
Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Continuous-Valued Cellular Automata in Two Dimensions

by Rudy Rucker

Department of Computer Science, Emeritus
San Jose State University, San Jose, CA

rudy@rudyrucker.com

This paper appeared in New Constructions in Cellular Automata (Santa Fe

Institute Studies in the Sciences of Complexity Proceedings), edited by David Griffeath
and Cristopher Moore , Oxford University Press 2003.

Abstract. We explore a variety of two-dimensional continuous-valued cellular

automata (CAs). We discuss how to derive CA schemes from differential equations and
look at CAs based on several kinds of non-linear wave equations. In addition we cast
some of Hans Meinhardt’s activator-inhibitor reaction-diffusion rules into two
dimensions. Some illustrative runs of CAPOW, a CA simulator, are presented.

1. Introduction
A cellular automaton, or CA, is a computation made up of (1) finite elements

called cells. Each cell contains the same type of state. The cells are updated in (2)
parallel, using a rule which is (3) homogeneous and (4) local.

In slightly different words, a CA is a computation based upon a (1) grid of cells,
with each cell containing an object called a state. The states are updated in discrete
steps, with all the cells being effectively updated at the same time. (3) Each cell uses the
same algorithm for its update rule. (4) The update algorithm computes a cell’s new state
by using information about the states of the cell’s nearby spacetime neighbors, that is,
using the state of the cell itself, using the states of the cell’s nearby neighbors, and using
the recent prior states of the cell and its neighbors.

The states do not necessarily need to be single numbers, they can also be data
structures built up from numbers. A CA is said to be discrete-valued if its states are built
from integers, and a CA is continuous-valued if its states are built from real numbers.

As Norman Margolus and Tommaso Toffoli have pointed out, CAs are well-
suited for modeling nature [1]. The parallelism of the CA update process mirrors the
uniform flow of time. The homogeneity of the CA update rule across all the cells
corresponds to the universality of natural law. And the locality of CAs reflect the fact
that nature seems to forbid action at a distance.

The use of finite spacetime elements for CAs are a necessary evil so that we can
compute at all. But one might argue that the use of discrete states is an unnecessary evil.
In the old days, speed and storage considerations made it impractical to carry out large
CA computations using real numbers as the cell states, but today’s desktop machines no
longer have these limitations. The author and his students have developed a shareware
software package for Windows called CAPOW, which we have used for exploring
continuous-valued CAs [2]. The paper [3] contains information about our investigations

 - 1 -

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=David%20Griffeath
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Cristopher%20Moore

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

of one-dimensional continuous-valued CAs, and the present paper presents some of the
phenomena found in two-dimensional continuous-valued CAs.

In the CAs we’ve been investigating, we take “real number” to mean IEEE single-
precision floating-point number, what the C language terms a float rather than a double.
We have experimented with double precision floating point numbers, but their use does
not seem to change the qualitative features of our simulations. Double precision floating
point numbers have the drawback of requiring larger memory buffers and of cutting
simulation speed. Because of considerations of speed and memory, we have been
looking at relatively small 2D CAs, with a dimension 120 cells wide by 90 cells high.

In Section 2 of this paper we discuss how we derive CA schemes from sets of
differential equations and Section 3 presents some material relating to our specific
methods of simulation. In Section 4 we discuss some two-dimensional continuous-
valued CAs that are based on reaction-diffusion systems that use an activator-inhibitor
reaction. In Section 5 we look at CAs based on linear and non-linear wave equations and
in Section 6 we briefly consider the possibility of developing some “reaction-wave” CAs.
And Section 7 suggests some paths for further investigations.

Before proceeding, let’s confront three possible objections to the study of
continuous-valued cellular automata.

Objection 1. Since you are running your computation on a digital machine, your
so-called continuous values are really discrete numbers, so you are doing nothing new.

Over typical lab scales of minutes and hours, there is a qualitative difference
between a CA whose state is only a few bits, and a CA whose state is a floating point
number. You can indeed simulate crude things like heat flow with only a few hundred
discrete states, but numerical viscosity kills off subtler continuum behaviors like wave
motion. With states that are single precision floating point numbers, simulation of a one
or two dimensional wave will persist through millions of updates, but if we coarsen the
grain down to something like ten bits of state, a wave simulation quickly dies out. Here’s
a table of results gotten by simulating a one-dimensional wave with the CAPOW
software, which contains a “State Grain” control for altering the coarseness of the real
numbers used.

Coarseness of “Reals” Number of Updates Until a

Wave Dies Out.
0.1 50 updates
0.01 200 updates
0.001 800 updates

Table 1. The longevity of a linear wave scheme using varying minimum sizes of real number.

Objection 2. When you use floating point numbers, computational round-off
destroys the possibility of having time-reversible rules.

This issue was raised by Norman Margolus during the “Constructive CAs”
conference. Margolus reasons that since physics is reversible, the CAs we use should be
reversible as well. Margolus’s concern about the CAPOW program was that its use of
floating-point numbers for its “real numbers” would make the rules irreversible due to
computational round-off.

 - 2 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Figure 1. A one-dimensional wave schema being run with a Wave constant of 0.694. The rule
was seeded with a single triangular spike and was time-reversed twice. The figure shows an
instantaneous snapshot of the cells’ intensity values at the bottom, while the upper part shows a
spacetime diagram of the intensity patterns, with the earlier times at the top and the later times at
the bottom. This simulation was “time-reversed” by exchanging the “past” and “future” cell
buffers.[Reversible Wave B&W.tif]

Tests conducted since the conference reveal that the computational round-off is
not noticeable enough to destroy the possibility of rule reversibility over the simulation
runs that we use, typically on the order of a thousand to a hundred thousand updates.
Figure 1 shows an example of a one-dimensional wave equation rule being reversed.

