Arrows show the flow of the program control. What
makes an activity diagram a bit more than a flow-chart is that it allows you
to show concurrent processes. We use horizontal lines to indicate the ‘forks’
and ‘joins’ where parallel processes either split apart or join back together.
Figure 6.1 is an activity diagram for the Pop program as a whole.

A Windows program maintains an internal structure called the message
queue, which is basically an array of special MSG structures. A message is placed
on the queue, or ‘enqueued,’ each time that the user does something — press a
key, move the mouse, make a menu selection. And some Windows methods
place messages on the queue themselves. A message can be placed on the queue
at any time.

Rather than responding to each message immediately, a Windows program
like Pop lets the messages wait in the queue until it is ready to deal with them.
Pop works its way through the message queue, processing the messages in the
order in which they arrived.

As we mentioned in Chapter 5: Software Design Patterns, this is an example
of the Command pattern. Rather than executing a Windows message right
away, we encapsulate the idea of the message into a command that we place
into our message queue, to be executed when we have time.

When there are no more messages to process, Pop begins calling an internal
method named Onldle. When Onldle returns, Pop checks if there are any new
messages to process, and then it calls Onldle again. When there are no messages

Animation

at all, Pop’s behavior is simply to call Onldle over and over again. If you want to
read more about the Windows execution flow see Chapter 23: Programming
Windows with MFC.

Given that onldle gets called over and over, this is the spot to stick in the code
to run your animation. The CPopApp class defined in the pop.h and pop.cpp files is
a child of the MFC cWwinApp class that owns the Onldle method. So what we’ll do
to animate our program is to override and extend the code for CPopApp::Onidie
inside the pop.cpp file.

If you write an ‘eternal-loop’ program in the wrong way, you can find
it impossible to terminate the program (short of using Ctrl+Alt+Del to get to
the Task Manager). That’s why it’s a good idea to use the approach described
here. By locating the eternal loop inside the Onldle function, we’re sure that
all user messages to the program get properly processed. If a user message tells
the program to terminate, then it never does get back to Onldle and it exits
smoothly.

Inside cPopApp::Onidle we do two things: we compute an appropriate Real dt
timestep, and we pass this dt to the documents with a CPopApp:animateAllDocs(dt)
call. Before discussing these points, let’s say a bit more about how we override
Onldle.

Using the onidle method to call animateAliDocs

We animate by overriding the CWinApp::Onldle function. We want it to make calls
to the cDocument objects that will cascade down to the eGame objects and the
CView objects.

An application executes the CWinApp::Onldle function at least once each time
that it finishes processing its current messages. Normally the first two calls
to onldle are used for maintaining the appearance of the user interface, that
is, things like the toolbar buttons and the menu selections. Thus the first call
to onldle will generate a call to, for instance, OnUpdateGameSpacewar to tell the
menu whether or not the Game | Spacewar selection should have a checkmark
next to it.

The return type of Onldle is BOOL. If you want your application to keep calling
Onldle over and over again even if no messages are found, you have Onldle keep
returning TrUE. This is safe because Onldle will continue checking for messages
after each return in any case.

If you only want to call onldle once each time that you finish processing
messages, then return rarse. Here, a way to keep a program doing things
‘forever’ is to have its Onldle function generate more messages. After the pro-
gram processes these messages, it goes back to Onldle, which produces more
messages, and so on. We can think of either approach as an ‘eternal-loop’
program (see Exercise 6.5).

The simplest way to put an animation loop inside Onldle might be to pick a
target timestep of, say, 0.05 second (that is, 50 milliseconds, or 20 updates a
second), and do something like this.

131

132 Software Engineering and Computer Games

BOOL CPopApp: :0nIdle (LONG 1lCount)
{
CWinApp: :0nIdle(1Count); //Do the base class WinApp processing.
animateAllDocs (0.05) ;
//Step through all the docs and feed this timestep.
return TRUE; //Keep doing it over and over.

But we’ll improve on this a bit.

e First of all, we’d like the timestep that we feed into animateAllDocs to reflect
the actual time that it really takes the computer to do the update. To do this
we need to get information from the computer about the system time.
There is a C++ clock method which returns the time in milliseconds, but
using the function is a bit messy. So we’ll encapsulate our time-getting
code within a class we’ll call ePerformanceTimer, and give it a tick function
which returns the time as a Real number of seconds. More about this in the
following section.

e Secondly, we’d like to have a switch for turning the animation on and off.

e Thirdly, we’d like to avoid another problem with eternal-loop programs,
which is that they can suck up every available machine computation cycle — a
very bad situation if you minimize such a program, forget about it, and then
try and run some other programs. If the minimized eternal-loop program is
still running, you’ll find that your other programs behave very poorly. Our
standard practice for avoiding this is to have our eternal loop only be active
when our eternal-loop program is the focus or foreground window, that is,
only when it’s the window whose caption bar is highlighted.

For full details about how to do this, see the CPopApp::Onidle code in the
pop.cpp file of the Pop Framework.

6.2 Processor-independent simulation speed

What value should we use for an animation’s dt? We’d like to make it some-
what independent of the speed at which our program is running. The run speed
can be influenced not only by your processor speed, but also by the size of your
game window, and whether or not you have multiple views or documents open
in your game. As far as possible, we’d like the apparent speed of our moving
creatures to stay the same.

What exactly does this mean? As we discuss in Chapter 7: Simulating
Physics, we give each simulation object a vector _pesition and a vector _velocity.
For each update cycle, we compute an appropriate time step dt, we update our
_velocity, and then we use the standard rule:

_position = _position + dt * _velocity

Animation

The issue at hand is this: what should dt be? One might imagine setting dt to
some ‘reasonable’ fixed value like 0.1 that happens to look good on your own
machine. But if your processor is running at 400 Mhz and your user’s machine
is running at 200 Mhz, your critters are going to move half as fast on the user’s
machine. If the user has a slow video card then your program is going to run
even slower. And, on the other hand, when you get a 1.2 Gigahertz machine
your critters are going to go three times as fast, and if they’re part of a game this
game is now going to be unplayable. (Gigahertz, or GHz, is of course a billion
cycles per second, that is, a thousand Mhz. It took desktop machines something
like 20 years to make it from MHz to GHz speeds. One of these days you'll see
personal computers running at a terahertz or Thz speeds, where a terahertz is a
trillion cycles per second.)

No, the trick is to let dt be real time. That is, we will measure the time length
dt of each update cycle, and use that in our simulation. If the machine is slow,
then the dt will be big, and the critter will move in a bigger step during each
update cycle. If the machine is fast, the dt will be small, and the critter will
move in smaller steps during each update cycle.

The way we implement this is to give our application a cPerformanceTimer
object that has a tick() method which will return the elapsed time dt since the
last time that tick() was called. And then we make our Onldle method look like
the following.

BOOL CPopApp: :0nIdle (LONG 1Count)
{
CWinApp::0nIdle(1Count); //Do the base class WinApp processing.
double dt = _timer.tick();
animateAllDocs (dt) ;
//Step through all the docs and feed this timestep.
return TRUE; //Keep doing it over and over.

We'll say more about the cPerformanceTimer class in the next subsection. For
now, let’s analyze the effect of using a ‘real time’ dt. Suppose that we have a
simulation running on two machines, at 25 updates per second on the slower
machine and at 50 updates per second on the faster machine. If each machine
computes a dt as the elapsed time between updates and updates a critter’s posi-
tion as pos+ = dt * vel, we'll get the figures shown in Table 6.1.

Table 6.1 The effect of basing dt on the updates per second.

Updates per second Time between updates Action during 0.04 second
25 0.04 pos + = 0.4 * vel;
50 0.02 pos + = 0.2 * vel;

pos + 0.2 * vel;

133

134

Software Engineering and Computer Games

Compare the net action during 0.04 second on the machines. If the velocity
is constant, the net observed motion is the same. It is possible to imagine a
simulation in which the value of vel might change between the first and second
updates; this would simply mean that the simulation on the faster machine
would be more accurate, which is no surprise. But letting dt be real time elapsed
makes the best of things.

Since we measure the dt in seconds, this means that the speed is in units-
per-second. Another way of looking at this is to realize that the speed is the
magnitude of the _velocity, and the velocity is (new_position — _position)/dt, which
clearly has a units/sec magnitude.

In the Pop Framework we often give our critters a default speed of something
like 2.0. What does this speed mean? The meaning emerges when you look at
the size of the window world you are moving in. If you specify that the world is,
say, ten units across, a speed of 2.0 means that a critter takes about five seconds
to move across the window.

No matter what kind of computer you're using, and no matter how many or
how few critters are running, no matter how big or how small the window is,
the time for a critter to cross the screen should always be the same.

Measuring a timestep

We implement the timing of dt with a cPerformanceTimer class. The basic way
that a timer works is to use a private double _currenttime member, a private
double getsystemtime () method and a public double tick() method. The
tick() call gets the system time, computes dt as the difference between the sys-
tem time and the _currenttime, resets the _currenttime to match the system
time, and returns dt. This is shown in Figure 6.2.

(Seasoned Windows programmers will be familiar with a special Windows
object called a ‘timer’ that is created with a CWnd::SetTimer call. These timers are
something like coarse beepers that can be set to send a window an OnTimer message
at regular intervals, so long as the intervals aren’t very short — a hundredth of a

cPerformanceTimer

double _currenttime
double _dt;

CPerformanceTimer () {_currenttime = getsystemtime() ;}
double getsystemtime() ;
double tick()
{
double systemtime = getsystemtime() ;
_dt = systemtime - _currenttime;
_currenttime = systemtime;
return _dt;

Figure 6.2 A cPerformanceTimer class

Animation

second is for instance a shorter interval than a Windows timer can handle.
Instead of being a coarse beeper, our cPerformanceTimer is a highly accurate clock.
It has no relationship whatsoever to the standard Windows timers.)

The Pop Framework implements the cPerformanceTimer. On newer machines the
cPerformanceTimer computes the system time by using a so-called ‘high-resolution
performance counter.” On the latest machines this counter seems to run at the
same clock cycle as the machine, that is, if a machine’s processor runs at 400 Mhz,
the high-resolution performance counter measures of 400,000,000 ticks per
second. And then we figure out a time interval in seconds by taking the number
of elapsed ticks divided by the number of ticks per second. On slightly older
machines, the high-resolution performance counter runs at about 1 Mhz, or
one million ticks per second. So, the counter frequency is not necessarily the
same as the chip Mhz.

On very old machines, the cPerformanceTimer code has to use the old clock()
function, which runs at about 50 ticks per second. The multimedia timeGetTime
function seems to be essentially the same function as clock, by the way.

A minor point. When you pause, for instance by opening a modal dialog,
reading a help file, or letting your mainframe lose the focus, a lot of time will
elapse before you go back to the onrdle. Before restarting the process, call
_timer.tick(), otherwise the next _timer.tick() will return a dt that’s too
large, as it’s been running while you were out of the appupdate. A good place to
put this extra update call is inside the CPopView::SetFocus method, because that
gets called by at least one view whenever your program gets its focus back and
starts back up. We do put upper and lower bounds on the dt values that our
cPerformanceTimer::tick is allowed to return.

First let’s talk about very high dt values. A machine may run a program
dreadfully slowly, maybe only at five updates per second, taking something
like 0.2 second per update. If the dt step size gets too big, the motion starts to
look jerky. The objects move too far with each step, and you lose the illusion of
continuous motion. The critters look like they’re hopping about instead of
smoothly sliding. We have a brute force correction for this. If the dt turns out to
be larger than some maximum size of a _maxdt value of, let’s say, 0.1 second,
we’ll just ‘lie” to the program and have tick() return the _maxdt.

Now let’s talk about very small dt values. With a really fast processor it’s
possible for dt to get so small that the machine begins to act weird, with odd jumps
in the motion. This is because now the dt is so short that it’s less than the refresh
rate of your video card. If you ask your video card to refresh itself, say, 120 times
per second and the card hardware is only refreshing itself at 60 Hz, then you're
going to be asking for invisible and useless graphics updates — worse than useless,
actually, as the refresh requests can pile up and cause an odd-looking glitch
when the message queue tries to process several of them in a row.

To avoid choking up the graphics pipeline, we set a _mindt, and make the tick()
process spin in a while loop until at least _mindt seconds have passed. To compute
an appropriate _minddt we find the graphics refresh rate by making a call to the
global Windows method ::GetDeviceCaps (hdc, VREFRESH), and then we take
the reciprocal of the refresh rate. The code looks roughly like the following.

135

136

Software Engineering and Computer Games

int refreshrate = ::GetDeviceCaps (hdc, VREFRESH) ;
_timer.setMinDt (1.0/double (refreshrate)) ;
//Don’t run faster than the card.

More details of this code can be viewed in the Pop Framework mainfrm.cpp file.

It’s useful for the designer (and eventually the user) to be able to see how fast
the simulation is running. A good place to show this information is in the status
bar that appears at the bottom of your View window. Rather than displaying
the timestep dt, it's more useful to show the reciprocal 1.0/dt. The quantity dt is
the seconds per update, and 1.0/dt is the updates per second. Because Windows
is always doing little tasks in the background, the actual value of the dt is going
to vary somewhat from cycle to cycle. To keep our updates per second from
jumping around a lot, and being hard to read in the status bar, we actually
compute this number as a rolling average of the last 60 1.0/dt values. This
means that when you make a change to your program, it takes a few seconds
for the updates per second value to settle down.

Improving the animation speed

The speed at which a program like Pop runs depends on two factors: the amount of
computation and the graphics overhead of putting images on the screen. If you
have a large number of critters with complex update methods the computation
will dominate. Remember that when you have N objects, the number of pairs of
objects is proportional to N2. If you are checking for collisions among each pair of
critters, or using forces which involve evaluating all the critter-to-critter distances,
your computational overhead will go up as the square of the number of critters.

More often it is the graphics overhead that dominates. The exact costs of
the graphics depend on the kind of cGraphics that your program uses, that is,
cGraphicsMFC or cGraphicsOpenGL.

Whatever kind of graphics you use, there is one basic cost that we may as
well call the pixel overhead. For every frame of the animation that you show,
you are doing some sequence of actions in order to set the color of each visible
pixel in your program’s onscreen window. There are three factors that affect
this pixel overhead.

pixel overhead = area of rectangle * colors per pixel * bus overhead

The area of the rectangle is the number of pixels you are moving. Keep in mind
that area grows as the square of the edge dimension. A 1600 x 1200 rectangle has
four times as many pixels as a 800 x 600 rectangle. This means that if you develop
your program while looking at a display with a 800 x 600 resolution, but some
of your users run at a 1600 x 1200 resolution, then a full-screen animation pro-
gram on their machine will run about four times as slow!

So one thing we do to help our animation programs run well on more machines
is to start the main window out at moderate size of 800 x 600 rather than a full-
screen size, because we have no control over how big ‘full-screen’ might be.
Exercise 6.4 shows how to control the window size.

Animation

Table 6.2 The number of different bits per pixel in
different color modes.

Number of colors Bits per pixel
256 8

32,768 15

65,536 16
16,777,216 24

True Color 24 or 32

The importance of the number of colors per pixel is a little less obvious.
Right-click on your desktop and select Properties... to bring up the Display
Properties dialog. Go to the Settings sheet. The Color Palette control group has a
dropdown select box with the options for the total number of colors. Some
common options are listed in Table 6.2.

Many users tend to set the number of colors to a maximal value, although
for many applications 256 colors are enough. The 256 limit is not as bad as it
sounds, because a window is able to pick which particular 256 colors it uses. But
programming for 256 color mode is a hassle, so our preferred choice is one of
the next two higher selections, 32,768 or 65,536 colors.

The number of colors being used affects the speed of the pixel overhead
because the more bits per pixel that you have, the more information your
graphics implementation needs to move around. But this is not something that
we can very easily change from within our program, nor should we, as it would
be very poor Windows etiquette for your app to do something that affects all of
the other apps on display. This said, it’s actually quite common for commercial
computer games to do this. In order to squeeze the most out of a system, com-
mercial games usually bail out from Windows to a full-screen, single-task mode
and adjust the graphics settings at will. But, in order to make our code as gener-
ally applicable as possible, we don’t take that route in Software Engineering and
Computer Games.

If you are using OpenGL graphics, then you sometimes must use the
16 bits per pixel mode, or 65,536 colors, as some graphics cards only provide
hardware OpenGL acceleration for the 16-bit color mode. You can tell if you
have hardware acceleration in the Pop Framework by consulting the Help | Your
System’s OpenGL Graphics Support dialog.

While we are on the topic of the Display Properties dialog, you may also be
able to set the refresh rate of your graphics card on this dialog. A typical default
speed is 60 Hz or 75 Hz, where, once again, ‘Hz’ means ‘Hertz,” or ‘updates per
second.” Set this update speed as high as your card will allow for the pixel
resolution you’ve chosen. You really shouldn’t use a display running at only
60 Hz, as it will tire out your eyes. These days 90 Hz or higher is not uncommon.
Upping this value gives your animation program the possibility of running
faster; as was mentioned earlier in this chapter, you can’t animate faster than
your card’s refresh rate.

137

138

Software Engineering and Computer Games

A final thing to think about when you look at the Display Properties dialog is
your pixel resolution. If your resolution is something like 1600 x 1400 and you
try and run your game in a maximized window, the game is going to run slow,
simply because of the enormous number of pixels in the window. If you want
to run your game at a reasonable speed in a full-screen window, you need to
reduce the pixel resolution. Alternately you can keep a high pixel resolution,
but be aware that you shouldn’t make your game window so large as to slow
the update speed down too much.

We called the third pixel overhead factor ‘bus overhead.” This is the time
cost of moving the pixel information from one memory location to another.
The reason we speak of ‘moving the pixel information’ is because normally one
builds up a graphics image in some temporarily invisible offscreen memory
location called a ‘memory buffer’, and then, when it’s all ready, you move the
image into a location called the ‘frame buffer,” which is the information that
the graphics card uses for painting the current image onscreen.

The bus overhead factor is very much dependent on the kind of graphics
card you have, and whether you are running 2D MFC graphics or 3D OpenGL
graphics. In the worst case, your graphics image is being stored in your system
RAM and then being transferred to the frame buffer on the graphics card for
each update. In a better kind of scenario, the memory image is on the graphics
card ‘near’ the frame buffer. In the best possible situation, we don’t actually
have to move the memory image to the frame buffer; instead we use a trick
called page-flipping to simply change the address that the graphic card uses as
the location of the frame buffer.

In the past, graphics cards could only support page-flipping for an entire
screen’s worth of display. As mentioned above, you’ll notice that most com-
mercial computer game products do not in fact run in a windowed mode. They
take over your whole screen. This is because (a) they want to use page-flipping
for fast animation, sometimes (b) they want to set your screen resolution and
colors per pixel down to lower values so that there’s less pixels to have to set
per image, and sometimes (c) they’ve written their code using brute pixel-count
numbers and the code is not resolution-independent.

Perhaps wrong-headedly, we insist on having all our programs run inside
windows on your desktop - it seems more modern and user-friendly, and it makes
our code more usable for other kinds of applications. As it happens, OpenGL
graphics will in fact page-flip for windowed apps. But in MFC graphics we have
to move a screen-sized block of pixels for each update, using the cDC::BitBIt
method. But this method is so fast on modern graphics cards that our animations
can in fact run as fast as we want. For many years, you couldn’t write such a
computer game with the normal Windows API, but those days are truly over.

We haven’t said anything yet about the graphics costs besides the pixel
overhead. Generally bitmaps are more expensive to draw than are triangles and
geometric objects. In OpenGL graphics a number of more specialized considera-
tions arise. Smoothing objects costs computation, textures are expensive, lighting
has its costs, and so on. We'll say more about these details in Chapter 26: OpenGL
Graphics.

Animation

6.3 The animation cascade

This section discusses how the CPopApp:animateAliDocs(dt) cascades its calls down
to the simulation objects of each open document.

Sequence diagram of the animation

In this subsection we'll give a description of the animation process and then
we’ll draw a UML sequence diagram of it.
First let’s write out in words a description of how the animation process works.

e The CPopApp::Onidie function makes a call to the CPopApp:animateAliDocs(dt).

e The cPerformanceTimer tick() method returns the time dt elapsed since the prior
update.

e CPopApp:animateAllDocs(dt) steps through the list of open cPopDoc documents
and for each of these documents calls a CPopDoc::stepDoc(dt) function.

e Firstly, CPopDoc::stepDoc(dt) calls the cGame::step(dt) method for the game
inside the cPopDoc.

e cGame::step(dt) updates the positions and appearances of an array of critters
stored inside the game.

e Secondly, CPopDoc::stepDoc calls CPopDoc::UpdateAllViews.

e This sends down a CPopView::OnUpdate to each of the document’s views, and
each view generates a call to CPopView::0nDraw.

e The onbraw methods use the cGraphics *_pgraphics member of the CPopView to
draw an image of the game and to display it in the onscreen view window.

e Any remaining messages in the Windows message queue are processed.

® CPopApp::Onidie is called again.

Let’s draw a sequence diagram (Figure 6.3) showing some of these steps.
As we mentioned in Chapter 5: Software Patterns, UML sequence diagrams are
used to show how objects interact over time. The diagram is set up as a series of
columns, with one column for each object. Each column has a vertical lifeline
showing lifetime of the object. Arrows are drawn from lifeline to lifeline to
symbolize the passing of messages via method calls. Use a dotted-line arrow if
the caller isn’t shown. We label a message with the name of a method being
called, and this method is expected to be a member method of the class column
that the message points to. A call that an object makes to itself is drawn as an
arrow that starts and ends on the object’s own lifeline.

We can draw activation boxes to symbolize the time during which a given
method is active, although if it gets to be too messy we can leave out the activa-
tion boxes. These boxes are sometimes called ‘candlesticks’, because they’re
long and thin.

A sequence diagram is supposed to show the behavior of objects. Although
there is a class name at the top of each lifeline, the line really refers to a particular
instance of the class in question.

139

140 Software Engineering and Computer Games

cTimer cPopApp cPopDoc cGame CPopView

onIdle

animateAllDocs (dt)

dt = tick() ;

stepDoc (dt)

step(dt)

updateAllViews|

OnUpdate

LT

OnDraw :]

Figure 6.3 Sequence diagram of the animation cascade

Our sequence diagram leaves out details relating to the innards of cGame::step
and CPopView::OnDraw.

One minor point about the diagram. Why does OnDraw appear down after the
end of the animateAllDocs candlestick? This has to do with the way the Windows
architecture works. When you want to redraw a view, as in the OnUpdate method,
you place a message onto the Windows message queue that tells Windows to
redraw the view whenever it's done doing whatever it’s currently involved in.
Thus Windows doesn’t get around to executing the requested OnDraw until
animateAllDocs is over.

The stepDoc method

The purpose of the animateAllDocs(dt) code is to find all the open documents and
call their stepDoc(dt) methods. For details about how this works, you can look at
Chapter 23: Programming Windows with MFC in Part II of this book.

Animation

The stepDoc(dt) method does two things: it tells the active game to update the
critters, and it tells the views to draw a fresh image of the critters. Remember
that in the Document-View architecture we separate out the values of the data
from the view of the data. The document is a kind of bridge between the num-
bers being computed and the images used to represent them. In a nutshell, the
CPopDoc::stepDoc 100Kks like this.

void CPopDoc: :stepDoc (Real dt)
{
_pgame->step(dt); /* Move the critters and maybe add or
delete some. */
cTimeHint timehint (dt); /* Wrap dt up so we can pass it to the
views. */
UpdateAllvViews (NULL, 0, &timehint); /* Redraw all the views and
possibly move the views’ _pcritterviewer according to the dt

inside timehint. */

We'll discuss the details of cGame::step(dt) in Chapter 10: Games. And we’ll
talk about UpdateAllViews in the next section.

6.4 Updating the views

The UpdateAllViews(CView* pSender, int IHint, CObject* pHint) method generates calls
to the CPopView::0nUpdate(CView* pSender, int IHint, CObject* pHint) method for each
open view, passing on the same arguments.

A minimal version of the OnUpdate method could look like this.

void CPopView: :0OnUpdate (CView* pSender, LPARAM 1Hint, CObject* pHint)
{
Invalidate(); /* Enqueue a message asking Windows to call OnDraw

for this view. */

Invalidate produces a call to onDraw, which is where the critters get drawn to
the active window.

But what about the three arguments to UpdateAllViews and OnUpdate? It’s
possible for a view to initiate a call to UpdateAllViews with a line like this:
GetDocument () ->Updateallviews. This trick provides a path by which one view
can contact the others. In some programs this mechanism is heavily used, and
in programs like this you may want the other views to know which view initi-
ated the UpdateAllViews call. This is what the psender argument is for. In the Pop
Framework we don’t make any use of the psender.

The second argument to the OnUpdate method is an integer hint field which
lets the document feed in an integer to tell the view that some special action is

141

142

Software Engineering and Computer Games

called for here. In the normal run of things we just want OnUpdate to call Invalidate
so the view will draw itself to the screen, but if you're in the process of starting
up a new game you might need to do something additional, and in this case
you’d have the call put in a hint integer to remind you. In the Pop Framework,
the 1uint will usually be O, but in the case where we’re starting up a new game,
for instance, we use the PopDoc: : VIEWHINT_STARTGAME hint value of 2.

Although stepDoc never produces an UpdateAllViews call with an 1Hint other
than O, there are other spots in the program where UpdateAllViews can be
called. For instance the cropDoc::setGameClass (..) method has a call to
UpdateAllViews (NULL, CPopDoc: :VIEWHINT_ STARTGAME, 0).

The third argument to the OnUpdate method is a pointer hint, that is, it’s
a pointer to whatever kind of structure of additional information you want
to pass to the view. In the Pop Framework, we pass the Real dt on to the view so
that the view can appropriately move a viewer object that it owns, but we have
to wrap it up inside a eTimeHint object with a single Real field so we can pass it.

Here are the steps taken by the CPopView::0nUpdate(CView* pSender, int IHint,
CObject* pHint).

e [If 1Hint iS CPopDoc: : VIEWHINT_LOADINGARCHIVE, you're saving or loading a
game, and you've placed a pointer to a CArchive file object inside the pHint
field. Get the active CArchive from pHint and read or write the view parameters
from or into the archive.

e If 1Hint iS CPopDoc::VIEWHINT_STARTGAME, you're initializing a new game.
In this case, use the cGame methods initializeView and initializeCritterViewer to
prepare this view, and then return.

e [f the 1Hint is the default value O, we get the dt timestep out of the pHint.
e Use the dt to move and update the pviewpointcritter by the timestep dt.

e [f this view is the active view, update the status bar, and pass any mouse or
keyboard actions to the pviewpointcritter.

e Invalidate the view to force a call to OnDraw.

For further information, the commented source code for CPopView::0nUpdate
can be consulted in popview.cpp.
The onbraw method carries out these steps.

e Wake up the graphics.
e ‘Garbage collect’ any unused image resources.

e Graphically show the status of the game by adjusting the color of the win-
dow margins around the game.

e C(Clear the graphics background.

e Install the projection and view matrices.

e Draw the world, by default as a background and a foreground rectangle.
e Draw the critters.

e Send the graphics to your video display by a BitBIt or a page-flip.

Animation

More information about the action of CPopView::0nDraw can be found in
Chapter 24: Two- and Three-Dimensional Graphics, or by looking at the source
code for this method in popview.cpp.

Review questions

A When is the Onldle method called? Which class is it a method of?

B How do we calculate the timestep dt between updates of our game?
C How does a critter use dt and its velocity to get its new position?
D

What is the gain of having the dt we give our moving critters match the actual time
between updates?

m

What are some factors that influence the frame rate of your animation?

F How does the application pass the dt down to the individual critters in a game?
Mention all the intervening classes.

G How does the stepDoc(dt) call both update the critter positions and draw them on the
screen? Draw a sequence diagram.

H What is the relationship among CDocument::UpdateAllViews, CView::OnUpdate,
CView::Invalidate, and CView::0OnDraw? Draw a sequence diagram.

Exercises

Exercise 6.1: Timing the critter motions

Min speed Max speed Avg speed Approx. seconds to

(units/sec) (units/sec) (units/sec) move ten units
Spacewar 0.5 3.0 1.75 About six
Defender3D 0.5 10.0 4.75 About two

Get a watch with a second hand, start up Game | Defender3D, and time how long it takes
a critter to move across the screen. Is it about two seconds? Now make the window very
small, and time again. Now make the window big, add more critters by selecting Game |
Large, and time again. Do you still get about the same speeds? Now try with Spacewar.
Time the critter motions again. Try editing the cGameDesign: : CRITTERMAXSPEED value
in gamedesign.cpp and try that game again.

Exercise 6.2: Estimating sizes

When you try and estimate the BitBIt overhead and its effect on a program’s speed, it's
nice to be able to carry out the calculations in your head or with a paper and pencil. Some
key facts to remember are the following:

143

144 Software Engineering and Computer Games

21 = 1 K = one thousand
2?0 = 1 Meg = one million
2% =1 Gig = one billion

2% =1 Ter = one trillion

2%0 = 1 Pet = one quadrillion
2% = 1 Ex = one quintillion

How do we use this knowledge? Suppose you want to estimate the number of bytes in
an 800 x 600 pixel screen image in 16-bit color mode (64K colors per pixel)? 800 x 600
X 2 is 480,000 x 2, which is about 1,000,000, which is a Meg.

You can use the information another way around as well. If you see a number close to
32,000, then you can think this is 2° * 1K, which is 2° * 21 or 2%, So a mode in which
you have about 32,000 colors is a mode in which you use 15 bits per pixel.

How many bytes are used by an 800 x 600 display if you use the ‘true color mode’ of
24 bits per pixel? Give your answer in K or Meg.

How many bits per pixel are used if you are in what Windows calls 16,777,216 color mode?

How many pixels are in a display of size 1024 x 7687 or 869 x 1152? How many pixels
in a 1024 x 1280 display? How many bytes are needed for each of these images if you
are allowing 65,536 colors per pixel? Give your answers in K, Meg or Gig.

Exercise 6.3: How to maximize the main frame

If you like, you can make your game program start out as a maximized window. As we
mentioned above, this is actually unwise, because if someone is running their video card
in a very high-resolution mode, then your runspeed is going to be unacceptably slow. But
here’s how to do it anyway. Try it out and see if it works.

Find the BOOL. CPopApp::InitInstance() code in Pop.cpp, and comment in the
first of the two code lines and comment out the second. Run the program. Note that now
the window is maximized. But you can still bring it back to a default size by clicking the
Restore icon box in the upper right corner of the frame.

//pMainFrame->ShowWindow (SW_SHOWMAXIMIZED | m_nCmdShow) ;

//Use this version if you want main window maximized.
pMainFrame->ShowWindow (m_nCmdShow) ;

//Use this version if you don’t want main window maximized.

Exercise 6.4: How to set the main frame to a specific size

Here let’s look at the spot where our default main window size is set. The numbers are
set using some statics.

BOOL CMainFrame: :PreCreateWindow (CREATESTRUCT& cs)
{
if(!CMDIFrameWnd::PreCreateWindow(cs))
return FALSE;
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
cs.cx = CPopApp: :STARTPIXELWIDTH; //800;
cs.cy = CPopApp: :STARTPIXELHEIGHT; //600;
return TRUE;

Try changing the statics to 640 and 480, respectively.

Animation

Exercise 6.5: Why Onldle returns TrUE for animation

Go into the CPopApp::Onldle code and change the last line from return TRUE; to return
FALSE;. Build and run the program. At first nothing moves, but then move the mouse
around on the screen and look what happens. You're moving the whole world yourself!
Each time the program processes some messages it calls Onldle and generates a single
call to animateAllDocs (dt). As long as you keep moving the mouse, the motion proceeds
smoothly. To make the program update continuously on its own, you can add a call to Onldip
that “fakes” a key press: PostMessageC: : AfxgetMainWnd () ->L getSafeHwnd(),
WM_CHAR, @, ©);

Exercise 6.6: Why we clear the background for animation

Go into the CPopView::0nDraw code in PopView.cpp and comment out the line _pgraphics
->clear (targetrect); This line erases the game area plus the rest of the game window
at each update. Also comment out the pDoc->pgame () ->drawWorld(_pgraphics,
_drawflags) ;. This line fills the game area with the background color at each update.
With these two lines out, your old sprites don’t get erased. Run the program and look at
the trails. Kind of nice at first, but after a while the screen gets too messy. If we did want
to have critter trails a better way to do it would probably be to develop a cSpriteTrail class
that inherited from eSprite, but which held an array of, say, a critter’'s most recent ten or
twenty sprites, and then erased them.

145

Simulating physics

The physical world is the great teacher. A computer scientist is inclined to think
of physics as the one supreme computation that has been running for billions
of years. One can partially characterize the laws of physics as being (a) parallel,
(b) homogeneous, and (c) local.

Regarding parallelism, the idea is that the world’s computation isn’t localized
in some hidden controller chip, the computation is taking place everywhere at
once. If you toss a rock into a pool of water, you see the ripples spread out in
every direction. Each bit of water is computing the appropriate motion, and
these computations add up to what we see as waves.

Homogeneity means that the same natural laws apply to all the objects in the
system at every place and at every time. When objects seem to behave differ-
ently, these differences can be traced to special properties of the objects rather
than to disturbances in the uniformity of physical law.

Locality expresses the notion that the state of an object or a region of the
world will be updated solely on the basis of the immediately adjacent regions
of the world. (What about gravity, like the pull of the Earth on the Moon? Isn’t
that action at a distance? Doesn’t have to be. According to Einstein’s General
Theory of Relativity, Earth’s mass warps the fabric of space-time, the warping
propagates outward like a sag in a sheet, and the Moon moves in accord with
the curvature of spacetime in its immediate neighborhood.) When we carry out
the special types of physical simulations known as cellular automata or finite
difference methods, we do implement locality. But in the case of the Pop
Framework, we won’t insist on locality. We'll feel free to have old-style ‘actions
at a distance’ under which an object is attracted or repelled by an object that’s
nowhere near it.

In this chapter we’ll focus first on implementing parallelism, and then on
homogeneously applying Newton’s laws of motion. That is, we allow a critter to
access the positions and velocities of other critters, as if it could “see” them.
Strictly speaking vision is local, by way of particle-photon interactions — but we
won’t simulate down to this low a level.

Simulating physics

7.1 Parallelism

The most obvious way to implement parallelism would be to have a dedicated
processor for each simulation object, and to have an operating system that
keeps all these processors running in lockstep synchronization with each other.

At this stage in the history of computer science, of course, our computers
are serial. At best you might have four processors running on your desktop
machine. We simulate parallelism by keeping a master array of our ‘physics
objects’ and trying to arrange our program so that the updates of the objects
happen in a parallel fashion.

But why use an array? Why not give each object a concurrent execution
thread, and let the threads execute in parallel? The fact is, by default, threads
aren’t really parallel. There’s no way for them to get around the fundamental
fact that your machine’s computations are being carried out by, normally, a
single processor that works its way down a long one-dimensional column of
machine-code instructions, now and then jumping up and down the column,
but never carrying out more than one instruction at once. The operating system
gives first one thread a little execution time, then another, then another, with
the actual scheduling being something that’s fairly fluid and hard to control.

Indeed, if you give each of your objects its own thread, you'll find that
the activities of the threads are far from parallel. One thread may get, say, two
hundredths of a second in which to execute, the next thread may get three
hundredths of a second, a third may get one hundredth of a second, and so on.

For certain kinds of simulations this disorder doesn’t matter. But if you want
your simulation to be as close to a parallel physical process as possible, you'll
have more success if you keep the simulation objects in a single array and
maintain a strict, logical control over the order in which the objects execute
their individual simulation steps.

When we simulate physics objects, we an regard our objects as having two
main simulation-related methods: (a) an update() method in which they look at
all the objects around them, detecting forces, collisions, etc. and (b) a move(dt)
method in which they change their positions. The dt argument is the current
timestep that has been passed down from the application as described in
Chapter 6: Animation.

A little more generally, if we think of our physics objects as active critters,
we might say that (a) the update method incorporates looking, thinking, feeling,
deciding and any other kind of individual behavior, while (b) the move method
incorporates Newton'’s laws of motion.

In the Pop Framework, the programmer overrides the update method to indi-
vidualize the critters. And the move method is a non-virtual method which we
don’t intend to override.

If we have a collection of objects numbered, say, from 0 to COUNT-1, there
are various ways that we might systematically make an update and a move
method call for each object.

On the one hand, we could do something like the following. This is an
approach that we would consider wrong.

147

148 Software Engineering and Computer Games

update O
move 0
update 1
move 1

update COUNT-1
move COUNT-1

The problem with the approach just described is that, although object O sees
the old position of object 1, object 1 will only see the new, moved position of
object 0. Instead we could do something more parallel, something like this.

update O
update 1

update COUNT-1

move 0
move 1

move COUNT-1

In this second approach, all of the objects look at and react to each other in
the initial position. All the updates happen before anything moves. They don’t
actually carry out their motions until they’ve all had a look and decided what
to do. This is a more parallel approach to the simulation.

To make these ideas clear, consider the following situation. Critter #0 is
chasing critter #1. Critter #0’s goal is to touch critter #1 as often as possible,
critter #1’s goal is to run away from critter #0. In Figure 7.1, we show the effects

Start Q Q Start Q O
Update #0 @% Q Update #0 @% O
Update #1 @ @
Move #0 CE%

Move #0

Update #1

Move #1 Move #1 Q O
el inhy
Update #0 Update #0 b O

Figure 7.1 The wrong and the right way to simulate

Simulating physics

of the two different ways of grouping the various update and move calls. In the
figure, we draw an arrow to indicate the current ‘intention’ of a critter regarding
its next move step, and we erase the arrow once the intended move has been
carried out.

At the bottom of the left-hand column of events drawn in Figure 7.1, critter #0
does not think it has tagged critter #1, and critter #1 feels it’s been tagged once.
At the bottom of the right-hand column, critter #0 feels it hasn’t tagged critter
#1, and critter #1 feels it hasn’t been tagged. The right-hand column shows
a parallel simulation, the simulation in the left-hand column is not parallel. In
thinking this over, remember that

the critters only access the other critters’ positions during their own update
calls.

In terms of code, to say that we want to have a parallel simulation means
that we don’t want to have a runcycle like this:

for (i=0; i<COUNT; i++)

{
physicsobject[i] .update () ;
physicsobject[i] .move (dt) ;

Instead we want to do something more like this:

for (i=0; i<COUNT; i++)
physicsobject[i] .update () ;

for (i=0; i<COUNT; i++)
physicsobject[i] .move (dt) ;

Again, what’s wrong with the first approach is that here the physicsob-
ject [0] would already be at its new position before physicsobject [1] looks at
it. So the behavior of the simulation would depend heavily on the order in
which the physicsobject members happen to be listed in the array. We want
to try and design our simulation so that the behavior is independent of the
order in which the objects happen to be listed.

Now why exactly do we speak of this kind of simulation as ‘parallel’? The
idea is that we are emulating parallelism by repeatedly freezing and thawing
the flow of simulated time. We freeze the flow of simulated time while our
processor takes the time to let each critter look at the others and decide what to
next. Then we thaw the simulated time and give a dt tick to each of the critters
to move with. Then we freeze time again and let the critters evaluate the new
state of affairs. And so on.

149

150

Software Engineering and Computer Games

7.2 The laws of motion

As well as being parallel, physics is homogeneous. We implement the principle
of homogeneity by making sure to derive all of our classes from a base class that
has the necessary laws built into it. We give the base class a move(dt) method
that encapsulates the laws of motion. And we ensure homogeneity by making
move(dt) non-virtual so that the child classes can’t override it.

What are the laws of physical motion that we need to use? Ordinarily we
discuss motion in terms of a scalar mass quantity and four vector quantities:
position, velocity, acceleration, and force. (Keep in mind that when we say, for
instance, that velocity is a vector, we mean that velocity is a scalar speed times a
unit direction vector.) The laws relating these are quite simple, where the d/dt
operator is the derivative operator.

force = mass x acceleration
acceleration = d/dt velocity
velocity = d/dt position

If we suppose we are working in two or in three dimensions, then each line
is really two or three scalar equations — for in a vector equation the correspond-
ing components must match.

In our simulations, we want to think of the force as the given, and the
position as the thing that we figure out. So we actually want to turn all of these
equations around. It’s clear how to turn the first equation around, but how do
we ‘turn around’ an equation of the form rate = d/dt quantity? We do it in the
following way.

rate = d/dt quantity
.. rate = dquantity / dt

Taking a derivative is the same as evaluating the ratio of differentials.
dt x rate = dquantity

We can think of the differential dt as a normal number.
dt x rate = newquantity — oldquantity

The dquantity is the change in quantity from its old to its new value.
newquantity = oldquantity + dt x rate

We get this by moving the terms of the equation. Now drop the new and old to
write a line that looks like computer code.

quantity = quantity + dt x rate

Think of the left side as the new value and right side as old value.

Simulating physics

Now we can ‘turn around’ our three motion equations and come up with
this.

(1) acceleration = force/mass
(2) velocity = velocity + dt x acceleration
(3) position = position + dt x velocity

These are the equations we're going to use for the simulation of physics that
we’ll use in our Pop Framework. What characterizes this set of equations is that
if you specify an object’s mass, a force that acts on the object, a timestep dt, and
an initial position, velocity and acceleration, equations (1), (2), and (3) will generate
fresh values for position, velocity and acceleration.

In discussing simulations, by the way, it’s a common practice to blur the
line between the infinitesimal df of a mathematical derivative and a dt that is
instead thought of as very small real-number change. The fascinating subject
of numerical analysis goes into the details of exactly when and how this can be
done in a reasonable way so as to yield stable and accurate simulation equations.
Suffice to say that what we're doing here is reasonably Kosher. [More precisely,
we're doing ‘Euler integration’ of the motion path; for greater accuracy one can do
‘Runge-Kutte integration’ of the motion path. A good algorithm for Runge-Kutte
can be found in the classic work Numerical Recipes in C, by W. Press, S.
Teukolsky, W. Vetterling and B. Flamery (Cambridge University Press, 1992).
Numerical Recipes in C can also be accessed for free online at www.nr.com]

Regarding the critters in the Pop Framework, let’s mention how we com-
pute their mass. The critters have a Real _mass field as well as a _density, and a
_radius. The critter’s internal mutators and accessor ensure that _mass is always
the _density times the cube of the _radius. Making mass proportional to size gives
behaviors that look more ‘physical,” or realistic. The default _density is simply
1.0, but if we want a critter to be more resistant to the action of forces we set its
density to a higher value. You can read more about this point in Chapter 8:
Critters.

Both physics and computers like to do the same thing over and over.
Physics works by continually reapplying the laws of motion to every object in
the world. Our simulation will work by applying our three equations over
and over.

We can state this a bit differently. It’s common these days to speak of physics
as a dynamical system. A dynamical system has some state and a transform oper-
ator that maps each state to a new state. In the case of motion, the state might
be a triple consisting of

<acceleration, velocity, position>

and the fransform would be specified by giving a mass and a force and three
equations above. When we investigate (or play with!) a dynamical system we
like to drop ‘test particles’ into it and watch what happens to them. This means

151

152 Software Engineering and Computer Games

that we specify a starting state_0 and watch how it evolves under successive
applications of the transform operator. That is, we look at sequences like this.

state_0
state_1 = transform(state_0)
state_2 = transform(state_1)

state_n+1 = transform(state_n)

That’s essentially what we're doing when we run instances of the Pop pro-
gram and repeatedly apply the ecGame::step, which first calls an update loop and
then a move loop. The step method as a whole is our transform.

Regarding our three equations for position, velocity, and acceleration, how do
we divide these up between the ‘update’ and the ‘move’ phases? Changing the
acceleration is more of an update thing because we are going to take into account
the possibility of changes to an object’s motion due to object-object collisions,
possible forces among objects (including flight and pursuit), and possible user
input. So we put the first equation into an update method and put the second
two into a move method.

So we might imagine our physics objects as having methods like this.

update ()
{
acceleration = force/mass;
/* Possibly make additional changes to acceleration and/or
velocity due to collisions,
object-to-object forces, or user input. */

}

move (dt)
{
velocity = velocity + dt * acceleration;

position = position + dt * velocity;

Our ccritter::update will use a dt argument in case the critter needs to do some-
thing to itself relating to the timestep; an example might be changing its size,
as in a balloon leaking air. We feed a cropview *pview into the update so that
the critter can possibly ‘sniff’ at the graphical world of the cPopView to find out
the pixel colors of some locations, perhaps reversing its velocity direction when
approaching certain colors. In the examples given in this book, neither the dc
nor the pview arguments are used by our critter update methods. But you will
need to use these arguments for some of the exercises.

We'll say more about exactly how we represent our forces in the rest of this
chapter.

Simulating physics

7.3 Force and acceleration

We handle the question of the forces acting on our critters by using the Strategy
pattern. That is, we let our critters be composed with cForce *_pforce objects,
and we let a critter feel forces by calling _pforce->force(this).

If we hadn’t used the Strategy pattern, we might instead have given the
cCritter class a virtual cVector force() method which would give the force acting
on the critter at any location and time. But, we want to able to change the
kinds of forces that act on a critter without having to derive a whole new child
class for each combination of forces. For to derive off critter child classes for the
different kinds of forces would lead to a combinatorial explosion of more and
more kinds of critter child classes.

We want to allow for force fields such as gravity, friction, a whirlpool, etc.
Rather than specifically defining gravity-influenced critters, whirlpool-influenced
critters, friction-influenced critters, and so on, we take the notion of a force,
and split it off into a separate class called cForce.

The main method of cForce is a cVector force(cCritter *pcritter). The cForce::force
method returns a vector that we think of as the force acting on the pcritter.
Instead calling a cCritter::force() method, we’ll have the critter call _pforce->force(this).

Let’s review from our discussions of composition and of the Strategy pattern
the question of why we need the this argument. When we use a Strategy pattern,
we usually want the delegated strategy function to have access to the calling
critter. That is, in order to figure out the force acting on a critter, we may need to
know where the critter is located, what its velocity is, etc. And it may also be that
we want to have an ‘impulsive’ force that directly changes the critter’s velocity.
By passing this into the method call, we give the cForce object the ability to
access the members of the calling critter by using the eCritter accessors and then
mutate the calling critter with its mutators.

As it turns out, each of our cCritter objects has a CTypedPtrArray<CObArray, cForce*>
_forcearray. This is an variant of the Strategy pattern; rather than strategizing out a
single force() method we strategize out an arbitrarily sized array of such methods.

The basic ccCritter update method feels the forces affecting the critter, and
changes the acceleration of the critter accordingly.

void cCritter::update()
{
feelforce();
The default feelforce method applies Newton’s Law
force = mass * acceleration

or

acceleration = force/mass

153

154

Software Engineering and Computer Games

That is, feelforce (a) sums up the vector forces acting on the critter, (b) divides
the vector sum by the critter’s mass, and (c) sets the critter’s acceleration to this
value. In code, these steps look as follows.

void cCritter::feelforce()
{
cVector forcesum; /* Default cVector constructor sets this
to (0,0) */

for (int 1=0; i<_forcearray.GetSize(); i++)
forcesum += _forcearray.GetAt (i)->force(this);
_acceleration = forcesum/mass(); /* From Newton’s Law:

Force = Mass * Acceleration. */

We make cCritter::feelforce virtual because in some situations you might not
want to simply sum up the forces. This could happen if some of the forces were
what the computer scientist Craig Reynolds calls ‘steering forces’ [Steering
behaviors for antonomous characters’, (www.red3d.com/cwr/steer/gdc99].
Suppose, for instance, that you had a steering force f1 that avoids bumping into
obstacles and a steering force 2 that runs away from bullets. If you simply add
the forces f1 and f2 it might sometimes happen that they cancel each other out
and you end up hitting an obstacle and being hit by a bullet. A more sophisti-
cated feelforce might prioritize your steering forces. Another possibility that
might be used, if you are using several computationally expensive forces, is to
‘dither’ between them by doing first one force and then the other on alternat-
ing updates.

There’s one other way that we change our critter’s velocities and accelerations:
via mouse and keyboard controls. Making another use of the Strategy pattern, we
give each critter a cListener* _plistener object. cListener has a listen(cCritter *pcritter)
method, and the ccritter feellistener() method calls _plistener->listen.

The Pop Framework provides several different kinds of built-in listener options,
and some of them, such as the cListenerCar and cListenerSpaceship, act by adding
in a vector value to the _acceleration of the calling pcritter. Other listeners,
such as the cListenerScooter, act by directly changing the critter’s velocity. You'll
find more about listeners in Chapter 12: Listeners.

7.4 Implementing forces

The base class cForce::force returns a zero vector, but we have ‘global’ force classes
cForceGravity, cForceDrag, and cForceVortex which return non-trivial values. We use
them in the Ballworld and Dambuilder games, discussed in Chapter 18: Inter-
esting Worlds. We also have ‘relative’ steering force classes liked cForceObjectSeek,
cForceClassEvade, and cForceEvadeBullet.

Figure 7.2 is a class diagram of all the forces we provide with the Pop
Framework.

The idea is that each force(cCritter*) method should return a force that the
critter will divide by its mass and add into its acceleration. The magnitude of

Simulating physics

cForce
A
cForceGravity cForceDrag cForceObject cForceClass
T A N
cForceVortex —— cForceObjectSeek cForceClassEvade
A

— cForceObjectSpringRod | | cForceEvadeBullet

Figure 7.2 Class diagram of the cForce child classes

the force will depend on the critter’s current situation in the world and on a
Real _intensity field that cForce has.

Gravity is proportional to mass — much as electrostatic attraction is proportional
to electric charge — and, again from Newton, we know that the gravitational
force (F) between two objects is a gravitational constant (G) times the product
of their masses (m1 and m2) divided by the square of the distances between
them (D?), to give a force like

F=G xmy; x my/D*

For simple simulations, we like to use a much simpler approximation to
gravitational force. It’s characteristic of games to choose liveliness and speed of
execution over a 100% accurate emulation. For a small object near the surface of
the Earth, the distance to the Earth’s center is so large that the object’s motions
don’t effectively change this distance. In a situation like this, we can lump
together the gravitational constant, the Earth’s mass, the inverse square of the
distance to the Earth into a new constant (g), and then an object of mass (1m)
will experience a gravitational force (F) of size

F=g¢gxm

It's useful to have the freedom to specify the direction of a ‘global’ gravity
like this, so we’ll give our cForceGravity class a _pulldirection as well as its _intensity
constant.

cVector cForceGravity::force(cCritter *pcritter)
{

return _intensity * pcritter->mass() * _pulldirection;

Remember that the cCritter maintains its mass as a quantity proportional to its
density times the cube of the critter’s radius.

155

156

Software Engineering and Computer Games

For simulating something like a solar system, we’d want to implement a more
sophisticated kind of object-to-object gravity — this is left for Exercise 7.5.

We think of drag as being a force like friction. The effect of friction is to slow
something to a stop. Normally friction increases with an object’s speed, and
acts in a direction opposite to the object’s motion. Friction is also proportional
to an object’s area: think of a sliding puck or of an airship moving through the
atmosphere pushed by the wind. More area means more drag.

To make our drag force more general, we allow for the possibility that it is
a drag relative to some moving fluid. Either we think of objects sliding on a
moving surface such as a conveyer belt, or we think of floating objects under
the influence of air or water currents. We use a _windvector field to specify the
speed and direction of the medium’s motion. The effect of drag in a moving
medium is to match the object’s velocity to the velocity of the medium. If the
_windvector is the zero vector, then our generalized drag force is the same as
friction. The idea is to continually return a force that will act to accelerate the
critter in such a way as to minimize the difference between the critter’s velocity
and the _windvector.

cVector cForceDrag::force(cCritter *pcritter)

{
Real area = pcritter->radius() *pcritter->radius() ;
return cVector (area * _intensity * (_windvector -

pcritter->velocity ()));

One caveat regarding cForceDrag. If you set the _intensity to a large value, there
is a danger of overshooting the _windvector and oscillating back and forth.
In terms of a simple frictional drag force with zero _windvector, if you define an
overly large _intensity constant, then your simulated physics will cause a moving
object to jerk backwards due to its counteracting friction force, and then, once
it’s going backwards, the drag will make the object jerk forwards again, and so
on. Generally it’s a good idea to keep the intensity of a cForceDrag between 0.0
and 1.0. (Do remember, however, that, in general, if you find some anomalous
tweak of your values that enhances your game, go ahead and use the values
even if they’re not physically realistic.)

It might be fun to have some whirlpools, so we allow for a child of cForceDrag
in which the windvector varies from point to point. We call our new force
cForceVortex, and we set it up as shown in Figure 7.3. We specify a center of the
vortex and, thinking of the eye of a hurricane, we call it _eyeposition. And we
give a _spiralangle to determine which way the vortex is moving things:
inward, outwards, or in a circular fashion.

The idea is that the drag force at a critter position is computed as follows: (a)
take the vector that runs from the _eyeposition to the critter position; (b) imagine
placing this vector with its tail at the critter position: and (c) rotate this vector
couterclockwise by _spiralangle degrees. The further a critter gets from the
eye position, the more powerful is the vortex force. Remember that in C++
angles are measured in radians, so we normally think of the angle as some

Simulating physics

Spiral angle

.
.

Vortex force direction

Critter position

(Critter position — eye position)

Eye position

Figure 7.3 Vortex force

multiple of p1. (By the way, we #define PI in realnumber.h.) So if you want a circular
motion, you set _spiralangle equal to p1/2.0. The cForceVortex force method
gets implemented like this.

cVector cForceVortex::force(cCritter *pcritter)

{
_windvector = (pcritter->position() - _eyeposition);
_windvector.turn(_spiralangle) ;

return cForceDrag::force(pcritter);

The next forces we look at are what might be called ‘relative’ forces as
opposed to ‘global’ forces. Relative forces involve a critter’s reaction to some
other critter. We provide for two kinds of relative forces. In the cForceObject, we
react to some one specific other critter that we're watching. The baseclass
cForceObject holds a ccritter *_pnode reference field to a certain critter and its
force (pcritter) method considers the pcritter situation relative to _pnode.

There are a variety of cForceObject forces like this that we might implement.
Spring forces and relative gravitational forces come to mind. The Pop Framework
provides a cForceObjectSpringRod, which is a force for attracting a critter to another
critter by a ‘spring’ while using a ‘rod’ to keep them from getting too close. You
can make amazing wobbly assemblages of things by hooking critters together
with these. The cForceObjectSpringRod:force(cCritter *pcritter) does the following.

e If pcritter is closer than the desired _rodlength from the _pnode, we move
pcritter out to _rodlength away from _pnode and return a zero force

e Otherwise return a force proportional to the distance between pcritter and

_pnode.

The Worms game, described in Chapter 14: 2D Shooting Games, demonstrates
a use of the cForceObjectSpringRod. Full code for all the forces can be found in
force.cpp.

Another kind of relative cForceObject force is the cForceObjectSeek, which helps
the pcritter pursue a _pnode critter. The simplest notion would be to have

157

158 Software Engineering and Computer Games

Current velocit

Critter

Seek force
Desired velocity (at max critter speed) =~ ~--.

e

_pnode

Figure 7.4 A seek force

cForceObjectSeek::force(pcritter) simply return a force along the vector direction
from pcritter to the _pnode of the cForceObject.

The Pop Framework uses an improved seeking force suggested by Craig
Reynolds (op. cit., p. 154). Reynolds makes the point that rather than applying
a force in the desired direction of motion, it’s more effective to apply a force
in the direction of the difference between the critter’s desired motion and its
current motion, as shown in Figure 7.4. We will also have the seek force set the
critter’s speed to its maximum.

There is a more general kind of relative force we can consider. This is a
force in which a critter reacts to any and all members of a specified class of
critters that we watch. We create a base class cForceClass for this and give it a
CRuntimeClass *_pnodeclass member. As is discussed in Chapter 22: Topics in C++,
a CRuntimeClass object keeps track of a class type, basically by storing a string
with the name of the type along with some additional information.

One issue in interacting with objects of a certain class type K is whether
we also want to interact with objects of class KChild, where KChild is a child
class of K. We give the cForceClass a BOOL _includechildclasses field to let the
programmer decide.

In the Pop Framework we provide a cForceClassEvade force for evading all
objects of a given class, and we derive as child of this a c¢ForceEvadeBullet to
evade all ccritterBullet objects. Here’s a summary of how cForceEvadeBullet acts.

e If there are no bullets to evade, return a zero force.

e Otherwise find the closest bullet.

e [f the closest bullet is moving away from you, return a zero force.
e Set your evade direction to point away from the bullet.

e [f this evade direction lies in the same direction the bullet is moving, you're in
a ‘rabbit running down a railroad track away from a locomotive’ situation,
which is no good. Rotate your evade direction by 90 degrees.

e Now, your desired evade velocity is your maximum speed times the evade
direction.

e Return an evade force which is the vector difference between the evade
velocity and your current velocity.

Simulating physics
7.5 Preserving your physics

As a rule, once you have a cCritter::move that gives you a visually convincing
simulation of some reasonably accurate physics, you shouldn’t override it at all.
If you ignore this rule, you run the risk of developing a game that runs great on
your home machine, but which behaves badly when you bring the program in
for a classroom demo - or, if you're working alone, when you try and show it
off at a conference or at a friend’s house. The critters may seem to be barely
moving at all - or flying around the screen like neutrinos.

All the careful work in calculating a real time dt and passing it to your critters
is going to make no difference if you make the cCritter::move(dt) method a virtual
method and override it with a method that ignores dt and does something like
_position += _velocity. Remember that it’s only if you have the proper move
code of _position += dt * _velocity that your program is going to adjust the
motions of your critters to take into account the actual speed at which your
game is running.

It should be possible to make all your changes to your critter motions by
adding in forces to get used in the update call to feelforce, or by directly editing
the update method.

e To apply a steady, ongoing force to a critter, give the critter a c¢Force that
returns a non-zero vector.

e To apply a sharp impulse to a critter, such as when you hit it, change the
critter’s _velocity by using the setVelocity mutator to make the change. This
call can be made from inside a cForce::force or directly within the update
method or possibly some other method.

e To change a critter’s position if you want to ‘teleport’ it from one spot to
another, use the moveTo mutator.

We'll talk more about the user controls and the cListener class in Chapter 12:
Listeners. For now though, we might as well mention some of the ways that some
of our standard listeners change the main player critter’s motion in response to
an arrow key or a mouse action. Most of the time, a critter using a listener will
ignore any acceleration due to forces. We ignore physics in order to have the
player critter be fully responsive to the game’s user.

e Arrow key. As long as an arrow key is pressed, set the velocity to the arrow
key direction. If no arrow key is pressed, set the velocity to zero. Ignore any
acceleration.

e Scooter. If the Up Arrow key is pressed, set the critter’s velocity to be at the
maximum speed in the critter’s current direction. Pressing the Down Arrow
key moves the critter in reverse. If neither the Up nor the Down Arrow key is
depressed, the speed immediately drops to zero. The Left and Right Arrow
keys rotate the critter’s current direction. Ignore any acceleration.

e Car. As long as the Up key is pressed, add to the critter’s forward acceleration.
The Left and Right Arrow keys rotate the critter’s current direction.

159

160

Software Engineering and Computer Games

e Cursor. Move the critter to the current cursor position and give it a velocity
that matches the motion from the old position to the new position. Ignore
any acceleration.

Review questions
A In what order must we call our critter([i].move and critter[i].update meth-
ods in order to make the simulation behave in a more ‘parallel’ fashion?

B How do we justify converting the physical law acceleration = d/dt velocity into the com-
puter code velocity += dt * acceleration?

C How do we use Newton’s law F= m x a?

Draw a UML diagram and write a little code to explain how a cCritter object delegates
its reactions to forces out to instances of the cForce class.

E What is the code for the cCritter::feelforce method? Why is the argument this passed?
F What are some of the kinds of forces implemented by the Pop Framework?

G What's the difference between a cForce, a cForceObject, and a cForceClass?

Exercises

The use of forces is one of your most powerful tools for customizing your game. Here
are a collection of problems to let you try this out. In doing these problems, don’t forget
that when you get into tweaking one particular game mode, it saves time to have the
Pop program start up in the game mode that you want to play with. The way to control this
is to edit the CPopDoc constructor in popdoc.cpp. Simply comment in exactly the one
setGameClass line corresponding to the game you want to play. If you make a new game
class, add a line for it.

Exercise 7.1: Changing the relative sizes of the critters and the world

The critters sometimes show forces better if you make them smaller. There are two ways you
might make them smaller: (a) change the values of the statics cCritter:: MINRADIUS
and cCritter: :MAXRADIUS in your game constructor; (b) in your game constructor put a
line _border.set (newxsize, newysize); with the newxsize and newysize larger
than the default cGame: : WORLDWIDTH, cGame: :WORLDHEIGHT values defined in game.cpp
and used in the eGame constructor. First try making the critters, say, three times as small
and then put them back to the same size and try making the world three times as big. The
relative sizes of the critter to the world should come out the same either way, that is, the
screen sizes should come out the same. But something will be different: the critters will
seem to move slower if you make the world bigger. This is because their speeds are set
to some specific numerical values of units per second. Is it nicer to have the small critters
move slower? Experiment with this a little and decide which way looks more playable.

Exercise 7.2: Making the world larger than the view

Many games are more interesting-seeming if they run across several view screens. You can
do this by the following steps that we’ll discuss in terms of, say, the cGameStub child class.

Simulating physics

Go into your cGameStub constructor and add a line like _border.set (100.0, 100.0)
(for a square world) or maybe _border.set (100.0, 8.0) (for a Mario-style side-scroller

world).
In the cGameStub constructor after the setPlayer call, you can add a call like
pplayer () ->moveTo (_border.locorner ()). This starts the player out at the corner

of the world instead of in the center. This is something you may or may not want to do,
depending on the game. In a side-scroller we like to start the player out at the left end
of the world, but in an Asteroids-style game we might still want the player to start in the
center.

In the cGameStub::initializeViewpoint (cCritterViewer *pviewer) method,
replace the code with these lines.

pviewer->setViewpoint (cVector: :ZAXIS, pplayer ()->position());
pviewer->zoom(3.0) ;
pviewer->setTrackplayer (TRUE) ;

The exact value of the number you feed into the zoom call will depend on how zoomed-
into the world you want to be. The call to setTrackplayer (TRUE) has the pleasant
effect of automatically scrolling your screen to keep the player in view as it moves across
the edges. The Ballworld game also overloads cgame::worldShape.

Before doing the following exercises, make sure you’ve made the sizes of your critters
smaller relative to the size of the world, otherwise the screen will be too crowded to
see rich behavior.

Exercise 7.3: Adding forces

Get fresh (like original) copies of the gamestub.* files in case you changed them during
the Space Invaders exercises (3.10.1-3.10.8). Change the cGameStub construcor to set
_rivalcount to O, and _seedcount to 20. Try using some of the different kinds of
cForce constructors in the cCritterStubProp initializer. Try cForceDrag (?, cVector(?,
?)) for a wind to the right. Try cForcevortex (?) for a spiraling-in vortex. One caution: if
you make the first argument (which is ‘friction’ parameter) too big in cForcebrag or
cForceVortex, the critters will have a bad kind of motion; rather than slowing them to a
steady state, a too-large value of friction makes them overshoot and oscillate back and
forth. Try cForcebDrag (300) to see what we mean. Usually friction shouldn’t be much
bigger than 1 or 2.

Exercise 7.4: The spring and rod force

In the cGameWorms, make a circular loop of the critters connected by spring and rod forces
and push the loop around with the cursor. Adjust the force of the spring upward to make
it fairly rigid. Try making a shape like an asterisk, with one critter at the center and four or
five separate worms of connected critters coming out of the center. Try making a shape
like a person. (You can find an interesting interactive website of rod and spring shapes
by searching for ‘sodaplay’ or ‘soda constructor.” The correct address was recently
www.sodaplay.com, but this may change.)

161

162

Software Engineering and Computer Games

Exercise 7.5: Planets

Now implement a cForceObjectGravity that gives a critter a gravitational attraction
towards the _pnode of the cForceObject. Give it a Real _gravity field. The force
ought to be something like _gravity * pcritter->mass() * _pnode->mass ()
* pcritter->directionTo (_pnode)/ (pcritter->distanceTo (pnode)
*pcritter->distanceTo (_pnode)), although you can speed up the computation a bit
by prefixing the line with a call t0o chistanceAndDirection dnd = pcritter->
distanceAndDirectionTo (_pnode), and then in the next line getting the distance and
direction out of dnd instead of doing three separate computations. In the seedCritters go
ahead and walk through every possible (i,j) pair and connect every pair of critters with a
cForceObjectGravity.

This is not the most computationally efficient way to do it, but first try it and see how it
looks. You will need to tweak the gravity force and the speeds and the sizes for a while until
you can start to get things like critters going into orbit around each other. Also you want to
be doing this for a fairly large worldsize. Also, keep in mind that the mass of the objects
depends on their density and size; if they’'re unresponsive, make them more massive.

Exercise 7.6: Brine shrimp

Try making a tide-pool world in which the critters move like brine shrimp. That is, whenever
they slow down to a certain speed, they suddenly propel themselves forward in a slightly
different direction.

Do this by having a cForceDrag to slow the critters down, and a new
cForceBrineshrimp force to make them periodically dart forwards. The way the
cForceBrineshrimp force ought to work is that if a critter’s speed drops below a certain
level, then the critter's speed is set to its maximum value. You must do a ‘sudden
impulse’ change like this all at once by calling pcritter->setSpeed and not by return-
ing an acceleration value, otherwise the critter will simply speed up a tiny amount to get
faster than the trigger speed. When you apply the impulse, also wobble the critter a bit
with a call to pcritter->turn(...small random argument...).

Exercise 7.7: Random linkages

This problem is suggested by a fascinating recent book, Stephen Wolfram, A New Kind of
Science (Wolfram Media, 2002). Wolfram makes a case that all the seemingly complex
behaviors and patterns we see in the world arise from the interactions of small simple
programs. So let’s see how well we can do with our simple drag, spring, ball-and-spring, seek
and evade forces. Try a world in which each critter gets one or several randomly selected
forces linking it to some randomly selected other critter. Arrange your program so that the
behavior gets freshly randomized every time you reseed the world, and then press Enter a
few times to look at the kinds of overall behaviors you get. Do you see anything that might
be useful for making interestingly animated enemies or prey?

Exercise 7.8: Following waypoints

In adventure games and car racing games we often want to make some of the computer
operated critters move along certain fixed paths. Thus you might want an enemy guard
to patrol a certain route, or you might want a rival race car to drive around and around
a track.

Simulating physics

A good method to make this work is to set a series of ‘waypoints’ that you want the
critter to follow. Implement a cForceWaypoint which has these fields.

CArray<cVector, CVector> _waypoint
int _currwpindex
Real _closeenough

You might also want to give cForceWaypoint an add(cVector newwaypoint) mutator
method for adding points to be _waypoint array. Suppose that the constructor initializes
_currwpindex to O and _closeenough to some reasonable (relative to your world size)
value like perhaps 2.0.