Of course our rules can only be reversible when they are based on a reversible
scheme such as the Wave Scheme introduced in Section 3. The Diffusion Scheme which
we use is inherently irreversible. Although it is possible to model diffusion in terms of
the reversible motions of a deterministic gas of “heat particles,” such a strategy would
seem to limit us to simulating systems much smaller and simpler than those investigated
here.

Objection 3. To study continuous-valued CAs is to repeat existing work in
numerical analysis and finite element simulations.

Finite element methods are indeed an inspiration for continuous-valued CAs. But
the CA approach has a different mind-set and leads to different kinds of investigations.
The CA approach involves: an emphasis on experiment and observation rather than on
theory and proof; an artificial life orientation in which one is actively on the lookout for
unexpected and emergent properties of the simulation; and the use of genetic algorithm

 - 3 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

methods for effectively searching the large phase spaces of the rules. A historical
distinction between CA work and finite elements simulations is that the latter tend to be
run on supercomputers, while CA programs are usually rapidly running, attractive,
interactive shareware graphics programs for desktop machines. It is our hope that
thinking in terms of continuous-valued CAs can lead to a productive unification of work
from diverse fields.

2. Continuous-Valued CAs and Differential Equations

Most of the continuous-valued rules we’ve investigated so far have been inspired

by systems of differential equations. These include one-dimensional and two-
dimensional forms of equations based on diffusion, wave motion, oscillators, activator-
inhibitor reactions, and various combinations of these equations.

Our cell states typically include a real-number value u, and our CA update
scheme typically has the form uNew = Update(u,…). Various neighbor-state values can
appear as arguments to the Update rule. We write uNew rather than u on the left because
in order to preserve parallelism we think in terms of first computing the uNew values for
every cell before then starting to view these as the current u values.

In working with CA schemes of this nature, one needs to worry both about the
numerical accuracy of a scheme and about its stability. (See [3].) The accuracy relates to
how well the CA is simulating an actual differential equation. The stability relates to
whether or not the CA simulation goes completely out of control. When a rule enters an
unstable regime it will generally produce arbitrarily large and small values. A good
heuristic in seeing if a scheme is likely to be stable is that it should set uNew to
something the size of u plus something the size of a constant times the difference
between two cell values.

In order to discuss our practices in converting systems of equations into schemes
for CA rules, let’s suppose we are looking for a scheme to be used at a given cell C. In
one dimensional rules, we call the cells left and right neighbors L and R. In two-
dimensional rules, we call the cell’s neighbors E, NE, N, NW, W, SW, S, and SE. In
two dimensions we distinguish between the von Neumann neighborhood of all eight
neighbors, and the von Neumann neighborhood of only the four neighbors E, N, W, and
S.

Table 2 lists some symbols we’ll use for various cell neighborhood values. We’ll
use uPast and uNew to stand for the value in the cell at, respectively, the prior and the
following update. It’s going to be useful to use the term uTimeAvg to stand for the
average of these two “time neighbors.” And we’ll use uNabeAvg to stand for the
average state values in C’s immediate neighbors, excluding C itself. In addition, we
write uR and uL to stand for the u values in the cell’s right and left neighbors R and L,
write use uE, uN, uW, and uS to stand for the intensity values of the update cell’s four
von Neumann neighbors, and so on.

In a one-dimensional case where we only look at nearest neighbors, uNabeAvg is
(uL + uR)/2. In a two-dimensional case where we use the von Neumann neighborhood,
uNabeAvg is (uE+uN+uW+uS)/4. And in the two-dimensional Moore neighborhood
case, we choose to weight the corner cells a bit less, and use a uNabeAvg of
(uE+uN+uW+uS+ 0.75*(uNE + uNW + uSW + uSE) / 7.

 - 4 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Symbol Meaning Compute As:
u Current value of cell

state

uPast Prior value of cell state
uNew Next value of cell state
uNabeAvg Average of Space

Neighbors
(uL + uR)/2 or
(uE+uN+uW+uS)/4 or
(uE+uN+uW+uS + 0.75*(uNE + uNW + uSW + uSE)) / 7

uTimeAvg Average of Time
Neighbors

(uPast + uNew)/2

Table 2. Notation for cell neighborhood values.

To convert a differential equation into a CA scheme, we write the equation in a
form that uses expressions of the form ut or utt as opposed to expressions of the form
∂u/∂t or ∂2u/∂t2. And we use the dimension-independent ∇2u to stand, in one dimension,
for uxx or ∂2u/∂x2, and to stand, in two dimensions, for uxx + uyy or (∂2u/∂x2 + ∂2u/∂x2).
And then we use the substitutions in Table 3. Note that we do not worry about putting in
any ∆x, ∆y or ∆t terms because any meaningful values for these terms can end up being
incorporated into one of the CA scheme’s parameters.

ut uNew - u
utt uTimeAvg - u
∇2u uNabeAvg - u

Table 3. Some CA approximations.

Consider a diffusion equation with a parameter called Diffusion.

ut = Diffusion * ∇2u
becomes
(Diffusion Scheme) uNew = u + Diffusion * (uNabeAvg - u)

Note that this scheme satisfies the stability heuristic mentioned at the start of this

section; that is, uNew is u plus something the order of a difference between the u values
of two neighbors.