If our waypoints are arranged in a circle, as on a race track, we might define the
cForceWaypoint force method like this.

cVector cForceWaypoint ::force(cCritter *pcritter)
{
if (distanceTo (_waypoint[_currwpindex]) <_closeenough)
{
_currwpindex ++;
if (currwpindex >= _waypoint.GetSize())
_currwpindex = 0;
}
setTangent (_waypoint [_currwpindex] - position()); /* setTangent
will normalize the arg return cVector::ZEROVECTOR; */

Get this to work and then make a variation in which the critter moves back and forth along
a curving line of waypoints. You can do this either by listing the inner points twice (once in
each order), or by using a _currwpinc field that can be either +1 or —1 to determine the
direction in which you traverse the waypoints.

163

Critters

8.1 Kinds of critters

In understanding the importance of the ccritter class for the Pop Framework, it
will be useful to have a little overview of some of the cCritter child classes that
we use. Let’s put the UML class diagram (Figure 8.1) here of some (but not all)
of our ccritter child classes.

We'll get into more details about various critter child classes later on. For now,
note that in the Spacewar game, the player inherits from cCritterArmedPlayer, the
asteroids inherit from cCritter, the UFOs inherit from cCritterArmedRobot, and the
various kinds of bullets inherit from eCritterBullet. Children of the cCritterwall
class are used in the Dambuilder and Airhockey games.

Typically you will define some special ecritter child classes for each new game
that you write. The best practice is to put the prototype headers for your new
critters in the same *.h file as your game header, and to implement your over-
ridden critter methods in the same *.cepp file as your game implementation.

Which ecritter methods do you typically reimplement for child classes?
Certainly you will write a child class constructor to change some of values of
the critter fields set by the base class constructor. And you very often override
the cCritter::update method. Other cCritter methods you might override are called
reset, touch, collide, die, and damage. Table 8.1 on p. 180 lists the overrides.

cCritter
N

. |

cCritterBullet [<] cCritterArmed cCritterWall

N

cCritterArmedPlayer cCritterArmedRobot

Figure 8.1 Some of the cCritter child classes

Critters
8.2 Overview of the critter class fields

Our critters will have a large number of primitive fields relating to their internal
state, to the game they participate in, and to their motion. These primitive
fields will mostly be int, Real, or cVector objects. Recall that Real is a type we
typedef in realnumber.h to be float, although it could be changed to double.

Mixed in with the primitives, our cCritter objects will have pointer fields that
hold references to a few other classes. The best way to get a quick idea of the
class members is to look at the full eCritter prototype listing in the last section of
this chapter.

In brief, the ccritter fields fall into these groupings.

e State fields, such as the Real _age and int _health.

e Game fields, such as the int _score, and the cBiota* _pownerbiota.

e Position fields, such as the cVector _position.

e Velocity fields, such as the Real _speed and the cVector _velocity and _tangent.

e Acceleration, mass and force fields, such as the Real _acceleration and _density,
and a _forcearray of cForce* objects.

e Listener fields, such as the cListener* _plistener.

e Attitude and display fields, such as the cMatrix _attitude, and the cSprite *_psprite.

Basic critter fields

In the coming pages, we'll see, step by step, how we to build up a cCritter class
whose instances can serve as the all-purpose inhabitants of our computer
games.

It’s useful for every critter to know its age in seconds. How to measure this
age? In keeping with our discussion in Chapter 6: Animation, we’ll use real
elapsed time for a critter’s _age. Ten and a half seconds after the start of the game,
all the critters should have an age of 10.5, and so on. When a critter is con-
structed, its age is set to 0.0, and we update the age within the code for the critter
move (Real dt) method with a line like

_age += dt;

Another key state field is a critter’s integer _health. By default the _health starts
out at 1, and if the critter is damaged, for instance by a bullet, its health will
drop. In the standard cCritter::update method, we have the critter die and get
deleted if its health drops to O or below. We can also allow the possibility of
giving a critter a Real _fixedlifetime and forcing it to die once its age passes this
value.

These considerations lead to these fields.

165

166 Software Engineering and Computer Games

protected:

Real _age; /* Measure in seconds of time simulated, start at 0.0
when constructed. */

BOOL _usefixedlifetime; /* If TRUE, then die when _age >
_fixedlifetime. */

Real _fixedlifetime; /* Max lifetime in seconds, applies only if
_usefixedlifetime. */

int _health; /* Lose by being hit and taking damage (). Usually

die when _health is 0. */

Since our critters are going to be part of a game, we're going to have some
game-related fields as well. For one thing, a critter needs an integer _score field to
track how well it’s doing. So that a critter can ‘see’ the other critters in the game,
we give it a pointer to a special kind of an array called a e¢Biota. In any given
game, all of the active critters are stored in a common e¢Biota object. We'll say a
bit more about this class in the next subsection.

In our repeated listings of the ccritter fields, we'll carry along some of the
fields already mentioned, but not all of them lest our page gets too cluttered.
Remember that the full listing can be found at the end of this chapter.

protected:
Real _age;
int _health;
cBiota *_pownerbiota;

int _score;

We want our critters to simulate a reasonable kind of motion like we
discussed in Chapter 7: Simulating Physics. To start with, in the light of that
chapter’s discussion, it’s clear that we want to have a vector _position and a
vector _velocity.

The cVector class is defined in vectortransformation.h, with a switch that lets us
make it either a two-dimensional or a three-dimensional vector throughout the
program. Our current choice is to have all of our vectors be three-dimensional,
so that really eVector stands for the class eVector3. In the case of the flat, two-
dimensional games, the third vector component isn’t really necessary, but
carrying it along adds to generality and turns out to impose only a negligible
penalty on speed.

In any case, to start with we’ll give the ecCritter two more fields. As mentioned
above, we'll only relist the most important of the fields already mentioned.

protected:
Real _age;
int _health;
cVector _position;
cVector _velocity;

Critters

As we discussed in Chapter 7: Simulating Physics, the normal way that
objects move can be approximated by repeated updates like this.

_position += dt * _velocity.

As we mentioned in Chapter 6: Animation, it's a good idea to let the time
step dt be computed (by a eTimer object belonging to our CPopApp) to represent
the actual time between program updates.

The ccritter has a move(dt) method for moving its position, with the assump-
tion that dt is a real number measuring the time since the last update. Because
we are going to construct this method rather carefully to embody the physical
laws that apply to all of our objects, we are going to make it a non-virtual
method that we can’t override.

protected:
Real _age;
int _health;
cVector _position;
cVector _velocity;
public:
int move(Real dt);

Whenever you run a simulation with moving objects, you have to worry
about the objects moving off towards infinity and about the possibility of them
speeding up and going unnaturally fast. To keep a cCritter from wandering off
and getting lost, we'll need to give it a cRealBox _movebox to stay inside. The
cRealBox class is a utility class of ours for holding real-valued rectangles or 3D
boxes (as opposed to the MFC CRect which is for integer-valued rectangles).

A cRealBox is created by a constructor that takes two or three arguments. If
there is no explicit third argument, it’s assumed to be 0.0. The dimensions of a
cRealBox are chosen so that it’s centered on the origin (0.0, 0.0, 0.0), which is
also known as cVector::ZEROVECTOR. This is illustrated in Figure 8.2.

y

i

Figure 8.2 cRealBox (6, 4) and cRealBox (6, 4, 4)

167

168

Software Engineering and Computer Games

Our cGame has a cRealBox _border that keeps the objects inside it. By default a
critter has a _movebox that matches the _border of the game its added into. This
setting happens because we normally give the eCritter constructor a cGame
*pownergame argument.

When a critter hits a wall, we can do various kinds of things. We might just
do something like _movebox.clamp (_position) to simply keep it inside the box,
where the clamp function just forces a position to be inside the box. Or we
might do something more subtle: we could make the _position ‘bounce’ off the
walls of the _movebox like a rubber ball or, perhaps, let it ‘wrap’ from one edge
of the box to the other. Conceivably we might want the critter to wrap across
some walls but bounce off others. We’'ll use an int _wrapflag to decide which of
the possible kinds of actions it does.

protected:
Real _age;
int _health;
cVector _position;
cRealBox _movebox;
int _wrapflag;
cVector _velocity;

To keep our ecritter class object from rushing around too rapidly, we’ll give
it a _maxspeed that bounds the magnitude of its _velocity. Since you’re going to
be computing this magnitude, it's convenient to keep it around as a Real _speed
variable, and while you're at it, it’s useful to maintain a unit-length vector
cVector _tangent. We'll require that at all times _velocity = _speed * _tangent.
You need to be a little careful with your mutators so as not to allow someone to
change one of these three fields and not the other two: this is a classic example
of a situation where you would not want your fields to be public, for otherwise
someone might ignorantly change the _speed or the _tangent field without
making the corresponding change to the _velocity.

protected:
Real _age;
int _health;
cVector _position;
cRealBox _movebox;
int _wrapflag;
cVector _velocity;
Real _speed;
Real _maxspeed;
cVector _tangent;

By now our move method has become more a three-step process.

Critters

e Set _speed and _tangent to match the latest _velocity. If _speed > _maxspeed,
reduce _speed, and change the _velocity to match.

® position += dt * _velocity.

e Make sure _position is not outside of _movebox.

More complications arise when we put our critters into three-dimensional
worlds. As well as tracking as the _tangent the direction the critter is moving in,
we align a _nermal with the direction the critter was most recently accelerating
or turning in, and compute a _binormal perpendicular to _tangent and _normal
(that is, we let _binormal be the vector cross product _tangent * _normal).

protected:
Real _age;
int _health;
cVector _position;
cRealBox _movebox;
int _wrapflag;
cVector _velocity;
Real _speed;
Real _maxspeed;
cVector _tangent;
cVector _normal;

cVector _binormal;

We'll also maintain a four column eMatrix object called _attitude. By default a
critter will keep the four columns of _attitude equal to, respectively, the _tangent,
_normal, _binormal, and _position. As it turns out, if we feed an _attitude like this
into the graphics pipeline used in our display process, the critter will appear to
be rotated so as to match the motion, using a bird-like or fish-like kind of way
of holding its body. That is, we imagine that a critter’s visual representation has
three principal directions similar to, say, the long axis of a whale, the horizontal
line of its flukes and the vertical line of its spout. And if we match the _attitude
to the _tangent, _normal, _binormal, and _position, the ‘whale’ will ‘heel over’ in a
natural kind of way when it makes a turn.

There are, however, situations where we want a critter’s visible attitude not to
match the motion; for instance, if our critter is a fighter that turns this way and
that to shoot a gun. Here we have the option of freeing up the _attitude by setting
an _attitudetomotionlock field to a FALSE value. In this kind of situation, we’d use
some other method for setting the _attitude, possibly controlling it with user key
input, or possibly letting the critter tumble at some rate about an axis, with the
spin rate and spin axis encapsulated inside a ¢Spin _spin field.

protected:
Real _age;
int _health;
cVector _position;

169

170 Software Engineering and Computer Games

cVector _tangent;

cVector _normal;

cVector _binormal;

cMatrix _attitude;

BOOL _attitudetomotionlock;
cSpin _spin;

cVector _acceleration;

(Remember that for these illustrative listings of the ccCritter fields, we don’t
keep showing every single field we’ve mentioned so far. A complete list of the
ccritter fields appears in the code printed at the end of the chapter.)

Given our plan to have critters move like objects, we have an _acceleration
vector as well. Leaving out the lines about checking against the _movebox and
the _maxspeed, we would get something like this for our move(dt) method, just as
described in Chapter 7: Simulating Physics.

_velocity += dt * _acceleration;
_position += dt*_velocity.

Of course if a critter is to do anything interesting, its motion should change
over time. We can alter our motion in four ways: (a) use forces acting on the
critter to change the velocity or acceleration, (b) make changes to the critter’s
position, velocity and/or acceleration based on user input, (c) use a collide
method to bounce critters off each other, and (d) override the cCritter::update()
method to make other changes to the velocity and acceleration, possibly related
to the critter’s age.

The details of how we carry out (a) and (b) depend on some class reference
members in the eCritter class. Let’s start a new subsection in which to discuss
these kinds of members.

The ccritter reference fields

The associated classes are these: one owner c¢Biota*, one display-delegate cSprite*,
and one listening-strategy cListener* per critter. In addition, there is at most one
target cCritter*, and any number of cForce* force-strategy objects. This is shown
in Figure 8.3.

The cBiota class is an array-like container class based upon the MFC CArray
template. eBiota acts as a helper class for the cGame class. Each cGame has a cBiota
member that holds pointers to the active critters of the game.

We give each cCritter a cBiota* _pownerbiota pointer which points to the array-like
cBiota object that contains it. This ‘back reference’ provides a means for the critter
to ‘see’ all the other critters in the simulation — by walking through the array of
all the members of the _pownerbiota object.

The eSprite* _psprite member specifies the critter’s appearance on the screen.
To make our code more modular, we don’t want to tie ourselves to any one
particular way of representing a cCritter. We'll work with several kinds of cSprite

Critters

cGame
1
cBiota
*
1
K>—— cSprite
1
<>——— clListener
cCritter *
<>—— cForce
1
K>—— cCritter

Figure 8.3 The reference members of the cCritter class

objects, the disk-like eSpriteBubble objects, the polygonal ePolygon objects, and
the bitmap-based cSpritelcon objects. The eSprite has a draw method that is called
by the ccritter:: draw method. Note that before calling _psprite->draw, the
cCritter::draw sends the current _attitude matrix into the graphics pipeline. We’ll
say more about draw below.

If critters hard-coded their display implementation, we’d be facing a com-
binatorial explosion of all possible critters times all possible sprites. Giving cCritter
a cSprite* member is an example of the object-oriented technique of delegation.
More information about sprites appears in Chapter 9: Sprites.

The cListener* _plistener is another example of the delegation technique; more
precisely it’s an example of the Strategy pattern. Later, we're going to introduce
a cController class which will hold current information about which keys or
mouse buttons are being pressed. And we’d like critters to have the ability to
‘listen’ to this information. Most critters will ignore user input, so the default
listening behavior will be to do nothing. Typically there will be at least one
critter that represents the player and which responds to user input. And we
might sometimes want more than one critter to be listening to user input.
We might, for instance, want to write a two-player game. Or we might want a
pinball game with two flipper critters that respond to user input. So we do need
to have a listen method for every critter, and we want different critters to be
able to listen in different ways. Even when we have only one player listening,
we might want to choose between having the player be controlled like a
PacMan that moves with arrow keys or having the player be controlled like
a car or like a spaceship. Rather than calling a cCritter::listen method, we have a
cCritter::feellistener method that calls _plistener->listen.

The CTypedPtrArray<CObArray, cForce*> _forcearray holds any number of force
strategy objects that the critter accesses with a feelforce call made by the default

171

172

Software Engineering and Computer Games

cCritter::update method. The CTypedPtrArray is a variation on the MFC CArray
template. As we discussed in Chapter 7: Simulating Physics, the feelforce makes
calls to _forcearray[i]->force(this).

For the maximum of flexibility we allow for the critters to be subject to
a variety of forces. To avoid a combinatorial explosion of classes, we don't
specifically define gravity-influenced critters, whirlpool-influenced critters,
lighter-than-air critters, and so on. Instead we use the Strategy pattern; that is,
we take the notion of a force, and split it off into a separate class called cForce.
The main method of cForce is a cVector force(cCritter *pcritter). The cForce::force
method computes a vector force for any critter with its concomitant location and
velocity. The value of the returned force vector may be based on the critter’s
position, velocity, or other factors, and it’s used to change the critter’s acceleration.
We also allow the possibility of a force directly changing a critter’s position,
velocity or acceleration.

We give each critter a _forcearray of cForce * pointers to force objects. As we
already discussed in Chapter 7: Simulating Physics, we have a cCritter::feelforce()
method which turns around Newton’s law: F = ma to have a = F/m.

_acceleration = (Sum over 1 of _forcearrayl[i]->force(this)) / mass/()

We're going to estimate our critter masses by regarding them as three-
dimensional spheres. That is, we’ll maintain the equality _mass = _density *
radius () ~3. (Strictly speaking this is the formula for a cube’s mass, but we can
think of the necessary 4/3 * PI multiplier for spherical mass as being part of
the _density parameter.) Even though this is a two-dimensional simulation,
the dynamics of bouncing looks better if you give things the masses of three-
dimensional objects. Think in terms of balls rolling around on a pool table.

The radius() of a critter is going to be something that we get from the appear-
ance of the critter, that is, radius() will get its value from the critter’s eSprite
*_psprite member, to which a critter delegates its display methods. That is, the
cCritter::radius() simply returns _psprite->radius().

The ccritter *_ptarget member can be used when we want a critter to ‘keep
an eye’ on one particular other critter. One example is the cCritterArmedRobot
child critter class, which automatically aims and shoots at its _ptarget. Another
example occurs in the Airhockey game, where each of the two cCritterHockeyGoal
objects sets its _ptarget to the critter that’s trying to knock the puck into that
goal. This way the goal knows to whom to award a score point when the puck
goes inside it.

Having a cCritter member of the cCritter class imposes a certain burden on us
regarding destructors. That is, if a critter gets deleted somewhere in the game,
any critter that has a _ptarget reference to the dead critter needs to be notified.
The ccritter class has a virtual fixPointerRefs method that a critter calls in its
destructor. The mission of fixPointerRefs is to go out and tell any other critters in
the game to drop any references to the critter now being destroyed. Depending
on how heavily referenced a given kind of critter might be by other critters, you
may need to overload the fixPointerRefs in various ways.

Critters

Dropping a few fields from our growing list and adding in these new ones,
we get something like this. Once again, if you want to see the full listing, it’s at
the end of the chapter.

protected:
Real _age;
int _health;
cBiota *_pownerbiota;
cVector _position;
cVector _velocity;
cMatrix _attitude;
cSprite *_psprite;
cVector _acceleration;
CTypedPtrArray<CObArray, cForce*> _forcearray;
Real _mass;
cListener *_plistener;

cCritter *_ptarget;

8.3 Critter methods

In order to run a game, we repeatedly call six methods for each critter, cycling
through the calls over and over. The eGame::step method orchestrates the calls.

Figure 8.4 isn’t any particular kind of official UML diagram, it’s simply an
informal way of showing the order in which a critter object is cycled through
its main method calls, with time flowing in the clockwise direction.

The Update, Feelforce, and Feellistener methods

We give the cCritter a basic update(CPopView *pactiveview, Real dt) method. The
argument isn’t often used; a bit more about it appears below.

The basic update method feels the forces affecting the critter, and changes the
acceleration of the critter accordingly. In addition, the basic update checks if
the critter should die of old age.

draw —— > feellistener

/! N\

animate move
collide update
feelforce

Figure 8.4 Critter methods called by the cGame step method

173

174 Software Engineering and Computer Games

void cCritter::update (CPopView *pactiveview, Real dt)
{
feelforce();
if(_usefixedlifetime && _age > _fixedlifetime)
dieOfOldAge(); /* I don’t call die() because I like to use
die for when a critter dies of unnatural causes, like
getting shot. It’s more likely that I override die()
to do something dramatic than that I override
dieOfOldAge (). */

The pactiveview arguments aren’t used by any of our critters in the standard
Pop Framework files; they’re in place simply for possible use. Some students
have in fact written two-dimensional games in which the update feeds the
pactiveview into the method COLORREF cCritter::sniff(const cVector &snifflocation,
CPopView *pactiveview). The purpose of this is to let a critter adjust its behavior
according to the colors of the nearby pixels as drawn in the active view; we've
designed car-racing games in this way, for instance, by using the sniff method to

let a critter know when it had driven off the track.

As we already discussed in Chapter 7: Simulating Physics, the feelforce
method sums up the forces acting on the critter and applies Newton’s Law to

compute the acceleration.

void cCritter::feelforce()
{
cVector forcesum; //Default constructor (0,0)
for (int 1=0; i<_forcearray.GetSize(); 1i++)
forcesum += _forcearray.GetAt (i)->force(this);
_acceleration = forcesum/mass(); /* From Newton’s Law:

Force = Mass * Acceleration. */

Recall that the base class cForce::force returns a zero vector, but we have
‘physical’ child classes cForceGravity, cForceDrag, and cForceVortex which return
non-trivial values. We also have ‘behavioral’ force classes like cForceObjectSeek,

cForceClassEvade, and cForceEvadeBullet

void cCritter::feellistener (Real dt)
{
_plistener->listen(dt, this); /* We pass the pointer “this” to

the listener so that it can change the fields of this calling

cCritter as required. The caller critter’s pgame () holds the

cController object that stores all of the keys and mouse
actions you need to process. */

Critters

Taken together, the sequence of actions involving the update, feelforce, and
feellistener methods can be summarized as follows.
e (Call update and, within update, call feelforce().
e Call feellistener(dt) and possibly add in some more acceleration.

e Use the _acceleration in move(dt).

The mMove method

The ccritter::zmove method has a dt argument because we want the motion
to adapt itself according to the speed of the processor running the program. A
fast processor will pass very small dt to the move method, and we will want the
critters to move only a slight amount with each update. A slow processor will
pass larger dt timesteps to the move method, and in that case we need for the
critters to move a larger amount with each update.

What we basically want from our move(dt) method is these two lines.

_velocity += dt * _acceleration;
_position += dt*_velocity.

But, as we mentioned in the last section, our move(dt) has to do a bit more.

e Age the critter by dt seconds.

e Add acceleration * dt to the velocity.

e Clamp the velocity’s speed against maxspeed.

e Add velocity * dt to the position.

e Wrap, bounce, or clamp the new position relative to the border.

e Update the critter’s normal and binormal to reflect the current state of motion.
e Set the critter’s outcode according to which border edge, if any, it hit.

In terms of the special cCritter field names, this can be put a bit more precisely
as follows.

e Increment the _age by dt seconds.

e Add _acceleration * dt to the _velocity, and recalculate _speed from _velocity.

e Clamp the _speed against _maxspeed, possibly redefining the _velocity.

e Add _velocity*dt to the _position.

e Wrap, bounce, or clamp the _position relative to the _movebox.

e Update the critter’s _tangent, _normal and _binormal to reflect the current state
of motion.

e Set the critter’s _outcode according to which _movebox edge, if any, it hit.

As usual, for the fully complete and accurate version, look at the actual code in
critter.cpp.

175

176 Software Engineering and Computer Games

BOX_HIY
BOX_LOX | BOX_HIY

Figure 8.5 The nine outcode zones in two dimensions

Although it isn’t really necessary, we happen to have implemented our
cCritter::move, and some other critter-moving methods such as elamp and moveTo,
so that they return the outcode. But the real use of the outcode is as the internal
ccritter field int _outcode.

Let’s say a few words about the meaning of the outcode. The word ‘outcode’
comes from computer graphics. The outcode value of the critter is set to reflect
the relationship between the border box of the world and the last position the
critter moved to (prior to having this position clamped or wrapped).

In two dimensions the outcode would distinguish among nine positions relat-
ive to a rectangle: inside the rectangle, to its right, to its top right, to its top, and so
on. The idea is that we imagine extending the edges of the rectangle into infinite
lines, and these lines cut space into nine regions. This is shown in Figure 8.5.

Relative to a box in three dimensions, an outcode can distinguish among 27
possible regions: think of a 3 x 3 x 3 Rubik’s cube of space regions built up around
the central box. Rather than making up 27 different outcode names, it’s more use-
ful to OR together bitflags specifying a location'’s region relative to each axis.

The values we use for our outcodes are defined in realbox.h as follows. (These
happen to be implemented as define values rather than static int constants.)

#define BOX_INSIDE 0
#define BOX_LOX 1
#define BOX_HIX 2
#define BOX_LOY 4
#define BOX_HIY 8
#define BOX_LOZ 16
#define BOX_HIZ 32

Thus in the plane, a critter located to the ‘northwest’ of a box would have an
outcode of Box_rox | Box_HIY. And to perform some action dosomething () only
if a critter had touched the lower edge of a box, we could put a line like this
into an overridden version of the critter’s update method.

if (_outcode & BOX_LOX)
dosomething () ;

Critters

Indeed, looking back at our Space Invaders Exercise 3.10 in Chapter 3: The
Pop Framework, recall that we suggested a condition of just this form for use in
the critter’s update to detect if the critter had touched the bottom edge of the
screen during its last move.

The bDraw method

In order to draw a critter we need to have a pointer to a cGraphics object.
Also we may have some drawflags to indicate some special aspects of how we
want to draw the critter; generally, for instance, we draw a circle around the
player critter, and we draw our critters as ‘hollow’ if they have been recently
damaged.

So the ccritter::draw code looks essentially like the following, though the
actual code you'll find in critter.cpp is a little more complicated.

void cCritter::draw(cGraphics *pgraphics, int drawflags)
{
if (recentlyDamaged())
drawflags |= CPopView: :DF_WIREFRAME
pgraphics->pushMatrix () ;
pgraphics->multMatrix (_attitude) ;
_psprite->draw(pgraphics, drawflags);
pgraphics->popMatrix () ;

The draw code is an example of the Template Method pattern. We always
want to multiply in the attitude matrix, doing the necessary set-up and clean-up
to the pgraphics matrix stack. The part of the call that we override is separated
out into the virtual eSprite::draw method.

We almost don’t need to make cCritter::draw a virtual function, but the
cCritterArmed::draw does override and extend the cCritter::draw to draw a short line
segment to represent the gun.

The Animate method

Let’s say a bit more about the critter’s _attitude matrix. This specifies how we are
to orient the sprite image that represents the critter. The place where the critter
updates the _attitude is in its cCritter::updateAttitude call, which is called by the
cCritter::animate.

void cCritter::animate(Real dt)
{
updateAttitude (dt) ;
_psprite->animate(dt, this);

177

178

Software Engineering and Computer Games

If _attitudetomotionlock field is TRUE, the updateAttitude method matches
the _attitude matrix to the motion matrix given by the tangent, normal, binormal,
and position vectors. This is a good default behavior that makes the critters
look lively. If _attitudetomotionlock is FALSE, we allow for the possibility that
the critter is spinning.

void cCritter::updateAttitude (Real dt)
{
_attitude.setLastColumn(_position); //always update position.
if (_attitudetomotionlock)
copyMotionMatrixToAttitudeMatrix() ;
else //_attitudetomotionlock is FALSE
rotateAttitude (dt*_spin) ;

As we'll see in Chapter 9: Sprites, the reason we pass this to the
cSprite::animate () call is that the sprite may want to change itself depending
on the direction or the health of its owner critter.

Randomizing and mutation methods

As well as the randomizePosition and randomizeVelocity methods, we can also
change a critter by calling a cCritter::mutate(int mutationflags, Real mutationstrength)
method.

The way this works is that we can feed in various combinations of the static
MF_ mutation flags, some of which are defined in critter.h, some in sprite.h and
some in spritepolygon.h. The cCritter::mutate method changes a few critter values
and then makes a call to the eSprite::mutate method. For randomizing purposes,
these methods use the singleton cRandomizer::pinstance() object.

The Die and Damage methods

The default ccritter::die method is implemented in-line simply as virtual void
die(){delete_me();}. This tells the owner game to delete the pointer and
remove it from the eBiota array when the current round of critter updates is
done. The reason we wait a bit is that it can cause trouble if you start adding
and deleting critters to an array that you're in the process of updating.

Some critters override the die or the damage method to make a noise with a
call of the form playSound(“Bonk”). Both the cCritter and cGame classes have a
playSound method. The string you feed into a playSound call needs to be defined
in quotes as the ID of the relevant resource, for instance as ‘BONK’. The names
of resources are not case sensitive.

The standard cCritter::damage(int hitstrength) code reduces the _health by
hitstrength, and if the _health is less than or equal to zero, the critter makes a
call to die ().

Critters

The collide method

Collision is a tricky matter, and we’'ll give a more detailed discussion of it in
Chapter 11: Collisions. Critters collide in pairs.

Each critter has the virtual BOOL cCritter::collide(cCritter *pother) method whose
default behavior is to perform an elastic collision between the caller critter and
the pother critter, changing their positions and velocities in a manner that
would be physically natural if the critters were spheres.

We can override a critter’s collide method to include a reaction to the critter
that it’s colliding with, possibly killing one of the critters, adding a score to
one, or the like.

Sometimes we may have two cCritter *pcritteri, *pcritterj that belong
to ccritter child classes that have different overrides of the collide method. In this
case it makes a difference whether you call pcritteri->collide(pcritterj) Or
pcritteri->collide (pcritterj). We generally don’t want to call both collide
methods as (a) this would waste computational time and (b) the collide methods
are designed to have a symmetric effect on the critters, so it would be physic-
ally incorrect to call collide twice for one particular collision. As we discuss in
Chapter 11: Collisions, we give the critters an int _collidepriority field and a virtual
int cCritter::collidesWith(cCritter *pcritterother) method to resolve the question of
which critter gets to control a given collision.

8.4 Critter method overrides

Table 8.1 gives you an overview of which critter methods we override to make
the sample games provided with the Pop Framework.

8.5 The full ccritter prototype

Here’s a full listing of the cCritter prototype from a recent critter.h header file. For
the most current listing, you can examine the file itself inside Visual Studio.

L1177 77777007 777
// Critter.h: interface for the cCritter class.

//

L1777 7 770077777777 77

#ifndef CRITTER_H

#define CRITTER_H

#include “randomizer.h”

#include “realbox.h”

#include “realpixelconverter.h”

#include “vectortransformation.h”

#include <mmsystem.h> //For PlaySound flags
class cGraphics;

179

180 Software Engineering and Computer Games

#define USEBOUNCINESS /* Compile switch used in critter.cpp,

critterwall.cpp, realbox.cpp. */

/* We don’t need to include the headers for the following classes
as we only mention them as pointers. In general, we only include a
header in a header if we absolutely have to. Here we can get by
with forward class declarations that simply say such and such a
class exists. Of course we will need to include the headers in
the critter.cpp which is where we actually use the properties of
these classes. */

class cBiota; //For the *_pownerbiota member.

class cSprite; //For the *_psprite member.

class cListener; //For *_plistener member.

class cForce; //For _forcearray member.

class cDistanceAndDirection;
// Return type of the distanceAndDirection function.

class CPopView; //Used as an argument to sniff.

class cGame; //For the return type of the pgame() method.

class cGraphics; //For the draw method.

class cCritter : public CObject
{
DECLARE_SERIAL (cCritter); /* An MFC macro used to enable
CRuntimeClass reflection of class type, dynamic creation,
and serialization. */
public:
// Statics ===================—==—==—-=—=-=—-=—-====
//Constant Statics ================================
//The MF_ statics are mutation flags used in the mutate methods.
static const int MF_NUDGE;
static const int MF_POSITION;
static const int MF_VELOCITY;
static const int MF_ALL; //MF_POSITION | MF_VELOCITY
/* Wrapflag values specify possible behaviors when critter hits
edge of world. */
static const int BOUNCE;
static const int WRAP;
static const int CLAMP;
/* special high density used for player or other immovable critter. */
static const Real INFINITEDENSITY;
//Variable Statics ================================
//These might (rarely) be reset by a cGame constructor.
//Motion Statics ============================-===
static Real MINSPEED; //Used in randomizing critter _speed.
static Real MAXSPEED; /* Used in randomizing, and to clamp _speed
in move(dt). */
static Real MINTWITCHTHRESHOLDSPEED;
//Default for _mintwitchthresholdspeed

Critters

static Real NEAREDGEPERCENT; // Default arg for moveToMoveboxEdge.

static BOOL STARTWRAPFLAG;

static Real DENSITY; //Default density.

//State Statics ===============================

static Real MUTATIONSTRENGTH; //Default argument to mutate method.

static Real MINRADIUS; //Used in randomizing

static Real MAXRADIUS;

static Real BULLETRADIUS; /* Gets set to cGame::BULLETRADIUS in
cGame constructor. */

static Real PLAYERRADIUS;

static Real LISTENERACCELERATION;
//Default for _listeneracceleration

static int STARTHEALTH; //Default is 1.

static Real SAFEWAIT; /* Time in seconds of invulnerability, use
at start up and after damage, gives critters breathing room so
they don’t get damaged twice in a row, like by the same bullet
volley. */

static Real FIXEDLIFETIME; /* Default lifetime for critters with
_usefixedlifetime TRUE. */

protected:

Real _age; /* Measure in seconds of time simulated, start at 0.0
when constructed. */

BOOL _usefixedlifetime;

//If TRUE, then die when _age > _fixedlifetime.

Real _fixedlifetime;

//Max lifetime in seconds, applies only if _usefixedlifetime.
int _health; /* Lose by being hit and taking damage (). Usually die
when _health is 0. */

BOOL _shieldflag; //Immunity to damage() calls.

UINT _personality; /* Random bits to sometimes use for making
critters have different behaviors, as when using evasion
forces. */

Real _mutationstrength; /* Number between 0.0 and 1.0 controlling
how different a spawned copy will be. */

cCritter *_ptarget;/* In case you are following or dragging or
watching or aimed at someone else, use this field to track
them. _ptarget is one of the only fields that is NOT
serialized. We use the _targetindex with the _pownerbiota to
copy or serialize _ptarget. */

cBiota *_pownerbiota; /* Used in makeServiceRequest and in other
places. It allows the critter to be aware of all the other

181

182 Software Engineering and Computer Games

critters. Gets set by the cCritter (cGame *pownergame)
constructor. _pownerbiota is NOT serialized. */
int _score; //Usually gain by eating or shooting others.
int _value; //Value to another critter shooting or eating this one.
int _newlevelscorestep;
//Step size between score levels that are rewarded.

int _newlevelreward; //Health reward for new score level.

cVector _position;

cRealBox _movebox; //Keep critter inside _movebox.

cRealBox _dragbox; /* Usually same as _movebox, but in
cGamePickNPop, it’s bigger, so can drag a critter outside of
its _movebox. */

int _wrapflag; //BOUNCE, WRAP, or CLAMP when you bump a wall.

int _outcode; /* Flag info about which wall, if any, the last
move bumped. */

//Velocity Fields ================================

BOOL _fixedflag; //Refuse to move.

cVector _velocity;

Real _speed;

cVector _tangent; /* We always keep _velocity = _speed * _tangent.
It’s useful to have _tangent around even when _speed goes to 0
and _velocity is zero, this way we know what direction to
start back up in. */

cVector _normal; /* We maintain a _normal and _binormal vector to
fully express themotion of the critter through 3D space. */

cVector _binormal; //Always cVector::ZAXIS in 2D worlds.