The Diffusion Scheme can be thought of taking a weighted average of the cell and
its neighbors. That is, we can write the Diffusion Scheme as uNew = (1 - Diffusion) * u
+ Diffusion * uNabeAvg. As the Diffusion parameter ranges from zero and unity, the
weight shifts from the cell to its neighbors.. If the number of neighbor cells is k, then
using a Diffusion value of k/(k+1) makes a straight average of the cell and its neighbors.

One should not use a Diffusion value greater than one, as this leads to instability.
The reason for this becomes clear if we consider a situation where the uNabeAvg is zero.
In this case, if Diffusion were greater than one, then a single update would change a
positive u to a negative uNew.

 - 5 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Now consider a wave equation with a parameter called Wave.
utt = Wave * ∇2u
becomes
(Wave Scheme) uNew = (2*u - uPast) + 2*Wave*(uNabeAvg - u).

Our stability heuristic is satisfied because the first term on the right side is of the

order of u, while the second term is the order of a difference in the u values of two
neighbors.

In terms of the differential equations, the Wave parameter is actually (c * ∆t /
∆x)2, or the square of the speed of the wave in the medium times the square of the time-
step divided by the square of the space step. (See [3].) For a cellular automatist it’s more
practical to just think of the single parameter Wave.

One significant thing to notice about the Wave Schema is that it’s time-reversible.
As already mentioned in Section 1, we can swap the positions of uNew and uPast to get
a scheme that retrodicts the past instead of predicting the future. In practice, we reverse a
running Wave Schema CA by exchanging the roles of the buffers that hold the cells’ past
values and the cells’ future values.

We can also think of the right-hand side of the Wave Scheme as being two times a
weighted average of the cell and its neighbors with the old value of the cell being
subtracted off. That is, we can write the Wave Scheme as uNew = 2*((1 - Wave)*u +
Wave*uNabeAvg) - uPast. As the Wave parameter ranges from zero to one, the weight
shifts from the cell to its neighbors, and values greater than one give instability.

Instead of deriving our schemes for continuous-valued CA rules from differential
equations, it’s also possible to develop new CA rules simply by playing with the
schemes. In [4], Fermi, Pasta and Ulam described an early computer experiment in
which they changed the one-dimensional wave equation rule by adding a Nonlinearity
parameter and a factor that involves the squares of the differences between the
neighboring cell values to produce this scheme. (See [5] for a history of the Fermi-Pasta-
Ulam work through the mid 1970s.) As mentioned above, we write uR and uL to stand
for the u values in the cell’s right and left neighbors R and L.

(One-dimensional Quadratic Wave Scheme)
uNew = (2*u - uPast) + 2* Wave*(uNabeAvg - u +
 Nonlinearity*((uR-u)2 - (u-uL)2)))

An analysis by Dan Ostrov in [3] establishes that in one dimension, this scheme

corresponds to a nonlinear wave equation of the following form.

utt = Wave * uxx + 2 * Nonlinearity * ux* uxx

We’ll say more about nonlinear waves in Section 6.

3. Investigating Continuous-valued CAs
As with other CAs, we simulate parallelism by maintaining separate buffers to

hold the current cell values and the new cell values being computed. Since the Wave
Schema CAs compute the future on the basis of values both from the present and the past

 - 6 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

cell values, we actually need to maintain three buffers for these rules.
In running CAs with continuous-valued state variables, one needs to prevent the

state values from taking on unreasonably large values that can produce floating-point
overflow. A simple way to do this is to pick a range of values that you will allow the
variables to lie in, and to then clamp them to stay in this range, where to “clamp” a
variable u to a range (Min, Max) means that if u is less than Min we set it to Min, and if
u is greater than Max we set it to Max. The brute-force clamping approach protects the
integrity of the simulation in times when the rules have no physical analog.

As an alternate approach to keeping variable values in range, one can "wrap"
them instead of clamping them. That is, if u is slightly larger than Max, one changes it to
u - Max, and so on. Although this approach has the virtue of preserving more
information about the value of u, it seems in some cases to have the disadvantage of
excessively churning things up, and we have not used it very much. As a matter both of
elegance and of physical verisimilitude, one usually tries to design the rules and their
parameters so that no special measures are needed to keep the variables in range.

In order to display our CAs, we pick one of the state variables to be the display
variable u. We then use a map called Band to map u’s range onto the integers up to
some largish number MaxColorIndex (typically 1000). We have been using simple
linear maps for Band, although other kinds of maps could be useful, for instance to
exaggerate the color changes near some critical value. We use a Palette array of
MaxColorIndex of RGB color values and we display u as Palette[Band(u)].

Our standard design for Palette is to randomly choose some “anchor colors” for
some of the Palette entries, and then to use linear interpolation in RGB space to ramp the
entries whose indices lie between the indices of the anchor colors. This produces a
smoothly shaded effect. When generating monochrome images, we simply alternate
white and black for the anchor colors, producing a Palette which is a shaded series of
gray-tone stripes.

We’ve experimented with a variety of possible boundary conditions for our CAs.
The most commonly used is the periodic boundary condition, in which a one-dimensional
CA space is treated as a circle and a two-dimensional CA space is treated as a torus. This
is the only boundary condition used in the examples discussed in this paper.

There are various possible ways to seed the continuous-valued CAs. Among
them are: a constant starting value at all cells, a two-dimensional sine wave pattern, a
single tent-like spike, multiple spikes that the user can place with the mouse, and a fully
randomized initial state.