Real _maxspeed; //Clamp _speed below this in move() .

Real _maxspeedstandard;/* In case _maxspeed might be temporarily
increased, for instance if the critter is allowed to move
extra fast while fleeing or chasing another. */

//Acceleration Mass, and Force Fields ==============================
cVector _acceleration; /* _acceleration gets reset during every
cycle, using the _forcearray and possibly the _plistener to

change it. */

Real _mass; /* Use fixMass () helper to maintain _mass = _density *
radius()"3. */

Real _density; /* Default is 1. We often assign the cCritterPlayer
a very large _density so that it can whack others around. */

CTypedPtrArray<CObArray, cForce*> _forcearray;

//We serialize this array
//Listener Fields. ================================

cListener *_plistener; //Never NULL. We serialize the plistener.

Critters

Real _listeneracceleration; /* This is the acceleration used by
listeners such as cListenerCar and cListenerSpaceship that
“drive” the critter around. Like the critter’s engine
strength. */

//Collision Fields ================================

Real _collidepriority;

/* These are default cCritter _collidepriority wvalues, in
increasing size for increasingly high priority, where in a
pair of critters, the higher priority critter is the caller of
the collide method, and the lower priority critter is the
argument to the collide call. */

Real _absorberflag; /* Don’t change your own velocity after a
collision. This siphons energy out of the system, cooling
down the motions by absorbing it. */

Real _bounciness; /* ranges from 0.0 to 1.0. Determines how
elastically you bounce off of walls or off of other
critters. 1.0 is perfect bounce, 0.9 is pretty reasonable,
0.0 don’t bounce at all. */

Real _mintwitchthresholdspeed; /* If we have
_attitudetomotionlock, and we have some critters barely
bouncing on a “floor” it looks bad if they keep twitching
their orientation up and down. Don’t change the _attitude
to match the motion if the speed is less than
_mintwitchtriggerspeed. */

cSprite *_psprite; //Never NULL. We serialize the _psprite.

BOOL _attitudetomotionlock; /* Shall I lock together the display
sprite and the motion? By default the player has
_attitudetomotionlock FALSE and all other critters have it
TRUE. */

cMatrix _attitude; /* The attitude expresses the way that the
critter is situated for rendering. When _attitudetomotionlock
is TRUE, _attitude has the columns _tangent, _normal,
_binormal, _position. If _attitudetomotionlock is FALSE,
_attitude can be instead controlled by _spin or by the
_plistener actions. */

cSpin _spin; /* A cSpin holds the spinangle in radians per
second and the spinaxis which is the axis to spin around
(z by default). Presently used only when _attitudetomotionlock
is OFF. */

Real _defaultprismdz; /* We copy this into the psprite’s _prismdz
field in setSprite. If we are in 3D and if the sprite is, for
instance, a polygon that makes use of the _prismdz field, then
_prismdz will determine the z-thickness of the sprite. */

183

184 Software Engineering and Computer Games

//Bookkeeping Fields == —=====

//Serialized Bookkeeping Fields ===============================
Real _lasthit_age; /* Age at last hit (or age at birth), use to
time invulnerability. */
BOOL _oldrecentlydamaged; /* Used in update() in connection with
sprite display lists. */
cVector _oldposition;
//This 1is used by the cCritterWall::collide method.
cVector _oldtangent;
//This 1is used by the cCritter::fixNormalAndBinormal method.
cVector _wrappositionl, _wrapposition2, _wrapposition3;
//Use for showing wrap in 2D
int _targetindex; /* _targetindex is a dummy used to copy and
serialize the _ptarget pointer reference. */
//Nonserialized Bookkeeping Fields ============================
int _metrickey; /* Index into the _pownerbiota cBiota’s _metric,
can be used to look up metric values. _metrickey is NOT
serialized. Uspd if #define USEMETRIC*/

cCritter (cGame *pownergame = NULL); /* Initializes fields, adds
to pownergame if not null. With the NULL default for the
pownergame argument, this constructor doubles as a no-argument
constructor. */

virtual void copy (cCritter *pcritter); /* Helper function for copy
constructor, and for clone method. */

cCritter(cCritter *pcritter); //copy constructor

cCritter* clone(); /* Returns a pointer to a cCritter of the same
child class type, with the same info in it. */

virtual ~cCritter(); /* deletes pointer members and calls
cBiota::removeReferencesTo (this). The destructor is virtual
so that child critter destructors can do extra cleanup before
the baseclass destructor. */

void removeReferencesTo (cCritter *pdeadcritter); /* Don’t let
pdeadcritter be the _ptarget or the pnode() of any

cForceObject in the _forcearray. */

void setVvalue (int value) {_value = value;}
/* The velocity, direction, and speed mutators always keep

_velocity = _speed * _tangent. */

Critters

void setShield(BOOL shield) {_shieldflag = shield;}

void setUseFixedLifetime (BOOL yesno) {_usefixedlifetime = yesno;}

void setFixedLifetime (Real lifetime) {_fixedlifetime = lifetime;}

void setMutationStrength(Real mutationstrength) {_mutationstrength
= mutationstrength;}

virtual void setTarget (cCritter *pcritter) {_ptarget = pcritter;}
/* Comes in handy sometimes, though more often I’11 use a
cForceObject. */

void setMetricKey (int 1) {_metrickey = 1i;}

virtual void reset(); //can override to do special things.

virtual void setAge(Real age) {_age = age; _lasthit_age = _age -
cCritter::SAFEWAIT;} //overridden by cCritterArmedRobot.

//Game Field Mutators ===========================—=======

void setOwner (cBiota* pownerbiota) {_pownerbiota = pownerbiota;}
//Used in Add and CBiota::Serialize

virtual void addScore(int scorechange) ;

void setHealth(int health) {_health = health;
if (_health<0)_health=0;} /* We can add health points at
certain score levels. */

void setNewlevelreward(int healthgain) {_newlevelreward =
healthgain;}

void setNewlevelscorestep (int pointspread) {_newlevelscorestep =

pointspread; }

/) /==
//Motion Field Mutators ==============================

int setMoveBox (const cRealBox &box) ;

void setDragBox (const cRealBox &box) {_dragbox = box;}

virtual void setWrapflag(int wrapflag);
//We have a kludge override for cCritterWall

virtual int moveTo (const cVector &newposition, BOOL
treatascontinuousmotion = FALSE); /* Do the move,
and then clamp against _movebox, return outcode of
clamp. */

virtual int moveToZ (Real z) {return moveTo (cVector (_position.x(),
_position.y (), z));} /* I use moveToZ in
cGamePickNPop: :seedCritters. */

virtual int moveToProportional (const cVector &newposition,
Real proportion, BOOL treatascontinuousmotion = FALSE) ;
/* Proportion between 0.0 and 1.0 is how much of the way
you want to move towards newposition. */

virtual int dragTo(const cVector &newposition, Real dt);
/* Move and clamp against _dragbox, return outcode. In
addition, use dt to set critter velocity to match the drag
velocity. I make it virtual so cCritterWall can override to

NOT change the velocity. */

185

186 Software Engineering and Computer Games

void moveToMoveboxEdge (Real percent = cCritter::NEAREDGEPERCENT) ;
/* Useful in some games, to start a critter near the _movebox
edge. */
//Velocity Field Mutators ============================
void setFixedflag(BOOL flag) {_fixedflag = flag;}
void setVelocity (const cVector &velocity);
void addvVelocity (const cVector velocitychange)
{setVelocity (_velocity + velocitychange);}
void setTangent (const cVector &direction) ;
void rotate(const cSpin &spin); /* cSpin is a way to express
general 3D angles. */
void yaw(Real turnangle); //Rotate around _binormal.
void roll (Real turnangle); //Rotate around _tangent
void pitch(Real turnangle); //Rotate around _normal
void orthonormalize(); /* Make sure _tangent, _normal, _binormal
are orthogonal units. */
void setSpeed(Real speed) ;
void setMaxspeed(Real maxspeed)
{_maxspeed = _maxspeedstandard = maxspeed;}
void setTempMaxspeed(Real maxspeed) {_maxspeed = maxspeed; }
void restoreMaxspeed() {_maxspeed = _maxspeedstandard;}
//Acceleration, Mass and Force Field Mutators ======================
void setAcceleration(const cVector &acceleration)
{_acceleration = acceleration;}
void addAcceleration(const cVector &acceleration)
{_acceleration += acceleration;}
void setDensity (Real density) {_density = density; fixMass();}
void fixMass(); //Keep _mass = _density * _radius()"3.
void addForce (cForce *pforce);
void clearForcearray () ;
void copyForcearray (cCritter *pcritter); /* This helper method
will empty the existing force array and copy all of the forces
in the pcritter force array. */
virtual void copyPhysicsForces (cCritter *pcritter); /* A more
modest kind of force copying. Here we don'’t wipeout the
existing forces in the caller, and we only copy the “physics”
forces like cForceGravity and cForceDrag from pcritter. Use
the BOOL cForce::isGlobalPhysicsForce() to tell us which ones.
We need this method so that bullets can copy the physics of
their shooters but not their behavioral forces. */
//Listener Field Mutators ==================================
void setListener (cListener *plistener);
void setListenerAcceleration(Real la){_listeneracceleration = la;}
//Collision Field Mutators ===================================
void setMinTwitchThresholdSpeed (Real twitchspeed)
{_mintwitchthresholdspeed = twitchspeed;}

Critters

void setBounciness (Real bounciness)
{CLAMP (bounciness, 0.0, 1.0); _bounciness = bounciness;}
void setAbsorberflag (BOOL flag)
{_absorberflag = flag;
_absorberflag?_bounciness=0.0:_bounciness=1.0;}
void setCollidePriority (Real collidepriority);
//Rebuild the pgame ()->_pcollider just in case.

//===
//Attitude and Display Field Mutators ===============================
//===

void setSprite(cSprite *psprite);

void setSpin(cVector3 spinvector) {_spin = cSpin(spinvector);}

void setAttitudeToMotionLock (int lockmode)
{_attitudetomotionlock = lockmode;}

void setSpin(Real spinangle, cVector3 spinaxis = cVector::ZAXIS)
{_spin = cSpin(spinangle, spinaxis);}

void rotateAttitude (Real angle);

//{_attitude *= cMatrix::rotation(angle);}
void rotateAttitude(cSpin &spin);
//{_attitude *= cMatrix::rotation(spin);}

void setAttitude(const cMatrix &attitude); /* This changes the
orientation aspect of _attitude, but NOT the _position
aspect, that is, it leaves the last column alone. */

void resetAttitude(); /* Assume the identity orientation. */

void setAttitudeTangent (const cVector &tangent); /* points
_attitude in tangent direction. If _attitudetomotionlock is
TRUE, we move _tangent to match. */

void copyMotionMatrixToAttitudeMatrix();

void copyAttitudeMatrixToMotionMatrix () ;

BOOL lookAt (const cVector &targetpos); /* Aim attitudeTangent
at targetpos, and try and perverse attitudeNormal while
you’re at it. Return FALSE if the targetpos is right on
top of you, preventing you from looking at it, else return
TRUE. */

BOOL lookAtProportional (const cVector &targetpos, Real
proportion); /* Proportion is between 0.0 and
1.0 specifying how far towards targetpos you turn
to look. */

int setRadius(Real radius);

void setPrismDz (Real prismdz); /* Sets _defaultprismdz and the
current _psprite->_prismdz. */

//===
//Randomizing mutators ===========================
//===

void randomizePosition(const cRealBox &startbox) ;

void randomizePosition () {randomizePosition (_movebox) ;}

187

188 Software Engineering and Computer Games

void randomizeRadius(Real minradius, Real maxradius)
{setRadius (cRandomizer: :pinstance () ->randomReal (minradius,
maxradius)) ; }
void randomizeVelocity (Real speed);
void randomizeVelocity (Real minspeed, Real maxspeed) ;
void randomizeVelocity () {randomizeVelocity (MINSPEED, _maxspeed);}
void randomizeSpin(Real minspeed, Real maxspeed) ;
virtual void mutate (int mutationflags, Real mutationstrength) ;
/* Mutate flagged position, velocity and sprite properties by
an amount specified in mutationstrength. */
void mutate (int mutationflags)
{mutate (mutationflags, _mutationstrength);} /* Uses the member
_mutationstrength, which defaults to 0.6. */
void randomize (int mutationflags) {mutate (mutationflags, 1.0);}

//1.0 is maximum.

Real mutationStrength()const{return _mutationstrength;}

int value()const{return _value;}

unsigned long personality()const{return _personality;}

BOOL shield()const{return _shieldflag;}

BOOL usefixedlifetime () {return _usefixedlifetime;}

Real fixedlifetime () {return _fixedlifetime;}

Real age()const{return _age;}

BOOL recentlyDamaged () {return (_age — _lasthit_age) < SAFEWAIT;}

//Game Field AccessSOrS =================================

cBiota* pownerbiota()const;

virtual cGame* pgame ()const; /*Normally this will just return
_pownerbiota->pgame (), but in the case of a cCritterViewer
associated with a CPopView we use a different path to the
cGame. */

cCritter* ptarget ()const{return _ptarget;}

cCritter* pplayer(); /* return pgame()->pplayer(), in other words
the player of the game that this critter belongs to. */

int score()const{return _score;}

int health()const{return _health;}

//Position Field ACCesSsSOrs ==============================

cVector position() const {return _position;}

cVector oldposition() const {return _oldposition;}

cPlane plane()const{return cPlane(_position, _binormal);}
int wrapflag()const {return _wrapflag;}

cRealBox moveBox ()const{return _movebox; }

Critters

cRealBox dragBox ()const{return _dragbox;}
cRealBox realBox(); //Smallest box holding the sprite.
virtual BOOL draggable() {return TRUE;} /* Used to see if a critter
is willing to be dragged in cGame::onLButtonDown. If you ever
want a non-draggable critter child class, override draggable
to return FALSE. */
BOOL in3DWorld(); //Tells you if the owner game has a z-Thickness.
//Velocity Field Accessors ==================================
BOOL fixedflag()const{return _fixedflag;}
cVector velocity () const {return _velocity;}
cVector tangent () const {return _tangent;}
cVector normal () const{return _normal;}
cVector binormal () const{return _binormal;}
Real speed()const {return _speed;}
Real maxspeed()const {return _maxspeed;}
Real maxspeedstandard()const {return _maxspeedstandard;}
//Acceleration, Force and Mass Field Accessors =======================
cVector acceleration() const {return _acceleration;}
Real density()const{return _density;}
CTypedPtrArray<CObArray, cForce*>* pforcearray ()
{return &_forcearray;}
//Listener Field AccessOrs ================================
cListener* plistener ()const{return _plistener;}
Real listeneracceleration()const{return _listeneracceleration;}
//Collision Field AccessoOrs =================================
Real minTwitchThresholdSpeed () {return _mintwitchthresholdspeed;}
Real bounciness () {return _bounciness;}
BOOL absorberflag()const{return _absorberflag;}
Real mass()const{return _mass;}
Real collidePriority () {return _collidepriority;}

//===
//Attitude and Display Field AccessSOrs ===========================
//===
cSprite* psprite() const{return _psprite;}
Real radius() const;
cSpin spin()const{return _spin;}
cMatrix attitude () {return _attitude;}
cVector attitudeTangent ()const {return _attitude.column(0);}
cVector attitudeNormal ()const {return _attitude.column(l);}
cVector attitudeBinormal ()const{return _attitude.column(2);}
BOOL attitudetomotionlock() const{return _attitudetomotionlock;}
Real defaultprismdz ()const{return _defaultprismdz; }
//==
//Bookkeeping Field ACCeSSOrS ==================================
//==

189

190

Software Engineering and Computer Games

2 B N
virtual void Serialize(CArchive &ar);

2 B N

// Helper methods =====================—==--=—-=----=

2 B E———————

//Service Request Methods ==
/* The point of these is that if a critter is do something that
affects the set of critters as a whole, we want it to let the
cBiota* _pownerbiota do it, so that all critter changes are
coordinated. So critter just passes this request to its

_pownerbiota, and later _pownerbiota calls

cBiota: :processServiceRequests. */
void makeServiceRequest (CString request) ;
void add_me (cBiota *pownerbiota, BOOL immediateadd = FALSE) ;

/* Make a request to the pownerbiota to add yourself to its

array, normally this doesn’t happen until pownerbiota makes a

periodic call to processServiceRequests, but you can force it

to be immediate with immediateadd. */
void delete_me () {_health = 0; makeServiceRequest (“delete_me”);}
void spawn () {makeServiceRequest (“spawn”) ;}
void zap () {makeServiceRequest (“zap”) ;}
void replicate() {makeServiceRequest (“replicate”);}

//copy yourself to all the others.

//Helper Methods for Move Methods ====================================
virtual int clamp();

//Clamp against _movebox. cCritterWall treats differently.
virtual int clamp(const cRealBox &border); //Clamp against border
virtual void addvelocityandcheckedges (Real dt); /* do _position +=

dt*_velocity, and clamp, wrap, or bounce the new position off

the _movebox. Set _outcode to tell which edges. Called by

move (). Need the dt to figure out a velocity bounce. */

void synchSpeedAndDirectionToVelocity (); /* Enforces
_speed*_tangent = _velocity and avoids having _speed less than
SMALL_REAL */

void fixNormalAndBinormal (); /* This is easy in 2D, subtler in 3D.

Call this from inside move on every update. It also
orthonormolizes _tangent, _normal, and _binormal. */
//Helper method for pointer references. ======================—========
virtual void fixPointerRefs(); /* This helper is for fixing things
like _ptarget after serialization, is also needed when we
delete a critter.*/

//Distance, touch, sniff, collide methods ===========================-=

/* The first three methods’ code depends whether USEMETRIC is
#defined in metric.h */

Critters

virtual cVector directionTo (cCritter *pcritter);
//Use cMetricCritter or compute direct

Real distanceTo(cCritter *pcritter);
//Uses cBiota'’s cMetricCritter or computes direct

Real distanceTo (const cLine &testline)
{return testline.distanceTo (_position);}//Direct

cDistanceAndDirection distanceAndDirectionTo (cCritter *pcritter);
//ditto

Real distanceTo(const cVector &vpoint); //Brute force.

virtual BOOL touch(const cVector &vpoint);//Brute force.

virtual BOOL touch(const cLine &sightline); /* In 3D, clicking the
screen really picks a line of sight rather than a particular
point in space. */

virtual BOOL touch(cCritter *pcritter); /* TRUE if pcritter is
different from this and the distance between the centers is
less than the sum of the radii. Uses cBiota’s cMetricCritter
or just does the brute force distance checks. */

virtual BOOL contains (cCritter *pcritter); /* TRUE if the disk of
pcritter is inside the disk of the caller. */

virtual COLORREF sniff (const cVector &snifflocation, CPopView
pactiveview); / Can be used in update to check the current
screen’s pixel color at locations you’re interested in. */

virtual int collidesWith(cCritter *pcritterother); /* Returns
cCollider: :DONTCOLLIDE, ::COLLIDEASCALLER, or ::COLLIDEASARG
to specify which of the pair, if either, gets to call for a
collision. Default just checks _fixedflag and
_collidepriority. */

virtual BOOL collide(cCritter *pcritter); /* Does a physically
natural collision and possibly overrides to make the critters
react in some other way such as damage. */

//==
//Game methods ============================
//==
virtual void die() {delete_me();} /* Can be overridden to add
dying behavior. But should eventually produce a call to
delete_me. */
virtual void cCritter::dieOfOldAge() {delete_me();} /* dieOfOldAge
is called in the update method if (_usefixedlifetime &&
_age > _fixedlifetime). We distinguish between die() and
dieOfOldAge () so die() can make a different sound for
instance. */
virtual int damage (int hitstrength); /* Deducts hitstrength from
_health, calls die if this is below zero, returns _value as a
reward to the damager. */
//==

191

192 Software Engineering and Computer Games

virtual void feellistener (Real dt); /* Call _plistener->listen,
maybe more. */

virtual void feelforce(); /* Do _acceleration =
(sum of _forcearray[i]->force(this))/mass(). feelforce is
virtual because you might possibly want to select which forces
you feel, depending on the situation, like whether you’'re

currently pursuing or fleeing. */

void updateAttitude (Real dt, BOOL forceattitudeupdate = FALSE) ;
/* This keeps graphical attitude matrix of the critter in
synch with its motionmatrix. To prevent a too-busy look, we
normally don’t do the update if the _speed is less than
_mintwitchthresholdspeed. But if we are controlling the
critter with arrow key calls to, e.g. the yaw, pitch and roll
methods, we do want to force the update of the appearance, and
then you set the forceattitudeupdate argument to TRUE. */

virtual void draw(cGraphics *pgraphics, int drawflags=0) ;
/* Calls _psprite->draw. Has to be virtual because some child
critters draw stuff (like guns) on top of sprite. */

virtual void drawHighlight (cGraphics *pgraphics, Real
highlightratio); /* Draw a highlighted XOR circle around the

sprite with a size = highlightratio * radius(). */

static void playSound (CString wavfileresourcename, int soundflags
= SND_RESOURCE SND_ASYNC) ;
/* By default interrupts any current sounds to play this

sound. wavfileresourcename has to be the resource name of
a *.wav file that you added as a resource to your build. */

static void stopSound(); //Turns off any currently playing sounds.

virtual void animate(Real dt); /* Calls _psprite->animate(dt,
this). Can override to setAimvVector. */
virtual void update (CPopView *pactiveview, Real dt); /* Call force
to set the _acceleration to zero or to the qguantity determined
by _pforce. The pactiveview argument can be used to sniff
pixel colors. */
int move(Real dt); /* You really should NOT change the delicately
constructed move method, which is why its not virtual. */
}i
#endif //CRITTER_H

193

Critters

llemul
alepdn ‘a8ewep ‘apl||0d
YHMS3pI|0d ‘erepdn
alp ‘e3ewep ‘opl||00

a1epdn “100ys ‘19sal ‘melp ‘egewep ‘apl||0o

1981e]sI

aIp
alp
ap1]|09

a1epdn ‘egewep
agewep

0]3eJp ‘0]120UBISIP ‘YUMSOPIII0D ‘apl||0d ‘dweld

o3ewep

o1epdn ‘apl||0o

188ie]s| ‘ezijenul alepdn ‘sjayIaiulodXl ‘UNMSDPI||0D ‘BpI||0d
a1epdn

100ys ‘Jaualsl||99}) ‘melp ‘9dewep ‘apl||00
j00ys a1epdn ‘sjoyJanulodXly ‘melp ‘ajewiue

SpoY}awW [EnUIA MaN SPOY}aLW USPPLIIBAQ

JOA[ISISINGI9NHD0
10qOoypaWIYIdNLIDD
Januoo

JanlQo
18||ngJ8nli0o
Jahe|dpawyianino

[leMI91D0
19]IngJ911Dd
Jake|dpawiyIoniDo
11O

Jahke|dpawyianino
Jonuoo
Januoo

04M4enuYd
10004 POULIYISIIIND
JORUDO

JanlQo
19(|ngJ91liDd
19(|ngJ91liDd

EEXTEIO)

Jafe|dpawyianiino
pawyIanIDO0
pawyIan)o

JanlQo

sse|d juaied

13[Ing|eAlY-dEeIopUSISQIdNNDD
[eAlY-gEI9pusiogloniiod
Feiqdoid-gqeiapusio@ioniind
doldagepusiagloniido
18|IngJohe|d-QeIopussaQloniiQo
J9ke|d-qElopuajagianiino

lleMUWEQISNLDO
19]INgUIRQISNLDO
Jake|dweqianiino

120]JWe IO

1ahe|dpliom|jegianiino
PLIOM|[EGIENLOO
19YSegIaNIO0

Uewso4nanuod
04nIenuoo
PI0JS)SYISNIOO

[lemJIanldd
J9A[IS19[INGI9NHD0
Jaqgnyis|Ingsenligo
19]|ngJ8nli0o
Jofke|dianiino
10qOoypPaWIVIdNIDD
Jahe|dpawyianiino
pawlyia)ino

aweu ssej)

dgiepuslad

Jap|inquieq

lleqieysed

Jemaoeds

sosse|o olseg

uy pasn

"yiomaweld dod syl ul pasn sasseo |eloads '8 a|qel

194 Software Engineering and Computer Games

azilenlul
a1epdn ‘e8ewep ‘opljj0d

alepdn ‘19saJ ‘e8ewep ‘apl||09
a1epdn ‘aegewep ‘apl||09

azilenul
a1epdn ‘e8ewep ‘opl|j0o
a1epdn ‘ae8ewep ‘apl||09

alepdn ‘Jooys ‘10sal ‘e8ewep ‘opl||0d
azileniul

alepdn ‘egewep ‘apl||0d

a1epdn ‘e8ewep ‘opl|j0d

a1epdn ‘19saJ ‘eg8ewep ‘apl||09

alp
alp
o1epdn ‘aip

a1epdn

1988l
apl|od

SPOYIoW [ENUIA MON

SPOY3SW USPPLIIBAQ

JaA|IS)8INgI8nliD0
10goYypawliyIanlidd
19]|ng48nli0o
Jahe|dpawyianino
Jenuoo

J19A]IS19]INgIANLDD
10004 PAWLIVISIIIDO
LN
19]INgIaNLDD

Jake|dpawyianiino
JOA[ISI9[INGI9NIHD0
10goypawlyIanido
Januoo
19|ng8nli0o
Jahe|dpawyianino

1910
1910
11O

11O
19O
1910
leMJINLIDD

sse|o juaied

19/Ing-eAldSUIOMIaNLDD
|eAIYSWIOMISNLDD
19|Ing-J9AR|dSWIOANI91IIDO
JoAe|dSWIoOpMIaNLIDD
JUBWBaSWIOMISNIDD

191INgIRAIYGNISISNLDO
[eAIYGMISIBNLDO
doidansIenund
191IngIoke|daNISIaNLDO

Jahke|dgmsianuno
19(IngleAly-aeanISIaniioo
[BAIAQEQMSIaNIDO
doldaeanisiendo
18/Ingleke|d-aeamMSIenioo
Jake|daegnisieniioo

|[omarpayoeduntoniino
1nuesd4a1uD0
EXEIgEnIgh)

1000YAS400H491114D0
YondAayo0HIo1114D0
J9Ae|dAay00HIaM11ID0
|e0HAY00HIONIIDO

aweu ssejy

(penunuo)

SWIOM

ams

agams

dod-N-{dld

Kayooyly
ul pssn

T'8 alqel

Critters

ccritter initialization

To complete this detailed code section, here’s how the cCritter fields get initialized
by the default constructor. Remember that when we define children of the critter
class, like, say, cCritterArmed, when the cCritterArmed constructor is called the
base class cCritter constructor gets called first. In other words, the cCritter con-
structor is code that all of our critters will execute at start up. Child classes may
override some of these initialization values; they may also initialize additional
variables that the child class may have.

We go ahead and list the full code of a recent version of the cCritter con-
structor here just to give you an idea of all the member fields actually used.
A C++ usage worth noting here is that when we write a C++ constructor, it’s
common to set the values of fields by using initializer lines of the form
_variable (value), rather than having a line of the form _variable = value;
inside the curly brackets of the constructor. It makes the code easier to over-
view, and it’s useful to see the allocation calls using new isolated inside the
constructor’s curly brackets, so that then it’s easier to remember what you
have to undo in the destructor. (If you happen to have any data fields that
were declared as const you are in fact required to use initializer lines to set their
values.)

Also note that if the pownergame argument isn’t supplied, it will get the
default nurL value, and the code involving it will be skipped over in the
constructor.

cCritter::cCritter (cGame *pownergame) :

_pownerbiota (NULL) ,

_age (0.0),

_lasthit_age(- cCritter::SAFEWAIT), /* We do this so
that critters don’t start out thinking they were
just hit. cCritter::SAFEWAIT is currently 0.3
seconds. */

_oldrecentlydamaged (FALSE), //Can use to notice when you need to
change sprite.

_health(cCritter::STARTHEALTH), //Default 1.

_usefixedlifetime (FALSE),

_fixedlifetime (cCritter::FIXEDLIFETIME) ,

_shieldflag (FALSE),

_outcode (0),

_score(0),

_newlevelscorestep(0),

_newlevelreward(0),

_value (1),

_personality (cRandomizer: :pinstance ()->random()),
//Use our static randomizing method.

_movebox (cRealBox(4.0,3.0, 0.0)),

//Dummy defaults to be reset with setMoveBox

195

196 Software Engineering and Computer Games

_dragbox (cRealBox (_movebox)),

//Dummy defaults to be reset with setDrag
_wrapflag(cCritter::STARTWRAPFLAG), //cCritter::BOUNCE
_defaultprismdz (cSprite: :CRITTERPRISMDZ) ,

_density (cCritter::DENSITY),

//This standard value is currently 1.0.
_mass(1.0), //Dummy default is reset by fixMass.
_collidepriority(cCollider::CP_CRITTER),

_absorberflag (FALSE) ,

_fixedflag (FALSE),

_position (cVector: :ZEROVECTOR) ,
_oldposition (cVector: :ZEROVECTOR) ,
_wrappositionl (cVector: :ZEROVECTOR) ,
_wrapposition2 (cVector: :ZEROVECTOR) ,
_wrapposition3 (cVector: :ZEROVECTOR) ,

_velocity (cVector: :ZEROVECTOR) ,

_speed(0.0), //Must match _velocity.magnitude() .
_tangent (cVector (1.0, 0.0)),

//We always want some unit vector _tangent.

_oldtangent (cVector (1.0, 0.0)),

_normal (cVector (0.0, 1.0)),

_binormal (cVector (0.0, 0.0, 1.0)),

_attitudetomotionlock (TRUE) ,

_acceleration(cVector: :ZEROVECTOR) ,

_listeneracceleration(cCritter::LISTENERACCELERATION) ,

_spin(), /* _spin is initialized to 0 spinangle around ZAXIS by
default constructor */

_maxspeed (cCritter: :MAXSPEED), //Default 3.0

_maxspeedstandard (cCritter: :MAXSPEED) ,

_mintwitchthresholdspeed (cCritter: :MINTWITCHTHRESHOLDSPEED) ,

_bounciness (1.0),

_mutationstrength(cCritter: :MUTATIONSTRENGTH) ,

//Default 0.6 (out of 1.0 max)

_ptarget (NULL) ,
_metrickey (0)

_psprite = new cSprite(); /* Let’s always have a valid sprite.
The default cSprite looks like a circle, by the way. */
_plistener = new cListener(); /* For uniformity, always have a
valid listener as well. The default listener does nothing.
Don’t call setListener (new cListener()) here as this call may
have side-effects I don’t want yet. */
_attitude.setLastColumn (_position) ;
/* The default _attitude constructor has set the matrix
to the identity matrix, and it’s more accurate to the
make the fourth column match the position. */

Critters

if (pownergame)
pownergame->add (this, TRUE); /* This call will set _movebox
and _dragbox to match pownergame->_border, and will set
_wrapflag to match pownergame->wrapflag). The TRUE flag
means to insert the critter into the game cBiota array
right away. */

Review questions

What are some child classes of the cCritter class?
What are the cCritter methods most commonly overridden?

What are the three classes to which the cCritter delegates functionality?

o o W >

In updating the critter’s motion, what do we do to keep the critter from running off
towards infinity or from acquiring an unrealistically large velocity?

m

What is the meaning of the information in the cCritter's _outcode field?

F Why is the cCritter draw method code an example of the Template Method pattern?

Exercises

Exercise 8.1: The importance of being virtual

If you don’t explicitly label a method as virtual in the base class, then the child class over-
rides will ignore it. The Pop Framework has deliberately made move a non-virtual method,
because it would be a bad idea for you to override it, like tinkering with the delicate innards
of a watch. Even if you were to write a move method inside one of the child classes, your
code would be ignored (unless you were to put virtual in front of the move prototype in
critter.h).

Let’s see what happens if we make update non-virtual. This will mean that all of the
critters’ specialized update methods will be ignored and they’ll just use the base class
update method, which in fact does very little.

Open up the Pop project file and remove the world ‘virtual’ from the line virtual
void update (CPopView *pactiveview, Real dt) at the bottom of the critter.h file.
Build and run. You’ll find that you’re no longer able to shoot bullets in the Spacewar
game. This is because the shooting behavior is part of the cArmedCritter::update code,
which is now not being used.

Exercise 8.2: Tweaking the evolution process

Try changing the default _mutationstrength value, and make some changes to the cPolygon
and cPolyPolygon mutate methods as well. See what kinds of interesting polypolygons you
can come up with.

197

Sprites

9.1 Kinds of sprite

‘Sprite’ is a word traditionally used in computer game programming for the
little character images that move around. Normally, computer game sprites are
based on bitmaps, and we do indeed have a eSpritelcon child of the eSprite class
that uses bitmap images.

We also have some geometrical sprite objects. The eSprite child classes, cPolygon
and cSpriteCircle, draw polygons and disks, respectively. Geometrical objects
have the virtue of being scale-independent, crisp-looking, and lightweight in
terms of memory use. Another good thing about them is that they can be easily
rotated. Bitmaps can be rotated in OpenGL graphics, but not in Windows
graphics.

Exercise 9.11 discusses how to create sprites of a variety of standard 3D
shapes: sphere, cone, torus, tetrahedron, cube, octahedron, dodecahedron,
icosahedron, and teapot.