Finding the best set of parameter values for a given rule is difficult. The search
spaces are, after all, very large and perhaps very chaotically organized. We’ve used an
evolutionary search strategy that seems to have first been introduced by Richard Dawkins
in his classic Blind Watchmaker program [6]. Like Blind Watchmaker, CAPOW allows
the user to view nine rules at once, to select a visually appealing rule by clicking on it,
and to thereby have the other eight rules become mutations of the chosen rule. The
mutation rate is user-selectable, and there other kinds of randomization options as well.
In other words, many of the rules discussed here have been found by directed search
methods. Figure 2 shows an image of the CAPOW window with nine different CA rules
active.

 - 7 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Figure 2. (Color Plate 1) A picture of the CAPOW program showing nine CAs at once. The
images shown correspond to the examples used in this paper. The rule in the upper-left corner is
one-dimensional and all the others are two-dimensional. Row by row from left to right the rules
are a one-dimensional wave, the Zhabo Worm rule, the Turing Leopard rule, the Turing Stripe
rule, a linear wave, a quadratic wave, a cubic wave, a homeostatic cubic wave, and the Cloud rule.
[CAPOW.tif]

In searching for interesting rules, we use a refinement of Stephen Wolfram’s
familiar classification of 1-D CAs into four kinds: (I) Those that die, (II) those that
repeat, (III) those with non-repeating persistent structures, (IV) pseudorandom. If we
view this classification as a spectrum of increasing complexity, it seems logical to have
the pseudorandom rules come last, even though Wolfram chose to list the last two classes
in the opposite of the expected order. It’s useful to distinguish between spatial and
temporal periodicity in type II. In two dimensions we have a special kind of complex
rule that, rather than exhibiting discrete gliders, shows the self-organizing scroll patterns
identified with the Belousov-Zhabotinsky reactions in chemistry. With this in mind, we
distinguish between two cases of type III as well.

Complexity
Type

Wolfram Type Attractor Behavior

I 1 Point Dies out
IIa 2 Cycle Fixed space pattern
IIb 2 Cycle Periodic cycle
IIIa 4 Strange Self-organizing scrolls
IIIb 4 Strange Moving gliders or globs

 - 8 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

IV 3 Pseudorandom Chaotic seething

Table 4. The complexity types of two-dimensional CAs.

4. Reaction-Diffusion Systems
Some of the most interesting patterns in nature come from reaction-diffusion

systems in which a chemical reaction is taking place while the components of the
reaction are being diffused. Much of the research in this area has focused on reactions
which involve two substances: an autocatalyzing activator which also produces an
inhibitor substance. (See the classic Alan Turing paper [7] and the recent non-technical
survey [8].)

In [9], Hans Meinhardt formulates several differential equation schemes for
reaction-diffusion systems based on activator-inhibitor reactions. This book also
includes a disk with the executable and the BASIC source code for Meinhardt’s SP
program, which displays continuous-valued one-dimensional CAs based on a wide range
of activator-inhibitor-diffusion systems. Meinhardt’s work was the major inspiration for
our development of the CAPOW software.

The work in this section is based on Meinhardt’s differential equation scheme for
an activator-inhibitor diffusion rule with activator saturation. Depending on how the
parameters are set, we can get every possible CA complexity type with the exception of
IIIb.

We can easily find rules of type I, which rush to take on the maximum or
minimum value for all cells, and remain frozen there.

The rules of type IIa are of particular interest. These rules converge to static-
appearing patterns resembling the coats of animals such as leopards and zebras. These
kinds of reaction-diffusion patterns are often called Turing patterns, as Turing’s
motivation for considering these rules was indeed to find ways to generate stable patterns
which emerge in morphogenesis. The rules of type IIb show a uniform oscillation up and
down. If these rules oscillate wildly enough to hit the maximum values and experience
“clamping” then recurrent dot patterns are introduced by the clamping process.

The rules of type IIIa are those in which certain wave-like structures form and
move about. Among these travelling wave patterns, of particular significance are those
in which scrolls self-organize. The scroll-forming patterns are instances of the
ubiquitous two-dimensional CA rules sometimes called Zhabotinsky rules. None of the
rules of this kind investigated so far seem to show stable moving patterns that
characterize complexity type IIIb.

And finally it is always easy to find setting that produce type IV patterns which
seethe wildly.

Meinhardt formulates these rules in terms of two real number variables a and b
which represent the intensity of, respectively, the activator and the inhibitor. In our
simulations we’ve typically let a and b range from 0 to 4, focusing on rules in which the
a and b values never actually approach the maximum value of 4 closely enough to
require clamping. We use a helper variable bSafe to prevent division by zero, along with
a number of parameters that are named in Table 5.

 - 9 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Symbol Meaning Comment
Variables:
a Concentration of the activator. Typical range 0 to 4.
b Concentration of the inhibitor. Typical range 0 to 4.
Safety Variable:
bSafe Concentration of the inhibitor,

corrected to be above bMin.
Typical range 0.001 to 4.
Use to avoid division by
0.

Equation
Parameters:

sDensity Source density, akin to a reaction
rate.