The cSpriteComposite class uses the Composite software pattern to provide
for sprites which are made up of component sprites. The cSpriteBubble is a com-
posite holding a eSpriteCircle and a decorative cPolygon highlight. cPolyPolygon is a
special kind of composite drawn as a polygon with polygons (or polypolygons)
at its vertices.

The cSpriteShowOneChild of cSpriteComposite shows only one of the components
rather than all of them. How might we choose which component to show? We
might either look at the direction the sprite is currently moving in, getting the
cSpriteDirectional, or we might track the passage of time and continually flip
through an animation loop of sprites like the eSpriteLoop does.

Figure 9.1 is a UML class diagram of the eSprite classes used in the Pop
Framework.

Students are usually most interested in the bitmap-based sprite cSpritelcon;
this is initialized from a *.bmp file that you add to your project resource. These
work very well in Windows graphics, but in our three-dimensional OpenGL
graphics, they run a bit slow. We presently implement the OpenGL bitmap
sprites as texture maps that are applied to rectangles. In both the Windows and
OpenGL graphics, we have the option of giving transparent backgrounds to our
cSpritelcon objects.

Sprites

cSprite

7
| | | |

cSpritelcon cPolygon cSprite3D cSpriteComposite

| | | - |

cSpritelcon | | cSpriteCircle cSpriteBubble cPolyPolygon | | cSpriteShowOneChild

i — 1

cSpriteDirectional | | cSpriteLoop

cSpriteBubblePie cSpriteBubbleGrayScale

Figure 9.1 Our cSprite child classes

One can chain these constructions and have, for instance, a cSpriteDirectional
that is an array of eSpriteLoop objects, so that one sees a different animation
depending on the direction of the critter’s motion. This is useful, for instance,
for showing a running human form.

9.2 The csprite class

Now let’s look at what goes inside a cSprite. A sprite does not need to know
the name of its owner cCritter. This is the way it should be, as a sprite is simply
some geometry in space, possibly textured with a bitmap. This makes life easier
as maintaining a cCritter* pointer inside eSprite while maintaining an ‘inverse’
cSprite* pointer inside cCritter would be a bit of a hassle, particularly when it
came to writing the destructors for these objects.

A sprite is something that a critter uses to draw a picture of itself. We will
think of the size of a critter as being the visual size of its sprite. So a sprite will
have a Real _radius field. Our decision was to have the _radius belong to the sprite
rather than the critter, by the way, because we want the radius to represent the
visual radius that we see on the screen, and we’d like to have anything visual
belong to the sprite.

The effective radius of a sprite may be affected by a scaling matrix, or by the fact
that the sprite is a composite of several sprites, so it’s not always going to be the
case that the virtual Real cSprite::radius() method returns the same value as _radius.

Different sprites will override radius() in different ways. For purposes of colli-
sions, a critter will regard its own radius() as being its _psprite->radius() .

The sprite also has a cMatrix _spriteattitude variable which is by default the
identity matrix. This matrix is used in addition to the cCritter member cMatrix
_attitude. We'll say more about the sprite attitude in the following sections.

199

200

Software Engineering and Computer Games
The sprite braw method

We'll give the eSprite a draw method with the same arguments as the cCritter::draw.
The cSprite::draw manipulates the graphics matrices and calls a secondary helper
method cSprite::imagedraw.

Our graphics pipeline is set up so that before drawing the sprite of a critter,
the pipeline gets the critter’s _attitude which moves the zero vector to the
critter’s current position. In addition the _attitude transformation rotates the
sprite’s spatial ‘attitude’ to match that of the critter. We only need to multiply a
non-trivial _spriteattitude for cases where the sprite is to be positioned other
than in the most natural way.

We implement the ‘graphics pipeline’ as a eGraphics object which maintains
two cMatrix members. One of these matrices is called the projection matrix,
and the other is called the modelview matrix. At the time when the
CPopView::0OnDraw calls on the cGraphics object to draw your sprite onto the screen,
the modelview matrix MV will typically have the form MV = V' * Mc * Ms,
where Ms is the _spriteattitude, Mc is the critter’s _attitude, and V’ is the
inverse of the _attitude matrix of the cCritterViewer which views the scene.
(See Chapter 24: 2D and 3D Graphics for a bit more about this.) A given vertex
u of a sprite polygon will be drawn as being at the point u’ = P * MV * u, where
P is the projection matrix. In the case of a composite sprite the MV may incor-
porate subsidiary matrices for the individual sprite pieces and take on a form
like V' * Mc * Ms * Msa, with Msa representing the location of a component of
the sprite relative to the spirite as a whole. (Look for instance at the code for
cSpriteBubble: :setAccentPoly () in spritebubble.cpp.)

In order to right-multiply a matrix into the modelview matrix, we can use the
cGraphics::multMatrix method as indicated in the sequence diagram of Figure 9.2.
Note that in order to preserve the leading bits of the matrix for use by other
critters and sprites, we use pushMatrix and popMatrix calls. The push call saves
a copy of the current state of the modelview matrix in a stack, and the latter
call copies the saved state back out of the stack.

In terms of our equation MV = V' * Mc * Ms, when we start at the top of
Figure 9.2, MV is simply V. The first pushMatrix call saves this value of MV, and
the first call to multMatrix sets MV = V' * _attitude. The second pushMatrix
call saves this ‘critter matrix’ value, and the second multMatrix call sets MV =V’
* attitude * _spriteattitude. The two succesive popMatrix calls restore MV
back to the simple V” state.

As we mentioned in Chapter 8: Critters, a critter’s call to draw(pgraphics,
drawflags) uses a Template Method pattern to do the following.

e Push (that is, save) the graphics pipeline’s current modelview matrix.

e Multiply the critter _attitude times the graphics pipeline’s modelview
matrix.

e Call _psprite->draw with the same arguments.

e Pop (that is, restore) the graphics pipeline’s current modelview matrix.

Sprites

cCritter:pcritter cSprite:psprite cGraphics:pgraphics

| | |
!
draw _—

pushMatrix () —

multMatrix (_attitude)

draw —

pushMatrix()

multMatrix (_spriteattitude) T

T
|
imagedraw |: '
h
|
h
|

drawsomething
T
popMatrix () -
J .
7 popMatrix () .
)
|
\ L]
|
\
|
|

Figure 9.2 Sequence diagram of the draw cascade

The cSprite::draw method uses the same kind of Template Method pattern,
again doing some standard things with matrices and passing the actual drawing
off to a subsidiary method, this time the cSprite imagedraw.

void cSprite::draw(cGraphics *pgraphics, int drawflags)
{
pgraphics->pushMatrix () ;
pgraphics->multMatrix (_spriteattitude) ;
imagedraw (pgraphics, drawflags) ;
pgraphics->popMatrix() ;
/* After the draw, tell the sprite that its current geometry has
now been drawn once. */
setNewgeometryflag (FALSE); /* This is for use by the
cGraphicsOpenGL for knowing when it may need to change any
display list id being used for the sprites.*/

201

202 Software Engineering and Computer Games

Table 9.1 How we draw the different kinds of sprite.

Class imagedraw behavior

cSprite Default: draw a hollow circle and radius
cPolygon Draw a polygon

cSpritelcon Draw a bitmap in a rectangle
cSpriteLoop Draw the sprite for the current time
cSpriteDirectional Draw the sprite for the current direction
cSpriteBubble Draw a circle decorated with a rectangle
cSpriteBubblePie Draw a circle decorated with a pie slice

In plain English, this is the following.
e Push (that is, save) the graphics pipeline’s current modelview matrix.

e Multiply the sprite _spriteattitude times the graphics pipeline’s model-
view matrix.

e Call psprite->imagedraw with the same arguments.
e Pop (that is, restore) the graphics pipeline’s current modelview matrix.

The c¢Sprite child class imagedraw methods make calls to special kinds of
cGraphics methods. For example

void cPolygon::imagedraw (cGraphics *pgraphics, int drawflags)
{
pgraphics->drawpolygon (this, drawflags);

The cSpritelcon::imagedraw calls pgraphics->drawbitmap (this, drawflags). The
individual eGraphics child class can tell from the pointer argument pgraphics
what kind of graphics it is. How the graphics class draws a polygon or a bitmap
is up to the individual eGraphics child class. This is an example of the Bridge pat-
tern; the cGraphics child classes have different implementations of the key draw-
ing methods such as drawpolygon and drawbitmap.

The behaviors that we see when drawing the different kinds of sprites are
shown in Table 9.1.

The Animate method

During every update of the game, each critter calls a cCritter::animate(dt) method
that does two things.

e Make an updateAttitude(dt) call to
(a) match the critter’s _attitude to the critter’s current motion matrix if
the critter’s _attitudetomotionlock iS TRUE, or, otherwise
(b) rotate the critter’s _attitude by dt*_spin or
(c) leave the _attitude alone if _spin is zero.

e (Call a _psprite->animate(dt, this).

Sprites

The default cSprite::animate(Real dt, cCritter* powner) doesn’t do anything. But
the cSprite::animate can be overridden to do various kinds of things. We might
look at the powner->recentlybamaged () value and set a sprite accordingly (see
Exercise 9.10). Or you could use dt to increase and decrease the radius of the
sprite to give a ‘breathing’ effect. If we have a polygon-based sprite, we might
use dt to move some of the vertices of the polygon so as to make the image flex,
perhaps opening and closing its ‘mouth’ (see Exercise 9.7).

When we use a bitmap based sprite in the cGraphicsMFC, we need to actu-
ally change the bitmap being used for different directions (because unlike
cGraphicsOpenGL, cGraphicsMFC doesn’t rotate bitmaps). And in any graphics
implementation, you will need to flip through differing bitmaps if you want an
animation effect for the sprite.

In these situations we use the eSpriteShowOneChild composite sprite and let the
animate method set the _showindex used to determine the currently active
component sprite.

The cSpriteLoop::animate method ages a time counter and adjusts the _showindex
accordingly, while the cSpriteDirectional::animate adjusts the _showindex sprite
according to the current powner->tangent ().

9.3 Polygons

Particularly in three dimensions, we very often want to represent our critters by
colored polygons, perhaps by just one polygon, perhaps by a few, or perhaps by a
whole mesh of them. Computer graphics systems draw polygons in an entirely
different way from how they draw bitmaps. A bitmap is based on discrete pixel-by-
pixel information, while a polygon is based on coordinates in continuous space.
In drawing a polygon, we convert its space coordinates into pixel coordinates, use
fill algorithms to color it in, and use line-drawing algorithms to draw its edges.
Windows has a built-in CDC::Polygon(POINT * vertices, int vertexcount) method
which makes it easy to rapidly draw polygons on the screen. Our cPolygon class is
designed to create polygon structures that can take advantage of this function call.

Initializing and decorating a polygon

We can create an empty polygon with the default polygon constructor ePolygon(),
and then we can put some structure onto it by using one of our special mutators.
Note that as usual you can leave out the trailing arguments which have default
values defined.

void setRegularPolygon(int vertexcount);

void setStarPolygon(int vertexcount, int step);

void setRandomStarPolygon(int mincount, int maxcount);

void setRandomRegularPolygon(int mincount, int maxcount);

void setRandomAsteroidPolygon(int mincount = 5, int maxcount = 30,
Real spikiness = 0.3);

203

204

Software Engineering and Computer Games

The setRegularPolygon and setStarPolygon mutators produce polygons with a
user-selected vertexcount. The step argument to the star polygon controls the
kind of star that is drawn. In general, choosing a step smaller than the vertex
count which has no divisors in common with the vertex count produces the
nicest stars. At present the stars look good in eGraphicsMFC, but cGraphicsOpenGL
still needs to be tweaked to draw them properly.

The setRandomRegularPolygon and the setRandomStarPolygon are methods for
randomly making a regular or a star polygon with its vertex count and its radius
within specified ranges.

The Spacewar game is something like the traditional Asteroids. So it will be
useful to have some setRandomAsteroidPolygon to create random irregular polygons.
To make the asteroid polygons look solid, we add their vertices in successive
counterclockwise order — if we add them out of order we’ll get something like a
star. Stars look nice if they're regular, but an irregular star just looks like a scribble.
We use the spikiness parameter to control the difference between minimum
radius and maximum radius used for the various asteroid vertices.

Another approach, which we use when we want a particular shape, is to use
the cPolygon(n) constructor and then use n calls to setVertex (int n, cVector v) to
build up the polygon a step at a time. Note that by default, we assume we have
a closed polygon in which the last point is automatically connected to the
first point.

Once we have a polygon, we can adjust its interior with various mutators
that you find in polygon.h. One easy way to vary a polygon sprite is to call the
randomize method with the wr_ flags defined in polygon.h. For instance the
ppolygon->randomize (cPolygon: :MF_COLOR) Will randomize the ppolygon fill
color, and the cPolygon::MF_ALL flag will randomize everything.

We can adjust the lines around the edges of the polygon with the _edged and
_reallinewidth fields. The _reallinewidth field controls the ratio of the thickness
of the line to the polygon’s radius. A value of, say, 0.2 will give a fat line. We
state this quantity as a real number ratio rather than a pixel width so that the
polygon will still have the same appearance when drawn at different size scales.
But if the converted pixel width of the line would be less than one, we still
draw a line of pixel width one, assuming that _edged is TRUE. Drawing lines of
width greater than one slows the Windows Polygon function down inordinately,
so we recommend sticking to the default _reallinewidth of 0.0, which will pro-
duce a line one pixel in width, which is what Windows really ‘prefers’ to draw.
(spritepolygon.h also has a #define for a name for 0.0 to use in this ‘line width’
context: LW_ONEPIXEL.)

As a non-standard extra, we can also draw dots at our polygon vertices, using
the _dotted and _realdotradius fields. The _realdotradius field controls the ratio of
the radius of the vertex dots of the polygon’s radius. A value of, say, 0.2 will
give fat dots. We state this quantity as a real number ratio rather than a pixel
width so that the polygon will still have the same appearance when drawn at
different size scales. The dots look quite nice; they are drawn after the polygon
so they seem to sit on top of it. We have the option of filling the dots or not,
and of selecting their fill colors. Dots aren’t implemented for OpenGL.

Sprites

A related class is eSpriteCircle, which is simply a ecPolygon with some static int
cSpriteCircle: :CIRCLESLICES number of sides. If you don’t make the ‘circles’
too big, a reasonable value for CIRCLESLICES is 16.

We could have implemented eSpriteCircle to have an imagedraw that calls
something like an ellipse method, but it was quicker and easier to just treat the
circles as many-sided polygons.

Polygons in 3D

There are some differences between the implementations of cGraphicsOpenGL
and cGraphicsMFC::drawpolygon. As of August, 2002, the dots only show up
with cGraphicsMFC, and the star-shaped polygons aren’t as nicely drawn in
cGraphicsOpenGL. These are ‘bad’ differences that could be fixed.

A ‘good’ difference between the two graphics implementations of drawpolygon
is that, to enhance the three-dimensionality of the view with OpenGL, the
cGraphicsOpenGL actually draws a polygon as a thick prism, that is, as a base poly-
gon with vertical sides extending upwards to an identical cap polygon. The
exact thickness of the prism can be controlled via the eSprite field Real _prismdz,
and this field can in turn be controlled either directly or by setting the cCritter
_defaultprismdz field before adding the sprite. By default the various child critter
classes use the following _prismdz values.

Real cSprite::WALLPRISMDZ = 0.75;
Real cSprite::PLAYERPRISMDZ = 0.5;
Real cSprite::CRITTERPRISMDZ = 0.3;
Real cSprite::BULLETPRISMDZ = 0.2;
Real cSprite::MAXPRISMDZ = 1.0;

Thus, if you open up Dambuilder in the 3D view, you'll see the walls as taller
than the player, the player as taller than the other critters, and the bullets as
the thinnest of all.

9.4 Composite sprites

The eSpriteComposite holds an array of eSprite pointers called _childspriteptr. The
default cSpriteComposite::draw behavior is to walk the array and call draw for each
of the child sprites.

for (int i=0; i< _childspriteptr.GetSize(); i++)

_childspriteptr[i]->draw(pgraphics, drawflags);

We can make some nice shapes this way. We'll consider two examples in this
section: the cSpriteBubble and the cPolyPolygon.

205

206 Software Engineering and Computer Games

The cSpriteBubble

[E]Pop. Version 26.2, May 15, 2002, Rudy Rucker. - [Pop 1] [_[5]x]

[A Eile Yiew Game Player Window Help =181 x|

DSEYoFiws N = 2ot eN Ry 05

Secs Left: 28 out of 45. Score: 142 out of 1000. Peanuts Left: 23. Jewels Left 5. Updates per secand: 20. (Slower than Real

Laes

The PickNPoP game viewed in OpenGL 3D. On the left are cSpriteBubble and
cSpriteBubbleGrayScale, on the right are cSpriteBubblePie

The cSpriteBubble consists of a disk with a rectangular highlight on it, meant
to be mildly suggestive of the reflection of a window in the surface of a soap
bubble. We implement cSpriteBubble as a cSpriteComposite with two members: a
cSpriteCircle (that is, a many-sided polygon) and a cPolygon rectangle that we can
access as the cSpriteBubble::paccentpoly().

void cSpriteBubble::setAccentPoly ()

{

Real side = 0.33 * (pcirclepoly()->radius());
cVector pverts[4] = {cVector (0.0, 0.0, 0.0),
cVector (2*side, 0.0, 0.0),
cVector (2*side, side, 0.0),
cVector (0.0, side, 0.0)};
cPolygon *prectpoly = new cPolygon (4, pverts);
prectpoly->setSpriteAttitude (
cMatrix::translation(cVector (side, 0.5*side, 0.1));
add (prectpoly); //Decoration rectangle.
setFillColor (pcirclepoly () ->fillColor()); /* Make the accent color
match the circle. */

Sprites

normal
A

----- -> tangent

Figure 9.3 The cSpriteBubble composite sprite. Accent rectangle is translated away from
origin.

Figure 9.3 is a picture of the construction.

The cPolygon constructor by default centers the rectangle on the origin,
which is why we need to set the rectangular accent polygon’s _spriteattitude
to cMatrix::translation(cVector (side, 0.5*side, 0.1)). This moves the
rectangle away from the origin and into the position shown. The 0.1 transla-
tion in the z slot is so that, when viewed in 3D, the accent rectangle sticks up
a bit out of the disk of the circle. You need to be careful not to draw faces of
polygons in the same plane in 3D as then they ‘z-fight’ with each other and
flicker in an ugly fashion.

Polypolygons

Now let’s say a bit about the ePolyPolygon class. A polypolygon is a ¢SpriteComposite
which consists of a base polygon plus a secondary ‘tipshape’ polygon at each
vertex.

The way we’ve implemented the polypolygons is to assume that a polypolygon
will have the same tipshape at each of its vertices. We use the cPolyPolygon
methods setBasePoly(cPolygon* pppoly) and setTipShape(cSprite* pshape) to set the
base and the tipshape information.

You can view a bunch of these guys by opening up the Spacewar game and
selecting Game | Polypolygons. Note that when the game reseeds itself, it reverts
to asteroid sprites; if you want a game that sticks with polypolygon sprites, you
need to code this fact into the constructors of the game’s critters.

In order to make a more symmetric image, we design the cPolyPolygon::draw
method so as to draw an image of the tipshape which is rotated slightly from
vertex to vertex; more precisely, if a polygon has n vertices, then we draw the
tipshape as is at the first vertex, and then rotate it by 2 * PI/n for each of the
successive vertices, rotating it back into starting position when we’re done.

207

208

[E]Pop. Version 26.2, May 15, 2002, Rudy Rucker. - [Pop 1] [_[5]x]
[A File View Game Player Window Help -8 x|

DY R+Nd -~ ToR@N RN OE

Laes

Score: 8. Health: 9. Total Critters: 79. Updates per second: 5. (Slower than Real Time)

Polyploygons in the Spacewar game

9.5 The cspritelcon class

The author did a lot of coding and encapsulating in order to come up with a
cSprite child class called cSpritelcon. cSpritelcon has a constructor cSpritelcon(int
resourcelD) which takes the ID of a bitmap resource as its argument. To make
things nicer, the eSpritelcon will automatically make the background of the
image transparent. To give a critter a transparent-background sprite based on a
resource bitmap with an ID like, say, 1ps_rarTH, we only need to add a single
line to the critter’s constructor.

setSprite(new cSpritelcon (IDB_EARTH)) ;

We also have the option of not having a transparent background at all. The
full prototype of the eSpritelcon constructor looks like this.

cSpritelIcon(int resourceID, BOOL transparent TRUE,

BOOL presetaspect = FALSE) ;

If we put a FaLsE in the second argument to the constructor, we get a solid
bitmap.

The third eSpritelcon constructor argument isn’t often used. This presetaspect
field of eSpritelcon relates primarily to the eSpritelconBackground, which sets it to TRUE.
The purpose of cSpritelconBackground is to make a solid big icon suitable for use
as a background in a game. Its constructor is of the form eSpritelconBackground(int

Sprites

[E]Pop. Version 26.2, May 15, 2002, Rudy Rucker. - [Pop 1] [_[5]x]
[A File View Game Player Window Help =181x|

DR YL [+KIvhE BN & 06

Las

Score: 8. Health: 9. Total Critters: 81. Updates per second: 41.

Some transparent background bitmaps in an OpenGL Pop display. Note that OpenGL can
rotate bitmaps to match the critter orientation. The Windows display doesn’t rotate them

resourcelD, const cRealBox2 &borderrect), where the borderrect is ordinarily going to be
a wall of the 3D cRealBox that your game lives inside. When presetaspect has the
normal eSpritelcon default value of FALSE, the sprite is proportioned to match the
shape of the resource bitmap specified by resourcelD. When presetaspect iS TRUE
we want to cover some definite fixed shape like a border rectangle with our bitmap.

When you want to make a new bitmap of yours into a eSpritelcon you need to
be aware of the following points.

e First you have to save the bitmap in the *.bmp format. Most things you pull off
the Web will be *.gif or *.jpg. In order to convert to the *.bmp format, you need
to open the file in some reasonably powerful graphics tool such as a photo
editor, and then save it in the *.bmp format.

e Before saving the *.bmp, you should resize the image so that it is not much
larger than you expect it to be onscreen. It’'s pointless to save a screen-sized
image of a face that you intend to use for a fingernail-sized icon. Not only is
it a waste of memory to use a big source bitmap for a small target, if you leave
it up to your system to dynamically squash your big bitmap down to a postage
stamp, you have no control of the exact way in which the squashing is done.
In the worst cases, the appearance of the small bitmap will seem to flicker and
change as the critter moves about. Take the time to cleanly convert your
bitmap into a size close to what you'll be viewing it in. If some important
feature doesn’t show up in the small size, edit the image to make it look right.

209

210 Software Engineering and Computer Games

e In order to make OpenGL handle your bitmaps smoothly, it is important to
adjust the pixel size of each source bitmap so that each each edge is a power
of two, such as 16, 32, 64, 128, 256, 512, etc. The bitmap can be rectangular,
that is, the edges don’t need to be the same, but both edges should be a
power of two. You can resize the bitmap in your image editor. In the case
where resizing would distort the bitmap, as with a face, you simply need to
add blank filler pixels along two edges; you can do this by copying the area
you want to keep, making a new bitmap with the desired edge lengths and
then pasting in the image area.

e There is one peculiarity of the eSpritelcon constructor that you need to be
aware of. When you make a transparent-background icon, the constructor
will pick one color found in the resource bitmap and treat this color as if it is
transparent. Which color should it use? You might say ‘white,” but it might
very well be that you want to have some white pixels inside your bitmap
icon. The rule which eSpritelcon uses is to look at the color of the pixel in the
upper left corner of the bitmap resource and treat this color as transparent.
Thus, if you want to have white in your bitmap, fill in the background that
you don'’t care about with some other color, say purple, and make sure that
the upper left hand corner pixel of your bitmap is purple. If you are using a
complicated photo-based bitmap you need to make doubly sure that the
upper left pixel is indeed the color which you want to have be transparent.

e In saving to the *.bmp format, you have the option of saving in ‘256 color
mode’ which is also known as ‘8 bit mode.” This is as opposed to a ‘millions of
color mode’ or a ‘true color mode.” The 256 color/8 bit mode will sometimes
make your image look less good, but it has the virtue of making the image file
smaller and allowing it to be put on the screen more rapidly. This is an issue
either if you have a lot of bitmap images or if you have a bitmap image which
is large (such as a background bitmap). Always try 256 color/8 bit first.

e Once you have the *.bmp, move it to the res subdirectory of the directory where
your game’s code lives. Now you can import this bitmap into your project as
a new bitmap resource. Use Project | Add Resource... | Import... and then navigate
to find your *.bmp file. The Resource Editor will open your imported bitmap.
[With Version 6.0, import a bitmap by using Insert | Resource | Bitmap | Import...
In Version 6.0, some bitmaps will not be viewable within the Resource
Editor, but this doesn’t mean they can’t be added to the project.]

It’s helpful to give your bitmap an easy-to-remember resource ID name
like 1pB_HAPPYDOG instead of the machine-generated ID (like 1pB_BITMAP1) it
will have received. To call up the Bitmap Properties dialog you can Alt+Enter
while the bitmap is open in the editor.

e Once you've done this, you can use the resource ID to make a new sprite
with a line like new cSpriteIcon (IDB_HAPPYDOG).

e [t is perfectly all right to have several different critters use the same bitmap
and the same 1DB_HAPPYDOG resource. But you must make a fresh cSpritelcon
for each of them. (If two critters share the same sprite, there will be trouble

Sprites

when the program ends, as the sprite will get deleted twice, which will cause
a crash.) If you write your code properly and create and install the sprite
inside the critter constructor this happens automatically.

e Don’t worry about having lots and lots of critters with cSpritelcon images, as
our cGraphics implementations share resources among the eSpritelcon objects
in a memory-efficient way.

* In OpenGL, if you have a large view of a small CSpritelcon, the speed drops. The
CSpritelcon is a texture pattern of squares derived from the bitmap pixels.
Projecting large images of those squares is costly.

9.6 cSpriteLoop @and cSpriteDirectional

The cSpriteLoop and cSpriteDirectional sprites are arrays of other sprites. As
they inherit from cSpriteComposite they have an add method that adds new
sprites into the array. You can feed eSpriteComposite::add method either a cSprite*
pointer as an argument or simply an integer resource ID number as an argu-
ment — in the latter case the add(resourcerD) method constructs a new
cSpriteIcon(resourceID) and then adds that sprite.

People often want to use sequences of bitmaps for their sprites. Suppose you
have three successive bitmaps for a walking man and that you've saved them as
resources with IDs of the form 1pB_nuani. To simplify things the Pop Framework
lets you pass in a resource ID as the argument to add. A cCritter constructor
could make and use such a sprite like this.

cSpriteLoop pmanwalk = new cSpriteLoop();
pmanwalk->add (IDB_MAN1) ;
pmanwalk->add (IDB_MAN2) ;
pmanwalk->add (IDB_MAN3) ;

setSprite (pmanwalk) ;

The cSpriteLoop::animate method ages a time counter and adjusts the active
sprite accordingly. The effect is that eSpriteLoop flips from one image to the next.
The default wait between images is a fifth of a second, or 0.2. You can change
this wait time with the eSpriteLoop::setFlipwait(Real flipwait) method.

Note that the flipping is based on the real time elapsed and not on the num-
ber of updates you’ve done. This keeps our program appearance from being
dependent on the speed of the processor. You never want to do anything on
basis of cycle-counts. Always use the time.

The cSpriteDirectional is initialized much like the cSpriteLoop. We create a new
cSpriteDirectional object and then use its add method, passing either eSprite*
pointers or bitmap resource ID numbers to the add.

The way the eSpriteDirectional picks which sprite to show is to look at the
direction the critter that owns the sprite is pointing in. It distinguishes as many
directions as the number of sprites that you added.

211

212 Software Engineering and Computer Games
1 0 I‘

Figure 9.4 How the cSpriteDirectional picks the sprite with 2, 4, or N directions

The cSpriteDirectional::animate adjusts the active sprite according to the current
critterdirection. It uses the animate method to select one among several
directional bitmaps, as shown in Figure 9.4.

Use of the cSpriteDirectional gets around the fact that we can’t rotate bitmaps
on the fly in Windows graphics; a eSpriteDirectional can store various differently
rotated versions of a bitmap. This is not an issue in OpenGL graphics, however
the use of bitmaps does tend to slow OpenGL down more than is comfortable.

If you're ambitious, you can make a cSpriteDirectional whose members are
cSpriteLoop animations. If you do this, don’t forget that you need to create fresh
sprite objects for each critter. It’s fine to reuse the same resource ID, but you
have to wrap them up in fresh sprites. To avoid having to write out the same
code more than once, you should create and install the sprite inside your critter
constructor. If you happen to have two different critters that will use the same
complicated sprite, you might save code writing by making a new eSprite child
class whose constructor carries out the complicated initialization.

As was mentioned above, the cGraphicsMFC and cGraphicsOpenGL allocate the
cSpritelcon resources in a memory-efficient way. Note also that they automatic-
ally rescale the size of your cSpritelcon bitmaps when you resize the window.

Review questions

What is a cSpriteComposite?
What are some of methods we have for creating standard polygon sprites?
What are steps you take to load a *.jpg bitmap you’ve found into a cSpritelcon?

What does the cSpriteLoop::animate method do?

m o O W >

What does the cSpriteDirectional::animate method do?

Exercises

Exercise 9.1: Making cSprite::draw non-virtual

If you don’t explicitly label a method as ‘virtual’ in the base class, then the child class
overrides will ignore it. Open up the Pop project file and remove the word ‘“virtual’ from the

Sprites

line virtual void draw (cGraphics *pgraphics, int drawflags); at the bottom of
the sprite.h file. Build and run. You’'ll see default base-class imagedraw methods for all the
sprites. They’ll be sprites that are drawn as hollow circles.

Exercise 9.2: What happens if you don’t initialize the sprites?

By default every critter gets a base class sprite. If you forget to initialize the sprites you’'ll
see the same default sprite as in the last exercise. You can test this by going into the
gamestub.cpp file and commenting out the sprite initialization in the cCritterStubProp
constructor.

Exercise 9.3: Making your own polygons

Sometimes you’ll want to give a critter a sprite that has some particular polygonal shape
that you like. In this exercise you’'ll make the player in the Game stub game be shaped like
a slender rocket-like pentagon instead of like a slender triangle.

Here’'s an example of how we set a polygonal sprite shape taken from
cCritterBullet::initialize method inside the critterarmed.cpp. The purpose of the code is to
create a slender isosceles triangle and make this be the sprite for the cCritterBullet
making the initialize call.

cPolygon *ppolygon = new cPolygon(3);

/* Now make it a thin isosceles triangle, with the apex
at the 0th vertex. All that matters at first is the
tatops of the numbers, as we will use setRadius to
make the thing the right size, and center it on the
origin. */

ppolygon->setVertex (0, cVector (3.0, 0.0));
ppolygon->setVertex (1, cVector (0.0, 1.0));
ppolygon->setVertex (2, cVector (0.0, -1.0));

ppolygon->setRadius (cCritter: :BULLETRADIUS); /* Call setRadius
after adding all the vertices! */

ppolygon->setFillColor (cColorStyle: :CN_YELLOW) ;

setSprite (ppolygon) ;

The idea is that if you want a polygon with N vertices, you create a new polygon with
a new operator. Then give the new polygon as many vertices as you need with a call
like setRegularPolygon (N, cVector (0.0, 0.0), 1.0, 0.0), where only the first
argument really matters. Then you go down the list of vertices and set them one by one,
starting with O and ending with N — 1. Then you use a setRadius call to set the polygon
shape to whatever size you like. (The setRadius call has the side effect of centering the
polygon on the origin, so you may need to change the _spriteattitude if you want to
move the object back to some other location. If you have your vertices just where you
want, you don’t necessarily need to call setRadius at all. When in doubt, call it, though.)

Now how do you figure out what numbers to use in the setvertex lines? Draw a little
grid for yourself — or use some graph paper — and draw a picture of the shape you want.
Write the coordinates of each point on your sheet of paper (if you try and do this in your
head you're likely to mess it up). Then use these numbers in the setvVertex calls. Make
sure that the first vertex you put in — that is, the Oth vertex — is where you’d like the sprite
to point when it moves. In the case of the rocket, this would be the pointed tip. And only

213

214

Software Engineering and Computer Games

put the starting vertex in once because you don’t need to close the polygon back up by
putting the starting vertex in twice. The cPolygon will take care of that on its own.

Your picture doesn’t necessarily need to be centered on the origin; the setRadius call
will take care of that, automatically storing the polygon in origin-centered form. (You can
test this claim by putting the digits 10 in front of the x-coordinates in the code above to
shift everything 100 units to the right.) The size of the number also doesn’t matter, this is
taken care of by the setRadius call. (You can test this by putting the digit O after each
of the x and y coordinates to make the triangle ten times as big.) All that matters is the
relative positions and ratios of the points you choose.

Now make your player be shaped like a biting mouth. Once that works, try making it
be shaped like a fish. And then try a shape of your own invention. Remember that the
polygon will move with the Oth vertex in the lead, so pick this one towards the front.

Exercise 9.4: Fish-shaped polygons

Suppose we’d like to have a lot of fish. What you can do is make a child class cSpriteFish
: public cPolygon. Define the class in a file called polygonshapes.h. And then make a
polygonshapes.cpp class that implements a constructor to make the thing be a polygon in the
shape of a fish. The class doesn’t have any additional data members, so its constructor is
the only new piece of code you have to add. If we used a crude ten-point fish (see Figure 9.5),
the eSpriteFish constructor would call setRegularPolygon (10, ...) and then make ten
calls to setvertex. Don’t forget to put in the DECLARE_SERTIAL and IMPLEMENT_SERIAL
macros; you can copy the way its done in the bubble.h and bubble.cpp files.