Range 0 to 1. Small 0.01
for Turing, medium 0.5
for Zhabo.

aDiffuse Diffusion rate of the activator. Range 0 to 1. Needs to
be close to bDiffuse for
Zhabo.

bDiffuse Diffusion rate of the inhibitor. Range 0 to 1. Needs to
be much larger than
aDiffuse for Turing.

aBase Basic activator production rate. Small 0.01 for Turing,
medium 0.3 for Zhabo.

bBase Basic inhibitor production rate. Small, about 0.004.
aDecay Activator removal rate. Large 0.5 for Zhabo,

small 0.01 for Turing.
bDecay Inhibitor removal rate. Large 0.3 for Zhabo,

small 0.01 for Turing.
aSaturation Slows down the rate of activator

production as a increases.
Need this to get good
Turing patterns. Low
values like 0.04 give
dots, high values like 0.2
give stripes.

Simulation
Parameters:

Neighborhood Dimensionality and neighborhood. In 2D we get the best-
looking, smoothest
results with a Moore
neighborhood with edges
weighted slightly more
than corners.

bMin Minimum inhibitor in rule. Small 0.001 for Turing,
medium 0.5 for Zhabo.

abMax Maximum value of activator or
inhibitor in rule.

4 works well.

 - 10 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Table 5: The variables and parameters for the activator-inhibitor-diffusion rule.

Meinhardt’s activator-inhibitor equations have this form.

(Activator) at = aDiffuse * ∇2a +
 + sDensity * a2/(b * (1 + aSaturation*a*a))
 + sDensity * aBase
 - aDecay * a.
(Inhibitor) bt = bDiffuse * ∇2b

 + sDensity * a2
 + bBase
 - bDecay * b.

To model these as CA schemes, we treat the time-step as 1 and use updates of the

form aNew = a + at. The full activator-inhibitor CA rule takes the following form.

(Avoid division by 0) IF (b > bMin) THEN bSafe = b ELSE bSafe = bMin.
(Activator) aNew = a + aDiffuse * (aNabeAvg - a)
 + sDensity*a*a/(bSafe * (1 + aSaturation*a*a))
 + sDensity * aBase
 - aDecay * a.
(Inhibitor) bNew = b + bDiffuse * (bNabeAvg - b)
 + sDensity*a*a
 - bDecay * b.
(Clamp) Clamp both a and b to be in the range [0, abMax].

Figure 3 shows an example of one of the self-organizing scroll CAs of type IIIa

called Zhabo Worms, while Figures 4 and 5 show examples of stable Turing pattern CAs
of type IIa called Turing Leopard and Turing Stripes. The parameter values used for
these three rules appear in Table 6.

 - 11 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Figure 3: Zhabo Worms. This is an activator-inhibitor diffusion rule. It slowly self-organizes
scrolls from a random start.[Zhabo Worms B&W.tif]

Figure 4. (Color Plate 2.) A three-dimensional view of the two-dimensional Turing Leopard rule.
The heights and colors both represent the activator value. Starting from a random start, this rule’s
values drift down towards zero and then some stable peaks of activation develop and grow to a
medium height. Convergence is rapid. [Turing Leopard 3D.tif]

 - 12 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Figure 5. (Color Plate 3.) A three-dimensional view of the two-dimensional Turing Stripes rule.
The heights and colors both represent the activator value, and the inhibitor values are closely
similar. This pattern self-organized from a random start. It is fully stable, and has been run for
over 100,000 updates. [Turing Stripes 3D.tif]

 Zhabo

Worms
Turing
Leopard

Turing
Stripes

Neighbors 2D Moore 2D Moore 2D Moore
Complexity IIIa IIa IIa
sDensity 0.52 0.011 0.015
aDiffuse 0.0975 0.0399 0.049
bDiffuse 0.04375 0.99995 0.99995
aBase 0.256 0.01 0.01
bBase 0.004 0.0055 0.0055
aDecay 0.52 0.015 0.01
bDecay 0.3 0.01 0.015
aSaturation 0.0 0.04 0.2
bMin 0.52 0.001 0.001
abMax 4.0 4.0 4.0

Table 6. The parameters for the three activator-inhibitor-diffusion rules of Figures 2, 3, and 4.

5. Wave Equations
The two-dimensional wave equation rules give patterns very similar to the surface

 - 13 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

of pan of water, although our use of periodic boundary conditions means that the waves
don’t reflect off the edges. Figure 6 shows an image of a randomly perturbed two-
dimensional wave schema rule.

Figure 6. A two-dimensional wave schema being run with a Wave constant of 0.694 and a uMax
of 3.0. The pattern started as a two-dimensional sine wave and was repeatedly perturbed with
random conical “dings”. It will continue sloshing around like this indefinitely. [Wave B&W.tif]

One might be tempted to say that the wave-based rules have complexity type IIIb,
in that the individual wave patterns behave somewhat like gliders that move around. On
the other hand, since the wave equation is linear, the wave crests cross each other without
interacting. And the interaction of gliders is really the essence of what we think of as
complexity type IIIb, for one expects a complexity type IIIb rule to appear as if it may be
capable of simulating a universal computer.

In order to have wave-like rules in which the individual wave-patterns interact,
we need a non-linear wave equation along the lines mentioned in Section 2. We have
worked with three nonlinear two-dimensional wave schemes. Two are fairly
straightforward: a quadratic and a cubic nonlinear wave. The third is more complicated,
it’s a cubic nonlinear wave that’s has a “homeostatic” tweak designed to prevent it from
becoming unstable.