Make the class and test it in the PickNPop game by making the peanuts look like fish. So
now it’ll be an undersea treasure game! All you have to do is go into the gamepicknpop.cpp
and change the single line of the cCritterPeanut::cCritterPeanut () constructor to
read setSprite(new cSpriteFish()). Remember that for this to compile, you'll have
to add an #include “polygonshapes.h” to the polygonshapes.cpp file, and the very first
thing in the file has to be an #include “stdafx.h”.

Exercise 9.5: Composite polygon shapes

Looking back at our fish problem, shouldn’t a fish have an eye? So maybe you better add an
extra cvector _vectoreyedot and cSpriteCircle *_pointeyedot to the cSpriteFish
definition and let the fish inherit from cSpriteComposite.

Think of some more shapes we might need and make more child classes that draw
them. A cSpriteRocket, a cSpriteBird, a cSpriteFootball, and a cSpriteUFO might all be useful.
Some of these would be better represented by several polygons — for a cSpriteRocket, for
instance, you might want to have the rocket’s fuselage (or fish’s body) be a different color
from its fins. Use the cSpriteComposite to have several polygons involved. Check the code
in spritebubble.cpp for inspiration.

Figure 9.5 A fish with vertex numbers

Sprites

Exercise 9.6: Other kinds of polypolygons

You can use any kind of sprite you like for the tipshape of a polygon; in fact you could
nest and get polypolypolygons. Try to view some of these. You might look at the cGame
code for generating random polypolygons for inspiration.

We’ve experimented with both the two-level and the three-level polypolygons, which are
polypolygons whose tips are polygons whose tips are polygons. The runspeed gets pretty
low with these guys, but they’re interesting to look at once you tweak the various numbers
good values.

Exercise 9.7: Flexing polygons

Make a cPolygonFlex child class with a drift method to make the vertices move when
animate is called. Try and make a fish whose mouth opens and closes.

Exercise 9.8: Directional vs loop sprites

The Worms game is an example of how to use these multi sprites. By default the player
uses a cSpriteLoop. Go into the cCritterWormsPlayer::cCritterWormsPlayer() constructor in
gameworms.cpp and look at how this works. To see a directional sprite, go to the top of
the file and comment out the line #define PLAYERSPRITELOOP. Once you see how both
the kinds of sprite work, you might try changing the cCritterWormsPlayer constructor code
to use something different for the different individual sprites. See how the loop and the
directional sprite look with, say, four bitmaps.

Exercise 9.9: A loop sprite of polygons

If | wanted a critter’s constructor code to have a ppolygons animated sprite that would
cycle from triangle through hexagon, | could do it like this.

cSpriteLoop ppolygons = new cSpriteLoop();

ppolygons->add (new cPolygon(3));

ppolygons->add (new cPolygon(4)) ;
(5));

ppolygons->add (new cPolygon(6)) ;

setSprite(ppolygons); //Called by the cCritter whose constructor

ppolygons->add (new cPolygon

contains this code.

Try giving the Prop critters a sprite like this in the cCritterStubProp constructor in
gamestub.cpp.

Exercise 9.10: A HappySad sprite

Suppose that you want to alternate between two kinds of sprites, depending on whether
or not the critter was recently damaged.

Derive a cSpriteHappySad from the cSpriteShowOneChild sprite, and overload its animate
method like this:

215

216

Software Engineering and Computer Games

viod cSpriteHappySad::animate(Real dt, cCritter *powner)
{
if (!powner->recentlyDamaged())
setShowIndex (0) ;
else
setShowIndex (1) ;
if (showindex != cBiota::NOINDEX)
childspriteptr[showindex]->animate (dt, powner) ;

When you use a cSpriteHappySad, you have to be sure to add at least two child sprites
to it, the first added will be the ‘happy’ sprite, the second addded will be the ‘sad’ or
‘recently damaged’ sprite.

Note that we currently have a default method of showing a critter’'s damage by drawing
polygons in wireframe mode. For this exercise, turn off this behavior by commenting out
the #define SHOWDAMAGE line at the head of critter.cpp. (Also note that, in any case, the
wireframe mode doesn’t affect bitmap sprites.)

Now try giving the player in, say, the Worms game a cSpriteHappySad. You can use the
current loop sprite (as it currently is) when the player is healthy, and add in a bitmap
sprite for when the player is recently damaged.

Exercise 9.11: Three-dimensional sprites

The glshapes.* files in the Pop Framework provide some standard ‘glut’ methods for draw-
ing three-dimensional shapes. ‘Glut’ stands for ‘OpenGL Toolkit.” Although the glut library

[E]Pop. Version 26.2, May 15, 2002, Rudy Rucker. - [Pop 1] [_[5]x]
[A File View Game Player Window Help =181x|
DSEYL[+R® v W BoR@ N & 06

o

Las

Scaore: 0. Health: 5. Total Critters: 26. Updates per second: 12. (Slower than Real Time)

The Gamestub3D showing OpenGL sphere, teapot, torus, and some polyhedra. The cog-
like shapes are cPolyPolygon

Sprites

includes a lot of useful high-level OpenGL methods, we only incorporate this one single
glut file into the Pop Framework at present, in part because glut is based on a non-
Windows framework that makes parts of it incompatible with MFC.

The glshapes files implement the following function calls, where GLdouble means the
same as double, and GLint means int.

glutSolidSphere (GLdouble radius, GLint slices, GLint stacks);

glutSolidCone (GLdouble base, GLdouble height, GLint slices, GLint
stacks) ;

glutSolidTorus (GLdouble innerRadius, GLdouble outerRadius, GLint
sides, GLint rings);

glutSolidTetrahedron (void) ;
glutSolidCube (GLdouble size);
glutSolidOctahedron (void) ;
glutSolidDodecahedron (void) ;
glutSolidIcosahedron (void) ;

glutSolidTeapot (GLdouble scale) ;

For each ‘Solid’ function there is an analogous ‘Wire’ function, for instance, there is a
glutWireSphere (GLdouble radius, GLint slices, GLint stacks);

The ‘teapot,” by the way, is a standard test shape beloved of computer graphics pro-
grammers, and built up by using ‘Bezier patches.’ It’'s sometimes called the ‘teapotahedron,’
and is jokingly viewed as the sixth Platonic solid!

The slices and stacks parameters used for the circular shapes can be thought of as
the number of north—-south longitude and east-west latitude lines, respectively. That is, a
sphere is drawn as a vertical pile of stacks many slices-sided polygons. You need values
of at least 12 or so to make these shapes smooth-looking.

What you should do for this problem is to implement some or all of the classes
cSpriteSphere, cSpriteTeapot, cSpriteTorus, cSpriteCube, and so on. First do one, and get it
debugged, and then try a few more. You can try testing them out as sprites used by the
critters in cGameDefender3D.

Each of the classes should have a constructor that takes a Real radius argument with
a default value of 1.0. The circular sprites have additional int slices and int stacks
arguments with default values of, say 12, though these defaults ought to be statics. And
the torus and cone each have an additional Real parameter: the torus should also have a
Real innerradius argument and the cone also needs a Real height argument.

To draw the sprites, you could go one of two ways: many classes or one class.

Many classes
You could have each class emulate the behavior of cPolygon and cSpritelcon and define, say,

void cSpriteSphere::imagedraw(cGraphics *pgraphics, int drawflags)
{

pgraphics->drawsphere (this, drawflags);

And you’d have to add a new drawsphere method to cGraphics, giving it a void or trivial
implementation for eGraphicsMFC and giving it an implementation in cGraphicsOpenGL that
calls glutSolidSphere or glutWireSphere depending on whether psphere->filled()
iS TRUE.

217

218

Software Engineering and Computer Games

virtual void drawsphere (cSpriteSphere *psphere, int drawflags)

You’'d need to override imagedraw and implement a differently-argumented variant of
cGraphics::drawsomething for each of the nine classes, which is a little boring to do.

One class
You could get by with slightly less typing by having all of these new classes inherit from a
catch-all cSprite3D class. We could prototype eSprite3D something like this.

class cSprite3D : public cSprite
{
protected:
int _slices, _stacks;
int _shapecode;
Real _extraparam;
public:
cSprite3D(int type = cSprite3D::SPHERE, Real radius = 1.0,
Real extraparam = 0.0, int slices = cSprite3D::SLICES,
int stacks = cSprite3D::STACKS) ;
virtual void imagedraw (cGraphics *pgraphics, int drawflags)
{pgraphics->draw3Dshape (this, drawflags);}

And then you’d only need to prototype and code a single cGraphics method.
virtual void draw3Dshape (cSprite3D *pshape, int drawflags);

The cGraphicsMFC version of draw3Dshape can just draw a circle, while the
cGraphicsOpenGL implementation will hold a big switch on pshape->shapecode (). Is the
cost of the switch something worth worrying about?

No. Although we didn’t raise this point earlier, the cSprite::draw method is constructed
so that it will avoid the switch after the first call to a given draw method for a ¢Sprite3D by
using display lists.

You will need to do some work to implement a correct radius() method for these
sprites, and to have the value returned by radius() match the radius argument that
you feed in — and to match the visual appearance. If possible make radius() match the
number in the _radius field, it may be that cSprite3D needs to maintain a supplemental
Real _glutradius for the parameter that you actually feed into the glut call in
cGraphicsOpenGL: :draw(..), or for the parameter that you perhaps use in a scaling
matrix. Compare our use of a Real _visualradius in the ecSpritelcon code.

The reason that radius is an issue is because you compute the distance from a cube’s
center to its corner one way, but you compute the distance from a tetrahedron or a cone’s
center to its furthest point another way. We care about the radius because in order for our
cheap and dirty collision code to look right, the ‘radius’ of a sprite needs to match the
radius of the smallest sphere that encloses it.

Games

A computer game, or other kind of simulated world, will contain a number of
agents, or critters, each with its own sprite. It’s natural to have a Game base
class to hold the active array of critters. As well as being a container, the Game
class should take on some additional duties. When the play begins, the Game
object initializes the geometry of the world and adds in the critters. While the
play continues, the Game object repeatedly updates the critters and shows
them on the screen. At the same time, the Game object tracks the critters’ status
and decides when the world should be moved to a new level. And the play ends
when the Game object decides that it’s over.

We implement these design ideas as the eGame class that makes up the core
of the Pop Framework.

Remember that in an MFC program like Pop, the data for the program lives
in a CPopDoc document object, and the onscreen window display is controlled
by a cPopView view object. Except for one little extra bookkeeping variable, the
sole member that we put inside our CPopDoc class is a cGame* _pgame.

Why is it that we use a cGame* _pgame instead of a cGame _cgame? As we've
mentioned before, we do this because we want polymorphism to work! In C++,
a call like _pgame->seedcritters () will work polymorphically and figure out
the correct version of the method depending on what kind of eGame child class
object _pgame actually points to. But a call like _cgame.seedCritters () will
always just use the base class cGame::seedCritters. Always remember, in C++
pointer variables behave polymorphically, but instance variables do not. See
Chapter 22: Topics in C++ for more about this point.

10.1 The cGame class

The cGame and cCritter classes are the key classes for writing games using the
Pop Framework. In using the Pop Framework to write a game you will typically
define a few new child classes of cCritter and a new child class of eGame. Your
cGame child will include some new members and will override some of the base
class ecGame methods.

The most significant member of the cGame is a cBiota *_pbiota object. The cBiota
object is a collection of pointers to all of the game’s active cCritter objects. The

220

Software Engineering and Computer Games

name of this class cBiota is based on the fact that the class is meant to hold the
entire population, the ‘biota’ of the world of the game. This collection class is
implemented as a type-safe, serializable CArray, and it has some array-walking
methods: draw, move, update, animate, feellistener. Each of these methods calls the
method of the same name for each member critter. Thus, for example, update
acts like this.

void cBiota::update (CPopView *pactiveview, Real dt)
{
for(int 1=0; i<GetSize(); i++)
GetAt (1) ->update (pactiveview, dt);

There’s more information about eBiota and its methods at the end of this chapter.

The cGame also has a distinguished cCritter *_pplayer that represents the player.
In the Spacewar game, for instance, the _pplayer is the little ship shooting the
asteroids. To make our code easier to maintain we always assume that _pplayer
is some valid pointer (not NuLL).

Usually _pplayer is a member of _pbiota, but in a few games, like the
PickNPop Game, we don’t have a visible player; in this case we use a default
critter for _pplayer and don’t add it to the _pbiota.

It may be that you'll want to add some other distinguished cCritter pointers
to the eGame. Thus if, for instance, you want to have a goal to shoot at in the
Airhockey game, you might want to define a cCritterHockeyGoal class and give your
cGameAirhockey a cCritterHockeyGoal *_pmygoal member. We'll return to this idea later.

cGame also has a cRealBox _border member to specify the size of the game as a
rectangle in the mathematical real-number plane or as a box in 3D space. We
can choose to have a square flat game world as in Spacewar, or a long thin flat
rectangle like in Ballworld. Alternately, _border can be like a solid aquarium as in
the 3D Game Stub game, or like a hallway as in the 3D game Defender.

It’s worth noting that the apparent sizes of the critters depends on the ratio
of their sprites’ radii to the size of the _border.

cGame has an integer _wrapflag to determine if the default behavior of its
critters should be to wrap around the edges, bounce, or possibly just stop at the
edges. (The codes for these three options are, respectively, cCritter: :WRAP,
cCritter::BOUNCE, and cCritter::CLAMP.) The individual cCritter have _wrapflag
members as well, so this looks like an example of what we call a ‘forgery,” that
is, of keeping the same data in two different places. But we want to allow for
the possibilities that different critters might have different wrap properties. The
cCritter(cGame *pownergame) constructor sets the new critter’s _wrapflag to match
the game’s _wrapflag, but then in the rest of the constructor you're free to set
the critter’s _wrapflag as you like. The ecCritterUF0 constructor does this for the
Spacewar game, so that the cCritterUF0 don’t wrap even if the other critters do.

cGame has an integer _seedcount to specify how many critters to seed with,
and it has an integer _maxscore that can be used to determine when a game is
over. Normally the cGame::score() accessor will return the _pplayer->score().

Games

Another cGame member that we like to adjust is the cArray<HCURSOR, HCURSOR>
_arrayHCURSOR. This is used to specify which kinds of cursor tools the game will
use. If you run the Pop program and switch among the games, you’ll notice
that for different games, different sets of cursor tool icons are active in the
toolbar.

Another eGame member worth mentioning is the collection class cCollider
_pcollider, which holds pairs of critters that we want to check for possible
collisions. We'll discuss this class in Chapter 11: Collisions.

10.2 The game’s timestep cycle

Probably the most important method in cGame is step(Real dt). This is the method
that controls the animation of the critters. First we’ll outline the order in which
step does things, then we’ll explain why we use this order, and then we’ll go
over the outline again.

Updating a simulation of multiple objects is a delicate thing. You need to do
things in the right order, and you need to try and have the objects being updated
in parallel, but all at the same time. For this reason, step is not a virtual method of
cGame; you are not supposed to override it. (All rules have exceptions, though.
If you really want to override it, change it to a virtual!)

Here’s what step does in brief.

e Adjust. Adjust game parameters. (Game over? Need to reseed? Change levels?)

e Listen. Pass recent user input to the critter feellistener methods, particularly to
the onscreen player critter. (Use keypresses, mouse actions.)

e Move. Call the critters’ move methods to keep physics working.

e Update. Call the critters’ update methods to let the critters react to their
environment.

e Collide. Check for and compute the collisions between pairs of critters which
are sensitive to touching each other.

e Clean up. Remove any critters ready to die, and add any new ones that have
been requested.

e Animate. Possibly animate the critters’ sprites. (Flip-book, rotate, morph, etc.)

e Draw. After each call to step, all of the critters get drawn to the active views.

Why does the Pop Framework use this particular order of doing things?

Adjust comes first. It's reasonable to make any overall adjustments to the
game at the start of each step, as there’s no point continuing with a step if
we’re about the change the rules.

We want the onscreen player critter to have the most immediate possible
response to the user’s actions, so we do the move step right after the listen step.

After all the critters have moved, have them ‘look around’ and respond to
their new positions. The looking-around process has two phases, the update
phase and the collide phase.

221

222

Software Engineering and Computer Games

The update and collide methods can be overridden to tell critters to die, and
to tell critters to spawn off new critters. Once all these requests are in place, we
process them right away with the clean up stage. Certainly if some critters are
dead, we want to get rid of them right away before drawing them.

The animate step does some matrix work to bring the sprite’s appearance
into line with the critter’s latest orientation. Clearly we want to do this before
drawing, and we want to do it after having removed any dead critters and adding
any newborn critters.

Now let’s take a more detailed look at the sequence of events in the cGame::step
process.

e Adjust. The game parameters are adjusted, usually on the basis of the score
and the number of critters. Possibly the _gameover flag is turned on. Perhaps
the critter population needs to be reseeded, or the game should be switched
to a new ‘level’ mode.

e Listen. Before step was called, the CPopView passed any keyboard or mouse

messages to the cGame. The cGame has reacted by putting these messages into

a cController _pcontroller member. In addition, the timestep dt since the last full
update is fed into the step as an argument.

Any interested critters use feellistener to listen to any keyboard or mouse

messages. This may change the critters’ acceleration, velocity or position.

Commonly the only visible critter that has a non-trivial listener is the player.

e Move. Each critter does a move(dt). This changes the critters’ age, velocity,
position, and outcode.

e Update. Each critter updates itself by calling feelforce to react to its various
_pforcearray members. It may react to the other critters’ positions. The update
may change the critters’ acceleration or velocity. The critter may also make a
‘service request’ to be deleted or to create a new critter, as when a critter is
shooting bullets from a gun.

e Collide. Each pair of touching critters that has been registered to the game’s
cCollider object generates a call to a cCritter::collide(cCritter *pcritterother) method
which changes the position and velocity of the two critters involved.

e Clean up. The service requests from the update stage are processed, possibly
deleting some critters and constructing some new ones. The method used is
cBiota::processServiceRequests.

e Animate. Each critter and its sprite are optionally tumbled or animated in
some other fashion.

e Draw. And then the CPopView::0nDraw is called to draw the critters on the
screen.

Let’s draw a sequence diagram (Figure 10.1) for some of this. Keep in mind
that the cBiota is an array collection which holds some array walking methods.
In addition, cBiota holds a queue of ‘service requests’ posted during the update
phase. We don't really put in any details about the collide process yet.

cCritter

________D____________

animate

Games

cSprite

ﬂ

draw I::l

cGame cBiota
1 1
1 1
, ,
step —— .
"""" 1
,
listen —_— .
listen I::l
move —
move [:‘
,
update .
D update [:'
|
\
|
\
1
! collide
|
process- !
ServiceRequests
new I:'
delete I:l
.
|
\
animate -
animate
o
\
draw L draw

Figure 10.1 Sequence diagram of the cGame::step method

10.3 The virtual methods of cGame

Most of the coding you do involving the eGame class is going to involve extend-
ing the eGame constructor and overriding a few special methods called seedCritters,
initializeView, adjustGameParameters, and statusMessage.

Here are the main things determined by these methods.

223

224 Software Engineering and Computer Games

cGame::cGame
e The size of the game world.
e What colors to use for the edges and background of the world.
e What bitmaps, if any, to use for your backgrounds.
e Whether the world is wrapped or has edges.
e What class of player critter you'll use.

e What ‘permanent’ critters you'll use.

cGame::seedCritters

e What ‘temporary’ critters you have.

e Arrangement of the critters in the world.
cGame::initializeView

e The background image, if any, to use.

e The cursor tool to start with.

e Start in zoomed-in mode?

cGame::initializeViewpoint

e Where to place the viewer critter relative to the world and the player.

cGame::adjustGameParameters
e How the game is to change during play.

e When the game is over.

cGame::statusMessage

e What to write in the status bar line.

The cGame constructor

In a recent build, the default eGame constructor looks, in part, like this.

cGame: :cGame () :

_seedcount (COUNTSTART) ,

_gameover (TRUE) ,

_maxscore (MAXSCORE) ,

_scorecorrection(0),

_wrapflag(cCritter: :WRAP),

_cursorpos (0.0, 0.0),

_autoplay (0),

_level (1),

_newgame (TRUE)

{

//Allocate the pointer variables except for the player.
_pbiota = new cBiota(this);
_pcollider = new cCollider () ;

Games

_pcontroller = new cController(); /* This is a structure used to
store key and mouse info. */

_plightingmodel = new cLightingModel(); /* Can be used in 3D
games to specify the lights. */

//Set the border size.

_border.set (14.4, 9.6, 0.0); /* A flat rectangle that happens to
seem good. */

//Set the border colors.
_border.pcolorstyle()->setFillColor (cColorStyle: :CN_WHITE) ;
_border.pcolorstyle()->setLineColor (cColorStyle: :CN_YELLOW) ;
_border.pcolorstyle()->setLineWidthWeight (0.01) ;

//Set the background bitmap AFTER setting the size of the _border
setBackgroundBitmap (IDB_BACKGROUND) ; /* Sets the

_pbackgroundbitmap field. */

//Initialize the player AFTER setting the size of the _border.
setPlayer (new cCritterPlayer (this)); /* Use the setPlayer accessor

rather than setting _pplayer by hand. */

When you derive a game such as cGameSpacewar as a child of e¢Game, you
write a cGameSpacewar:: cGameSpacewar constructor. Keep in mind that a child
class constructor works by first calling the parent class constructor, and by then
calling its own code. In other words, all of the code and initializations of the
cGame constructor will have taken place by the time you get inside the first left
bracket { of your eGameSpacewar constructor.

The cGameSpacewar needs to make the following changes (among others) to
what the default constructor does.

e Change the dimensions of the _border to a square.

e Change the fillcolor of the _border to black. (This serves as the game’s back-
ground color when no background bitmap is being shown.)

e Change the player by constructing a new cCritterArmedPlayerSpacewar and using
the cGame::setPlayer mutator method to install it into the _pplayer field.

Here’s the three lines you’d add to the eGameSpacewar constructor to do this.

_border.set (20.0, 20.0);
_border.pcolorstyle()->setFillColor (cColorStyle: :CN_BLACK) ;

setPlayer (new cCritterArmedPlayerSpacewar) ;

We do allow the possibility for having a game in which the _pplayer is ‘off-
screen.” This means the player is not a member of the _pbiota array of the critters
being moved and displayed. This is what you might do it if you were designing,
say, a pinball game, a game in which the player is not represented as visible
object on the screen. We do this in the PickNPop game for example. To add an
offscreen player, use a line like the following.

225

226

Software Engineering and Computer Games

setPlayer (new cCritter (), FALSE); /* Put dummy player offscreen, not
in pbiota. */

Seeding the game

Once the constructor has been called and the view initialized, the cGame still
needs to populate its _pbiota with more critters than just the _pplayer. This is
what the cGame::seedCritters method does. And when we want to restart or reset
a game, we call the seedCritters method again.

By the way, you can also create critters inside your overridden c¢Game con-
structor. The general rule of thumb is that any critter that you expect to have
around for the whole game you can create inside the constructor. Any critters
that will come and go should be defined in seedCritters. These include the
critters that you would need to reseed when you reset the game or move to a
new level.

Some examples.

e In the Spacewar game, the player gets added in the constructor, the asteroids
get added in the seedCritters call, and the UFOs are added one at a time by
the adjustGameParameters call.

e In Airhockey, the player, the puck, the goals, and the rival player are all
added in the constructor. Nothing is added in the seedCritters call.

e In Ballworld, the player and the basket are added in the constructor. The
balls are added in seedCritters.

e In Dambuilder, the player and the walls are added in the constructor. The
other critters are added in seedCritters.

There are three different situations in which seedCritters is called.

Firstly, when you start the program or use the Game menu to select a new game
type, the new game’s seedCritters is called by the cPopDoc::setGameClass(CRuntimeClass
*pruntimeclass) method. The argument to the setGameClass method is the ‘name’ of
the game class we want. Thus, for instance, the CPopDoc constructor has a call to

setGameClass (RUNTIME_CLASS (cGameSpacewar)) .

It’s probably a good idea to pause here and mention that the CRuntimeClass
holds a string with the name of the class, the size in bytes of the class objects,
and information about the class’s parent class, if any. There is more discussion
of this in Chapter 22: Topics in C++. Now back to the discussion of the first way
in which seedCritters can be called.

The purpose of the setGameClass call is to:

e construct a new game object of the required type and put it into the _pgame
field of the cPopDoc;
e seed the new game;

e tell the documents’ views to adjust their display for the new game.

Games
Here’s how the setGameClass code looks.

void CPopDoc: :setGameClass (CRuntimeClass *pruntimeclass)
{

/* Create a new pointer with the MFC CreateObject method. Even
though we cast the new game into a cGame* pointer for the
return, it “really” remains whatever kind of child class is
described by the pruntimeclass variable, and will use the
child class’ overrides of any virtual methods. */

delete _pgame; /* It’s OK to delete a NULL, as happens at
startup. */

_pgame = (cGame*) (pruntimeclass->CreateObject());

_pgame->seedCritters();

UpdateAllViews (NULL, CPopDoc::VIEWHINT STARTGAME, O0);

The only way we ever construct a cGame is via the setGameClass method
which always calls seedCritters right after the constructor. This means that a
game class constructor should not make a call to seedCritters. If you call it your-
self in the constructor, you'll actually be calling it twice, which can waste time
or, worse, have the effect of giving you too many critters. The reason we separate
out the seedCritters from the constructor is because you want to initialize the
permanent members of your game in the constructor and only initialize the
temporary members in seedCritters.

The second situation where the Pop Framework calls seedCritters is when you
press Enter to start a new game, either because you want a fresh start or because
the current game session has ended. Pressing Enter generates a call to the
cGame::reset method which calls seedCritters.

On the subject of the reset method, we should mention that this call also resets
the player’s health and score to their starting values and returns the game’s
_level parameter to the starting value of 1. See Exercise 10.2 for an example of
how to use the _level.

The third way to have a call for seedCritters is that a game may automatically
call seedCritters from within its adjustGameParameters method. A game might do
this to keep the number of onscreen critters from getting too low.

As an example, here’s the seedCritters call from the Spacewar game.

void cGameSpacewar: :seedCritters()
{
/* Get rid of any asteroids and bullets, but if there are
UFOs, leave them alone. */
_pbiota->purgeCritters (RUNTIME_CLASS (cCritterBullet)) ;
_pbiota->purgeCritters (RUNTIME_CLASS (cCritterAsteroid)) ;
for (int i1=0; i < _seedcount; i++)
new cCritterAsteroid(this);

227

228

Software Engineering and Computer Games

The purgecritters calls are used to get rid of leftover critters you might want.
The thing is, we allow the user to call for a restart at any time during game play.
So it may be that there’s some critters we need to get rid of. In the Spacewar
game, the adjustGameParameters call may also call on seedCritters, in the event
that it’s time for a fresh wave of asteroids.

Inside the seedCritters method, we often use one or more loops to create new
critters. We feed the current eGame* argument into the eCritter constructors
as the this pointer. When you pass a game pointer to a critter constructor, the
critter is automatically added into the game’s _pbiota array, and the critter
is then able to use its pgame() accessor to get information about the game, in
particular, to get information about the size of the game world and whether its
edges wrap. The critter constructors assign sprites to the critters, position them
within the game world, and initialize their velocities.

How the game adjusts itself

The next method to discuss is cGame::adjustGameParameters. This method gets
called once per game update (from within the cGame::step method). We don't
necessarily make this method do much work. The default is for it to do nothing.
The cGameStub::adjustGameParameters is fairly general.

void cGameStub::adjustGameParameters ()

{

// (1) End the game if the player is dead----------------—————-——~——
if (!'health() && !_gameover)

//Player’s been killed and game’s not over.

_gameover = TRUE;
pplayer () ->addScore (_scorecorrection) ;
// So user can reach _maxscore
playSound (“Tada”) ;
return;
}
// (2) Perhaps reseed the screen if rivals and props are gone.------
int othercrittercount = pbiota()->count (RUNTIME_CLASS (cCritter))
- pbiota()->count (RUNTIME_CLASS (cCritterBullet)) - 1;
/* Number of critters minus bullets minus player equals other
critters. */
if (!othercrittercount) //Player is alone with bullets
seedCritters();

// (3) Maybe check some other conditions. --------------—————————————

See the description of the Spacewar game in Chapter 14: 2D Shooting Games
for an example of a more complicated adjustGameParameters method.

Games

Initializing the view

Depending on which game you're playing, there are all sorts of things you might
want to adjust about your view. Does it use a background bitmap? Does it use the
2D cGraphiesMFC or the 3D cGraphicsOpenGL? What kind of cursor tool do you have?
From what viewpoint do you look at the world? Is it zoomed in? And so on.

One initial point to make is how we think of our x-, y- and z-axes. We use
the same default orientation in both our 2D and 3D computer games. We think
of the x-axis as running from left to right across the screen, and we think of
the y-axis as running vertically from bottom to top. And we often think of the
origin of the axes as starting at the center of the screen. The z-axis is thought of
as pointing out from the screen. Normally by default we would be looking
down at the world from somewhere out on the positive z-axis, say at a point
with coordinates (0.0, 0.0, 5,0), looking down at the origin point (0.0, 0.0, 0.0).
Depending on the game, we may want to adjust which point we look at the
world from, and which point of the world we are looking at.

The game itself is data that lives inside a document. When you start up a
new game, how does the document manage to reach out and make changes to
the view? Actually it’s the other way around. The view reaches out and finds
its document, gets the game out of the document, and then asks the game to
initialize the view.

What prompts the view to do this? A CPopView::0nUpdate call with the integer
code CPopDoc: : VIEWHINT_STARTGAME in the OnUpdate call’s 1Hint argument.

When you first start up the Pop program a direct CPopView::0nUpdate call is
made by the CPopView::0nCreate method. And when the Pop program is running
and you have a view already in place and you use the Game menu to select a
new kind of game, the CPopDoc::setGameClass method document passes the static
integer code CPopDoc: : VIEWHINT_STARTGAME as the 1Hint to an UpdateAllViews
call. As we discussed in both Chapter 5: Software Design Patterns and Chapter 6:
Animation, the CPopDoc::UpdateAllViews(CView* pSender, int IHint, CObject* pHint)
method generates calls to the CPopView::0nUpdate(CView* pSender, int IHint, CObject*
pHint) method for each open view, passing on the same arguments.

However we call it, the relevant block of the CPopView::0nUpdate code looks
like the following.

if (1Hint == CPopDoc: :VIEWHINT_STARTGAME)
{
pgame () ->initializeView(this) ;
pgame () ->initializeViewpoint (_pviewpointcritter) ;

pgraphics () ->installLightingModel (pgame () ->plightingmodel ()) ;

//And now go on and call Invalidate to show the game...

In these lines the CPopView uses its pgame() accessor to reach out and get a
pointer to its game from its owner document. (The MFC framework provides a
CView::GetDocument() method via which a view can always get a pointer to its

229

230

Software Engineering and Computer Games

owner document.) Once a Pop Framework view has a pointer to its owner
game, the view asks the game to initialize it in three different ways.

e Initialize the view’s settings with initializeView.
e [nitialize the location and direction of the viewpoint with initializeViewpoint.
e [Initialize the lighting model used by the view’s graphics with installLightingModel.

At this point you might wonder why initializeView and initializeViewpoint are
separate methods. Why have separate view and viewer initialization methods?
The Pop Framework does it this way so the games will behave smoothly as you
use the menu to switch on and off the various View menu options. If we were
only writing one game with one kind of view this wouldn’t be necessary; the
complexity is a result of the code being usable as a flexible framework to build a
variety of changeable games.

Here is the code in the base class eGame version of initializeView. As well as the
standard calls, you'll notice a number of possible additional calls. The com-
ments explain them pretty clearly.

void cGame::initializeView (CPopView *pview)

{
pview->setCursor (((CPopApp*) : :AfxGetApp ()) ->_hCursorArrow) ;
pview->setUseBackgroundBitmap (FALSE) ;

//Default doesn’t use bitmap background
pview->setUseSolidBackground (TRUE) ;

//Use a solid rect background.
pview->setGraphicsClass (RUNTIME_CLASS (cGraphicsMFC)) ;
pview->pviewpointcritter ()->setTrackplayer (TRUE) ;

//Do not track player.

When you override initializeView, it’s a good idea to put a call to the base class
cGame::initializeView(pview) in the new method, lest you leave out some default
call that the base class initializeView makes. A complicating factor in developing
the Pop Framework demo program has been that the user is free to use menus
to change the game type or the graphics mode or various other things without
actually changing the identity of the view. So unless you are careful to reset
everything in initializeView, there may be some left-over settings from the last
game that you don’t want.

Here’s an example listing some ways you might override the method for an
imaginary cGameSomeChild class.

void cGameSomeChild::initializeView (CPopView *pview)
{
cGame: :initializeView (pview); //Always call the baseclass method.
//Some possible additional calls:
pview->setUseSolidBackground (FALSE) ;
//For no background at all, faster in 3D.

Games

pview->setCursor (((CPopApp*) : :AfxGetApp ()) ->_hCursorPlay) ;

/* To use the crosshair cursor for shooting with mouse
clicks. */

pview->pviewpointcritter () ->setTrackplayer (TRUE) ;

/* To scroll after the player critter if it moves off
screen. This can be confusing, but is useful if you plan
to use a zoomed in view. */

pview->setGraphicsClass (RUNTIME_CLASS (cGraphicsOpenGL)) ;

//For 3D graphics

pview->pviewpointcritter()->setListener (

new cListenerViewerRide()) ;

//To ride the player; this only works in 3D.

Now let’s talk about the initializeViewpoint(cCritterViewer *_pviewpointcritter) method.