The first quadratic and cubic wave rules are based on a von Neumann
neighborhood. The homeostatic cubic wave rule uses the von Neumann neighborhood
for the “wave mode” of its updates and uses the Moore neighborhood when it enter an
“averaging mode” to smooth out instabilities. Recalling that we use uE, uN, uW, and uS
to stand for the intensity values of the update cell’s four von Neumann neighbors, we can
write the quadratic and cubic wave schemes as follows

 - 14 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

(Two-Dimensional Quadratic Wave Scheme) uNew =
 (2*u - uPast) + 2 * Wave * (uNabeAvg - u +
 Nonlinearity*((uE-u)2 - (u-uW)2 + (uN-u)2 - (u-uS)2))
(Two-Dimensional Cubic Wave Scheme) uNew =
 (2*u - uPast) + 2 * Wave * (uNabeAvg - u +
 Nonlinearity*((uE-u)3 - (u-uW)3 + (uN-u)3 - (u-uS)3))
(Clamp) Clamp u to be in the range [-uMax, uMax].

The third nonlinear wave is a “homeostatic cubic wave” scheme which we’ll

discuss below. In Figure 7 we show our four kinds of waves side by side.

Figure 7. A view of four kinds of two-dimensional waves. From the left, the top row has a linear
wave and a quadratic wave, and the bottom row has a cubic wave and a homeostatic cubic wave.
Each rule was seeded with a four full cycles of a sine-wave pattern and was run for about 500
updates. In the linear wave this pattern simple oscillates forever, making “sushi” patterns that are
displayed by showing the intensities by different shades of black and white. In the quadratic
wave, the peaks become asymmetric, and in the cubic wave the peaks become more angular. The
flaws on the cubic homeostasis wave are locations where the wave has become unstable and has
intensity values that are being clamped to the maximum or minimum allowable value. All the
rules are being run with a Wave constant of 0.694 and a uMax of 3.0. The Nonlinearity values of
the quadratic and cubic, waves are, respectively 0.5, 3. The Nonlinearity in the homeostatic
cubic wave varies from cell to cell, ranging from 0.001 to 1000. [Four Waves B&W.tif]

The nonlinear wave schemes easily go unstable, especially the cubic one. In these
waves, instability will mean that the intensity values grow without bound. Thanks to the
clamping step, the values then get stuck at maximum or a minimum value. In the case of
the two-dimensional quadratic wave, instability can lead to a certain kind of interesting

 - 15 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

structures. But in the cubic case, an instability is typically a checkerboard of alternating
maximum and minimum-valued cells which grows to fill the simulation space.

Figure 8. A quadratic wave scheme with Wave of 0.25, Nonlinearity of 0.15, and uMax of 3.0.
The pattern was seeded with all u values of 1.5 with a conical bump in one location. The cone tip
produced an instability which propagated along a closed “fault line”. (Recall that this is a toroidal
space.) The pattern is now stable and will remain like this indefinitely. Note that small structures
are able to move along within the “wave-guide” pieces of the fault.[Quadratic Walls B&W.tif]

Our “homeostatic cubic” rule has an ad hoc technique for taming the cubic
instabilities. The idea is to run an unstable cubic wave, and to let the nonlinearity of the
wave be determined locally. This gives an interesting effect showing Zhabotinsky
patterns moving about in a wave medium.

 - 16 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Figure 9. (Color Plate 4.) Homeostatic Cubic Zhabo, based on the homeostatic cubic wave
scheme. Notice the circular wave patterns as well as the diamond-shaped Zhabotinsky spiral. See
Figure 8 for the parameters used in this rule. [Homeostatic Cubic Zhabo.tif]

For the homeostatic cubic wave, each cell holds an intensity u and a nonlinearity
multiplier called LocalNonlinearity. In addition the rules use a helper variable TooBig
and some additional parameters as shown in the table.

Symbol Comments Homeostatic Cubic

Zhabo
Variables:
u Intensity. Ranges from 0 to uMax
LocalNonlinearity Each cell has its own value for

this; it starts at MinNonlinearity
and drifts up towards
MaxNonlinearity.

TooBig Boolean helper variable to signal
when the rule has become unstable
at a given cell.

Parameters:
Wave Normally ranges from 0 to 1,

although could be larger as we
expect this rule to become unstable
anyway.

0.5

MaxNonlinearity The LocalNonlinearity values in 100.0

 - 17 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

the individual cells move towards
this. Can be any positive value.

GrowFactor The multiplier which moves the
cells’ LocalNonlinearity value
towards MaxNonlinearity.
Should be slightly larger than 1.

1.05

MinNonlinearity This needs to be larger than 0
because we increase the
LocalNonlinearity by repeated
multiplications by GrowFactor.

0.01

WaveThreshold This should be bigger than
MinNonlinearity. When the
LocalNonlinearity lies between
MinNonlinearity and
WaveThreshold we update u with
an averaging rule, otherwise we
use a cubic wave rule.

0.015

uMax We clamp u to be in the symmetric
range (-uMax, uMax).

1.0

Table 7. The variables and parameters for the homeostatic cubic wave scheme, along with the
values used for the Homeostatic Cubic Zhabo in Figure 8.

The update process for this rule has two parts: the computation of the uNew value
and the computation of the LocalNonlinearityNew value.

At the first stage of the update, we compute the uNew value in one of two
possible ways, depending on the size of the LocalNonlinearity variable. If
LocalNonlinearity is small, that’s an indication that we’re in a zone that was recently
unstable, and we update uNew by a simple averaging scheme. If LocalNonlinearity is
larger, we update uNew by a cubic wave scheme, and we use the LocalNonlinearity as
the cubic wave’s Nonlinearity parameter. Finally, after updating uNew, we clamp uNew
to lie in the range (-uMax, uMax). If uNew was indeed out of range, we set my TooBig
helper variable to true, otherwise we set TooBig to false.