Initializing the viewpoint critter

Let’s set the scene by printing the default cGame::initializeViewpoint code.

void cGame::initializeViewpoint (cCritterViewer *pviewer)
{

/* The two args to setViewpoint are (directiontoviewer,
lookatpoint). Note that directiontoviewer points FROM the
origin TOWARDS the viewer. */

if (pviewer->is3D())

pviewer->setViewpoint (cVector3 (0.0, -1.0, 2.0),
_border.center());

//Direction to viewer is down a bit
else //2D case.

pviewer->setViewpoint (cVector: :ZAXIS, _border.center());

To get the point of this, you need to understand that each view of your
game has an associated ‘viewpoint critter.” More precisely, the CPopView class
has a ccCritterViewer *_pviewpointcritter member as well as a cGraphics *_pgraphics
member. The viewpoint critter and the graphics object work together in the
CPopView::0nDraw method, which includes these three steps.

e Use the viewpoint critter’s zoom and perspective settings to set the projec-
tion method used by the graphics object.

e Use the viewpoint critter’s position and orientation to set the view matrix
used by graphics.

e Use the graphics to draw the world and the critters as seen by the viewpoint
critter.

231

232 Software Engineering and Computer Games

viewpoint critter

>

toviewer

lookatpoint

Figure 10.2 Setting the viewpoint

Clearly the view we see is going to depend upon the direction the viewpoint
critter is looking in. A convenient way to set position and orient to the view-
point critter is to use our cCritterViewer::setViewpoint(cVector toviewer, cVector lookat-
point) method, where we can think of toviewer and lookatpoint as illustrated
in Figure 10.2.

In three dimensions you might ask how far out along the toviewer vector do
we move the viewpoint critter? The setViewpoint call will position the viewpoint
critter itself just far enough away from the world so that every corner of the
world’s _border box is visible.

In other words, a call to cCritterViewer::setViewpoint(cVector toviewer, cVector
lookatpoint) computes an appropriate seethewholeworld_distance for the cur-
rent zoom setting and then has the caller viewpoint critter execute lines to the
following effect.

moveTo (lookatpoint + seethewholeworld * toviewer) ;
lookAt (lookatpoint) ;

If you would prefer to see a smaller part of the world, you follow the
setViewpoint call with a call to the cCritterViewer::zoom(real zoomfactor) method.

In three dimensions we can think of the zoom as being a field of view angle
that ranges from wide-angle to telephoto. With a call like zoom(2.0), the critter
will use a telephoto effect to see only half the world, or if we call zoom (0.5), it
will use a wide-angle effect to see a space twice as big as the world’s border.

In two-dimensional worlds, all of this is simpler. The toviewer direc-
tion is always just the z-axis, as in a two-dimensional world you can always
just imagine the viewer as hovering over the world staring straight down at
it. But even in a flat world, we do need to think about which point we are to
hover over, that is, the 1ookatpoint still matters. And in two dimensions we
also need to think about how much we want to zoom in on — or away from —
the world. The analogy to telephoto and wide-angle lenses doesn’t make as
much sense for the two-dimensional worlds; here it’s easier to just think of a
call like zoom (2.0) as making things look bigger and zoom (0.5) as making them
look smaller.

In designing your game, rather than agonizing over the exact quantitative
meaning of the zoomfactor numbers, it’s easier to just experiment with a few till

Games

you get the look that works the best. Here’s how we use zoom in the long, thin
world of the Ballworld game for instance. At startup the player is positioned
not at the _border.center () but rather near the _border.locorner (), that is,
the lower left-hand corner of the long, thin game world. We want to position
ourselves right over the critter, looking down at it, and we want to zoom in a
bit rather than trying to fit the whole long, thin world onto the screen.

void cGameBallworld::initializeViewpoint (cCritterViewer *pviewer)
{
if (!pviewer->is3D()) //2D case
{
pviewer->setViewpoint (cVector::ZAXIS, pplayer()->position());
pviewer->zoom(1.5) ;
}
else

//Do something slightly different in the 3D case...

By the way, how does the Pop Framework know when CPopView::is3D is TRUE?
It looks at the kind of eGraphics currently being used by the view. If the graphics
is cGraphicsOpenGL (01 maybe, one of these days, cGraphicsDirectX) the view is 3D,
and if it’s eGraphicsMFC, the view isn’t 3D. The dimensionality of the view is
independent of the dimensionality of the game’s _border box. Even though our
Ballworld game is in a two-dimensional world, we can still fancy it up with a
three-dimensional view. When we go to a three-dimensional view we actually
enhance the sprites and give many of them a cosmetic z-axis thickness deter-
mined by the eSprite::_prismdz factor mentioned in Chapter 9: Sprites.

We can do fancy things with the viewpoint when we start thinking about
three-dimensional views. Here’s something we do for the three-dimensional
viewpoint in the Airhockey game, so as to bring the viewer around behind the
player’s goal.

void cGameAirhockey::initializeViewpoint (cCritterViewer *pviewer)
{
if (pviewer->1is3D())
{
pviewer->setViewpoint (cVector3 (-2.0, 0.0, 1.0),
_border.center());
//These args are the (directiontoviewer, lookatpoint);
pviewer->roll (PI/2.0);
//rolls the viewer to right orientation.
}
else //2D case just copies base class.
pviewer->setViewpoint (cVector: :ZAXIS, _border.center());

233

234

Software Engineering and Computer Games

Still on the subject of three-dimensional views, there’s an installLightingModel
a call to initialize a new 3D graphics with the game’s plightingmodel(). But, at this
point, we aren’t doing much with this model other than using it to turn the
lighting calculations on or off in eGraphicsOpenGL. By default the lighting calcu-
lations are on in all the games except for PickNPop, simply because our default
lights don’t happen to look good on those particular shapes. Oddly enough,
OpenGL graphics may run faster when you turn on the additional calculations
of a lighting model! Perhaps this is because the OpenGL hardware on graphics
cards is optimized to run best with lighting on.

The status message

The last method of the eGame which we’ll discuss here is a method it has
for generating a string to put into the status bar at the bottom of your Pop
window. The active cPopView window repeatedly undergoes an MFC frame-
work call named OnUpdate, and we have this method in turn use the active
game’s status message by a somewhat arcane line of the form cMainFrame
->SetMessageText (pDoc->pgame () ->statusMessage ()) .

It's common to speak of methods that return useful objects as ‘factory methods.’
The statusMessage is a kind of factory method that creates a CString object. The
default eGame behavior tailors the message to report the score and health of
the player critter, the number of critters onscreen, and the number of cycles
per second that the Pop program is currently running at. Recall that the Pop
Framework is designed in such a way that it will never run at faster than the
refresh rate of the graphics card, so if we're near that, we just say ‘Near Max.’

Thanks to the richness of the MFC cString methods, it’s pretty easy to make
the status bar string. Here’s a recent version of the default statusMessage code.
Clearly this is something you want to override to give the most useful and
relevant information for your particular game.

CString cGame: :statusMessage ()

{
CString cStrStatusBar;
int nUpdatesPerSecond;
CString cStrUpdatespersecond;
CString cStrHealth;
CString cStrCount;
CString cStrScore;

CString cStrCollisionCount;

if (!gamepaused())
{
nUpdatesPerSecond = int (((CPopApp*) : :AfxGetApp())->
_timer.updatesPerSecond()) ;
if (!nUpdatesPerSecond)
cStrUpdatespersecond.Format (
“Less than one update per second.”);

Games

else
cStrUpdatespersecond.Format (“Updates per second: %d.”,
nUpdatesPerSecond) ;
if (((CPopApp*) ::AfxGetApp())->_timer.runningNearMaxSpeed ())
cStrUpdatespersecond += “ (Near Max)”;
}
else
cStrUpdatespersecond.Format (“Animation is paused.”);
cStrScore.Format (“Score: %d.”, score());
cStrHealth.Format (“Health: %d.”, health());
int crittercount = _pbiota->count (RUNTIME_CLASS (cCritter));
int bulletcount = _pbiota->count (RUNTIME_CLASS (cCritterBullet));
crittercount -= bulletcount;
if (visibleplayer()) /*Subtract off 1 for player as well. */
crittercount -= 1;
cStrCount.Format (“Other Critters: %d.”, crittercount);
cStrStatusBar = cStrScore + “ “ + cStrHealth + “ “ + cStrCount +
“ # + cStrUpdatespersecond;
return cStrStatusBar;

In line with our usual policy of not keeping the same information in two
different places, we use a eBiota::count method to walk through the active critter
array and count up the kinds of objects on the spot - this is in place of trying to
maintain an integer that holds the count value in it. It costs a (very small) bit of
speed to walk through the array once to recompute the number each time you
need it, but the simplification to your code seems worth it.

The randomsprite factory method

Let’s conclude by mentioning a factory method that eGame has. A factory
method constructs an object of a certain kind and returns a copy of it or, more
commonly, a pointer to it.

cSprite* randomSprite(int spritetypeindex);/* A factory method to

return one of the various kinds of sprites. */

The kind of sprite that randomSprite returns depends on the argument you
give it. These are statics defined as follows.

const int cGame::ST_SPRITETYPENOTUSED = -1;
//Indicates you will put in sprites by hand.
const int cGame::ST_SIMPLEPOLYGONS = 0;
//Simple triangles, squares, pentagons.
const int cGame::ST_FANCYPOLYGONS = 1;

//Diverse regular and star polygons.

235

236

Software Engineering and Computer Games

const int cGame::ST_ASTEROIDPOLYGONS = 2;
//Polypolygons that have polypolygons at their tips.
const int cGame::ST_POLYPOLYGONS = 3;
//Polypolygons that have polygons at their tips.
const int cGame::ST_BITMAPS = 4; //cSpritelcon bitmaps.
const int cGame::ST_BUBBLES = 5; //balls of various kinds.
const int cGame::ST_TRIPLEPOLYPOLYGONS = 6;
//Polypolygons that have polypolygons at their tips.

When a ccritter child needs a random sprite of a certain type, we can get one
with the randomSprite factory method like this.

cCritterAsteroid::cCritterAsteroid(cGame *pownergame)
{
if (pownergame)
setSprite (pownergame->randomSprite (cGame: : ST_ASTEROIDPOLYGONS)) ;
//Etcetera

The randomSprite is a fairly generic method that hardly needs any members of
the eGame class, but you might sometime want to override it. The randomSprite
explicitly looks at another cGame member only when called with the
cGame: : ST_BITMAPS argument. In this case, the cGame::randomSprite chooses a
resource ID for a bitmap from a eGame member array _bitmapIDarray. The
_bitmapIDarray gets initialized in the eGame constructor, by the way. You can
check the game.cpp file for details.

Also see Exercise 14.4: A Graphic Theme for Your Game for an example of
how we might want to change bitmapIDarray in a game constructor override.

10.4 Arrays of critters: the cBiota class

One of the key members of the c¢Game class is a cBiota *_pbiota field. The
cBiota class is a collection class that holds an array of pointers to cCritter objects.
The eBiota object is based on an MFC array template, with a few special methods
added. We encapsulate these methods into the eBiota rather than having them
in eGame as part of the OOD strategy of not giving any one class too many
responsibilities.

Some readers may be wondering why we have to use a collection of cCritter*
pointers. Beginning programmers have a fear of pointers and their burdensome
requirements of being initialized with new and removed with delete. Why not
just a collection of ecCritter objects? Once again, this is because we want poly-
morphism to work. In C++, a call like _pcritter->update(. . .) will work poly-
morphically and figure out the correct version of the method depending
on what kind of ecritter* child class _pcritter actually is. But a call like
_ccritter.update (.. .) will always just use the base class cCritter::update.

Games

Now let’s think about which kind of collection to use; an array or a linked
list. This type of decision depends on what you plan to do with your collection,
so let’s think about what we’ll do with the critters in a game.

Typically there will be 10-50 critters in action. As we step the game, we will
repeatedly iterate through the collection of critters, updating them, moving
them, drawing them, and so on. Now and then we will want to add new critters
to the collection or delete old ones. Should we use a list or an array for our
collection of critter pointers? Well, iterating through an array is faster than
iterating through a list, but deleting objects is faster with a list than with an
array. The cost of deleting something from the middle of an array is noticeable
because then all of the higher-indexed array members need to be moved down
one position in the array. On the whole, we expect more of our computation
time to involve iterations than object deletions, so we’ll use an array.

MEC provides a range of useful array templates. The particular template we
use here is called CTypedPtrArray. This is what’s known a serializable type-safe
array. There’s a bit about these templates in Chapter 22: Topics in C++, and
Chapter 30: Serialization explains why the CTypedPtrArray is useful for saving and
loading parameter files.

Because we may need arrays of critter pointers elsewhere in the program, we
define a simple critter pointer array class cCritterArray and derive ¢Biota from that.
We’ve drawn the diagram (Figure 10.3) so as to display the additional fact that our
cGame class is going to hold a single eBiota object and we've also included some
navigation arrows. Recall that we use the composition diamond symbol to indicate
when an object (the object with the diamond) holds one or more objects of the
class type at the other end of the line leading from the diamond.

A cBiota object is an array of cCritter* pointers which also holds a cGame
*_pgame pointer and a special bookkeeping array of simple objects called
cServiceRequest. The member fields of eBiota can be seen in this partial listing of
the prototype from biota.h.

CObArray
N

cCritterArray
N

cBiota cGame

|

cCritter

Figure 10.3 Class Diagram of the cBiota

237

238

Software Engineering and Computer Games

class cBiota : private cCritterArray
{
public: //Statics

static const int NOINDEX;

// -1, impossible index, For use by cBiota::_index().

protected:
//Non-serialized helper members;

cGame* _pgame;

CArray<cServiceRequest, cServiceRequest> _servicerequestarray;
//Constructor

cBiota (cGame *pownergame) ;
//Etcetera...
}i

The cBiota uses its _pgame field to get to a particular ecGame object, and the
cGame uses its _pbiota field to get to a particular eBiota object. But the roles of
the two pointers are different: the former is simply a navigational aid, the latter
is an example of composition.

When a cGame object is deleted, its _pbiota object is deleted as well. This is
knows as a ‘cascading delete.” The _pbiota member of eGame is a composed
object, and it is typical for a delete to cascade to a composed object.

When you delete a eBiota object you don'’t cascade the delete to the member
_pgame. The _pgame member of ¢Biota is simply a navigational aid that is put in
place by the cBiota(cGame *pownergame) constructor.

One reason why we want the eBiota to navigate to the cGame is so that the
cCritter objects can go through the cBiota to get at cGame information. Thus, the
cCritter class has a pgame() accessor that’s defined as _pownerbiota->pgame ().

We populate a eBiota by using its Add method, which is an override of the
standard CTypedPtrArray::Add. We override the method so that it won't let you
accidentally add the same thing twice; also it sets the added critter’s _pownerbiota
field.

A cBiota object is responsible for deleting all of its members. That is, the
cBiota destructor calls the destructor for each of the critters in the array.

The most important methods of the cBiota class are its ‘array-walking’ methods.
It has draw, move, update, animate, render, and listen methods, each of which simply
walks its array and calls the corresponding method for each member of cCritter.
Thus, for instance, the eBiota::move looks something like this.

void cBiota::move (Real dt)
{
for(int i=0; i<GetSize(); i++)

GetAt (i) ->move (dt) ;

The place where almost all the eBiota array-walking methods get called is
inside the cGame::step method, which is careful to call them in a certain order

Games

so as to make the program’s behavior as parallel as possible. The draw method,
however, gets called by CPopView::draw.

It’s worth mentioning that the cBiota::draw walks the array in reverse order.
This is because it’s convenient to think of the critters early in the array as being
visually on top of the others. But when you draw the critter sprites on the screen,
the first drawn is going to have the other sprites drawn on top of it. The first shall
be farthest, as it were. In graphics programming, this fact is called ‘the painter’s
algorithm.’” Usually our player is the first member of the cBiota array, and we
like to have our player on top. So we walk the array in reverse order.

This consideration only matters in two-dimensional graphics, of course, as in
three dimensions we would have the critters located at different depths, and
use our current viewpoint to determine which order to draw them in.

Some of our games, such as PickNPop, or Dambuilder, allow us to use a pick
or a drag cursor to select critters, and we store this information in the game by
setting a cGame: :_pfocus pointer to point to the critter being specially handled.
One other special thing that eBiota::draw does is to put a highlight around the
sprite of a critter that happens to be the ‘focus critter’ of the game. If you don't
like this feature, either don’t use the pick cursor or comment out the feature
from the eBiota::draw code.

Service requests: the Command pattern in action

The cBiota class has a CArray<cServiceRequest, cServiceRequest> _servicerequestarray.
The cServiceRequest class is a simple utility class that holds two fields, cCritter
*_pclient and a CString request.

The purpose of the _servicerequestarray is to queue up requests from the
critters. The reasoning goes like this. Suppose that during its update process a
critter notices that its health is 0. Now the critter wants to do the right thing
and die. If it’s to die, then we should delete it from the simulation; if you're
shooting hundreds of bullets it wouldn’t do to keep all the bullets around after
they hit something and ‘die.” To get rid of a cCritter *pcritter we need to do
at least two things:

e (Call gelete pcritter.

e Remove the invalid pcritter pointer from our cBiota array.

These are not actions that you’d want to take inside the middle of an i loop
that’s walking along a cBiota array. First of all it seems problematic to ask a
ccritter to delete itself, and secondly it’s not a good practice to change the size
of an array you are currently walking through.

Our solution is to let a eBiota store up requests to do things: to delete critters,
add critters, replicate critters, change the array location of critters, etc. And this
is what we use the _servicerequestarray for.

One more point. It would mess up our e¢Game code if the current _pplayer
ever actually got deleted. So if you were to look into the eBiota code, you’d find
that even if a player makes a delete_me request, when the cBiota processes the
service requests it doesn’t actually call delete on the player.

239

240

Software Engineering and Computer Games

Review questions

Name three important members of the cGame class.

What is the sequence of actions performed by the cGame::step(dt) method?
Which of the game’s fields are normally set in the eGame constructor?

What is the seedCritters method used for, and when is it called?

What are two things that are typically checked for in adjustGameParameters?

mM m g o w >F

What aspects of the game are set in initializeView and in InitializeViewpoint? Why are
these methods separate?

What is the viewpoint critter?
H How can you control the status bar message of a game?
| What class does cBiota inherit from?

J Why does the Pop Framework use the cServiceRequest class? What software pattern
is this an example of?

Exercises

Exercise 10.1: Starting in a zoomed-in mode

Comment in the last line of the cGameDambuilder::initializeView, rebuild and run the
Pop program, and switch to the Game | Dambuilder. Note that it is in a zoomed-in mode.
Is it still zoomed-in if you switch back to Spacewar? Why not?

Exercise 10.2: A multi-level game

Often people like to write games which have more than one level. To get you started the
Pop Framework provides an int _level member of eGame which is initialized to 1 in the
constructor (not everything has start counting with 0)! The reset method returns _level
to 1 in case it’s changed.

To use level, in your adjustGameParameters you'd look for some trigger condition,
such as score > 100, and have a block of code like this:

if (_level == 1 && score() > 100)

{
_level = 2;
setBackgroundBitmap (IDB_BACKGROUND_LEVEL2) ;
seedCritters () ;

An alternate way in which you might switch to level 2 would be to have the player critter
trigger the change inside its update method if some condition happened; for instance if
the player were to reach the far right edge of a long Mario-style world.

If you're using levels, your seedCritters should have a switch on _level to change
the way in which you seed the world.

If you change the bitmap when you go to the new level you need to remember to change
it back when you call reset to return to level 1. This might best be managed by writing a new
setLevel accessor for your game to not only set _level but to set the appropriate bitmap.

Collisions

By now you will have noticed that the critters in most of our games bounce off
of each other. Collision-handling is a somewhat advanced technique used in
coding computer games, or any other kind of physical simulation.

If the objects in your game or simulation have complicated shapes, getting
them to collide properly can become exceedingly difficult. In games, of course,
total physical accuracy isn’t necessary, so we take some shortcuts to enhance
our speed. One shortcut that we use in the Pop Framework is that, except for long
thin wall critters, we collide our critters with each other as if they were little
spheres. Another shortcut — that we didn’t happen to implement here - is to cut
the time spent on collisions by not calculating the collisions between objects
that aren’t presently in the field of view.

Let’s start with how the individual critters collide, and then work our way up
to how a game orchestrates all of the relevant collisions.

11.1 The critter conide method

The ccritter class has a virtual BOOL collide(cCritter *pcritter) method. This method
does the following: (a) check if pcritter is touching the caller, and if not,
return raLse, and (b) if pcritter is touching the caller, then execute a collision
with peritter, possibly changing the health, position, and velocity of both
pcritter and the caller, and when you’re done return TRUE.

There are three points to get straight right way.

e First of all, our collide might better be called ifTouchingDoACollision. But that
seems a bit too unwieldy.

e Second, to avoid wasting time, and to keep our physics symmetric, we
only want to call collide once for each pair <pcritteri, pcritterj>. That
is, we intend for the collide code of a call pcritteri->collide (pcritters)
to have a physically symmetric effect affect on pcritteri and pcritter;.

e Third, as a result of the second consideration, given a pair <pcritteri,
pcritterj> we're going to need some logical way of deciding whether to call
pcritteri->collide (peritterj) or to call pcritterj->collide (pcritteri) .

242

Software Engineering and Computer Games

The standard ccCritter::collide method implements (a) the law of conservation
of momentum, (b) the law of conservation of energy, and (c) the law that two
objects can’t be in the same place at the same time. The standard collision
method is also based on the assumption that the critter behaves like a sphere.
We'll say more about the physics later in this chapter.

We override the collide method for cCritterWall, as the narrow rectangular
walls are not at all like disks. And other child critters may override collide by
adding on additional refinements; bullets, for instance, may damage the other
object and explode. A typical collide override like this can have the following
form.

BOOL cCritterChild::collide(cCritter *pcritter)
{
BOOL collided = cCritter::collide(pcritter);
if (collided)
//Do something additional to this caller and/or to the pcritter

return collided;

So a typical override of collide might call the base class version of collide
to handle the physics, and then do something extra if a collision took place.
When we're done we return the BOOL that tells whether or not a collision took
place.

Here are some examples of how collide gets overridden. First let’s look at what
we do with the cCritterArmedPlayer that we commonly use for the game player.
In some games, such as our Spacewar game, we want to penalize the player
critter each time that it bumps into an enemy critter, such as an asteroid. To
enable this, the framework gives the cCritterArmedPlayer a BOOL _sensitive flag and
codes the collide like this.

BOOL cCritterArmedPlayer::collide(cCritter *pcritter)
{
BOOL collided = cCritter::collide(pcritter);
if (collided && _sensitive &&
lpcritter->IsKindOf (RUNTIME_CLASS (cCritterwWall)))
damage (1) ;

return collided;

Let’s look at a different way of extending collide, which is used by the basket
in the Ballworld game. We want the basket to be like a black hole - things that
fall into it disappear. Here we have the collide code and simply check if the
argument pcritter is entirely inside the radius of the caller critter, as tested by
a contains method.

Collisions

BOOL cCritterBasket::collide(cCritter *pcritter)
{
if (contains (pcritter))
//disk of pcritter is wholly inside my disk

pcritter->die() ;
return TRUE;

}

else
return FALSE;

The ccritterBullet overrides collide to handle target critters in one way and
other kinds of critters in the base class way. The method depends on the fact
that we give our cCritterBullet class a BOOL isTarget(cCritter *pcritter) method which
decides if a given peritter is something that the bullet is willing to damage. We
won'’t print the code for BOOL cCritterBullet::collide(cCritter *pcritter) here, but the
basic idea is the following.

e If peritter is one of your target critters and you're touching it, damage pcritter
and die.

e If peritter is a target and you're not touching it, do nothing.

e If peritterisn’t a target critter, collide with it normally.

As mentioned above, a cCritterWall overrides collide in a completely different
fashion to reflect the fact that a wall isn’t shaped like a sphere.

Clearly we're going to need a way to figure out which critter controls a given
collision! We'll get to this soon. But first let’s look at the broader issue of which
pairs of critters we’re going to test for collision at all.

11.2 Collision-handling

Here’s an overview of how the Pop Framework handles collisions.

(1) Make a utility class for holding pairs of critters, and let this class specify
which critter has the priority to control the behavior of a collision.

(2) Maintain a collection of all pairs of critters that might meaningfully collide.
(3) During each game step, iterate through this collection of candidate pairs.

(4) For each candidate pair, collide the critters by letting the higher priority
critter call its collide method on the other.

(5) A critter’s collide(pcritter) method checks if it’s touching peritter, and if so,
changes the two critters’ velocities and positions in a physically reasonable
fashion. Child classes may override collide to alter the behavior.

243

244

Software Engineering and Computer Games

We said a bit about (5) in the last section. In this section we'll figure out how
to take care of steps (1) to (4).

The N-squared problem

If we have N critters, it would seem like there are N? pairs of critters we might
consider. But we can easily cut this by a little more than half, down to N *
(N — 1) / 2. This is because, first of all, we don’t have to worry about a critter
colliding with itself, and, secondly, if we write our collision code symmetrically,
then once A collides with B we don't need to turn around and carry out code
for having B collide with A.

That is, if we think of listing the critter pairs in N rows of N columns each,
we need only consider those (row, column) pairs for which the row number is
strictly less than the column number. This way we cut down to a bit less than
half of N This is shown in Figure 11.1.

Of course half of N? is still too big for many simulations — remember that in
the analysis of algorithms, any multiple of N* is viewed as ‘order of N?,’ which is
not considered to be a scalable kind of algorithm.

If we want to be able to run somewhat more complicated kinds of games, we
need to find a way to prune down the collisions that we consider. Suppose,
for instance, that you are running a PacMan-style game in which you have
five active critters moving about in a maze made up of 45 walls. The possible
collision pairs group like this.

e Active critter to active critter (5*4)/2=10 pairs
e Active critter to wall (5 * 45) = 225 pairs
e Wall to wall (45 * 44) / 2 =990 pairs

If you ignore the wall-wall pairs, you have a quite feasible 235 possible
collision pairs to consider per update, otherwise you have a taxing 1225 pairs.
Although 235 sounds like a lot, the Pop Framework does fine up to about
500 pairs, but if you get into the thousands of pairs, the performance suffers
noticeably.

column column

row < column

row Trow

Square area is N * N Triangle areais (N*N-1) /2

Figure 11.1 Halving the possible collision pairs

Collisions

Our solution is to maintain a collection that holds only the pairs of critters
whose collisions we actually want to check. To further speed things up, we’ll
structure these pairs so that they automatically tell us which critter is to control
the collision.

A collision-handling architecture

In this section we'll talk about the two new classes the Pop Framework uses to
limit our collision-checking to the pairs that matter to us. The new classes are
cColliderPair and cCollider. Figure 11.2 is a UML class diagram of their relationship
to e¢Game and cCritter.

And here’s how these classes realize the first three steps of the collision-
handling process we outlined above.

(1) The ccolliderPair class has two cCritter* members called _pcrittercaller
and _pcritterarg. We have a cColliderPair::collideThePair method that calls
_pcrittercaller->collide(_pcritterarg).

(2) The ccollider class holds a collection of cColliderPair objects. The cGame has a
cCollider _pcollider object. Whenever you add a cCritter* pcritternew to
the game, the cCollider::smartAdd method looks at all possible pairs that
include the new pcritter and an existing critter in the game, creates
appropriately ordered cColliderPair object for those pairs that matter, and
adds the new cColliderPair objects to the _pcollider collection. Whenever
a cCritter* pcritterdying is deleted, its destructor calls _pcollider->
removeReferencesTo (pcritterdying) to remove all pairs that mention
pcritterdying.

cGame

_pcollider K>—— _cCollider

collideStep smartAdd (cCritter*, cGame*)
iterateColide ()
removeReferencesTo (cCritter*)

* *
cCollisionPair cCritter
2
_pcr}ttercaller _collidepriority
_pcritterarg
collide(cCritter*)
collideThePair () collidesWith(cCritter*)

Figure 11.2 A collision-handling architecture

245

246

Software Engineering and Computer Games

(3) In each update step, the cGame::collideStep method calls _pcollider-
>iterateCollide (). The cCollider::iterateCollide() method calls the collideThePair
for each cColliderPair.

Note that we didn’t explain yet how smartAdd decides which pairs matter
and how it decides, for these pairs, which critter should be the caller and which
should be the argument for an eventual collide call. This is the topic of the
following subsection.

Collision priority

As already discussed, the individual ccritter child classes have their own virtual
collide(cCritter *pcritter) methods to determine whether the pair is touching,
and what to do if they are touching. Given a pair (pa, pB), should I call
pA->collide (pB), or should I call pB->collide (pa)? Or should I not even try
and collide the critters?

Our solution is to give the cCritter class a Real _collidepriority field and to give the
cCritter class a collidesWith(cCritter *pcritterother) method that uses the _collidepriority
information of the two critters involved. By ‘priority’ we mean that if pB has
higher priority than pa, then, when we consider the pair (pa, pB), we will call
pB->collide (pa) instead of the other way around.

The default _collidepriority values are real numbers that have default values
that are set for the various kinds of critters in the following (descending) order.

e Walls

e Bullets

e Player

e Other critters

The reasons for our priorities are roughly this. The ccCritterWall has a special
collide method which correctly bounces things off the sides and corners of a
rectangular wall. Ordinarily we would not expect a wall to be damaged by a
bullet. As was mentioned above, the cCritterBullet has a special collide which
checks if an object it touches is in the category of a target for the bullet. If it is a
target object, the bullet damages it and then dies. Otherwise the bullet carries out
a normal cCritter::collide. And the normal cCritter::collide is designed to correctly
simulate the physics of colliding disks. The cCritterArmedPlayer has a special collide
method that can call damage if a player is sensitive to collisions.

We also need to account for the fact that some pairs of critters aren’t
meant to collide at all. To handle all this, we give the cCritter class a virtual int
cCritter::collidesWith(cCritter *pcritterother) method that can return the following
values.

® cCollider::DONTCOLLIDE = 2;
® cCollider::COLLIDEASCALLER = 1;
® cCollider::COLLIDEASARG = -1;

® cCollider::COLLIDEEITHERWAY = 0;

Collisions

The basic cCritter::collidesWith method compares the _collidepriority values
and returns an appropriate code number. The cCritterWall::collidesWith(cCritter
*pcritterother) is overridden to return DONTCOLLIDE if pcritterother happens to
be a ccCritterWall.

Finally, the cCollider::smartAdd method is implemented as follows.

void cCollider::smartAdd(cCritter *pcritter, cCritter* pcritterother)
{
int collideswith = pcritter->collidesWith (pcritterother) ;
int othercollideswith = pcritterother->collidesWith (pcritter);
if (collideswith == cCollider::DONTCOLLIDE || othercollideswith
== cCollider: :DONTCOLLIDE)
return; /* Don’t collide if either
one is unwilling, even if the other was willing. */
if (collideswith == cCollider::COLLIDEASCALLER || collideswith
== cCollider::COLLIDEEITHERWAY)
AddTail (new cColliderPair (pcritter, pcritterother));
else //(collideswith == cCollider::COLLIDEASARG)
AddTail (new cColliderPair (pcritterother, pcritter));

//ASSERT (collideswith == -othercollideswith) ;
/* We chose the collision type codes to make this ASSERT
likely at this point, but it might not always be true. Only
comment it in for testing. Do note that we bail before we
hit it if either type is DONTCOLLIDE. */

Note that smartAdd will only add the necessary pairs, and that it will add
them ordered in the right way, with the caller first and the argument second.

Array or list? An N-cubed issue

It remains to discuss how we iterate though the collection of pairs in a cCollider
collection. This depends on whether we implement the cCollider collection as
an array or as a linked list. Which is to be preferred? As you will already have
noticed if you looked enough to see the ‘addrail’ in the block of code just
above, we're going to use a list.

For most programmers, the natural inclination is to use arrays, simply
because lists have a reputation for being hard to use. Some of us have acquired
a lingering fear of lists and hash tables from a formative bad experience in a
data structures course! But, thanks to templates and collection classes, the more
sophisticated data structures are easy and safe to use, and we can afford to pick
the correct data structure for any given situation.

As it turns out, you want to use a list and not an array for the collection that
holds your set of possible collision pairs. Here’s why. Say you have N critters
— for purposes of discussion let’s say N is 20 — and let’s suppose that each critter
wants to collide with all of the others, making roughly 200 collision pairs (N* / 2).

247

248

Software Engineering and Computer Games

Now say you want to delete one of the critters. This means deleting roughly N
member pairs from an array of N*/2 members; that is, deleting 20 members
from a 200 member array.

Now, when you delete something from the beginning of an array, you typic-
ally have to move down all of the higher-indexed elements. In other words,
removing the first member of a 200 member array requires about 200 steps and
removing the first member of an array of size N*/2 takes about N?/2 steps.
Removing 20 members from a 200 member array could take roughly 4000 steps,
and removing N members from an array of size N*/2 takes on the order of
N?/2 steps.

You realize, of course, that an order-N*/2 algorithm is very bad news! For
40 critters, you'd have an order of 32,000 steps — all this just to delete one sin-
gle critter. Why, again, does it make so much work? Because you have to delete
every pair the critter was involved in, and if the pairs are in an array, then every
time you delete a pair from the array you have to move all of the higher-
indexed array members.

With a list you don't get into this problem, because deleting a member from a
list is an operation of a small, constant expense, no matter where in the list the
member occurs. It's just a matter of fixing up a couple of ‘next’ and ‘previous’
pointers.

So we implement the cCollider as a linked list; specifically we let it inherit
from the MFC class cPtrList — well, actually, we use a type-safe template variant
of cPtrList called CTypedPtrList<CObList, cColliderPair*>. If you've ever implemented
a linked list, you’ll recall that you have to be a little careful about not corrupt-
ing the next and previous pointers — by using the built-in MFC List template we
avoid having to worry about getting these details right. This is a good example
of why, in object-oriented software engineering, we like to use classes that we
don’t have to write ourselves.

One last thought. We iterate through the entire cCollider list with every
update, and iterating through an array is slightly faster than iterating through
a list. Would it be better, after all, to have used an array? Well, no. The thing
is, you want your game to run in a uniform fashion. You don’t want it to race
along and then suddenly slow down every time you shoot something. The
(actually all but undetectable) slowdown of doing a single iteration sequence
per update as a list instead of as an array is a fair price to pay for not having the
game lag when a critter’s destroyed.

11.3 Colliding spheres

Let’s say a bit about how the standard void cCritter::collide(cCritter *pother) method
should work. Before thinking about the code, we need to think about the
physics. Consider the collision of two objects a and b with masses ma and mb
and velocities va and vb which our collision is to convert into new velocities
newVa and newVb. According to physics, (a) the total momentum is conserved
and (b) the total energy is conserved. This means the following two conditions
should hold, where we write |v| to mean the magnitude of a vector v.

Collisions
(1) Ma x newVa + Mb x newVb = Ma x Va+ Mb x Vb
and

(2) (1/2) x (Ma x |newVa|* + Mb x |newVb|*) =
(1/2) x Ma x| Va >+ Mb x | Vb)

The newVa and the newVb quantities are our unknowns, and the old Va and
Vb are like constants fed into the equations. Geometrically speaking, condition
(1) describes a ‘line,” while condition (2) describes an ‘ellipse.” The intersection of
a line and an ellipse gives two solutions: the pre-collision and the post-collision
solution.

To find them, you can replace (1) by two linear equations in the x and y
components and replace equation (2) by a single quadratic equation in the x
and y components. These equations can be solved by hand, though what the
author did was feed them into the Mathematica symbolic computation program
to come up with the two solutions, the pre-collision solution, newVa = Va and
newVb = Vb, and the post-collision solution, in which some of the energy and
momentum have been exchanged:

newVa = Ma x Va—-Mb x Va+2xMb x Vb) | (Ma + Mb)
newVb = (2 x Ma x Va — Ma x Vb + Mb x Vb) | (Ma + Mb)

If we divide both numerators and denominators by Ma, and call Mb/Ma
massratio we get

newVa = (Va — massratio x Va + 2 x massratio x Vb) / (1 + massratio)
newVb = (2 x Va — Vb + massratio x Vb)/ (1 + massratio)

Simplifying a little more, we get

newVa = [(1 — massratio) x Va + 2 x massratio x Vb] | (1 + massratio)
newVb = [2 x Va + (massratio — 1) x Vb| / (1 + massratio)

Note that if massratio is 1, then this is simply newVa = Vb; newVb = Va,
which is the standard billiard-ball collision that one first thinks of. The case
where the masses aren’t the same is the less obvious case; this is the case we are
doing all the work for. And if a has a huge (infinite) mass compared to b, then
massratio is about 0 and we get newVa = Va; newVb = 2Va — Vb, which, if a is
motionless, amounts to b simply bouncing off of a, which is another standard
kind of collision example.

A third thing that needs to be taken into account is that we shouldn’t have
two objects in the same place at the same time. Usually when two critters are
touching, they will actually be overlapping. We add code to our cCritter::collide
so as to move the pair of critters apart along the line connecting their centers,
moving them just far enough so they don’t overlap.

249

250

Software Engineering and Computer Games

enda + 1 thickness + endb

Figure 11.3 Constructing a cCritterWall

A final issue in writing this algorithm is that we need to avoid having a
collision move any critter that has its _fixedflag set to TrRUE; such a critter might
appear as a bumper in a pinball game or as an obstacle in a maze game. You can
look at the full code in the critter.cpp file.

11.4 Colliding walls

One weak point in our standard cCritter::touch and cCritter::collide methods is that
they always treat the critters as disks centered on the critter’s position. This is only
slightly problematic when we have, say, a triangular critter, but it is unworkable
if we have a long thin critter such as one might use for a rectangular wall.

In more advanced kinds of game programs, collision detection usually uses a
sphere-based collision detection to see if a collision is possible, and then switches
to a slower and more detailed algorithm that looks at bounding boxes or indi-
vidual vertices of the objects being tested for collision. In the Pop Framework
we presently only do this for one particular kind of shape: a rectangular ‘wall.’

So we have a special cCritterWall class. We normally create our walls with a
call to the constructor: cCritterWall::cCritterWall(const cVector &enda, const cVector
&endb, Real thickness).

The enda and endb arguments in the constructor are the midpoints of what
we consider to be the short ends of the wall (see Figure 11.3).

In the Dambuilder game, for instance, we add a bunch of walls in the con-
structor with lines of the following form. If you don’t specify the thickness, the
default ccritterwall: :THICKNESS of 0.2 is used.

add (new cCritterDamWall (cVector (-4, 2), cVector(3, -2)));
add (new cCritterDamwWall(cVector(l.5, -2), cVector(6, 0.3)));

If you play with the Dambuilder game, you’ll notice you can drag the walls
around and you can use the Copy cursor to copy them. You can ‘build dams’!
Our standard critter’s behavior when being dragged is to keep the velocity of
the drag; this lets us ‘pick up and throw’ critters if we like. But we normally
don’t want walls to drift around, so the cCritter::dragTo is overridden to prevent a
wall from acquiring velocity by being dragged.

Ordinarily a critter thinks of its shape as being a disk. If a wall thinks of
itself as a disk, then you are prevented from putting two vertical walls near
each other, as the imaginary disks would seem to overlap. A similar issue can arise
with trying to put a vertical wall near a vertical edge of the screen when the wall’s
wrap mode is set to cCritter::BOUNCE. Overriding the clamp method partly solves

Collisions

the problem. (We did a quick ‘kludge’ fix of the BOUNCE problem by overriding
cCritterWall::setWrapflag to do nothing, so that in fact you can’t put a cCritterWall into
the BOUNCE mode. This is unimportant, but we note it here in case you are ever
puzzled about why you can’t get walls to bounce off the edges of the screen.)

The main effort in coding the cCritterWall went into the override for collide. One
needs to consider eight cases; whether a colliding critter is impacting a wall on
one of its four corners or on one of its four sides. Another complicating factor
is to try and avoid the case where a rapidly moving critter might seem to move
‘through’ a thin wall by being on one side, and then at the next move step being
on the other side, without ever overlapping the wall. We deal with this problem by
looking at a critter’s ‘outcode’ relative to the wall; where, as already mentioned
in Chapter 8: Critters, an outcode is a flag value reflecting a position relative to
a rectangle: inside, to the right, to the right and top, to the top, and so on.

Our ccritterWall::collide(cCritter*pcritter) compares the peritter's current outcode
relative to the wall to its previous position’s outcode relative to this wall, and
in this way we can tell whether it jumped over the wall. And if it’s hitting the
wall, we can tell which region it came from. You can look at the gory details in
critterwall.cpp if you're interested.

Review questions

A What does the default cCritter::collide method do? Which quantities does it conserve?
B How many pairs of critters can be found in a set of ten critters? In a set of 100 critters?

C What is the meaning of the cCritter _collidepriority field? How is it used in the
cCritter::collidesWith method? And, finally, where is the collidesWith method used?

D Where does the Pop Framework keep a cCollider *_pcollider object? What is the purpose
of this cCollider object?

E Why does the Pop Framework choose to implement cCollider as a linked list instead of
as an array?

F How does the cCritterWall::collide differ from the normal cCritter::collide?

Exercises

Exercise 11.1: Turn off asteroid—asteroid collisions in Spacewar

Turn off the asteroid-to-asteroid collisions in the Spacewar game. To do this, override the
cCritterAsteroid::collidesWith(cCritter *pcritterother) method. You’'ll need to prototype the
method in gamespacewar.h and implement it in gamespacewar.cpp. The implementation
code should have these two lines.

if (pcritterother->IsKindOf (RUNTIME_CLASS (cCritterAsteroid)))
return cCollider::DONTCOLLIDE;
return cCritter::collidesWith(pcritterother) ;

251

252

Software Engineering and Computer Games

Does this make the game run faster? Compare speeds before and after, using the
Game popup menu to change the number of critters. When you compare the speeds of
builds always make sure that both are Debug builds or both are Release builds.

Exercise 11.2: Compare performance of cCollider using list and array

(a) Run the Spacewar game on your machine and notice if it lurches when you shoot
some critters. Note the updates per second with a huge number of critters. (b) Now go
into collider.h, comment out the line #define USECOLLIDERLIST, to switch from a list
to an array for the cCollider. Rebuild the program, making sure to use Build | Set Active
Configuration to the Release build if the build you checked in step (a) was also a
Release build. Compare performance. On some machines you won’t notice a difference
and on some you will. At one point a tester saw some freeze-ups of the program when
using the array build, though maybe the bug was only a transient coincidence.

Exercise 11.3: Sequence diagrams for adding and deleting critters

Recall that a sequence diagram’s column really represents one individual object’s behavior.
In the case where there’s only one object of the type under consideration we only write the
class name instead of the name of the object; in the case where we're discussing more
than one object of a given type, we write a class name with a colon and an object name.
In doing parts (a) and (b) we may want to check the Pop Framework code for details or,
even better, use the debugger to step through the sequence of events when you add or
delete a critter.

(a) Draw a sequence diagram with columns for cGame, cColliderPair, cCritter:pa, cCritter:pb,
cCollider and possibly cBiota to map the functions called when you add pa to the game,
assuming that pb is a critter already in the game that pa is interested in colliding with.

(b) Draw a sequence diagram with the same columns to show what happens when pa is
deleted.

Listeners

In this chapter we talk about how we move our onscreen player sprite with the
mouse and keyboard.

12.1 How the critters listen to the user input

The ccontrolier utility class

The Microsoft void CView::0nKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags) method
is triggered whenever a key is pressed. The nrlags argument is a collection
of bitflags designed to tell you whether the Ctrl, Alt, and/or Shift keys are
down, and whether this is a repeated typematic keypress. The nrepcnt is also
supposed to hold the number of repeated typematic messages that a key press
has generated, where ‘typematic’ refers to the feature that has most keys trigger
additional onKeyDown messages if you continue to hold them down. In point of
fact, the nFlags and nrepcnt arguments don’t reliably behave as Microsoft’s
documentation says they do, so we work around them, as you can see if you
check the cPopView override of the OnKeyDown method.

To give clean access to the user input, we have a class called cController that
serves to hold the current state of the keyboard and mouse and allow the pro-
grammer to access this information with some conveniently designed accessor
methods. The various possible keys are represented by integer keycodes, ordin-
arily the keycode for any key has a name of the form VK _???, such as VK_A,
VK_LEFT, VK_SPACE, and so on. Check Appendix A for a complete list of the
VK_ code names used in the Pop Framework. Under the current versions of
Windows, there are 166 distinct recognized keys; we #define this number to be
VKKEYCOUNT.

The cController maintains an unsigned integer keystate for each key; the
keystate uses bitflags to represent if the key is depressed, and whether the Shift
or Ctrl keys were down when the key was first pressed. Also we maintain some
bitflags that enable us to tell when a key has been down for more than one
cycle of the cGame::step call. Here’s a partial listing of its prototype.

254

Software Engineering and Computer Games

class cController : public CObject
{
protected:
UINT _keystate[VKKEYCOUNT] ;
Real _keystateage[VKKEYCOUNT] ;
public:
cController () ;
virtual void update(Real dt); /* cController uses update to
check for when keys are no longer depressed and for when
keys have been made available to the listeners more than
once. */
BOOL keyon (int vkcode) ;
BOOL keyonplain (int vkcode) ;
BOOL keyoncontrol (int vkcode) ;
BOOL keyonshift (int vkcode) ;
BOOL keyoncontrolshift (int vkcode) ;
/* The following *single accessors only return TRUE once per
keypress, useful for impulse controls. */
BOOL keyonsingle (int vkcode)
BOOL keyonplainsingle (int vkcode) ;
BOOL keyoncontrolsingle (int vkcode) ;
BOOL keyonshiftsingle (int vkcode) ;
BOOL keyoncontrolshiftsingle (int vkcode) ;
/* Sometimes, as when using an arrow key to spin a player, it
is useful to know how long a key has been depressed. */
Real keystateage (int vkcode) ;

It's worth mentioning that there is a VK_LBUTTON as well; we use this to signal
when the left mouse button is depressed. And the same is true for the right button.
In other words, we can treat the mouse buttons like keyboard keys. A complicat-
ing factor with the mouse is that one often needs to know the mouse’s current
cursor position; we deal with this by having the eGame maintain a cVector _cursorpos
that gets updated by the active view within its CPopView::0nSetCursor call. Windows
forces an onSetCursor call in the window underlying the current mouse cursor
position during or before every call to Onldle.

The sequence from keypress to critter

In order to play the game, we need for the player critter to be able to take
input from the keyboard and/or the mouse. We get at the input in a somewhat
indirect fashion.

e When you press a key, an OnKeyDown message goes to the active CPopView.

e The CPopView::0nKeyDown message handler sends a cGame::onKeyDown message
to the active eGame object.

Listeners

* The cGame object stores the key information in its cController *_pcontroller
member.

e The cGame::step method calls cCritter::feellistener for the player.

e The player critter’s cListener* _plistener member calls the cListener::listen(Real
dt, cCritter *pownercritter) method.

e The cListener:listen uses the peritter->pgame()->pcontroller() accessor to get at the
cController *_pcontroller to see which keys are down, whether the Ctrl
and Shift keys are also down, how long the keys have been down, whether
the mouse buttons are down, and so on.

* Depending on the keystates, the cListener::listen may do something like using
cCritter::setAcceleration to change the player’s acceleration.

The reason the flow is so indirect is because we want for a given keystroke to
be available to any critter in the game that has a listener — this would be a factor
for two-person games, for instance. In addition, rather than processing keystrokes
immediately as they happen, we want for the processing to happen at a certain
predictable spot within the cGame::step cycle — otherwise we may have trouble
keeping up the illusion that our critters are behaving in a parallel fashion.

We have a little more about the interaction between the keyboard and the
controller in the Keyboard section of Chapter 28: Mouse, Cursors and Keyboard.

We can sketch the flow in a sequence diagram as shown in Figure 12.1.

If this complexity bothers you, don’t worry about it; the whole point of all
this framework coding was to give the programmer an unobtrusive and reliable
interface to the user’s keyboard and mouse input. In the next section, we’ll talk
about how the cListener objects use this interface.

12.2 The listeners

As we mentioned in Chapter 8: Critters, a critter uses the Strategy pattern to farm
out the task of listening to its cListener *_plistener member with a call to feellistener.

void cCritter::feellistener (Real dt)
{

_plistener->listen(dt, this);

We pass the pointer this to the listener so that it can change the fields of this
calling ccritter as required. Because a cListener takes a cGame* argument to its listen
method, we can say that the cListener can ‘navigate’ to a cGame. The caller critter’s
pgame() holds the ecController object that stores all of the keys and mouse actions
you need to process.

We pass a dt argument to the plistener->feellistener because the mouse-based
listener cListenerCursor needs to know the dt so as to appropriately set the critter’s
velocity to match the critter’s motion from one cursor position to the next.

255

256 Software Engineering and Computer Games

CPopView cGame cController cListener cCritter

OnKeyDown 1 _

OnKeyDown

setKey

|

|

,

] step

e

,

h

! update

|

h

|

.

E E feellistener
. j

. .

. .

, ,

. . — listen
. .

. L . keystate

, |

| |

. .

, ,

! keystate j]

h

|

h

| T

. .

E E setAcceleration
. .

. .

: : |
, ,

Figure 12.1 Sequence diagram for a key press

The feellistener method gets called inside the cGame::step. The successive calls to
cGame::step generate calls to feellistener(), move(), update(), feellistener(), move(), update(),
feellistener(), move(), and so on. In other words, after startup, the process for an
individual critter is this.

e (Call update() and, within update, call feelforce().
e (Call feellistener() and possibly add in some more acceleration.

e Use the _acceleration in move().

Listeners
cCritter cListener
clListenerScooter cListenerArrow cListenerCar cListenerSpaceship
cListenerCursor clListenerHopper
Figure 12.2 The cListener class diagram

Now let’s start to look at what the different kinds of listeners do in their
listen methods. To begin with, here’s a class diagram of some of our listeners
(Figure 12.2).

The listen(Real dt, cCritter *pcritter) method checks the current state of the keys
as indicated by the pcritter->pgame () ->pcontroller (). The cListenerArrow::listen
code looks like the following.

void cListenerArrow::listen(Real dt,

{

cCritter *pcritter)

cController *pcontroller = pcritter->pgame ()->pcontroller();

/* Note that since I set the velocity to 0.0 when I’'m not

pressing an arrow key,

this means that acceleration forces

don’t get to have accumulating effects on a critter with a

cListenerScooter listener.

So rather than having some very

half-way kinds of acceleration effects, I go ahead and set

acceleration to 0.0 in here.

*/

pcritter->setAcceleration (cVector: :ZEROVECTOR) ;

if (!pcontroller->keyonplain (VK_LEFT) &&

lpcontroller->keyonplain (VK_RIGHT) &&

!pcontroller->keyonplain
!pcontroller->keyonplain

VK_DOWN) &&
VK_UP) &&

lpcontroller->keyonplain (VK_PAGEDOWN) &&

(
(
(
(
(
(

!pcontroller->keyonplain (VK_PAGEUP)

)

pcritter->setVelocity (cVector: :ZEROVECTOR) ;

return;

/*

If you get here, you’ve pressed an arrow key. First match

the velocity to the arrow key direction, and then match

the attitude. */

if (pcontroller->keyonplain (VK_LEFT))

pcritter->setVelocity (- pcritter->maxspeed() *

cVector: :XAXIS) ;

257

258 Software Engineering and Computer Games

if (pcontroller->keyonplain (VK_RIGHT))
pcritter->setVelocity (pcritter->maxspeed() * cVector::XAXIS);
if (pcontroller->keyonplain (VK_DOWN))
pcritter->setVelocity (-pcritter->maxspeed() *
cVector: :YAXIS) ;
if (pcontroller->keyonplain (VK_UP))
pcritter->setVelocity (pcritter->maxspeed() * cVector::YAXIS);
if (pcontroller->keyonplain (VK_PAGEDOWN) &&
pcritter->in3DWorld())
pcritter->setVelocity (-pcritter->maxspeed() *
cVector: :ZAXIS) ;
if (pcontroller->keyonplain (VK_PAGEUP)&& pcritter->in3DWorld())
pcritter->setVelocity (pcritter->maxspeed() * cVector::ZAXIS);
//Now match the attitude to the motion, if locked.
if (pcritter->attitude to motion lock ())
pcritter->copyMotionMatrixToAttitudeMatrix () ;
/* If pcritter is cCritterArmed*, its

listen does more.

There are a couple of things to point out. The cListenerArrow::listen has its
effects on the critter by setting the critter’s velocity. Since I'm directly setting
the velocity at each game step, the acceleration will not be able to have any sig-
nificant effect on the velocity; a line of the form _velocity += dt*_acceleration
will have a negligible effect since we keep resetting the velocity in each call of the
cListenerArrow::listen. SO we have this listener set the acceleration to the zero vector.

Another thing to notice is that we use the cController::keyonplain accessors
to see which keys are pressed. This is so that we can use Ctrl+Arrow keys or
Ctrl+Shift+Arrow Keys for other purposes, such as moving the viewpoint.

A third thing to observe is that the cListenerArrow::listen will set the listening
critter’s attitude to match the current motion of the critter, if locked. This gives the
expected effect of having the critter face left when you press the Left Arrow, and
so on.

A final thing to notice is that cListenerArrow::listen is designed to work for
critters in 3D worlds as well as for critters in 2D worlds. But we are careful not
to impart 3D motion to a critter unless it satisfies the is3p() condition. This
condition checks if the critter’s _movebox has a non-zero z size.

The cListenerScooter also has an effect of directly setting the magnitude of
a critter’s velocity, so here we again set the acceleration to the zero vector.
cListenerScooter changes the critter’s motion vector in one of two ways; by
changing the magnitude velocity, or by rotating the critter’s motion vectors in
various ways.

In order to fully describe the possible rotations in three dimensions, we need
to think in terms of the critter as having a trihedron of three perpendicular unit
vectors called the tangent, the normal, and the binormal. These three vectors
make up the first three columns of the critter’s ‘motion matrix.” This is shown
in Figure 12.3.

Listeners

Binormal

Normal

Tangent

Figure 12.3 The trihedron of a critter

We can summarize the effect of cListenerScooter::listen as follows. In testing
this, be aware that in the Pop program, the cListenerScooter is chosen with the
Player | Scooter Controls selection. ‘Scooter’ makes sense as a name for this
listener because, as with a scooter that only rolls while you kick it, cListenerScooter
only moves a player as long as a key is held down.

e The Up key sets the critter’s velocity to its maxspeed times its current tangent
direction.

e The Down key sets the critter’s velocity to the opposite, that is, the maxspeed
times the negative of the critter’s tangent direction. In this case we do not set
the critter’s attitude to match its motion, that is, we leave its tangent pointing
in the same direction as before and let the critter be moving ‘in reverse.’

e The Left and Right Arrow keys ‘yaw’ the critter by rotating its tangent around
the z-axis or, in 3D, around the critter’s binormal.

e In 3D, the Pageup and Pagedown keys ‘pitch’ the critter by rotating its tangent
around its normal.

e In 3D, the Home and End keys ‘roll’ the critter by rotating its normal around
its tangent.

e When we rotate a critter we do update its visible attitude to match the new
orientation of the motion matrix.

In order to make the game more responsive, it’s better to have two turn-
speeds for your player, a fast turnspeed for whirling around to shoot something
that’s sneaking up on you, and a slow turnspeed for accurately aiming your
fire so as to hit a small or distant object. We choose the correct rotation speed
by using a helper turnspeed method inside the cListenerScooter::listen method. Our
cListener::turnspeed function looks at the cController::keyage of a key to determine
how large a rotation to return.

The cListenerSpaceship and the cListenerCar do not change the critter’s speed
directly. Instead they add or subtract from the critter’s acceleration. The difference
is that the cListenerSpaceship adds an acceleration whose direction is determined
by the critter’s current visual attitude, and the cListenerCar adds an acceleration
whose direction is determined by the critter’s current motion.

259

260

Software Engineering and Computer Games

The cListenerSpaceship and the cListenerCar rotate the critter in the same way as
the cListenerScooter controls. The difference is that the cListenerSpaceship rotates
the critter’s attitude, while the cListenerCar rotates the critter’s motion.

Both of these listeners are compatible with having forces act upon the critter.

The cListenerCursor moves the critter with the mouse. This is done
by setting the critter’s acceleration to the zero vector and setting the critter’s
velocity to be whatever velocity is necessary to move the critter to the
pcritter->pgame () ->cursorpos () in the allotted dt time slice that is fed into
the cListenerCursor::listen(Real dt, cCritter *pcritter) call. If you move the mouse
rapidly this means that the critter will in fact move at an extremely high
velocity; when a critter has a cListenerCursor we disable the customary condition
that limits a critter to moving less rapidly than the value of its maxspeed ().

The reason we choose to have the cListenerCursor move the critter by chang-
ing its velocity rather than by simply calling a direct moveTo is that we want to
be able to ‘hit’ things with a critter that we move with the mouse, and in order
for a critter to collide properly with something, we need for its velocity to
match its perceived motion.

Code for these listeners can be found in listener.cpp.

12.3 Shooting with the listeners

As well as moving our critters around, we also want to be able to make them shoot
bullets or, if you will, eject objects. We will allow two shooting input methods:
pressing the spacebar or clicking the left mouse button while the cursor is in a
view that uses the _hcursorplay cursor. You select this cursor by clicking on
the crosshair button in the toolbar or by selecting View | Shoot Cursor.

The framework checks on the cursor type in the CPopView::0OnLButtonDown.
This method only stores a left click in the game cController object in the case
where the cursor type is indeed the _hcursorplay.

We derive any critter that shoots from the critter child class cCritterArmedPlayer.
We'll discuss cCritterArmedPlayer in some detail in the next chapter; for now
it suffices to know that this class has a BOOL _bshooting member, and when
bshooting iS TRUE the cCritterArmedPlayer::update method can shoot a bullet.

Rather than putting shooting code into each of our listeners, it’s more
efficient to put it into the feellistener method of the cCritterArmedPlayer itself.
Leaving out a few complications, the method looks basically like this.

void cCritterArmedPlayer::feellistener (Real dt)
{
cCritter::feellistener(dt);
_bshooting = (pgame ()->keystate (VK_SPACE) == cController::KEYON) ;
if (pgame ()->keystate (VK_LBUTTON) == cController::KEYON)
/* shoot with left mouse click
The controller will only have turned VK_LBUTTON on if you
left clicked the Shoot Cursor; left clicks with other
cursors will be ignored by controller. */

Listeners

_bshooting = TRUE;
aimAt (pgame () ->cursorpos ()) ;

}

Using the shooting cursor makes a nice interface for many games. As it turns
out, users have trouble using complicated listeners to move the player. Much of
the challenge of Asteroids (or our Spacewar) is that the cListenerSpaceship is so
hard to use. The clListenerCar is in fact only practical for things like car races
around an onscreen track. Ordinarily, users will prefer either the cListenerScooter
or even the lowly cListenerArrow.

One of the drawbacks of a cListenerArrow for a shooting game is that the
critter seemingly can only shoot in the cardinal directions: East, North, West, and
South. But if you use a Shoot mode cursor, that is, the _hcursorplay, with the
cListenerArrow, then you can shoot in any direction by left clicking. An interesting
side-effect (that you could of course code out if you don’t like it) is that when
you press the Up Arrow and hold down the left mouse button, a critter with the
cListenerArrow will continuously move towards the cursor location.

12.4 Viewer listeners

Each cPopView has a cCritterViewer *_pviewpointcritter member that is used to set
the projection matrix and the view matrix inside the CPopView::0nDraw call. We
discuss the details of this process in Chapter 24: Two- and Three-dimensional
Graphics. But the basic notion is simple: a view shows the game world as seen
from the viewpoint of its _pviewpointcritter.

The user changes the appearance of the view by moving or rotating the
_pviewpointcritter. It's also possible to change the magnification scale, or
field of view angle, by making a pviewpointcritter->zoom(zoomfactor) call.

In order to let the user change the viewpoint, the CPopView code can attach a
listener to the viewer with a call like _pviewpointcritter->setListener (new
cListenerViewerOrtho()). The cListenerViewerOrtho is one of the three specialized
cListener child classes that the Pop Framework provides for use with the viewers.
Let’s say a few words about the three kinds of viewer listeners.

e cListenerViewerOrtho is always used as the _pviewpointcritter listener for
two-dimensional worlds. This listener reacts to Ctrl+Arrow key combinations
to move the _pviewpointcritter back and forth parallel to the XY plane,
and it causes the Ins and Del keys to generate zoom calls.

e Either cListenerViewerFly or cListenerViewerRide are always used as the _pview-
pointcritter listener for three-dimensional worlds. cListenerViewerFly reacts
to the Ctrl+Arrow key combinations to move the _pviewpointcritter along
its intrinsic axes, that is along its tangent, normal, and binormal directions.
The Ctrl+Shift+Arrow key combinations rotate the _pviewpointcritter
around its intrinsic axes, and the Ins and Del keys zoom the viewpoint.

261

262

Software Engineering and Computer Games

e clListenerViewerRide is used in three-dimensional worlds to let the viewer ‘ride’
upon the game’s pplayer (). That is, this listener maintains a fixed cVector
_offset, keeps the _pviewpointcritter always at this offset from the player’s
position, and adjusts the _pviewpointcritter attitude to change along with
the player’s attitude. (Rather than exactly matching the player attitude to
look parallel to the player, we have the rider tilt a bit to look at a point slightly
ahead of the player.) The Ctrl+Arrow keys can be used to change the viewer’s
fixed offset from the player.

Here as an example is the cListenerViewerOrtho::listen code.

void cListenerViewerOrtho::listen(Real dt, cCritter *pcritter)
{
cController *pcontroller = pcritter->pgame ()->pcontroller () ;
// Use the Control + (Arrow keys, Insert or Delete) to translate.
if (pcontroller->keyoncontrol (VK_LEFT))
pcritter->setVelocity (pcritter->maxspeed() * cVector::XAXIS);
if (pcontroller->keyoncontrol (VK_RIGHT))
pcritter->setVelocity (- pcritter->maxspeed() *
cVector: :XAXIS) ;
if (pcontroller->keyoncontrol (VK_DOWN))
pcritter->setVelocity (pcritter->maxspeed() * cVector::YAXIS);
if (pcontroller->keyoncontrol (VK_UP))
pcritter->setVelocity (- pcritter->maxspeed() *
cVector: :YAXIS) ;
if (!pcontroller->keyoncontrol (VK_LEFT) &&
Ipcontroller->keyoncontrol (VK_RIGHT) &&
Ipcontroller->keyoncontrol (VK_DOWN) &&
Ipcontroller->keyoncontrol (VK_UP))
pcritter->setVelocity (cVector: :ZEROVECTOR) ;
// Use the Insert, Delete keys to zoom.
cCritterViewer *pcritterv = (cCritterViewer*) (pcritter); /* Need
the cast to use zoom
ASSERT (pcritterv); //To make sure the cast didn’t fail. */
if (pcontroller->keyon (VK_INSERT))
pcritterv->zoom(cCritterViewer: : DEFAULTZOOMFACTOR) ;
if (pcontroller->keyon (VK_DELETE))
pcritterv->zoom(l.0/cCritterViewer: :DEFAULTZOOMFACTOR) ;

Note that the Ctrl+Left combination moves the _pviewpointcritter to the
right, which gives an effect of the visible world moving to the left. Users tend
not to think in terms of there being a separate _pviewpointcritter (and why
should they?), so it makes for a better interface to move the visible world in the
direction of the arrows.

Listeners

In most of our games both the player and the _pviewpointcritter will have
a listener, and at every full update of the game, each of them gets a chance to
‘listen’ to the key information in the game’s cController object.

12.5 How a listener initializes its owner critter

A final thing to mention about our cListener class is that it has a virtual void
install(cCritter *pcritter) method. We attach a listener to a critter with the
cCritter::setListener(cListener *plistener) method, and the setListener code calls
plistener->install(this) to give the listener a chance to make any necessary
adjustments to the critter that is going to start using it.

The default behavior of cListener::install(cCritter *pcritter) is simply to match
the peritter's motion matrix to its attitude matrix to get things off to a good start
— this match will not automatically be TruE, as we normally do not lock the
player critter’s attitude to its motion. One other use for install is to temporarily
set a critter’s maximum speed to a very high value when it uses a cListenerCursor.

In the case of the viewer listeners, the install methods also set the cCritterViewer
_perspective field to FaLSE for the two-dimensional cListenerViewerOrtho and to TRUE
for the three-dimensional cListenerViewerFly and cListenerViewerRide. A final wrinkle
is that the cListenerViewerFly locks the viewer critter’s attitude matrix to its motion
matrix — as here we are effectively flying a camera around; while cListenerViewerOrtho
does not lock the viewer critter attitude to its motion — because we want this
viewer always to be staring down the z-axis at the world, even if we are moving
it to the left and right. More details can be found in the listener.cpp file.

Review questions

A Given a cController *pcontroller object, how would you find out if the Left
Arrow key is being pressed?

What software pattern is embodied by the critter’s use of a cListener object?
How does the cListener::listen method get called?

How does a critter respond to keys when it uses the Arrow listener? The scooter?
What does the cListenerCursor do to a critter that uses it?

What are the three kinds of viewer listeners the Pop Framework uses?

G M m OO O w

What is the difference between a critter’s attitude matrix and its motion matrix?

Exercises

Exercise 12.1: Spaceship listener with friction

Note that a player with the cListenerSpaceship is still able to feel forces such as gravity.
Try giving the player friction in the Spacewar game and see if this makes it more pleasant
to use the spaceship keys.

263

264

Software Engineering and Computer Games

Exercise 12.2: Move the world or move the viewer?

Test out the effects of Ctrl+Arrow and Ctrl+Shift+Arrow in some 2D and 3D views. The
visual effect of these keys is that you are moving the world. Now open the listener.cpp file
and find the line #define MOVEVIEW 1. Read the comment on this line and change the
line to #define MOVEVIEW -1. Now test the same Arrow keys in some 2D and 3D views.
The visual effect of the keys is now to move the (invisible) viewer rather than the world.
Which interface do you like better? Which do you think will be preferred by most users?

Shooters and bullets 13

We want for critters to be able to spawn off additional objects. The most
common use of this is for shooting games in which the critters shoot at the
player and the player shoots back. Do keep in mind that a game with this
pattern can in fact be given a non-violent framing story. The critters might be
dropping jewels that you want to pick up. Or you might be throwing food at
them. Perhaps you're on a safari taking pictures, and you're firing flashbulbs.
This said, let’s go ahead and speak in terms of shooting bullets.

In order to prevent the player from drowning the screen in bullets and
having the game be too easy, we will allow only some limited number of player
bullets to be active at one time. Suppose you want to allow the player to have
at most eight bullets active at one time. When there are already eight bullets
present and the user presses the shoot control, what happens then?

There are two alternatives. One approach is to have the shoot control go
dead until one of the eight active bullets hits something or dies of old age. This
is not satisfying as then, if the player is menaced by some approaching enemy
and all the bullets are in use, the player is left defenseless. A better approach is
to have the shooting of a ninth bullet remove the oldest bullet from the screen.
This specification-level decision will affect our design.

13.1 High-level design for ccritterArmed and ccritterBullet

We make