At the second stage of the update, we compute the LocalNonlinearityNew value
in one of two possible ways, depending on whether TooBig is true or false. In the
TooBig case, we let LocalNonlinearityNew collapse to MinNonlinearity. This has the
dual effect of damping the unstable cubic rule and of signaling the cell to use an
averaging rule for its next update. When TooBig is false, we multiply
LocalNonlinearityNew by GrowFactor and clamp LocalNonlinearityNew to lie in the
range (MinNonlinearity, MaxNonlinearity).

The uNew update.

(Cubic Wave Option) IF (LocalNonlinearity >= WaveThreshold) THEN
 uNew = 2*u - uPast + Wave*(uNabeAvg - u
 + LocalNonlinearity* ((uE-u)3 - (u-uW)3 + (uN-u)3 + (u-uS)3));
(Averaging Option) IF (LocalNonlinearity < WaveThreshold) THEN

 - 18 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

 uNew = uNabeAvg;
(Clamp and set TooBig) Clamp uNew to lie in the range (-uMax, uMax). If uNew
 was outside the range set TooBig to true, otherwise set TooBig to false.

The LocalNonlinearityNew update.

(Collapse option) IF (TooBig) THEN LocalNonlinearityNew = MinNonlinearity
(Growth option)IF (NOT TooBig) THEN
 LocalNonlinearityNew = GrowFactor* LocalNonlinearity
(Clamp) Clamp LocalNonlinearityNew to be in the range
 (MinNonlinearity, MaxNonlinearity);

This rule readily falls into a Zhabotinsky-style pattern of complexity type IIIa.

The Zhabotinsky spirals are driven by the behavior of the LocalNonlinearity parameter,
which grows to a maximum value and then drops abruptly.

6. Reaction Wave Systems.
We’ve also done some preliminary work in trying to put a wave term in place of

the diffusion term in one or both of the two equations in our activator-inhibitor systems.
We’ve tried various ways of doing this, but none has been an outstanding success in
terms of producing really interesting behaviors. A typical scheme we’ve tried has the
following form. In this scheme we don’t use an aSaturation term.

(Avoid division by 0) IF (-bMin < b < bMin) THEN b = Sign(b)*bMin
 ELSE bSafe = b.
(Activator) aNew = 2*a - aPast + Wave * (aNabeAvg - a)
 + sDensity*a*a/bSafe
 + sDensity * aBase
 - aDecay * a.
(Inhibitor) bNew = 2*b - bPast + Wave * (bNabeAvg - b)
 + sDensity*a*a
 - bDecay * b.
(Clamp) Clamp both a and b to be in the range [-abMax, abMax].

This rule produces patterns resembling clouds.

 - 19 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

Figure 10: A cloud-like pattern formed by an activator inhibitor rule with wave terms in place of
the customary diffusion terms. This rule converges quickly to this behavior from a random start.
The rule is shown using only one band of color, that is, black in the minimum intensity and white
is the maximum. [Reaction Wave Cloud B&W.tif]

Name Clouds
Neighbors 2D Von Neumann
Complexity IV
Wave 0.25
sDensity 0.01
aBase 0.01
bBase 0.0055
aDecay 0.01
bDecay 0.015
bMin 0.001
abMax 32.0

Table 8. The parameter values used for the Cloud rule.

7. Suggestions for Further Work
In [9] Meinhardt investigates other, more complicated, kinds of one-dimensional

activator-inhibitor systems, and it would interesting to cast more of these into two-
dimensional form. It would be of particular interest to see Turing patterns which move
about; that is, it would be nice to see crawling dots and writhing stripes. One result of

 - 20 -

Continuous-Valued Cellular Automata in Two Dimensions, by Rudy Rucker, April 21, 1999

 - 21 -

this might be that our CAs could begin to model the motions of extended objects.
Another, related, goal is to find some continuous-valued CAs with more purely

type IIIb behaviors. That is, one would like to see glider-like patterns moving about and
interacting.

It might also be useful to base some rules on third-order differential equations;
presumably using something like a uSecondNabeAvg - 2* uNabeAvg + u term, where
the uSecondNabeAvg would be computed from neighbors two cells away. Perhaps
some of these rules could exhibit solitons that might play the role of information-bearing
gliders.

Finally, there is still the open frontier of three-dimensional CAs. Certainly it
would be nice generalize the simple activator inhibitor schemes to three-dimensions so as
to produce three-dimensional Turing patterns.

References:

[1] Tommaso Toffoli and Norman Margolus, Cellular Automata Machines (MIT

Press, 1987).
[2] Rudy Rucker et. al., CAPOW! software available for free download at

http://www.rudyrucker.com/capow, 1999, also updated in 2007.
[3] Daniel Ostrov and Rudy Rucker, “Continuous-Valued Cellular Automata For

Nonlinear Wave Equations,” Complex Systems, 10 (1996) 91-119.
[4] E. Fermi, J. Pasta, and S. Ulam, “Studies of Nonlinear Problems,” originally

in Los Alamos Report LA-1940, 1955, later in S. Ulam, Sets, Numbers and Universes,
MIT Press: Cambridge, 1974, pp. 491-501

[5] Thomas Weissert, The Genesis of Simulation in Dynamics: Pursuing the
Fermi-Pasta-Ulam Problem (Springer-Verlag 1997).

[6] Richard Dawkins, “The Evolution of Evolvability,” in C. Langton, Artificial
Life (Addison-Wesley 1989), p. 201.

[7] Alan Turing, “The Chemical Basis of Morphogenesis,” Philosophical
Transactions of the Royal Society B 237, p. 37.

[8] Philip Ball, The Self-Made Tapestry: Pattern Formation in Nature, (Oxford
University Press 1999).

[9] Hans Meinhardt, The Algorithmic Beauty of Shells (Springer-Verlag, 1995).

http://www.rudyrucker.com/capow

	1. Introduction
	Table 1. The longevity of a linear wave scheme using varying minimum sizes of real number.
	Figure 1. A one-dimensional wave schema being run with a Wave constant of 0.694. The rule was seeded with a single triangular spike and was time-reversed twice. The figure shows an instantaneous snapshot of the cells’ intensity values at the bottom, while the upper part shows a spacetime diagram of the intensity patterns, with the earlier times at the top and the later times at the bottom. This simulation was “time-reversed” by exchanging the “past” and “future” cell buffers.[Reversible Wave B&W.tif]

	2. Continuous-Valued CAs and Differential Equations
	Table 2. Notation for cell neighborhood values.
	Table 3. Some CA approximations.

	3. Investigating Continuous-valued CAs
	Figure 2. (Color Plate 1) A picture of the CAPOW program showing nine CAs at once. The images shown correspond to the examples used in this paper. The rule in the upper-left corner is one-dimensional and all the others are two-dimensional. Row by row from left to right the rules are a one-dimensional wave, the Zhabo Worm rule, the Turing Leopard rule, the Turing Stripe rule, a linear wave, a quadratic wave, a cubic wave, a homeostatic cubic wave, and the Cloud rule. [CAPOW.tif]
	Table 4. The complexity types of two-dimensional CAs.

	4. Reaction-Diffusion Systems
	Table 5: The variables and parameters for the activator-inhibitor-diffusion rule.
	Figure 3: Zhabo Worms. This is an activator-inhibitor diffusion rule. It slowly self-organizes scrolls from a random start.[Zhabo Worms B&W.tif]
	Figure 4. (Color Plate 2.) A three-dimensional view of the two-dimensional Turing Leopard rule. The heights and colors both represent the activator value. Starting from a random start, this rule’s values drift down towards zero and then some stable peaks of activation develop and grow to a medium height. Convergence is rapid. [Turing Leopard 3D.tif]
	Figure 5. (Color Plate 3.) A three-dimensional view of the two-dimensional Turing Stripes rule. The heights and colors both represent the activator value, and the inhibitor values are closely similar. This pattern self-organized from a random start. It is fully stable, and has been run for over 100,000 updates. [Turing Stripes 3D.tif]
	Table 6. The parameters for the three activator-inhibitor-diffusion rules of Figures 2, 3, and 4.

	5. Wave Equations
	Figure 6. A two-dimensional wave schema being run with a Wave constant of 0.694 and a uMax of 3.0. The pattern started as a two-dimensional sine wave and was repeatedly perturbed with random conical “dings”. It will continue sloshing around like this indefinitely. [Wave B&W.tif]
	Figure 7. A view of four kinds of two-dimensional waves. From the left, the top row has a linear wave and a quadratic wave, and the bottom row has a cubic wave and a homeostatic cubic wave. Each rule was seeded with a four full cycles of a sine-wave pattern and was run for about 500 updates. In the linear wave this pattern simple oscillates forever, making “sushi” patterns that are displayed by showing the intensities by different shades of black and white. In the quadratic wave, the peaks become asymmetric, and in the cubic wave the peaks become more angular. The flaws on the cubic homeostasis wave are locations where the wave has become unstable and has intensity values that are being clamped to the maximum or minimum allowable value. All the rules are being run with a Wave constant of 0.694 and a uMax of 3.0. The Nonlinearity values of the quadratic and cubic, waves are, respectively 0.5, 3. The Nonlinearity in the homeostatic cubic wave varies from cell to cell, ranging from 0.001 to 1000. [Four Waves B&W.tif]
	Figure 8. A quadratic wave scheme with Wave of 0.25, Nonlinearity of 0.15, and uMax of 3.0. The pattern was seeded with all u values of 1.5 with a conical bump in one location. The cone tip produced an instability which propagated along a closed “fault line”. (Recall that this is a toroidal space.) The pattern is now stable and will remain like this indefinitely. Note that small structures are able to move along within the “wave-guide” pieces of the fault.[Quadratic Walls B&W.tif]
	Figure 9. (Color Plate 4.) Homeostatic Cubic Zhabo, based on the homeostatic cubic wave scheme. Notice the circular wave patterns as well as the diamond-shaped Zhabotinsky spiral. See Figure 8 for the parameters used in this rule. [Homeostatic Cubic Zhabo.tif]
	Table 7. The variables and parameters for the homeostatic cubic wave scheme, along with the values used for the Homeostatic Cubic Zhabo in Figure 8.

	6. Reaction Wave Systems.
	Figure 10: A cloud-like pattern formed by an activator inhibitor rule with wave terms in place of the customary diffusion terms. This rule converges quickly to this behavior from a random start. The rule is shown using only one band of color, that is, black in the minimum intensity and white is the maximum. [Reaction Wave Cloud B&W.tif]
	Table 8. The parameter values used for the Cloud rule.

	7. Suggestions for Further Work
	References:

