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Preface

AS A TEENAGER IN 1961, I imagined that I’d like to become a philosopher. I

recall agreeing with my best friend, Niles Schoening, that what we’d most like

to do would be to get college degrees in philosophy and spend the rest of our

lives as bums, talking about the meaning of life.

As it turned out, I ended up getting a Ph.D. in mathematical logic. And

instead of becoming a bum, I found work as a professor and as a writer of

popular science and science fiction. I did keep talking about the meaning

of life, though, to the point of publishing three somewhat philosophical

books about mathematics: The Fourth Dimension, Infinity and the Mind, and

Mind Tools.

In the mid-1980s I sensed something new in the air. Computers were ush-

ering in an era of experimental mathematics. Fractals, chaos, cellular

automata, artificial life! And when I interviewed Stephen Wolfram for a mag-

azine article, my fate was sealed. I moved to Silicon Valley, retooled, and

became a computer science professor at San Jose State University, also doing

some work as a programmer for the computer graphics company Autodesk.

Back when I was contemplating my big switch to computer science, my old

friend Gregory Gibson said something encouraging. “Imagine if William Blake

had worked in a textile mill. What might he have written then?”

Initially, I thought this might be a quick foray. Get in, figure out what’s

happening, get out, and write my book on computers and reality. But some-

where along the way I went native on the story. I all but forgot my mission.



I spent twenty years in the dark satanic mills of Silicon Valley. I’m covered

in a thick lint of bytes and computer code. And now I’m stepping into the light

to tell you what I learned among the machines.

I’m grateful to the Royal Flemish Academy of Belgium for Science and the

Arts for having funded a stay in Brussels in the fall of 2002. I taught a course

on the philosophy of computer science at the University of Leuven, writing

some material for this book in the process. I gave my classroom handouts the

not-quite-serious title, “Early Geek Philosophy,” telling the students that my

precursors might come to be known as the pre-Rucratic geek philosophers!

Many thanks also to the people with whom I’ve had conversations and/or

e-mail exchanges about the book’s topics. These include: Scott Aaronson,

Ralph Abraham, Mark van Atten, Michael Beeson, Charles Bennett, Kovas

Boguta, Jason Cawley, Leon Horsten, Loren Means, Jon Pearce, Chris Pollett,

Richard Shore, Brian Silverman, John Walker, Ken Wharton, and Stephen

Wolfram. Some of these friends even did me the favor of reading an early draft

and suggesting corrections. Errors that remain are my own responsibility.

Thanks also to my computer science students at San Jose State Univer-

sity; my programs that illustrate this book were developed with them in mind,

and sometimes they even helped me write them.

And special thanks to my wife, Sylvia, for all the wonderful things outside

the ambit of the buzzing machines.

Rudy Rucker

Los Gatos, California

March 22, 2005
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THOUGHT EXPERIMENT ONE: LUCKY NUMBER

The first Sunday in October, Doug

Cardano drove in for an extra day’s

work at Giga Games. Crunch time.

The nimrods in marketing had com-

mitted to shipping a virtual reality

golf game in time for the holiday

season. NuGolf. It was supposed to

have five eighteen-hole courses, all

of them new, all of them landscaped

by Doug.

He exited Route 101 and crossed

the low overpass over the train

tracks, heading toward the gleaming

Giga Games complex beside the San

Francisco Bay. A long freight train

was passing. Growing up, Doug had

always liked trains; in fact, he’d

dreamed of being a hobo. Or an

artist for a game company. He hadn’t

known about crunch time.

Just to postpone the start of his

long, beige workday, he pulled over

and got out to watch the cars clank

past: boxcars, tankers, reefers, flat-

cars. Many of them bore graffiti.

Doug lit a cigarette, his first of the

day, always the best one, and

spotted a row of twelve spray-

painted numbers on a dusty red

boxcar, the digits arranged in pairs.

11 35 17 03 25 14

SuperLotto, thought Doug, and

wrote them on his cardboard box of

cigarettes. Five numbers between

one and forty-seven, and one number

between one and twenty-seven.

Next stop was the minimarket

down the road. Even though Doug

knew the odds were bogus, he’d

been buying a lot of SuperLotto

tickets lately. The grand prize was

hella big. If he won, he’d never have

to crunch again.

The rest of the team trickled into

the office about the same time as

Doug. A new bug had broken one of

the overnight builds, and Van the

lead coder had to fix that. Meanwhile

Doug got down to the trees and

bushes for course number four.

Since the player could mouse all

around the NuGolf world and even

Just for fun, I’ve written a short-short story to introduce each chapter of The

Lifebox, the Seashell, and the Soul. You might think of these as thought exper-

iments, or as exploratory expeditions into the further reaches of my book’s

themes.



wander into the rough, Doug couldn’t

use background bitmaps. He had to

create three-dimensional models of

the plants. NuGolf was meant to be

wacky and fantastic, so he had a lot

of leeway: on the first course he’d

used cartoony saguaro cactuses, he’d

set the second links underwater with

sea fans and kelp, the third had been

on “Venus” with man-eating plants,

and for the fourth, which he was

starting today—well, he wasn’t sure

what to do.

He had a vague plan of trying to get

some inspirations from BlobScape, a

three-dimensional cellular automata

package he’d found on the Web. Cel-

lular automata grew organic-looking

objects on the fly. Depending what

number you seeded BlobScape with,

it could grow almost anything. The

guy who’d written BlobScape claimed

that theoretically the computation

could simulate the whole universe, if

only you gave it the right seed.

When Doug started up BlobScape

today, it was in a lava lamp mode,

with big wobbly droplets drifting

around. A click of the Randomize

button turned the blobs into mush-

room caps, pulsing through the sim-

ulation space like jellyfish. Another

click produced interlocking pyra-

mids a bit like trees, but not pretty

enough to use.

Doug pressed the Rule button so

he could enter some code numbers

of his own. He’d done this a few

times before; every now and then his

numbers would make something

really cool. It reminded him of the

Magic Rocks kit he’d had as boy,

where the right kind of gray pebble

in a glass of liquid could grow green

and purple stalagmites. Maybe today

was his lucky day. Come to think of

it, his SuperLotto ticket happened to

be lying on his desk, so, what the

hey, he entered 113517032514.

Bingo. The block of simulated

space misted over, churned, and

congealed into—a primeval jungle

inhabited by dinosaurs. And it kept

going from there. Apemen moved

from the trees into caves. Egyptians

built the Sphinx and the pyramids.

A mob crucified Christ. Galileo

dropped two balls off the Leaning

Tower of Pisa. Soldiers massacred

the Indians of the Great Plains. Flap-

pers and bootleggers danced the jit-

terbug. Hippies handed out daisies.

Computers multiplied like bacilli.

Doug had keyed in the Holy Grail,

the one true rule, the code number for

the universe. Sitting there grinning, it

occurred to him that if you wrote

those twelve lucky digits in reverse

order they’d work as a phone number

plus extension. (415) 230-7135 x11.



The number seemed exceedingly

familiar, but without stopping to

think he went ahead and dialed it.

His own voice answered.

“Game over.”

The phone in Doug’s hand turned

into pixels. He and the phone and

the universe dissolved.





C H A P T E R O N E

Computation Everywhere

1.1: Universal Automatism

The Lifebox, the Seashell, and the Soul is about computation—taken in the

broadest possible sense. You can usefully regard all sorts of things as com-

putations: plants and animals, political movements, the weather, your per-

sonal shifts of mood. Computations are everywhere, once you begin to look

at things in a certain way. At the very least, computation is a metaphor with

an exceedingly wide range of applicability.

You may feel a twinge of déjà vu. After all, it hasn’t been so long since guys

like me were telling you everything is information, and aren’t information and

computation pretty much the same? No—information is static, but compu-

tation is dynamic. Computations transform information.

An example. Even if we could find a complete and correct explanation of

our world’s physics, this would only be a static piece of information—perhaps

an initial condition and a set of rules. The interesting things happen as the

consequences of the laws unfold. The unfolding process is a computation

carried out by the world itself.

My iconoclastic and headstrong friend Stephen Wolfram goes so far as to

say that the world is nothing more than a computation. In Wolfram’s words,

“It is possible to view every process that occurs in nature or elsewhere as a

computation.” I call this view universal automatism.1

I’m not sure if I subscribe to universal automatism or not. One reason I’m

writing this book is to see where universal automatism leads.

Does my willingness to entertain universal automatism mean that I’m a

humorless nerd who wants everything to fit into the beige box of a personal



computer (PC)? No way. I know a lot about PCs, yes, but familiarity breeds

contempt. Although I’ve gotten very skilled at crafting C++ and Java code for

the classes I’ve taught, I don’t think I’d much mind if I never had to write a

computer program again. Writing books is a lot more fun—programming is

simply too brittle a medium. If I leave out, say, a semicolon, a program might

not run at all. Literature isn’t like that.

And, just like most people, I have a deep-seated conviction that I myself am

something richer than any mere calculation. I love to get away from my flick-

ering monitor screen and be out in nature—roaming the woods, bicycling

down the flowery California streets, walking on a beach, or just sitting in my

backyard watching the wind move the leaves on the trees. Crows, ants, dogs,

protozoa, other people—life is what matters, not some crappy buzzing boxes

that are broken half the time.

No, no, I’m not on the side of machines.

But then why am I writing this long book about computation? I guess I’ve

put in so much time with personal computers that I’d like to take this one

last shot at figuring out what I’ve learned from them. To trace out their mean-

ings once and for all.

My original training was in mathematics—thirty years ago I got a Ph.D. in

set theory and mathematical logic. In the 1970s I even got to meet Kurt Gödel

a few times. The king of the logicians. Gödel once told me, “The a priori is very

powerful.” By this he meant that pure logic can take you farther than you

might believe possible.

As well as logic, I’ve got a lot of experimental input to work with. Wolfram,

whom I first met in the 1980s, has done a king-hell job of combing through vast

seas of possible computations, getting a handle on the kinds of phenomena

that can occur. With Wolfram’s discoveries, and with my own experiences as

a logician, a programmer, and a computer science professor—well, I’m hoping

I can make a little progress here.

But let me repeat: I’m not a big fan of machines.

Being a good Californian, I practice yoga nearly every day. It counteracts

the strain on my aging frame from the huge amount of keyboarding and

mouse-clicking that I do. It’s interesting how good it feels to stop worrying

about my daily plans and focus on nothing more than my breath and my

muscles. Can computation theory tell me anything about yoga?

Years ago—this would have been the glorious summer of 1969—I had a

The Lifebox, the Seashell, and the Soul
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vision of God. The White Light, the Supreme Being, all around me, talking to

me. “I’m always here, Rudy,” said God. “I love you.” These days I don’t see

God. But when I remember to try, I can still feel something like a divine pres-

ence. I don’t think God’s a computation. But exactly why not?

I’m a novelist, too, mostly science fiction, and I presume to think of my

work as literature. Compared to a work of literature, a computer program is

puny excrescence, a petty game played by the rules of blind machines, a

dreary slog through the mud. Literature glides on beautiful wings. But

maybe, looked in a certain light, literature is a human form of computation.

When I open my heart to universal automatism, I can see that it’s not as far-

fetched as it sounds. The key fact is that, far from being dry and dull, computa-

tions can generate physical, biological, and psychological phenomena of great

beauty. Maybe a weird explanation is better than no explanation at all. Might it

be that, by analyzing the notion of computation, I can finally understand what

it means to be conscious? I’m prepared to follow the argument wherever it goes.

If it turns out that universal automatism is right, and I really am a computa-

tion, then at least I’ll know a little more about what kind of computation.

In planning this intellectual journey, I’ve settled on a particular tactic and

an overall strategy. My tactic is Hegelian dialectic, and my strategy is what

we might call the stairway to heaven.

The dialectic tactic relates to the book’s title: The Lifebox, the Seashell, and

the Soul. The title represents a triad: the lifebox is the thesis, the soul is the

antithesis, and the seashell is the synthesis. In the style of my great-great-

great-grandfather Georg Wilhelm Hegel, my tactic will be to use my selected

triad over and over.

computation everywhere
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Lifebox is a word I invented some years ago to describe a hypothetical tech-

nological gizmo for preserving a human personality. In my science-fiction

tales, a lifebox is a small interactive device to which you tell your life story. It

prompts you with questions and organizes the information you give it. As well

as words, you can feed in digital images, videos, sound recordings, and the

like. It’s a bit like an intelligent blog.

Once you get enough information into your lifebox, it becomes something

like a simulation of you. Your audience can interact with the stories in the

lifebox, interrupting and asking questions. The lifebox begins by automating

the retiree’s common dream of creating a memoir and ends by creating a sim-

ulation of its owner.

Why would you want to make a lifebox? Immortality, ubiquity, omnipo-

tence. You might leave a lifebox behind so your grandchildren and great-

grandchildren can know what you were like. You might use your lifebox as a

way to introduce yourself to large numbers of people. You might let your

lifebox take over some of your less interesting duties, such as answering rou-

tine phone calls and e-mail.

A lifebox is a person reduced to a digital database with simple access

software. So in my book title, I’m using Lifebox as shorthand for the uni-

versal automatist thesis that everything, even human consciousness, is a

computation.

The antithesis is the fact that nobody is really going to think that a wised-

up cell phone is alive. We all feel we have something that’s not captured by

any mechanical model—it’s what we commonly call the soul.

My synthesis is a Wolfram-inspired scheme for breathing life into a lifebox.

The living mind has a churning quality, like the eddies in the wake of a rock

in a stream—or like the turbulent patterns found in a certain kind of compu-

tation called a cellular automaton (CA). These unpredictable yet deterministic

computations are found in nature, perhaps most famously on a kind of seashell

called the cone shell (see figure 2). It’s at least possible that the mind’s end-

less variety is in fact generated by a gnarly computation of this type. If so, the

image of the seashell serves to bridge the chasm between lifebox and soul.

So that’s my basic triad, and my dialectic tactic will involve repeatedly going

through the following three steps: (a) Thetic step: model some real-world

phenomenon as a computation. (b) Antithetic step: remark that the actual

The Lifebox, the Seashell, and the Soul
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world seems juicier and more interesting than a computation. (c) Synthetic

step: observe that, given enough time and memory, our proposed computation

is in fact capable of generating exceedingly rich and lifelike structures.

When I speak of using a stairway-to-heaven pattern as my overarching

strategy for organizing The Lifebox, the Seashell, and the Soul, I mean that

each chapter treats a yet higher-level way of viewing the world, as suggested

in figure 3.

Figure 2: Six Cone Shells

Reading left to right, top to bottom, we have a Conus omaria, Conus auratinus, Conus
ammiralis, Conus auricomus, Conus retifer, and a Conus textile. Note that these
marine snails have protruding tentacles that are, variously, siphons, mouths, eyes, and
proboscises. These so-called tented cones feed upon other mollusks, injecting para-
lyzing conotoxins into their prey by means of tiny harpoons shot from a tentacle. Shell-
collectors have been killed by cone shell stings. Note that the textile cone is in the
process of attacking a less-gnarly fellow mollusk. These photos were taken at night by
Scott and Jeanette Johnson off the Kwajalein atoll in the Micronesian archipelago.



The stairway to heaven is a traditional style of organizing knowledge. In the

Middle Ages it was called ordo sciendi, or “the order of knowing.” A medieval

thinker would of course write “Logic” in place of “Computer Science,” and

even now someone might say that logic or mathematics would be a more nat-

ural starting point than computer science. But in The Lifebox, the Seashell,

and the Soul I’m arguing that we do best to think of computation itself as fun-

damental. Under this view, logic and mathematics are invented after the fact

to explain the observed patterns of the world. Logic and mathematics become

high-level intellectual endeavors that I treat in the context of the sixth

chapter, which concerns philosophy.

Looking ahead, my six chapters will be as follows.

• CHAPTER ONE: Computation Everywhere. An introduction to the

universal automatist view that everything is a computation,

exploring the familiar computations done by our machines,

and presenting some examples of computational gnarliness.

• CHAPTER TWO: Our Rich World. Descriptions of how to view clas-

sical, chaotic, and quantum physics in terms of computations.

The Lifebox, the Seashell, and the Soul
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• CHAPTER THREE: Life’s Lovely Gnarl. An analysis of life in terms

of five kinds of computation: reproduction, morphogenesis,

homeostasis, ecology, and evolution, including a discussion of

human efforts to create artificial forms of life.

• CHAPTER FOUR: Enjoying Your Mind. A detailed presentation of

the universal automatist view that we can view the mind as a

gnarly computation, showing how this need not contradict

one’s feeling of being a conscious entity with a soul.

• CHAPTER FIVE: The Human Hive. An exploration of the patterns

and dynamics of human society from the low to high levels,

including discussions of language and culture.

• CHAPTER SIX: Reality Upgrade. A philosophical analysis of the

possible positions regarding computation and reality,

including a description of the classes of computation that are

known to exist, and delving further into the philosophical con-

sequences of universal automatism. Concludes with remarks

about ultimate reality, the meaning of life, and how to be

happy.

And now let’s get going on the stairway to heaven’s first step.

What do I mean by a computation? Here’s a definition that’s very minimal—

and thus quite generally applicable.

• Definition. A computation is a process that obeys finitely describ-

able rules.

That’s it? Well, if I want to say that all sorts of processes are like computations,

it’s to be expected that my definition of computation must be fairly simple.

The notion of obeying finitely describable rules really includes two ideas: a

computation is utterly deterministic, that is, nonrandom, and the rules act as

a kind of recipe for generating future states of the computation.

Regarding determinism, although computer scientists do sometimes theo-

rize about “probabilistic computations” that are allowed to make utterly

random decisions, these aren’t really computations in any normal sense of

computation everywhere
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the word. Our understanding here will be that we’re speaking only of com-

putations whose future states are fully determined by their inputs and by

their finitely describable rules.

Now I’ll talk about the kind of recipe that underlies a finitely describable rule.

You might say that any process at all obeys the recipe of “act like yourself.”

Does that make for a finitely describable rule? No. The “yourself” in this so-

called rule implicitly drags in a full and possibly endless set of information

about how “you” will behave in every kind of situation.

Although it may indeed be that every possible process is a kind of compu-

tation, I don’t want to make it too easy to attain this sought-after conclusion.

I want “obeying finitely describable rules” to be a real constraint.

A finitely describable collection of rules should be something like a set of

behavioral laws, or a program for an electronic digital computer, or a specific

scientific theory with its accompanying rules of deduction. What’s really

intended is that the rules specify what, in any given state, the computational

system will do next.

As an aside, I have to warn you that describable is a slippery notion. Logi-

cians have established that describable can’t in fact have a formally precise

meaning—otherwise a phrase like the following would be a valid description of

a number: “Let the Berry number be the smallest integer that can’t be described

in less than eighteen words.” Now, if that seventeen-word phrase were indeed

a legitimate description of a specific Berry number, we’d have the paradox of

a seventeen-word phrase describing a number that can’t be described in

less than eighteen words. So it must be that the phrase really isn’t a legiti-

mate description, and the reason must be that describable isn’t a formally

precise word. Therefore, my definition of a computation is imprecise as well.

(I wrote at length about this issue in Infinity and the Mind.)

So if the notion of a computation is fundamentally imprecise, must we

abandon our investigations and sit grumbling in the darkness? No. In this

book, I want to think more like a physicist than like a mathematician—more

like an experimental scientist and less like a logician. Loosely speaking, we

do know what it means to have a finite description of a rule for a process. Yes,

certain borderline cases will throw us into a philosophical quandaries, but we

can cover a lot of ground with our (inherently unformalizable) definition of a

computation as a process that obeys finitely describable rules.
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We can regard a computation as transforming inputs into outputs. Where

do the inputs and ouputs live? The inputs and outputs are states of the

underlying system that supports the computational process.

Which states are inputs and which are outputs? This is really just a matter

of temporal order. If one or more states occurs before a second state, then we

speak of the earlier states as inputs that produce the later state. I don’t lay

much stress on the notion of computations ever coming to a halt, which

means that we usually think of an input as producing an endless stream of

successive outputs. I’ll also allow for additional interactive inputs that occur

while a computing process is under way.2

I want to say a bit about the underlying system that supports a computa-

tion. Although it’s natural to refer to any such computational system as a

computer, I need to caution that by “computer” I don’t necessarily mean one

of our chip-in-a-box machines. Obviously these balky devices are a point of

inspiration. But for a universal automatist, essentially any system or object

is a computer, and any process or action is a computation. To avoid confu-

sion, I’ll try to always refer to our day-to-day computing machines as per-

sonal computers, electronic computers, desktop computers, or simply PCs.

By thinking about PCs we become aware of a number of distinctions. For

instance, when speaking of electronic computers, people distinguish between

computation everywhere
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hardware and software. The hardware is the physical contents of the buzzing

box that you buy, while the software is the stuff that you get on disks or

download from the Web. A finer distinction is possible. The buzzing box

comes equipped with its own low-level software—which usually includes, for

instance, an operating system like Linux, Windows, or the Mac OS. We can

distinguish between this low-level software and the specialized high-level soft-

ware that we might want to run—think of, for instance, a word-processing or

image-manipulation application. And even higher-level than that are the

inputs we feed to our high-level software—think of documents or photo files.

Of course, all of these boundaries are somewhat fuzzy, and the levels are

prone to splitting into sublevels. And when we take into account a system’s

surroundings, new levels appear as shown in figure 5. Suffice it to say that

most systems have quite a few levels of rules.

I’ll be comparing real-world things to computations for the rest of the

book. As a quick example, in a human being, the hardware is like your

body and brain, the low-level software is the built-in wiring of your brain

and perhaps the effects of your various early experiences, the high-level

software is like the skills that you learn, the inputs are your daily experi-

ences, and the outputs are the things that you say and do. Changing the

high-level software takes a cer-

tain amount of effort, and

changing the low-level software

is very hard, requiring some-

thing on the order of a conver-

sion experience or long-term

therapy. There are layers upon

layers, and some quirks can be

so deeply ingrained that you

have to dig down quite far to

tweak them.

Table 1 presents some similar

analogies, with a column for

seven different kinds of compu-

tation, with each column sug-

gesting the hardware, low-level

The Lifebox, the Seashell, and the Soul
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software, high-level software, inputs, outputs, and possible target detectors

for that particular style of computation. (I’ll be explaining what I mean by

target detectors after the next paragraph. But first a word about tables.)

For me, tables are a tool for thinking. I figure out some column headers

and row topics, and then, wham, I’ve got all these nice cells to fill. Let me

warn you that you need to take my tables with a grain of salt. They’re Pro-

crustean beds. In Greek myth, Procrustes was a bandit masquerading as an

inn-keeper. He said he had a wonderful bed that would fit you perfectly, no

matter what your size. The catch was, if you were too short for the bed, Pro-

crustes would stretch you on the rack, and if you were too tall, he’d lop off

your head or your feet. Filling the cells of a table requires Procrustean fine-

tuning—although if it gets out of hand, I usually rethink the row and column

categories.

Now I’ll tell you about target detectors. This has to do with the issue of

when, if ever, I’m going to think of a given computation as being done.

People often suppose that a computation has to “find an answer” and then

stop. But our general notion of computation allows for computations that run

indefinitely. If you think of your life as a kind of computation, it’s quite abun-

dantly clear that there’s not going to be a final answer and there won’t be

anything particularly wonderful about having the computation halt! In other

words, we often prefer a computation to yield an ongoing sequence of outputs

rather than to attain one final output and turn itself off.

In order to further clarify this point, I’m going to begin speaking a bit sym-

bolically about computations. Throughout the book, I’ll normally use the

letter P to stand for a computation—think of P standing for program. If P is a

computation and In is a state, I write P(In) to stand for the indefinitely pro-

longed computational process that results from starting P on In. If Out is

another state and t is some specific interval of time, I can write P(In, t) = Out

to mean that the computation P(In) produces state Out after a time interval t.3

Even though I’ll usually be talking about never-ending computations, in

practical uses of computation, there are often situations where we are inter-

ested in cases where a computation of the form P(In) reaches some targeted

state Out and we can then readily perceive that P(In) is done. One definition

of a computation being done (or, as is often said, halted) is simply to require

that the computation doesn’t change any further after some point in time.
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That is, the computational process P(In) might reach the state Out and then

stay fixed in that state. In this situation we would say that P(In) returns Out.

The “freezing up” definition of halting is appropriate for certain simple

models of computation, such as the abstract devices known as Turing

machines. But for more general kinds of computations, freezing up is too

narrow a notion of a computation’s being done.

For instance, if you want to find out how to get to some street address, you

can go on the Web, locate a map site, type in your target address, press Enter,

and wait for a few fractions of a second until a little map appears on your

screen. The system consisting of your PC plus your Web browser plus the

Web itself has carried out a computation and now it’s done.

But it wouldn’t be at all correct to say that the PC+browser+Web com-

puting system is now frozen in the same state because, for one thing, your

Web browser is continually polling your mouse and keyboard to look for new

input. And your PC is running all kinds of background processes that never

stop. And the other machines that make up the Web certainly haven’t

stopped just because you found what you were looking for.

When we want to talk about a generalized computational system P

reaching a target state, we need to have an associated target detector com-

putation IsPDone, which has two special states that we might as well call

True and False. We require that for any output state Out of the system,

IsPDone(Out) returns either True or False according to whether Out is to be

viewed as a target state. IsPDone is supposed to be a very simple computa-

tion that very quickly enters the final state True or False and remains there.

If we don’t explicitly specify the IsPDone test, we’ll assume that the com-

putation is in a target state if any further updates would leave it in the same

state—this is what I meant above by a computation that freezes up. But in

the case where P is a personal computer or even some naturally occurring

system like a pond or a human society, we’ll want to use a subtler kind of

target detector. How we choose to define a computation’s target detector can

in fact vary with the kind of inputs we plan to feed to the computation—one

can imagine situations where we might say that a pond is in target state

when its ripples settle down below some specified level, and a society is in a

target state once all the votes in an election have been counted and a new

leader has been installed.
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So now I’ve said a bit about computations and the universal automatist

notion that they’re everywhere, which finishes off my section 1.1: Universal

Automatism. This chapter’s remaining sections are as follows.

• 1.2: A New Kind of Science. In his recent book of this title,

Stephen Wolfram divides computations into four classes:

those that die out, those that repeat, the messy random-

looking ones, and the gnarly ones. For a universal automatist,

this suggests new ways to view the whole world.

• 1.3: Reckoning a Sum. Thinking about how we add numbers

with pencil and paper gives a bit of insight into what it means

for computations to run at different speeds—an important

notion for formulating what it means for a computation to be

unpredictable.

• 1.4: Analytical Engines. I’ll give a  brief history of how we arrived

at the design whereby our electronic computers use programs

that are loaded into memory like data. Thanks to this so-called

stored program architecture, our PCs are universal in the sense

of being able to emulate any other computation.

• 1.5: The Tiniest Brains. Among the simplest possible com-

puters are the idealized devices known as Turing machines.

They’re the favorite lab rat of computer philosophers, and they

teach us more about universality.

• 1.6: Inside the Beige Box. A short-as-possible explanation of

how our desktop machines work.

• 1.7: Plugged In. The Internet is a distributed networked com-

putation quite unlike the computations inside a PC.

• 1.8: Flickercladding. The parallel computations known as cel-

lular automata make beautiful patterns, are good models for

physics, and have served as a main source of inspiration for

universal automatists.

1.2: A New Kind of Science

By way of giving the notion of computation a little more texture, I’ll mention

The Lifebox, the Seashell, and the Soul
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two slightly counterintuitive facts. And then I’ll describe Stephen Wolfram’s

four classes of computation.

The first counterintuitive fact is that just because an output is computable

doesn’t mean it’s easy to arrive at. Computer scientists use the word feasible

in this connection.

• Informal Definition. A particular computational process is feasible if it

produces the desired result in a humanly reasonable amount of time.

A computation that you can do by hand in a few minutes is feasible, some-

thing that would take you ten years isn’t feasible. In other words, a compu-

tation is unfeasible if carrying it out would take an unreasonable amount of

resources and/or an unreasonable amount of time.

• Counterintuitive fact. Although a computation may be theoretically

possible to carry out, it can be practically unfeasible to do so.

This is rather obvious, but it’s worth remembering. Sometimes we get carried

away by a proof that one system can in principle simulate some other system,

and we lose sight of the fact that the simulation is in fact so slow and cumber-

some that it’s quite unfeasible. Most artificial intelligence (AI) programs fall into

this category vis-à-vis the human mind—yes, they can simulate some small

parts of human reasoning, but the simulations are so slow that applying them

to realistically large inputs is unfeasible. (Actually, the situation is worse than

that; not only are our existing AI programs unfeasible for large problems, we

probably haven’t found the right kinds of AI programs at all.)

The feasibility of a computation depends both on the computational

system you plan to use and on the computational method you plan to

employ. This relates to the distinction between hardware and software. If you

have very slow and clunky hardware, almost no computations are feasible.

But no matter what your hardware is, improved software (such as clever cal-

culating tricks) may expand your arena of feasibility.

Suppose we agree with the universal automatists that most physical

processes are computations. By and large these physical computations are

unfeasible for our personal computers. Not only is it unfeasible to digitally
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emulate the global weather; even simulating the turbulent flow of tap water

is beyond our existing electronic machines. But—and this is my point—the

processes may well be computations anyway.

For people, the most admired and intimately familiar computations of all

are the creative and meaningful processes of human thought. For reasons I’ll

explain in CHAPTER FOUR: Enjoying Your Mind, I would not expect to see human

creativity becoming a feasible electronic computation anytime in the next

hundred years. But, again, this doesn’t rule out the option of viewing the

human brain as a type of computer just as it is. The brain is a system obeying

a finite set of rules. Human thought is certainly a feasible computation for the

human brain, it’s just not currently feasible for electronic computers.

The second counterintuitive fact I want to mention is that computations

can yield genuine surprise. One might suppose that a deterministic rule-

based process must flow along in quite a routine fashion. Yes, but this

doesn’t mean that the long-term behavior of the computation is predictable.

• Informal Definition. P is predictable if there is a shortcut computa-

tion Q that computes the same results as P, but very much faster.

Otherwise P is said to be unpredictable.

A more precise definition of what I mean by unpredictable can be found in

the Technical Appendix at the end of the book. But the basic idea is that if P

is unpredictable, there is no dramatically faster way to get P’s output other

than to carry out the computation of P.

As a really simple example of a predictable computation, suppose you want

to decide if an input number is even or odd. A slow way to compute this

would be to painfully carry out a long division of two into the number,

working out the whole quotient on the way to finding out if the remainder

happens to be zero or one. A fast, shortcut way to compute the same infor-

mation is just to look at the last digit of your input number, and say that the

number is even if the last digit is zero, two, four, six, or eight. The slow long-

division computation of evenness is predictable in our sense because the

much faster last-digit computation produces the same results.

In practice, anyone who writes computer programs for a living is going to try

to make the code as efficient as possible. This means that, in practice, most of
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the PC programs we work with will in fact be unpredictable, in that there’s no

way to drastically speed them up. As it happens, unpredictability is relatively

common across the whole spectrum of possible kinds of computation.

• Counterintuitive fact. Many simply defined computations are

unpredictable.

If I call this counterintuitive, it’s because, before you analyze the notion,

you’d expect that computations would be predictable, at least in the collo-

quial sense of being dull and unsurprising. Indeed, “Don’t act like a robot,”

means something like, “Don’t be so predictable.” Given the deterministic

nature of a rule-based computation, it’s true that, step-by-step, the com-

putation is predictable. Given A we always get B, given B we always get C,

and so on.

But—and this is the point that takes some getting used to—there’s often

no shortcut method for looking ahead to predict the end result of a compu-

tation. That is, if I want to know the end result of a billion-step computation,

it’s very often the case that there’s no faster method than carrying out the bil-

lion-step computation itself.

Consider an analogy. When Columbus sailed across the Atlantic, it was

predetermined that he’d find the West Indies (which, to his dying day, he

thought were part of Asia). But Columbus never could have predicted the

shapes of those islands (whatever he called them) without making the trip.

The unpredictability of computations becomes noticeable when we throw

substantial problems at our machines. A famous example involves pi, the

numerical value of the ratio that a mathematical circle has to its diameter.

This number, which begins 3.14159 . . . , is known to have a decimal expan-

sion that goes on and on without ever settling into a pattern. Nevertheless,

there are simply defined computational methods for finding the successive

digits of pi by means of multiplications, additions, and the like. One (not very

efficient) approach would be to sum together more and more terms of the

endless alternating series:

4 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 + 4/13 – . . .

computation everywhere

21



In the mid-1980s, my old-

time computer fanatic friend

William Gosper once held a

world record for computing

pi. He calculated it out past

the seventeen millionth

digit. I’ve copied here from

one of Gosper’s e-mails the

first hundred digits after the

seventeen millionth place:

6978965266 4312708718

8987022892 7339840950

1815706767 7105940124

6541910101 0611655655

1475202499 7781719847.

Conversations and e-mail

from Gosper have been

touchstone experiences for

me ever since moving to Silicon Valley. He’s like the last exemplar of some

extinct species of bird, a chatty apteryx in his aboriginal nest, surrounded by

antique plastic artifacts, such as an ellipsoidal electric pencil sharpener, a

stack of Symbolics computer monitors, and a mound of numbered Aerobie

disks. I should mention that he feels the best way to truly compute pi is to

express it as an enormous tower of nested fractions, which is what he actu-

ally did to net his particular catch of pi. It was only so as to be able to com-

pare his work with the work of others that he reduced his tower of pi to base

ten digits in a process that he calls, somewhat disdainfully, “decimalizing pi.”

In any case, before Gosper’s calculation was done, there was no way to

know that, say, the seventeen millionth digit would be six. The only way to

get Gosper’s digits was to let a heavy-duty electronic computer munge on the

problem for a long period of time. Yes, the value is predetermined by the laws

of mathematics, but it’s not really predictable.4

The notion of computer programs being unpredictable is surprising because

we tend to suppose that being deterministic means being boring. Note also

that since we don’t feel ourselves to be boring, we imagine that we must be
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nondeterministic and thus not at all like rule-based computational systems.

But maybe we’re wrong. Maybe we’re deterministic but unpredictable.

I mentioned that unfeasibility is a relative notion, depending on the system

you intend to use for running a given computation. Something’s unfeasible

on a given system if takes longer than you can reasonably wait. Unpre-

dictability, on the other hand, is a more absolute notion. A computation is

unpredictable if there is no other computation that does the same things a

lot faster.

It’s often enlightening to examine the possible interactions of newly defined

properties. How do feasibility and predictability relate to each other if we tem-

porarily limit our attention to computations on personal computers? As it

turns out, all four possible combinations are possible.

• Feasible and predictable. These are the very simplest kinds of

computation. I’m thinking here of a trivial computation like,

say, multiplying seven by one thousand. Without getting out

your pencil and paper, you know that 7 × 1,000 is 7,000. The

computation is predictable. You know how it will turn out

without having to carry out the details. But if you had to work

out the details, you could, as the computation is feasible as

well as being predictable.

• Feasible and unpredictable. These are the computations that

interest computer scientists the most. Here there’s a compu-

tation you can actually carry out, but there’s no quick way to

guess the result in advance. In a case like this, your com-

puting system is doing something worthwhile for you. The

computation is discovering a fact that you wouldn’t have been

able to guess.

• Unfeasible and predictable. Suppose that the computation

was some very trivial task like replacing every symbol of an

input string by zero. For any given input string, the output

string is predictable: it will be a row of zeros the same length

as the input string. But if the input string is going to be of

some insane length—imagine a galaxy-spanning message a

gazillion characters long—then there’s no feasible way to feed
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this thing into my desktop PC and expect an answer in any

reasonable length of time. So in that sense the computation is

unfeasible, even though the eventual output is predictable.

• Unfeasible and unpredictable. Rest assured that whatever is

going on inside your head is both unpredictable and, relative to

existing electronic computers, unfeasible. But you’re doing it

anyway. As Frank Zappa used to say, “Ain’t this boogie a mess?”

One of the main themes in The Lifebox, the Seashell, and the Soul will be

that computations come in certain basic flavors. This is the whole reason why

it might be worthwhile to think of things like flowers, thunderstorms, and

orgasms as computations. Yes, the details of these computations must elude

us, and any simulation of them would be unfeasible. Even so, there are cer-

tain properties such as unpredictability that can be usefully applied to real-

world phenomena.

We’re going to be saying a lot about a very useful classification of compu-

tations that was invented by Stephen Wolfram in the 1980s. Wolfram noticed

that there are four main behaviors for arbitrary computations that are left

running for a period of time.

• Class one. Enter a constant state.

• Class two. Generate a repetitive or nested pattern.

• Class three. Produce messy, random-looking crud.

• Class four. Produce gnarly, interacting, nonrepeating patterns.

It’s pretty easy to understand what class one and class two computations

look like, although it’s worth mentioning that a regularly branching pattern

would also fall under class two. The essence of being a class two computa-

tion is that the outputs don’t generate surprise.

My hacker friend Gosper refers to class three style patterns as “seething

dog barf.” These are messy, random-looking computations with no obvious

order or structure in their outputs.

Class four computations, on the other hand, generate images more like

never-repeating lace. Class four computations might be characterized as

having behavior that appears purposeful. I like to use the word gnarly for
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class four processes—gnarly in the sense of twisting tree roots, large ocean

waves, or weathered human faces.

When a rough distinction will do, we speak of class one and class two

computations as being simple and class three and class four computations

as complex. Figure 7 summarizes the terminology.

The borders between the computation classes aren’t very crisp. There are

times when the distinction between class three and class four isn’t obvious.

And it’s not always clear if a system is class two or class four—consider the

fact that some systems can appear interesting for a very long time and only

then settle down to being periodic. We don’t always know whether we can in

fact find a “good” input that will keep a certain computation running and pro-

ducing novelty forever, thus showing that it really is a class four rule.

Wolfram’s critics complain that his computation classes aren’t formally

defined and that, when we do attempt formal definitions, determining the

class of a computation can be an unsolvable problem (“unsolvable” in a

certain formal sense that I’ll describe in chapter 6). Wolfram might reply

that using rough-and-ready concepts is typical for a newly developing

branch of science. I agree with him. I think his critics miss the forest for

the trees. With an open mind you can indeed distinguish the four compu-

tation classes; you’ll begin to see this as our examples accumulate. Yes,

there will be some borderline cases, but that doesn’t mean the classes don’t

exist.
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Figure 7: The Spectrum of Complexity

A simple computation is in class one or class two. A complex computation is in class
three or class four. Despite the number order of the names, the gnarly class four in some
sense lies in between the periodic class two and the random-looking class three.



Wolfram’s initial investigations all had to do with feasible computations—

in that he was looking at actual programs he could run. But his classification

system applies equally well to the enormous computations carried out by

physics and biology. The limitations of our digital silicon machines are such

that we can’t feasibly emulate any really large parts of the real world. Even

so, it’s very useful to categorize the unfeasible-for-the-PC computations that

we see all around us.

Some natural phenomena die out or become static—these are the compu-

tations of class one. Other aspects of the world are periodic or class two—one

thinks immediately of the rising and setting of the sun or the ebb and flow of

the seasons. The class three aspects of the world are the seemingly random

ones—you might think of radio hiss or TV-screen snow. But the most inter-

esting computations in nature are all class four. As we’ll see, examples

include the forms of clouds and of trees, the flow of your thoughts, and the

spacing of cities upon a map.

Wolfram has made two conjectures about his computation classes. The

first is the Principle of Computational Equivalence (PCE for short).5

• Principle of Computational Equivalence (PCE). Almost all processes

that are not obviously simple can be viewed as computations of

equivalent sophistication.

What he means by this is that, in a sense that we’ll make precise later on,

all of the class three and class four computations are equally complex. Rather

than believing that some complex computations are simpler than others, Wol-

fram feels that nearly all of them are of an equal and maximal complexity.

The PCE is in some sense discouraging, as it seems to tell us that when

you can’t see a simple explanation for a natural phenomenon, this means

that the phenomenon is not only complex, but of a maximal complexity. Any-

thing that’s not obviously simple is in fact very gnarly.

A quick example. Consider the motion of the leaves on a tree. A physicist

might describe the system as a wind-driven multiple-pendulum system. But

the resulting computation is class four and certainly complex. If the PCE

holds, then the gnarly motions of the leaves are to be as sophisticated as

what’s going on inside my brain. I seem to be a fluttering leaf? Maybe so.
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Besides his PCE, or Principle of Computational Equivalence, Wolfram

advocates a second conjecture, which I call the PCU or Principle of Compu-

tational Unpredictability.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

Here again, complex means class three or class four. And, as I mentioned

before, when I say that a computation is unpredictable, this means there’s no

drastically faster shortcut computation that will reliably predict the given

computation’s outputs.

When we find some kind of natural process going on, we can often model

the process as a computation. And in certain rare cases, we can also model

the process by some simple and rather easily solvable equations. The PCU

says that the latter situation is exceedingly rare. Generally speaking, there is

no quick way to predict the results of a naturally arising computation.

Wolfram doesn’t feel a need to explicitly state the PCU, but it’s implicit in

A New Kind of Science. He prefers to use the words reducible and irreducible

for what I’m calling predictable and unpredictable—I insert some bracketed

phrases in the following quote to keep this clear.6

So what this [The Principle of Computational Equivalence] means

is that systems one uses to make predictions cannot be expected

to do computations that are more sophisticated than the compu-

tations that occur in all sorts of systems whose behavior we might

try to predict. And from this it follows that for many systems no

systematic prediction can be done, so that there is no general way

to shortcut their process of evolution, and as a result their

behavior must be considered computationally irreducible [or

unpredictable].

If the behavior of a system is obviously simple—and is say either

repetitive or nested—then it will always be computationally

reducible [or predictable]. But it follows from the Principle of Com-

putational Equivalence that in practically all other cases it will be

computationally irreducible [or unpredictable].
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And this, I believe, is the fundamental reason that traditional

theoretical science has never managed to get far in studying most

types of systems whose behavior is not ultimately quite simple.

As I’ll discuss in CHAPTER SIX: Reality Upgrade: the PCE and the PCU are in

fact independent of each other. While the latter is used to deduce the unpre-

dictability of naturally occurring processes, the former is used to deduce the

unsolvability of certain questions about these processes—where unsolvability

means that certain kinds of questions can’t be solved by any conceivable

kinds of computation at all.

I agree with Wolfram that both the PCE and the PCU are likely to be true

for all of the interesting examples of naturally occurring computations—

including physical systems, biological growth, the human mind, and the

workings of human society.

Before closing this section, I want to introduce one more concept. When a

computation generates an interesting and unexpected pattern or behavior,

this is called emergence. I’ll give three quick examples drawn from, respectively,
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the fields known as artificial life, fractals, and cellular automata. (Most of the

computer graphics figures in this book were made with programs I had a

hand in authoring; see the Image Credits section at the end of the book for

details.)

In artificial life, computers try to simulate the behaviors of living organisms.

A classic discovery in this field is the boids algorithm by Craig Reynolds.

Reynolds found that if a group of simulated birds, or boids, obeys a few simple

rules, the boids will seem to move about as a coherent flock. This is an

example of emergence in that the somewhat unexpected flocking behavior

emerges from the collective computations carried out by the individual boids

as suggested in figure 8. I’ll say more about the boids algorithm in CHAPTER FIVE:

The Human Hive.

A fractal is a structure that has interesting details at many different levels.

The most famous fractal is the Mandelbrot set (figure 9). Suppose that we

think of a computer screen as a region of the plane, with each pixel repre-

senting a pair of real numbers. Suppose further that for each pixel we use the

corresponding number pair as an input for an iterated computation that ter-

minates by specifying a color for the pixel. In the 1970s, Benoit Mandelbrot

investigated a wide class of such computations that produce wonderfully

intricate fractal patterns. Being a fractal, the Mandelbrot set has the prop-

erty that one can zoom in on it, discovering level after level of detail. This is

an example of emergence in that we have a cornucopia of forms arising from

iterated applications of a very simple rule.

I’m going to say a lot about cellular automata in this book; they’re a

fascinating type of computation popularized by Stephen Wolfram. For

now, think of a two-dimensional cellular automaton as a computation in

which each pixel on a computer screen simultaneously updates its color

according to the same rule. What gives the process its punch is that each

pixel is allowed to look at its neighbor pixels. As a simple example of a

such a cellular automaton rule, suppose that each pixel is black or white,

and that a pixel updates itself by polling its nearest neighbors as to

whether the majority of them are white (figure 10). It turns out that if you

use an algorithm of awarding close elections to the losing side, a random

sea of black-and-white pixels congeals into smoothly undulating globs,

not unlike the droplets in a lava lamp. The high-level globs emerge from
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the low-level interactions of the cells. We call this the Vichniac Vote rule

or just the Vote rule.7

The essence of the flocking, the Mandelbrot and the Vote computations is

that something interesting emerges from a simple rule and a generic starting

condition.

Emergence is different from unpredictability. One the one hand, we can

have unpredictable computations that don’t have any high-level emergent

patterns: the dull digits of pi would be an example of this. On the other hand,

we can have computations that generate emergent patterns that are, in the

long run, predictable.

If you let the Vote rule run long enough, one color or the other melts away,
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Figure 9: Mandelbrot Sets

Left to right and top to bottom, we have the traditional Mandelbrot set based on a formula
of the form z = z2 + c; a zoomed-in view of the upper topknot of this set with an additional
algorithm used to fill in the black region; a detail of a cubic Mandelbrot set based on a for-
mula of the form z = z3 + bz + c; and a detail of the so-called Rudy set, which is based on
the family of cubic Mandelbrot sets. To me the last three images resemble, respectively,
Ronald Wilson Reagan dressed as Bozo the Clown, a roaring dragon, and a friendly little
rocking-horse.



leaving a blank wasteland with perhaps a few tiny, rhythmic blinkers. The

Vote rule is ultimately a predictable class two computation.

How about flocking and the Mandelbrot set? In most situations, the

flocking behavior of a group of simulated birds will be class four and unpre-

dictable, with new flocking configurations emerging from time to time—one

such pattern I’ve observed is that sometimes a pair of birds will circle each

other in a pattern like a tightly coiled double helix. And if you were allowed

to endlessly zoom in on the emergent fractals of the Mandelbrot set, I think

you’d also find unpredictable class four behavior, at least in the regions near

the boundary of the set (although whether the Mandelbrot set is truly unpre-

dictable is, I believe, an open problem).

1.3: Reckoning a Sum

Human calculation is the original model for the notion of computation, so it’s

well worth analyzing how we use a pencil and paper to calculate something

like 275 + 484. Before reading ahead, you might carry out the sum yourself,

paying attention to what goes through your mind.

275

+ 484
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Figure 10: The Vichniac Vote Rule

Each pixel is treated as the center of a 3 × 3 grid of nine cells. The new color of a pixel
is white if the total number of white pixels in its neighborhood grid is four, six, seven,
eight, or nine, and the new color of the pixel is black if the total number of white pixels
is zero, one, two, three, or five. The three images show a random initial start with 320
× 200 pixels, the appearance of the system after thirty updates, and the appearance
after three hundred updates.



My own thoughts go something like this:

“This is an addition problem, so I’ll use the adding routine I learned in

grade school.

“I’ll start at the top of the right-most column and work down, reading num-

bers and keeping a running sum in my head.

“That first mark is a five and the next one down is a four. The five looks

like a fat man wearing a billed cap. Maybe he’s a train engineer.

“Five plus four is nine. How do I know that? Because I memorized the simple

sums fifty years ago in Kentucky. My God, where has the time gone? Our

teacher was Mrs. Graves, the choirmaster’s wife. There was that one boy, Lee

Tingley. He couldn’t learn the sums and he’d always sneak and count on his fin-

gers. I did that, too, sometimes, pretending just to be drumming my fingers on

the table—but Mrs. Graves had a sharp eye for finger-counting. She was strict.

Kind of a pioneer type. She and her husband lived in a log cabin with their four

kids. How does adding on your fingers work? Well, it depends on knowing the

order of the counting numbers—if you don’t know that you’re lost. Anyway,

let’s see, I’m in the middle of an addition, and five plus four is nine.

“There’s no more numbers in the column, so I write nine at the bottom and

shift my gaze to the top of the next column to the left.

“Seven plus eight is fifteen. Write five and remember to carry one. I’ve

always been a little uneasy about carrying, and borrowing is worse, especially

borrowing from zero. I never fully understood borrowing until graduate

school. Better not to think about it too much, just use the rules Mrs. Graves

drummed into me. I’m carrying a one.

“I’m looking at the top of the next column to the left. I see a two. The car-

ried one plus the two makes three. Remember that. The next number down

is four. My three plus the four makes seven. Write seven.

“There’s no more columns, so I’m done. 759 means seven hundred and

fifty-nine. That’s the answer.”

If you do a lot of arithmetic by hand—not that many of us do anymore—

then all of this is quite automatic. Indeed, arithmetic seems hard exactly

when you’re so rusty at it that you have to consciously think about what

you’re doing.

Rather than speaking of a person doing pencil and paper arithmetic as a

“computer” or “calculator,” let’s use the old-fashioned “reckoner.”
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The reckoner’s computation involves several levels of rules. Working our

way down from the highest level, we start with the implicit behavioral rule

that a reckoner looks at a piece of paper, decides on an algorithm, and then

carries out the calculation. Not just any person would know to do this.

Becoming a reckoner involves learning certain rules of behavior. These rules

make up the “operating system” for pencil-and-paper arithmetic.

A level below that is the specific algorithm the reckoner uses, for instance,

the standard procedure for adding numbers.

Deeper down are the memorized sum tables that the reckoner draws upon.

And even more basic is the reckoner’s ability to read and write numbers.

We might also wonder about the underlying biology that keeps the reck-

oner alive, about the physics that allows a pencil to make a mark on a piece

of paper, and about the background laws of logic that make all of this hang

together in an orderly fashion.

Usually we like to think somewhat abstractly and take most of these ele-

ments for granted. But there does seem to be a sense in which a sizable little

corner of the world gets dragged into something as simple as a child adding

two numbers on a blackboard.

What we’re seeing here is something I mentioned before: Real-world com-

putations have many levels of rules.

It’s instructive to view familiar things with a fresh sense of wonder. Con-

sider a boy adding 275 to 484 to get 759. Look at him through alien eyes. The

brown-eyed juvenile grasps a stick of diatomaceous matter with one of his

clusters of articulated tentacles—ah yes, he’s “holding chalk in his hand.” He

studies two groups of squiggles and scratches fresh squiggles below them.

What does this mean? He’s making a prediction about a certain possible

counting behavior. He and his race have a rote routine for producing a dis-

tinct name for each ordinal number. “One, two, three, . . . two hundred and

seventy-five, . . . four hundred and eighty-four, . . . seven hundred and fifty-

nine.” The boy’s calculation demonstrates that if he were to count to 275, and

then count 484 steps further, he would attain the number 759. His squiggle

manipulations have compressed the work of counting through 759 numbers

to less than a dozen elementary operations. Clever lad.

This brings out two key points about computations.

First of all, some computations are equivalent to each other in terms of what
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they compute. For instance, I can add two numbers either by using arithmetic

or by using an expanded version of “counting on my fingers.” I get the same

answer in either case, so the two computational methods are equivalent.

The second point is that equivalent computations can differ in how much

time they take to carry out. If two different algorithms are used on one and

the same system, it may be that one is always faster. Pencil-and-paper arith-

metic is faster than counting.

The speed improvement you get by using faster software is independent of

the gain you get by switching to a faster computer. Certainly a stage-performing

calculating prodigy will be able to add numbers faster than our boy at the

blackboard. But the prodigy, too, will add faster when using arithmetic than

when working with brute-force counting.

How much time does arithmetic save? Allow me a brief geek-out on this

topic. Using arithmetic instead of simple counting is an example of one com-

putation being what computer scientists call “exponentially faster” than

another. If a fast computation takes L steps and a slow computation takes on

the order of 10L steps, we say the fast one is exponentially faster than the

slow one.

The relevance of this for our two styles of doing arithmetic has to do with

the fact that, if an integer takes L digits to write, then the integer it repre-

sents has a size on the order of 10L. Using digits can be exponentially faster

than counting by ones.

As an example of a exponential speedup, suppose I wanted to reckon, let

us say, the sum 123,456,789 + 987,654,321. This would be a matter of

adding two nine-digit numbers.

123,456,789

+ 987,654,321

The pencil-and-paper reckoning of this involves summing nine columns.

Adding each column will have some fixed cost of maybe ten primitive steps:

three shifts of focus (from top digit, to bottom digit, to write slot, to top of the

next column), two reads, two sum lookups (including adding the carry), a

write operation, possibly carrying a digit to the next column, and a check to

see if you’re done.
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So using pencil-and-paper arithmetic to add a pair of nine-digit numbers

requires no more than nine times ten steps, in other words ninety steps.

That’s a lot faster than counting by 123,456,789 by ones from 987,654,321

to arrive at 1,111,111,110—which would take over a hundred million steps,

and isn’t really feasible.8

By the way, this example also illustrates the point that something that is

unfeasible for one style of computation may be feasible for a different kind of

computation, even on one and the same system. Another point is that this

particular addition problem has a very simple-looking answer, and that, with

a little insight, a reckoner could have anticipated that and sped up the com-

putation a bit more. But insight is an exceedingly difficult thing to automate.

By chaining together arithmetic problems a reckoner can carry out a very

broad range of computations. What do I mean by chaining problems

together? Consider a relatively complicated activity for which adults regularly

use arithmetic: filling out tax forms. A tax form often embodies a linked chain

of arithmetic problems.

Thus, you might be asked to write your income in row 35, write your

deductions in row 38, write row 36 minus row 38 in row 39, write row 6d

times 3,000 in row 40, write row 39 minus row 40 in row 41, and so on.

A list of instructions like this is a primitive example of what computer sci-

entists call a program. Flexible beings that we are, we’re able to handle a cal-

culation task that contains not only numerical data to manipulate, but also

instructions about the flow of the task.

It turns out that, given sufficiently elaborate instructions, we could carry out

chains of arithmetic problems to compute the same results as a supercomputer. 
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Given enough time and patience, a human reckoner could carry out, say, all

the ray-tracing and shading calculations needed to generate the frames of a

feature-length computer-animated cartoon.

But of course the reality is that no reckoner is given that much time and

patience. In order to make the best use of the computational worldview, we

need to keep an eye on the distinction between abstract theoretical possibility

and practical feasibility.

Now let’s see how our electronic number-crunching machines expand our

limits of feasibility. If nothing else, they allow us to be stupid faster.

1.4: Analytical Engines

If you use a standard file-exploring tool to poke around in the directories on

your home computer, you find that certain areas of your hard drive contain

data, such as images and documents, while other areas contain code for the

software programs your machine runs. The high-level software is stored in one

area (such as a Programs directory), the don’t-touch-me-or-else low-level soft-

ware in another (such as a Windows directory), and your documents are found

somewhere like in a My Documents directory. The key fact is that both the soft-

ware and the data are patterns of bits that are laid down in the memory. This

is the stored program architecture. I mentioned that a tax form is a kind of pro-

gram for a human reckoner. To say we are using a stored program architecture

just means that we place a copy of the program into our machine’s memory.

Why “architecture”? It’s not like we’re building the Parthenon here. Per-

haps computer scientists use such a solid-sounding word to make up for the

here-today-gone-tomorrow nature of their work. One of the less pleasant

aspects of teaching computer science is how rapidly things change. Imagine

if you were, say, a history professor, and, on showing up to begin your fall

classes, you learn that this year your classes will be taught in Urdu, that

instead of using markers on whiteboards you’ll be using spray paint on rolls

of butcher paper, and that your students will now be standing in the court-

yard looking in through windows instead of sitting in your classroom. That’s

life as a computer science professor. No wonder we like to dignify our fly-by-

night raree show with a moniker like “architecture.”

Credit for the stored program architecture often goes to the Hungarian

The Lifebox, the Seashell, and the Soul

36



émigré John von Neumann, who did much to promote the creation of the first

digital computers in the late 1940s. In fact, this way of laying out computers

is sometimes even called the von Neumann architecture. But von Neumann

had a number of important collaborators, the idea of a stored program was

already familiar to Alan Turing in the 1930s, and there are in fact foreshad-

owings of the stored program architecture as early as 1800, when people

began to have the idea of changing a machine’s behavior without having to

mechanically rebuild it.

The Jacquard loom, invented by the Frenchman Joseph-Marie Jacquard in

1801, is programmable by punch cards. By coding up a tapestry pattern as

a series of cards, a Jacquard loom is able to weave the same design over and

over, without the trouble of a person having to read the pattern and set the

threads on the loom.

In the mid-1800s a colorful Briton named Charles Babbage hit upon the idea

of using punch cards to control computations. Babbage actually owned a woven

silk portrait of Jacquard that was generated by a loom using 24,000 punch cards.

(see figure 12.)

Babbage began by designing—

but never quite completing (to

read Babbage’s memoirs is to want

to choke him very hard)—a gear-

based device known as a Differ-

ence Engine, which was to be used

for calculating and printing out

mathematical tables of logarithms

and trigonometric functions,

astronomical tables giving the

computed positions of celestial

bodies at various times, and life-

insurance tables giving the

expected earnings or annuities of

people of various ages. In each

case it was a matter of applying a

particular algebraic formula over

and over.
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There was a small but

real market for a Difference

Engine and eventually the

Swedish inventor Georg

Scheutz did actually com-

plete and market two

working Difference Engines

(figure13). Rather than

being envious, the big-

hearted Babbage encour-

aged Scheutz and helped

him sell his first machine

to an astronomical obser-

vatory in Albany, New York.

One reason that Bab-

bage never finished his own

Difference Engine was that he was distracted by dreams of an even more fab-

ulous piece of vaporware, a machine he called the Analytical Engine.

Babbage’s description of the Analytical Engine may well be the very first

outline for a calculating device where the program is separate from the action

of the machinery. The Analytical Engine was to have a “mill” (think “chip”) that

executed arithmetic operations, and was also to have a “store” that would pro-

vide a kind of scratch paper: short-term memory for temporary variables used

by the calculation. Babbage’s then-novel idea was that the actions of the mill

were to be controlled by a user-supplied program that was coded into punch

cards like the ones used by the Jacquard loom. If we think of the deck of

punch cards as being a kind of machine memory, Babbage’s design fore-

shadows the stored program architecture—but it’s not quite there yet.

One of the most lucid advocates of Babbage’s Analytical Engine was the

young Ada Byron, daughter of the famed poet. As Lady Ada memorably put it,

The distinctive characteristic of the Analytical Engine, and that

which has rendered it possible to endow mechanism with such

extensive faculties as bid fair to make this engine the executive right-

hand of abstract algebra, is the introduction into it of the principle
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which Jacquard devised for regulating, by means of punched

cards, the most complicated patterns in the fabrication of bro-

caded stuffs. . . . We may say most aptly, that the Analytical Engine

weaves algebraical patterns just as the Jacquard loom weaves

flowers and leaves.9

In reality, Babbage’s Analytical Engines were never built. But it’s inter-

esting to think about such engines—it brings home the idea that computers

don’t have to be boxes of wires and chips. Remember, a computation is any

system with a process that is governed by a finitely describable set of rules.

In 1991, my fellow cyberpunk science-fiction writers William Gibson and

Bruce Sterling published a fascinating alternate history novel, The Difference

Engine, which imagines what Victorian England might have been like if

Babbage had been successful. (Despite the title, the book is really about

Analytical Engines rather than Difference Engines.) Just as our present-day

computers are run by hackers (“hacker” in the sense of “fanatical and

resourceful programmer,” as opposed to “computer criminal”), the Analytical

Engines of Gibson and Sterling are tended by “clackers.” Here’s their descrip-

tion of a visit to the Central Statistics Bureau in their what-if London:

Behind the glass loomed a vast hall of towering Engines—so many

that at first Mallory thought the walls must surely be lined with mir-

rors, like a fancy ballroom. It was like some carnival deception, meant

to trick the eye—the giant identical Engines, clock-like constructions

of intricately interlocking brass, big as rail-cars set on end, each on

its foot-thick padded blocks. The whitewashed ceiling, thirty feet

overhead, was alive with spinning pulley-belts, the lesser gears

drawing power from tremendous spoked flywheels on socketed iron

columns. White-coated clackers, dwarfed by their machines, paced

the spotless aisles. Their hair was swaddled in wrinkled white berets,

their mouths and noses hidden behind squares of white gauze.10

In the world of The Difference Engine, one can feed in a punch card coded

with someone’s description, and the Central Statistics Bureau Engines will

spit out a “collection of stippleprinted Engine-portraits” of likely suspects.
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Babbage’s ideas bore fruit after a century. It was 1945 when von Neumann

began promoting the stored program architecture, after working with the

designers of a machine called ENIAC at the Moore School of Engineering of

the University of Pennsylvania. Although it wasn’t made of gears, the ENIAC

was really a Babbage-style Analytical Engine. The ENIAC is sometimes

regarded as the first general-purpose electronic computer, but it wasn’t quite

all the way there, in that its program wasn’t stored in electronic memory. The

ENIAC program was on a deck of punch cards; the machine needed to con-

sult them every time it needed a program instruction.

A parenthetical note. Although ENIAC was originally meant to compute

artillery trajectories, World War II was over before it started working. One of

the first big computations ENIAC carried out was in fact a Cold War calcula-

tion to test the feasibility of building a hydrogen bomb: a numerical solution

of a complicated differential equation having to do with nuclear fusion. It is

said that the calculation used an initial condition of one million punch cards,

with each punch card representing a single “mass point.” The cards were run

through ENIAC, a million new cards were generated, and the million new

cards served as input for a new cycle of computation. (My guess is that the

cards represented points arranged in a cubic grid a hundred units on a side,

and that their values were updated on the basis of their neighbors’ values.)

You might say that the very first electronic computer program was a simula-

tion of an H-bomb explosion. What a shame. Better they should have been

looking at fractals, or simulating a human heart!

Programming the ENIAC involved making a deck of punch cards, manually

arranging the wires on a plugboard, and setting a bunch of ten-position dials.

There had to be a better way. As Arthur Burks, Herman Goldstine, and John

von Neumann wrote in, “Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument,”

Conceptually we have discussed . . . two different forms of memory:

storage of numbers and storage of orders. If, however, the orders to

the machine are reduced to a numerical code and if the machine can

in some fashion distinguish a number from an order, the memory

organ can be used to store both numbers and orders.11
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The stored program architecture means that, in a certain sense, the high-

level software is a kind of data that’s processed by the low-level software that

controls the host machine’s basic functioning.

It’s thanks in part to the stored program architecture that each of today’s

computers is in some sense equivalent to any other. If you have a Macintosh,

you can get a Windows emulator that will allow your machine to read and exe-

cute Windows programs. If you’re nostalgic for the PDP-1 computer used by

the earliest computer hackers at MIT, you can search the Web and find a Java

program that, when loaded on your machine, will allow it to emulate a PDP-1.

I’ve always loved that word, emulate. As humans we often try to emulate our

heroes, that is, to learn a set of behaviors that make us be “just like” the hero. In

effect, we’re loading software into our brains. After watching a movie with a char-

acter I find particularly interesting, I’ll often spend a few minutes emulating this

character—seeing through the character’s eyes, moving as the character moves,

thinking as the character seemed to think. Books and other works of art have this

effect, too, but there’s something especially hypnotic about films.

Emulation generalizes the stored program concept. To be precise, we say

that a computation Big emulates another computation Small if you have a

special auxiliary input emulatesmall so that the states produced by Small(In)

are the same as the states produced by Big(emulatesmall, In). In this situa-

tion we speak of emulatesmall as an emulation code.

Before making this more precise, let’s recall how we’re thinking of

computations.

We view a computation P as a process that we set into motion by giving it

an input In. Thus P (In) is a process that changes as time t increases. To be

quite general, we’re allowing both for the possibility that t increases in abrupt

steps, as in a digital computer, and for the possibility that t is continuous, as

in a physical system like a fluttering leaf. We write P(In, t) = Out to mean that

after time t, the computation P(In) is in state Out. And we assume that we

have some method IsPDone(Out), called a target detector, that allows us to

decide if the computation is to be viewed as having halted when it reaches

the state Out. Let’s adopt the following additional terminology.

• P(In) produces Out means that for some t, P(In, t) = Out.

• P(In) returns Out means that for some t, P(In, t) = Out and 

IsPDone(Out) is True.
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And now we can define emulation.

• Definition of Emulation. Big emulates Small if there is an emulation

code emulatesmall such that for any states In and Out,

Small(In) returns Out if and only if

Big(emulatesmall, In) returns Out.

So Big emulates Small means that having access to Big and the emulation

code emulatesmall is as good as having access to Small.

The definition of emulation is rather technical, but the concept is a natural

one. Let me suggest some analogies.

• Think of Big as a PC and Small as a pocket calculator. Big

comes equipped with a calculator accessory that acts as an

emulatesmall to make it behave just like a calculator.

• Think of yourself as Big and me as Small. The book you hold

is meant to serve as an emulatesmall that allows you to emu-

late my thoughts.

• Think of Mr. Big as a man, Ms. Small as a woman, and emu-

latesmall as a dress. If Mr. Big wears a dress, can he repro-

duce all the behaviors of Ms. Small? No. Mr. Big will never

give birth to a baby. So he can’t presently be said to emulate

Ms. Small. But hold on. Maybe at some future time, men

may gain the ability to grow cloned offspring of their own.

And in this event, perhaps Mr. Big can be said to fully emu-

late Ms. Small.

• Think of Big as a tree branch rocking in the wind and Small

as a PC. I’m of the opinion that the Big branch’s behavior is

rich enough to emulate anything that the Small PC can do. In

order to make the definition of emulation apply, however, I’d

need to incorporate some method of translating from the

binary language of machines into the positional “language” of

leaf and branch positions. I take up the issue of translations

in emulations in the Technical Appendix.
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I mentioned above that any one of our personal computers can emulate

any other. This is perhaps a bit surprising. After all, if you were to believe

some of the ads you see, you might imagine that the latest PCs have access

to new, improved methods that lie wholly beyond the abilities of older

machines. Could there be a new machine with such tricky goodies on its

chips that an older machine would not in fact be able to load up and execute

emulation software for it?

Well, if the emulation program for the new machine is so large that it

wouldn’t be able to fit into my old machine’s memory, then, no, the old

machine can’t emulate the new one. But this is a hardware limitation that

seems peripheral to the core issue of functional capability. If I’m allowed to

equip my old machine with as much additional memory I need, then yes, I

can always get it to behave like any other computer at all.

This somewhat surprising fact has to with a phenomenon that computer

scientists call universality. It turns out that many computations can in fact

emulate any other computation. We call these maximally powerful computa-

tions universal.

• Definition. A computation is universal if it can emulate any other

computation.

Now, you might expect it to be fairly hard to get a computation to be uni-

versal. But nothing could be further from the truth. Universality is easy.

Once any computational system advances past a certain very low threshold,

it becomes universal. How low is the threshold? Being able to add and mul-

tiply is more than enough. And, as we’ll see, even more rudimentary capabil-

ities will do.

In point of fact, when we examine the naturally occurring computational

systems around us—like air currents, or growing plants, or even drying

paint—there seems to be reason to believe that the vast majority of these sys-

tems support universal computation. This belief is part of the content of Wol-

fram’s PCE: If some complex computations are universal, and most complex

computations are of equivalent sophistication, then most complex computa-

tions are universal.

Universality is a big deal. The existence of universal computation means
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that there is a maximal level of computational complexity. And the ubiquity

of universality means that this maximum is rather readily attainable. Com-

putation is in some sense already as good as its going to get. We’re in a posi-

tion a bit like someone who’s inherited a fortune of a vastness they’re still

learning to understand.

1.5: The Tiniest Brains

Starting with thoughts about arithmetic, Alan Turing formulated a minimally

simple definition of computation in the 1930s—well before any real electronic

computers had been built. Turing’s approach was to describe an idealized

kind of computer called a Turing machine.12

In practice, nobody builds Turing machines. They’re so primitive that even

adding numbers can be unfeasibly time-consuming with one of these devices,

and programming such a device to do anything complex is mind-numbingly dull.

Nevertheless, there are several good reasons for learning about Turing

machines.

First of all, many Turing machines are universal, that is, they can, however

slowly, carry out any possible computation. Looking at Turing machines

helps us understand how little is really needed for universal computation.

Second, the design of a Turing machine resembles the design of an elec-

tronic computer, albeit in embryonic form. Understanding Turing machines

is a good preparation for understanding PCs.

Third, the rudimentary quality of Turing machines makes them easy to

think about. By searching through all possible Turing machines we can in

some sense search through all possible computations. In his original paper

on the topic, Turing proved that no Turing machine can distinguish between

the true and false theorems of mathematics, which in turn showed that

mathematical truth is in some sense undecidable for any computer at all.

More recently, Stephen Wolfram has carried out a series of computer

searches over the class of Turing machines to help confirm his hypothesis

that computations come in only four flavors: they die out, they repeat, they

seethe messily, or they create gnarly patterns.

So, all right, what’s a Turing machine?

I once looked through a specification of the librarians’ Dewey decimal
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system and found there is actually a classification for “Turing machines,

manufacture and distribution of.” But in point of fact, Turing machines are

not real physical devices that people build. They’re idealized models of an

extremely simple kind of digital computer. Turing’s original inspiration for the

Turing machine was to try to capture the behavior of a human reckoner—but

without all the squishy stuff on the inside.

To begin with, a Turing machine has only some finite number of internal

states. These are analogous to a reckoner’s mental states, such as the state

of remembering to carry a 1.

As a further simplification, a Turing machine uses a linear tape of cells

instead of a two-dimensional grid of paper. A Turing machine focuses on one

cell at a time on its tape; more concretely, we think of the machine as having

a read-write head that moves from cell to cell.

During each update, the machine reads the symbol in the cell, possibly

changes the symbol in the cell, moves its head one cell to the left or one cell

to the right, and enters a new internal state. Having completed one update

step, it begins the next: reading the new cell, changing it, moving its head,

and altering its internal state once again.

What determines the Turing machine’s behavior? We can look at it this

way: each stimulus pair of (internal state, read symbol ) leads to a unique

response triple of (write symbol, move direction, new state). The high-level

software for a Turing machine is a lookup table that supplies a response

triple for each possible stimulus pair.

A Turing machine’s input is a string of symbols on the tape. Suppose we

simply write d to stand for a tape with a particular symbol pattern that we

can also call d. We set a computation in motion by putting the machine into

its starting state and setting its head on the leftmost nonblank symbol of d.

An output is any resulting pattern of symbols that appears on the tape at a

later times.

Figure 14 represents a Turing machine in action. It uses only two symbols,

the white cell and the black cell, which we might also think of as zero and

one, and it has three states. Each row of the figure shows a picture of the

Turing machine’s tape, with time running down the page from top to

bottom—that is, the starting configuration is the top line and the later con-

figurations are below. The picture also includes small representations of the
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Turing machine’s head as a little pointer

whose direction indicates the internal

state that the Turing machine is in

during that particular snapshot. (This

useful method of representing Turing

machines was introduced by Stephen

Wolfram in A New Kind of Science.)

The particular machine depicted

starts on a blank tape and endlessly

shuttles back and forth, filling the tape

with an ever-growing pattern of alter-

nating marked and unmarked cells. It

never stops. Pointless, you may say, but,

hey, it’s a computation!

In some applications of Turing

machines we are concerned with finding

cases where the machine halts, that is,

reaches a state after which the output pat-

tern doesn’t change any further. Although

its possible to do this by having the

machine go into an endless loop without

writing or erasing anything more, most

discussions allow computations to have a

special “halted” state, and specify that

once a Turing machine enters its halted

state, it stops looking up further moves.

Some discussions of Turing machines

focus almost exclusively on machines whose computations halt. But in The

Lifebox, the Seashell, and the Soul, we’re equally interested in open-ended com-

putations that are willing to run for as long as you let them. In Wolfram’s terms,

a computation that halts for every input is class one. Naturally occurring class

four “computers,” like the weather, the plants, or our minds, all have the quality

of being willing to continue indefinitely. It’s only a destructive external input

that brings most natural computations to a halt—as when, for instance, a toxic

spill eliminates a patch of plants, a cerebral hemorrhage cuts off a person’s

thoughts, or a sun explodes and puts an end to its planets’ weather.
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As I mentioned earlier, we also have a notion of halting for arbitrary com-

putations P . Here we can have a target detector, IsPDone, that has two spe-

cial output states, True and False. IsPDone is a helper computation that

allows us to distinguish certain target states as being states in which P has

produced an answer. So as to block off an endless regress, we require that

there be no problems in trying to decide when IsPDone itself has produced a

final answer, that is, we require that for any state Out, IsPDone(Out) returns

either True or False in a finite amount of time to indicate, respectively, that

Out be regarded as a target or a nontarget state.13

Now let’s talk some more about the rules, or software, that govern a Turing

machine. As I said above, the high-level software for a Turing machine is a

lookup table that supplies a response triple for each possible stimulus pair.

And the low-level software for a Turing machine forces it to cycle through the

following three steps:

• (Turing A) The machine reads the symbol that is in the active

cell. It combines the read symbol with its current state to

make a stimulus pair (internal state, read symbol).

• (Turing B) Given the stimulus pair (internal state, read symbol),

the machine looks in its high-level software to locate a correspon-

ding response triple (write symbol, move direction, new state).

• (Turing C) On the basis of the response triple, the machine

writes a symbol in the active cell, moves the head one step to

the left or to the right, and enters a new state. If the machine

is not in the halted state, it returns to step (Turing A).

One of Turing’s great insights was that we can put the lookup tables for

Turing machines down onto the tape along with the input data. That is,

instead of running machine M on the data d, you can code M as a string of

symbols m, and write the m pattern on the tape next to the data d to get a

tape that we’ll call md. And then a fairly routine bit of mathematical legerde-

main can conjure up a specific universal Turing machine U such that the

action of U on the tape md emulates the action of M on the tape d.

Note the exact analogy to the fact that, if U is a personal computer and M

is some other personal computer, we can find an emulation program m so

that the action of U on md is the same as the action of M on d.
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Although every PC is universal, only some Turing machines are universal.

All PCs are, after all, of a fairly high degree of complexity. But Turing machines

can be made arbitrarily simple. Over the years there’s been something of a

competition among computer scientists to discover the simplest possible uni-

versal Turing machine. The simplicity of a Turing machine is gauged in terms

of how many internal states the machine has and how many tape symbols it

uses. The most recent record-holder, discovered by Stephen Wolfram and

Matthew Szudzik on the basis of work by Matthew Cook, uses two states and

five symbols. This means that the machine itself has an exceedingly simple

lookup table. With two states and five symbols, there are only ten possible com-

binations of (internal state, read symbol ), so the Turing machine’s entire

lookup table has only ten lines. Yet, by preparing the input tape in a suitable

way, we can get this machine to emulate any possible computation.

Encouraged by this and some similar kinds of research, Wolfram conjec-

tures in A New Kind of Science that universal computations are ubiquitous.

This follows from his Principle of Computational Equivalence, or PCE, which

I introduced a bit earlier in this chapter.

• Principle of Computational Equivalence (PCE). Almost all processes

that are not obviously simple can be viewed as computations of

equivalent sophistication.

Let’s delve into this more deeply than before.

The “almost all” at the start is so Wolfram can cover himself from a certain

pointed criticism. The criticism stems from the fact, known since the 1960s,

that there are in fact some gnarly class four Turing machines that aren’t uni-

versal. But Wolfram’s feeling is that, at least in nature if not in mathematics,

such computations will be exceedingly rare. We might reasonably replace the

phrasing “almost all” by “most naturally occurring.”

When he speaks of an “obviously simple” process, Wolfram has class one

and class two computations in mind. Recall that the class one computations

run for a while and then enter a fixed state. There are actually two ways that

a computation can be class two. On the one hand, it might go into a loop and

begin precisely repeating itself. Or, on the other hand, the computation might

generate a growing, orderly, unsurprising pattern. The three-state Turing

machine depicted earlier in this section is an example of this style class two
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computation. It doesn’t exactly repeat itself, but what it’s doing is “obviously

simple.”

The non-obviously-simple computations would be the disorderly class

three computations and the gnarly class four computations. The disorderly

computations seethe in a seemingly random fashion, and the gnarly ones

generate intricate patterns.

What does Wolfram mean by two computations being “of equivalent sophis-

tication”? We might take this to mean that they can emulate each other.

Note that if U is universal and if M can emulate U, then M must be uni-

versal as well. Consider an analogy: If you can imitate the actor Jim Carrey,

who can imitate anyone, then you yourself can imitate anyone. To imitate

Elvis, for instance, you imitate Jim Carrey imitating Elvis.

Given that we know that universal computations exist, if we take “of equiv-

alent sophistication” to mean “able to emulate each other,” we might phrase

the PCE as follows.

• Principle of Computational Equivalence, Second Form (PCE2). Most

naturally occurring complex computations are universal.

As I mentioned earlier, Wolfram advocates a related but distinct principle

as well, the Principle of Computational Unpredictability.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

The PCE and PCU were to some extent inspired by Wolfram’s searches over

vast classes of Turing machines and other simple kinds of idealized compu-

tation. Wolfram’s daring is to insist that his insights apply to all kinds of com-

putations. In the chapters to come, we’ll consider what the PCE and PCU

might tell us about our world.

1.6: Inside the Beige Box

In this section we’ll talk about real computers, that is, personal computers.

There’s no real need to talk about “supercomputers.” Last year’s supercom-

puter is next year’s desktop machine.
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Personal computers all have the same basic design: a processor and memory.

The processor is something like the head of a Turing machine, and the

memory is like a Turing machine tape. Or, again, the processor is like a

human reckoner, and the memory is like a sheet of paper.

The memory, often called RAM for random access memory, can be imag-

ined as a long ribbon of cells. The PC’s memory cells hold so-called words of

memory. Here word does not mean “meaningful language unit.” It simply

means a particular fixed number of bits, let’s say thirty-two zeroes or ones.

Each word of memory has an address, and the memory addresses run from

zero on through the thousands, millions, and billions, depending on how

much RAM the particular machine has. The “random access” aspect of the

memory has to do with the fact that the processor is easily able to read or

write the contents of a cell at any desired address.

Let’s look at what happens when a stored program architecture computer

runs. The basic operation is for the processor to alternate between the fol-

lowing two steps:

• (Computer A) Fetch an instruction from memory.

• (Computer B) Interpret and execute the latest instruction.

The processor uses an address called the instruction pointer to keep track of

which word of memory the processor is currently supposed to fetch. And it also

keeps a data read pointer and a data write pointer to keep track of which

memory slot to use for, respectively, reading or writing bits (see figure 15).

All of these pointers are stored in so-called registers that live right in the sil-

icon of the processor. The processor has a few dozen such registers and they can

be thought of as constituting part of its internal state.

According to which word the processor finds at the address of its instruc-

tion pointer, it will do one of the following:

• Read data from memory.

• Carry out logical or arithmetical operations such as AND or

PLUS, and store the results in a “scratch-paper” register.

• Write data to memory.
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After fetching and executing each successive instruction, the processor will

normally increment the instruction pointer to the next memory position, but

certain instructions will tell it to override this default behavior and execute

the following, fourth kind of primitive operation:

• Jump the instruction pointer to a new position.

Unlike a Turing machine’s head, a personal computer’s instruction pointer

can hop to anywhere in memory in a single step. If you have some familiarity

with programming, you may know that jumps in the instruction pointer’s

position can be caused by if-then-else statements, by loops, and by calls to

procedures. The instruction pointer does a dance of computation.

A higher-level way to think of the difference between PCs and Turing

machines would be to say that at any given time, a PC processor can access

any memory location, whereas a Turing machine processor (or head) can only

access one memory location. We represent this in the two diagrams in figure

16. In each diagram, the circle represents the processor and the row of cells
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represents the memory. Computer scientists would say that the Turing

machine has local memory access, while the PC has global memory access.

When the PC processor carries out logical and arithmetic operations, it

manipulates the bits in the registers, often by combining one register’s bits

with the bits in another. More precisely, logic and arithmetic instructions may

copy register values among each other, add register values, compare register

values, and more. The actual execution of additions, multiplications, logical

combinations, and so on, is handled by specialized circuitry on the chip, or

what’s sometimes called the chip architecture (there’s that word again).

What about interactive inputs? Input devices can place a few bits or even

a long patch of bits directly into the RAM. A keyboard feeds in perhaps thirty-

two bits of data with each key press, while a disk drive can load in millions

of bits at a time. Each time you move your mouse, the mouse, too, puts bits

describing its clicks and moves into the computer memory. A program can go

and check this area every so often, and in this way respond to the inputs.
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We draw the Turing machine processor as having access not only to the current memory
cell but to the two neighboring cells; this is because the processor is able to execute a
“move left” or a “move right” instruction. We can draw the personal computer’s archi-
tecture as a long row of memory cells, indicating the processor’s global access by
drawing connecting lines from the processor to each cell; or we can simplify by drawing
the memory as a somewhat larger block meant to include lots of data, and drawing the
processor-to-memory access line as thick, fuzzy, and gray, with the understanding that
this kind of line means that the processor has rapid access to every nook of the asso-
ciated memory box.



Output devices convert bits into audible or visible display. A crude text

screen might show a few hundred characters, using sixteen bits per char-

acter, whereas a graphics screen might display millions of colored pixels, with

perhaps thirty-two bits of color code per pixel. You can print out your

screens, or you can write the information onto a disk. A sound card converts

swatches of bits into voices, music, and noise.

How is it that PCs often seem to be doing several things at once? Behind

the scenes the machine allocates successive time-slices to a series of tasks

and rapidly cycles around and around this task loop, giving the illusion

that all the tasks are being worked on at once. In this fashion a PC can

emulate a so-called parallel computer, which independently runs many

computational threads at the same time.

Being a universal computer is empowering. It turns out that no matter

what its particular architecture is, a universal computer can emulate any

other computer, of any possible architecture. This isn’t an obvious fact, nor

is it something that’s been formally proved—it’s more in the nature of an

empirical principle that’s been deduced from the body of theoretical and

practical knowledge of computation that we’ve accumulated. The principle is

sometimes called Church’s Thesis. We might phrase it like this:

• Church’s Thesis. Any possible computation can be emulated by a

personal computer with sufficiently large memory resources.

Alonzo Church proposed his thesis back in the 1930s, after observing

that several different ways of defining computations were all equivalent to

one another. The thesis becomes controversial when universal automa-

tists argue that PCs can emulate naturally occurring physical processes—

even with the understanding that the emulations will normally be

unfeasible. The issue is that if physics were to involve infinitely precise

continuous quantities changing according to exact laws, then the finitely

complex digital electronic computers might not be able to adequately emu-

late physics. The resolution, which I’ll discuss in CHAPTER TWO: Our Rich

World, is to say that the quantities used in physics really have only a finite

level of precision.
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1.7: Plugged In

In the early 1980s, the science-fiction writer William Gibson coined the great

word cyberspace, which now has come to mean, approximately, the Web.

Originally the word also connoted virtual reality, in the sense of an immer-

sive and shared graphical world.

In 1988, John Walker, then the chairman at Autodesk, Inc., of Sausalito,

had the idea of building a software toolkit for creating shared virtual realities.

Autodesk trademarked the word Cyberspace for an (unsuccessful) product

called the Cyberspace Developer’s Kit. William Gibson was somewhat annoyed

by this and jokingly claimed he was going to trademark Eric Gullichsen, this

being the name of the first lead programmer on the Autodesk Cyberspace

project. I myself was employed by Autodesk at the time, recruited by Walker

himself. I was helping to design and code a series of popular science software

packages, including Rudy Rucker’s Cellular Automata Laboratory, James

Gleick’s Chaos: The Software, and Artificial Life Lab (all of which are available

for free download from this book’s Web site, www.rudyrucker.com/lifebox/). I

also helped write some demos for the Autodesk Cyberspace project, most

memorably a lively flock of polyhedra that would circle the user’s head.

Before we managed to get electronically linked multiple users into our

cyberspace at the same time, Autodesk’s stock price went down and I was out

of the industry and back in the groves of academe, teaching computer sci-

ence at San Jose State and writing a novel called The Hacker and the Ants

about my experiences at Autodesk.

What was cyberspace? Where did it come from? Cyberspace had

oozed out of the world’s computers like stage-magic fog. Cyberspace

was an alternate reality, it was the huge interconnected computa-

tion that was being collectively run by planet Earth’s computers

around the clock. Cyberspace was the information network, but

more than the Web, cyberspace was a shared vision of the Web as a

physical space.14

Living through the dot-com boom in Silicon Valley was a trip; for a while

there, money was growing on trees. I remember when a student in my Java
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course came by the office to show me a job offer he’d gotten. They were

offering him a fat salary, perhaps 30 percent more than what a humble

professor makes. And he was wondering if he should ask for more! He was

clever and likable, although disorganized and perhaps a little lazy. He got so

excited about his impending career that he didn’t hand in one of the class

projects, which brought his average down to the C level, but it didn’t matter;

the bubble wanted everyone it could get, at least for a short time. I had

thought he might be unemployed by now, or running an offshore coding

group in Bangalore, but the other day he turned up again, having authored

some software for anonymous Web-surfing, and still very much in the game.

The Web is here to stay.

When you push aside the hype and the biz buzz, the Web consists prima-

rily of our personal computers, with the added feature that they can

exchange data. When one computer gets information from another, we speak

of them as a client and a server, respectively. The client is said to download

files from the server, and, in the reverse direction, the client uploads files to

the server so that other clients can see them.

A given PC may act as both client and server; indeed, in some local net-

works, all machines play both roles. It’s more common, however, to have cer-

tain dedicated machines that function primarily as servers. These server

machines are the same kinds of PCs that you might have at home, with the

difference that dedicated servers usually use a Unix-type operating system.

The clients and servers connect to one another via a hierarchy of machines

called switches and routers, as indicated in figure 17.

My son Rudy Jr. runs what may be the only independent Internet service

provider in San Francisco, www.monkeybrains.net. He keeps his machines in

a cage that he rents for them in a so-called server hotel in a rough neighbor-

hood. A robot flophouse. The server hotel was once a Macy’s warehouse and

is located next to a train track. Nearly all server hotels are next to train tracks

so that their routers’ fiber optic cables can follow the railway’s right of way to

the next server hotel down the line. The server hotel, or data center, holds

three highly air-conditioned floors of wire cages, each cage stuffed with the

machines of some stalwart Web entrepreneur.

Rudy’s cage holds seventeen server machines and a router. The last time I

visited, he pulled a plug out of the back of his router box and told me to look
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into the end of the wire. I saw a faint red light, grainy with information. It was

his router’s optical fiber line. “That’s the color of the Internet,” said my son.

“You just saw a gigabit per second.” Any information going through Rudy’s

router at that moment suffered a glitch, but the protocols of the Internet are

smart enough to correct things like that.

To get a picture of how the Web works, let’s step through an example. Sup-

pose you enter my book’s Web site address into your browser’s address bar:

www.rudyrucker.com/lifebox/.

The following sequence of actions results (leaving out numerous fiddling

details):

• Your machine sends a message to Rudy Jr.’s server machine

in San Francisco, stating your machine’s name and

requesting the page www.rudyrucker.com/lifebox/index.html.

• Rudy’s machine sends bits describing this Web page to your

machine.

• Your machine’s browser software converts the bits into an

image on your screen.
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Figure 17: Networked Personal Computers

The physical details of the Web are more complicated than the figure shows. But a basic
way of thinking of it is that individual server and client PCs connect to machines called
switches that in turn connect to routers. Routers across the world are strung together
via optical fiber connections; the network of linked routers is what you might think of
as the Internet’s backbone.



The transaction doesn’t have to be one-way. My book’s Web site has a

guest book page.

Once the guest book page is showing on your machine, you can type some-

thing, press Enter, and your words will now be stored on Rudy’s server

machine. The next person to access the guest book page can see what you

wrote there. The extra steps are these:

• Your machine sends bits to Rudy’s machine.

• Rudy’s machine incorporates your changes into one of its Web

page files.

With a little more Web experience, you can do more than write things into

someone’s guest book: You can post images, maintain an online blog—or

even establish your own Web site.

As I mentioned above, when your machine reads in some information across

the Web, this is a download, and when your machine writes some information

into some other location on the Web this is an upload. Be warned that some

people use these words the opposite way around. But as John Walker con-

vincingly puts it, “When you offer your data to the great Net God like the smoke

of burnt offerings rising into the heavens—this is an upload. And when the

riches of the Web rain upon you like manna—this is a download.”

The Web greatly leverages your access to information by means of hyper-

links. When you click on a hyperlink on a Web page, the server machine

sends your machine the name of a new machine, your machine contacts the

new machine and asks for the page, and the new machine sends your

machine the new page. For you, it’s as if the Web is a seamless whole, and it

doesn’t make all that much difference which server you initially connect

yourself to.

Can we think of Web itself as a kind of computation? Sure. As long as some-

thing is rule-based it’s a computation. And the Web has rule-based behavior—

messages dart back and forth, requesting and delivering data. The initial input

is the machines and their connections, and the interactive input is the requests

emanating from the machines. The behavior of the Web in and of itself is thor-

oughly deterministic. Even when a message needs to make a seemingly random

choice among several equally good paths, a deterministic pseudorandom
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algorithm is in fact used to make the decision. And the data requests made by

human users are additional interactive inputs to the system.

We could also imagine a completely deterministic Web in which the client

requests are being generated by programs running on the individual client

and server machines. Web crawlers are examples of this kind of automated

Web surfing. A client running a Web crawler will successively visit one page

after another, accumulating information on what it finds. A search engine

like the currently popular Google uses Web crawlers to produce information

for its own large database. When a user goes to the Google site and asks for

pages relating to a given topic, the Google software uses its Web-crawler-built

database to suggest links. As an additional wrinkle, Google ranks each page,

using criteria such as how many other pages have links to the given page.

Let’s think a bit more about the Web as a computer. Generalized rule-

based systems—computers in the broad sense of the word—can be based on

a wide range of underlying architectures. That is, the mutual interactions of

a computer’s hardware, software, and data can be organized in many dif-

ferent ways. A computer’s strengths and weaknesses have much to do with

its architecture. Three commonly seen architectures are the serial, the net-

worked, and the parallel. A PC has a serial architecture, in which a single

processor has global access to a single memory set. Classical physics, on the

other hand, can be thought of as a parallel architecture, in which many

processors have local access to a single shared memory set (the world).

A network architecture has five distinctive characteristics. The first three

are these:

• Many distinct processes.

• Each process is associated with its own private block of memory.

• The processes can access one another’s memories by

exchanging read and write requests.

The Web has many processors, each of which has its own private memory. A

Web-linked machine has instant access to any location of its own memory, but

it has only an indirect access to the memories of the other machines.

The tree structure in our first drawing of the Web (figure 17) was an imple-

mentation detail. The essence of the network architecture appears in figure 18.
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We speak of each processor-memory combination as a node. In terms of

the figure, a node is a circle plus its associated rectangle of memory.

We can describe the memory access as follows. In order to read memory

from another node, a given node needs to send a request to the remote node’s

processor and wait for this node to retrieve and send the desired information.

Writing to the memory of another node requires a similar procedure,

involving a similar kind of request. An important characteristic of the net-

worked architectures is that a given node can deny these requests.

• A network node may deny incoming read or write requests.

Another characteristic feature of the network architecture is the lack of

any kind of systemwide synchronization. Indeed, networks are often called

asynchronous.

• Each network node sends and processes requests according

to its own schedule and speed.

The network architecture is found in several naturally occurring forms. A

living organism can be thought of as a network whose individual processors
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Figure 18: Network Architecture

The circles are the computer processors and the boxes are the memory sets of the indi-
vidual machines. The arced lines at the top are connections by which the processors
make read-write requests, while the thick gray lines below represent the fact that each
processor has full rapid access to its own private memory block.



are the organism’s cells. And our society is a network in which the proces-

sors are human beings. In both cases each individual processor has its own

private memory, the processors share data by exchanging signals with one

another, and the processors can refuse requests.

A rude question. If the Web is a computation, then what the heck is it com-

puting? The easy answer is that computations don’t have to be “about” any-

thing. They can just occur. Rain running down a windowpane isn’t about

anything, but certainly there’s an intricate computation taking place.

Certainly it would be interesting if the Web really were somehow computing

something deep. The hooked-together computers of the Web are at least

superficially reminiscent of the coupled neurons that make up a human

brain. Could the Web ever act as a planetary mind? This question is a variant

of the old question of whether human society as a whole has a group mind.

I think that in both cases the answer is a qualified yes—I’ll say more about

this in CHAPTER FIVE: The Human Hive.

1.8: Flickercladding

A cellular automaton (CA for short) is a parallel computation that operates on

a memory space that is a one-, two-, three-, or higher-dimensional grid of

cells. The memory can be, for instance, a one-dimensional tape like a Turing

machine’s tape, a two-dimensional grid of cells like a reckoner’s paper, or a

lattice of three-dimensional cubes.

Each cell has its own associated processor, and each cell contains a small

amount of data called its value. As we’ll see in CHAPTER TWO: Our Rich World,

when modeling physics, we turn to CAs in which each cell value consists of

one or several real numbers. But often we focus on discrete-valued CAs, that

is, CAs whose cell values are a single integer or even a single bit.

We depict the architecture of one-dimensional and two-dimensional CA as in

figure 19, where the processors are circles attached to square memory cells.

The CA computation proceeds in discrete steps. At each step, every cell is

simultaneously updated. How is an individual cell updated? Each cell

processor has a rule that computes the cell’s new value based upon the cell’s

current value and the values of a few neighboring cells. In implementing the

flow of heat as a CA, for instance, the rule might simply be to average a cell’s

temperature value with the temperature values of the cells adjacent to it.
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Although we could in principle use different update rules for the different

individual cells, it’s more common to study CAs in which all the cells use the

same rule and look at the same pattern of nearest neighbors.

In short, CAs are defined so as to satisfy these five conditions:

• Many processors. A CA has one processor per memory cell.

• One shared memory. The cells are arranged into a single

memory grid.

• Locality. The CA update rules are local, that is, a given cell’s

new value depends only on the present values of the cells in

some fixed neighborhood of the cell.

• Homogeneity. Each CA has the same update rule.

• Synchronization. All of the CA cells are updated at once.
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Figure 19: Architecture of One- and Two-Dimensional CAs

The top row shows two images of a one-dimensional CA architecture, and the bottom
row shows two images of a two-dimensional CA architecture. In the left column we
draw the processors as floating above the cells, and in the right column we draw them
down inside the cells. The lower left image would be more accurate if each processor
had lines coming down to the neighbor cells.



Cellular automata seem to have been invented in the late 1940s at the Los

Alamos, New Mexico, laboratories by Stanislaw Ulam and John von Neumann.

Both these men were primarily mathematicians, but their interests had

exceedingly wide range. Recall that von Neumann was instrumental in the

creation of the first electronic computers. He also did work on theories of

infinity, the foundations of quantum mechanics, economics, and game theory.

Ulam, too, did work on theories of infinity, inventing what stood for many

years as the largest kinds of numbers anyone could dream up: the so-called

measurable cardinals. He was involved in computers as well, using a

machine called MANIAC to come up with some novel methods of simulating

nonlinear physics (see figure 20). And, with Edward Teller, Ulam was the co-

inventor of the hydrogen bomb.

Ulam’s first published reference to cellular automata appeared around 1950,

at the time he was helping von Neumann design a self-reproducing machine.15

Ulam carried out some investigations of discrete-valued CAs and then, in the

1950s, he switched his attention to continuous-valued CAs, that is, cellular

automata in which the values

are real numbers—this work

we’ll discuss in chapter 2.

CAs didn’t really catch on

until 1970 when, in his pop-

ular “Mathematical Games”

column for Scientific American,

Martin Gardner wrote about

how John Horton Conway, a

mathematician at the Univer-

sity of Cambridge, had discov-

ered a two-dimensional CA so

rich in patterns and behavior

that it was known as the Game

of Life, or simply Life.

In Life each cell value con-

sists of a single 0 or 1 bit, indi-

cating if the cell is “dead” or

“alive.” Each cell’s processor
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Figure 20: Stanislaw Ulam Demonstrating
the MANIAC Computer

The little girl is Ulam’s daughter Claire. I dis-
covered this picture in S. M. Ulam, Adventures
of a Mathematician (Berkeley: University of
California Press, 1991).



looks at nine of the memory cells, the 3 × 3 neighborhood around the cell

(figure 21).

If we speak of the cells as being alive or dead, we can describe the Game

of Life rule in the following colorful fashion:

• If a dead cell has exactly three live neighbors, they spawn into the

cell and it, too, becomes alive. Otherwise a dead cell stays dead.

• If a live cell has exactly two or three live neighbors other than

itself, then it stays alive; otherwise it dies of loneliness or over-

crowding.

Conway’s vague initial goal had been to find a cellular automaton rule in

which simple patterns could grow to a large size, but he doubted if any pat-

terns could grow forever. Gardner proposed this as a challenge problem:

Conway conjectures that no pattern can grow without limit. Put

another way, any configuration with a finite number of live cells cannot
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Figure 21: 
A Cell Neighborhood in Conway’s Life

Note that this notion of neighborhood differs from the style of two-dimensional cell
neighborhood we drew in figure 19—where the two-dimensional cell processors were
only looking at five cells each.



grow beyond a finite upper limit to the number of live cells on the field.

This is probably the deepest and most difficult question posed by the

game. Conway has offered a prize of $50 to the first person who can

prove or disprove the conjecture before the end of the year. One way to

disprove it would be to discover patterns that keep adding live cells to

the field: a “gun” (a configuration that repeatedly shoots out moving

objects such as the “glider”), or a “puffer train” (a configuration that

moves about and leaves behind a trail of “smoke”).16

The prize was won a month later by William Gosper and five fellow hackers

at MIT; legend has it that they did an automated search. They sent Martin

Gardner a telegram with the coordinates of the cells to turn on to make a

glider gun, depicted in figure 22.

Steven Levy’s Hackers has a good section about Gosper and the early

excitement over Life among the users of the PDP-6 computer at the MIT
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Figure 22: A Life CA Soup and the Glider Gun

The left-hand image shows Life running on a randomly seeded pattern. This kind of
start almost always ends with a few static blocks and small oscillators. The right-hand
image shows Gosper’s glider gun sending out a stream of gliders. The gliders continu-
ally move toward the upper right. What happens at the edges? In simpler CA simula-
tions the edges are wrapped around like in an old videogame—if a glider moves off the
top edge, then it comes back from the bottom edge, and so on. But more sophisticated
setups may model additional off-screen cells as well..



Artificial Intelligence Project. Levy quotes Gosper, telling how he saw Life as

a way to

basically do new science in a universe where all the smart guys

haven’t already nixed you out two or three hundred years ago. It’s

your life story if you’re a mathematician: every time you discover

something neat, you discover that Gauss or Newton knew it in his

crib. With Life you’re the first guy there, and there’s always fun stuff

going on. You can do everything from recursive function theory to

animal husbandry. There’s a community of people who are sharing

their experiences with you. And there’s the sense of connection

between you and the environment. The idea of where’s the boundary

of a computer. Where does the computer leave off and the environ-

ment begin?17

One must remember that 1970 was still the Dark Ages of computing;

Conway himself ran his Life simulations by marking the cells with checkers

or flat Othello counters. For Gosper and his team to get Life to run on a mon-

itor at all was a nontrivial feat of hacking—it was a new thing to do with a

computer. After Gardner’s second column on Life, the game became some-

thing of a mania among computer users. By 1974, an article about Life in

Time could complain that “millions of dollars in valuable computer time may

have already been wasted by the game’s growing horde of fanatics.”18

More and more intricate Life patterns were found all through the 1970s,

and by 1980, Conway and his colleagues had enough Life machinery at hand

to sketch a proof that Life can be used to simulate any digital computation

whatsoever, that is, a CA running the Life rule is a universal computer.19

A number of people at MIT began studying CAs other than Life during the

1970s. One the most influential figures there was Edward Fredkin. Although

he himself held no higher degrees, Fredkin was a professor associated with

the MIT Laboratory for Computer Science, and he directed a number of dis-

sertations on CAs.

Fredkin envisioned a new science where we represent all physical quan-

tities as packets of information. The substrate on which these packets

move was to be a CA. Not to put too fine a point on it, Fredkin argued that,
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at some deep level, the world we live in is a huge cellular automaton.

Although Conway had already expressed opinions to the effect that in a

cosmically large Life simulation one might see the evolution of persistent

patterns that are as intelligent as us, Fredkin was the first to suggest that

the world we live in really is a CA.20 He was thus one of the first to espouse

universal automatism—although Fredkin prefers to name his view digital

philosophy.

Fredkin formed the Information Mechanics Group at MIT along with Tom-

maso Toffoli, Norman Margolus, and Gerard Vichniac. Working together,

Margolus and Toffoli built the so-called CAM-6 cellular automaton machine

in 1984, a board that you could plug into the early-model IBM personal com-

puters so as to see CAs running at a rapid clip.

Also in the 1980s, Stephen Wolfram became interested in getting an

exhaustive overview of what kinds of CA computations are possible. In order

to limit the number of possible rules, he started with very simplest CAs, in

which the cell space is a one-dimensional row of cells, the possible cell states

are zero and one, and each cell “sees” only itself and its nearest neighbors on

the left and on the right, making a three-cell neighborhood. A CA of this

simple kind can be specified by describing how a cell’s new value depends on

which of the eight possible three-cell neighborhood configurations it lies in.

This makes for 28, or 256, possible rules, which are conventionally labeled by

the integers from zero to 255.

Wolfram began by starting each of the basic 256 rules on a row full of ran-

domly chosen zeros and ones and observing what classes of behavior occur.

He found five general kinds of behavior. The distinctions extend to experi-

ments where we start the rules on a simple row with but a single dark “one”

cell. As suggested by the images in figure 23, Rule 254 “dies out” or becomes

uniform, Rule 250 generates a checkered or periodic pattern, Rule 90 gener-

ates a recursively nested triangle pattern, the right-hand part of Rule 30’s

swath is random-looking, and Rule 110 has persistent local structures that

move across the cell space and interact with one another.

Wolfram decided that a nested pattern was not really so different from a

repeating pattern, and chose to group the CA behaviors into the four classes

we mentioned earlier in this chapter.
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Figure 23: Five Kinds of CA Behavior

Left to right and top to bottom, these are Rules 254, 250, 90, 30, and two views of Rule 110. Wol-
fram views these rules as being of, respectively, computational class one, two, two, three, and four.
Each image (except the sixth) contains a row of symbols describing the CA rule and a triangular pat-
tern showing how the CA evolves over time. The rows of symbols show which new value of a cell is
selected by that rule for each of the eight possible cell neighborhoods. (If you were to interpret the
eight new-cell values as the digits of a binary number, by the way, you get the code number used to
describe the given rule.) The triangular patterns show the successive states of the one-dimensional
CA tape, with time running down the page. Note that each CA starts out with a single black cell. In
order to give a better idea of Rule 110, we’ve added a zoomed-out view of its appearance later on. 



• Class one. Dies out or becomes uniform.

• Class two. Becomes periodic or produces nested structures.

• Class three. Produces seething, seemingly random, patterns.

• Class four. Shows persistent local structures that move about.

The robustness of this classification is quite well supported by what one

might call taxonomic studies of the kinds of computations that occur across

a wide range of contexts. For instance, the same four classes of behavior

appear if we look at more complicated CAs, such as those that allow more

than two symbols, those that look at more than the very nearest neighbors,

or those that use higher dimensional cell-spaces. And the same four classes

can be found among the Turing machines.

Note that any universal computer can exhibit all four classes of computa-

tion. Depending on its input, it can produce simple (class one or class two)

computations that die out or repeat, disorderly random-looking (class three)

computations, or a purposeful-seeming gnarly (class four) computations.

I need to remark again that distinguishing between class three and class-

four computations can be difficult. Wolfram’s definitions of these notions are

not formalized; they’re more like empirical notions that have been formed from

extensive observation. Note also that a periodic class two computation can

look like a class three or class four computation if it takes a long time to get

around to repeating itself, and even a class one computation can seem like a

class three or a class four computation if it takes it a long time to die out.

The classes of computations generated by Conway’s Life CA depend on the

initial condition. The simplest Life patterns simply die off to a blank screen,

which is class one behavior. A typical random seeding of a Life CA dies down

to static blocks and oscillating patterns, which are class two. If only a cen-

tral region of the world is seeded, a random Life start will in fact spew out a

few gliders that head off into empty territory. Even if the gliders could indef-

initely travel through empty cell space, if they’re not interacting, then nothing

interesting is happening and we still have only class two.

But, as mentioned above, Conway and some of his colleagues were even-

tually able to prove that Life is computation universal. This means that for

any possible computation M, we can find a cell pattern so that Life seeded

with this pattern will emulate M. So, since Life is universal, we know that it
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can exhibit both class three and class four behavior. If Life emulates, say, the

output of a some little algorithm usable as a random number generator, it will

appear to be class three, while if it pulses out flocks of gliders grouped like

the digits of pi, it will be class four.

What’s the simplest possible universal CA rule? Stephen Wolfram and

Matthew Cook were able to prove that the gnarly little CA Rule 110 is com-

putation universal. The possible universality of the messy-looking Rule 30

remains, however, undecided. If Rule 30 proves to be nonuniversal, this

would serve as a counterexample to the Principle of Computational Equiva-

lence or PCE—for then Rule 30 would be an example of a complex compu-

tation that is not universal and is thus not as sophisticated as some other

complex computations.

In 1984 Wolfram wrote a revolutionary article pointing out some funda-

mental similarities between physics and cellular automata.21 He suggested

that many physical processes that seem random are in fact the deterministic

outcome of computations that are so convoluted that they cannot be com-

pressed into shorter form and predicted in advance. He spoke of these com-

putations as irreducible and cited CAs as good examples. His article included

some intriguing color photographs of one-dimensional CAs.

Wolfram’s article fascinated me so much that in April 1985 I set out to meet

Wolfram, Margolus, Toffoli, and the other new cellular automatists, eventually

writing an article on them that appeared in, of all places, Isaac Asimov’s Science

Fiction Magazine. The trip was something of a conversion experience for me,

and in 1986 I left my career as a freelance writer for a job as a computer science

professor at San Jose State University. CAs had permanently blown my mind.

One of the first things I started doing in my computer science classes was,

of course, getting my students to write programs to display cellular automata.

The computations were fairly intensive for the machines of that time, so we

had to work hard to make the rules run fast, even to the point of program-

ming them in low-level assembly language. One of my favorite early CA pro-

grams, when seeded a certain way, created images that looked like a

continually mutating cyberpunk woman’s face, as shown in figure 24. I called

this “woman” Maxine Headroom after the then-popular TV show featuring a

computer-animated character called Max Headroom.
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The Maxine Headroom picture wouldn’t mean much if it were based on

something like a smoothing algorithm run on a seed image of a face. But it

arises in a natural way, by a process that a biologist might call morphogen-

esis. Might it be that the forms of real people are simply patterns that are nat-

ural for growing masses of cells to form? I’ll return to this question in CHAPTER

THREE: Life’s Lovely Gnarl.

I managed to get hold of one of Margolus and Toffoli’s CAM-6 cellular

automaton accelerator boards and found out how to make the board run. To

make it work, you had to plug it into a certain early-model PC called the IBM

XT. I mastered the board’s arcane control language—a “reverse Polish” dialect

known as Forth—and began writing programs.

Thus began one of the most exciting periods of my life. I became a cellular

automata missionary, a Johnny Automataseed. I tracked down Bill Gosper in

his office at the Symbolics Corporation in Palo Alto, California, and made him
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Figure 24: Maxine Headroom

This old image was created by a rule I
call the Rug rule. Each cell holds an
integer between zero and 255, and the
update rule takes the average of a
cell’s neighbors, adds 1, and if the
result is larger than 255, sets the
value back to zero. This implementa-
tion is from the RC software compo-
nent of CelLab, and actually uses
obscure text characters for the
graphics. To create Maxine’s face, I
start with a grid of a particular size—I
think 43 × 80 in this case. (For full
effect, I turn the monitor on its side so
the shape is more like a face.) I freeze
the (invisible) outer edges of the cell
world at the maximum value and seed
the interior with an egg-shaped pat-
tern near the bottom. The upper part of
the screen evolves into an elliptical
forehead with a circular pair of eyes,
the bottom of the screen produces an

elliptical mouth, and the cells in between naturally shape themselves into the forms of
brows, nose, and cheekbones.



look at new rules that went beyond his beloved Game of Life. As it happened,

Gosper only had refrigerator-size computers, so I had to take the case off his

secretary’s IBM XT so I could plug in the CAM-6 board. He teased me for

doing this, asking if I enjoyed “playing dentist,” but the colorful demos of the

new rules intrigued him.

Before I even heard about cellular automata, I’d begun writing my Ware

series of novels about autonomous robots living on the moon. I’d always dis-

liked how dull robots looked in science-fiction movies—like file cabinets or

toasters. So I’d taken to decorating my fictional robots’ bodies with a light-

emitting substance I dubbed flickercladding. My original inspiration for flick-

ercladding was the banks of flashing lights that used to decorate the sides of

mainframe computers—signals reflecting the bits of the machines’ changing

internal states. As I imagined it, “The color pulses of the flickercladding

served to emphasize or comment on the robots’ digital transmissions; much

as people’s smiles and grimaces add analog meaning to what they say.”22

My flickercladding wasn’t meant to display blocks of solid hues, mind you; it

was supposed to be fizzy and filled with patterns. And when I encountered CAs,

I recognized what I’d been imagining all along. Reality had caught up with me.

This was also the period when, accompanied by my science-fiction hero

Robert Sheckley, I went to Tim Leary’s house in Hollywood and took—acid?

No. Took apart his IBM XT and jacked in my trusty CAM-6 board so that good

Dr. Tim could get a taste of CAs and their real-time mandala flows and

creepy-crawly life-forms. Tim instantly got the picture: Computation could be

about light shows, about mind expansion, about having fun. What a won-

derful day that was.

What were Sheckley and I doing at Leary’s house? Well, one of Sheckley’s

tummler friends was promoting a Hollywood pitch that Leary should host a

weekly science TV show and that the Scheck-man and I should write his

scripts. Too bad it didn’t work out.

Soon after I demoed the CAs for Tim, I had the opportunity to bring my

CAM-6-equipped PC to a 1987 conference called Hackers 3.0—keep in mind

that back then “hacker” simply meant “fanatic programmer.” As a relative

novice to computing, I felt a little diffident joining this august geekly com-

pany, but they were most welcoming. With Silicon Valley just opening up,

there seemed to be enough room for everyone.
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It was a great conference for me. I did cellular automata demos all night

long, and the hackers were blown away by the images. They pried the special-

purpose CAM-6 board out of my machine, sniffed it over, and pronounced

that it could readily be emulated by clever software.

As it happened, the demonically gifted John Walker of Autodesk fame was in

the crowd, and he was just the man to carry out the sought-for hack. Within a

year, I’d taken leave from my professor’s job and started working for Autodesk,

helping Walker create a fast all-software CA simulator known as CelLab.23

CelLab emulates the parallel CA architecture within the serial architecture

of a personal computer—a reminder of the fact that any of our universal com-

putational systems can simulate the behavior of any other. Using a different

architecture doesn’t affect what’s in principle computable. But a system’s

architecture does have a lot do with what kinds of computations are feasible

for that system.

In the 1990s, I became interested in continuous-valued CAs, in which the

cells can contain one or several real numbers instead of simply holding

simple integer values. Working with my students at San Jose State Univer-

sity, I designed a Windows program called CAPOW, which is very useful for

investigating these kinds of CAs, and I continue working with CAPOW to

this day.24

I might mention here that not all computer scientists like the idea of

continuous-valued CAs. Digital computer programs commonly allow for some

four billion different values for a continuous-valued real number. This means

that whereas the Game of Life CA has two possible states per cell, a continuous-

valued CA might have four billion possible states per cell. And if I use two real

numbers per cell—as I often do—I’m looking at sixteen quadrillion possible

cell states. Stephen Wolfram sometimes chides me for using complicated

rules—he argues that it’s more scientifically significant to discover an inter-

esting behavior in the context of a system that’s been pared down to be min-

imally complex.

But the physical world is anything but clean and simple. And even so,

nature repeats the same structures over and over. The same simple patterns

arise even when the computations become very intricate. You might say that

Platonic forms are robust against scuzz. And these qualities of robustness

and universality are worth modeling.
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Figure 25: Cellular Automata Scrolls

I ran these rules at a resolution of 320 × 200 cells, letting the left edge wrap around to the
right and the top wrap around to the bottom. The first three have states consisting of a
single integer per cell, while the latter three have two real numbers per cell. All were
started with a random initial pattern. Reading across the page and from top to bottom, the
six images are: Gerhardt and Schuster’s Hodgepodge rule, my RainZha rule, Toffoli and
Margolus’s Tubeworms rule, one of Hans Meinhardt’s Activator Inhibitor rules, a Double
Logistic predator-prey rule, and Arthur Winfree’s Belousov-Zhabotinsky rule.25



Yes, it’s important to find complex patterns in simply defined systems. But

to my way of thinking it’s significant that we can find exactly the same kinds

of patterns—and no others—in the much more complicated systems.

By now I’ve looked at many thousands of two-dimensional CAs. As it turns

out, scrolls are perhaps the most interesting new kinds of CA patterns that

emerge when moving from one-dimensional to two-dimensional CAs—my

favorite CAs are those that spontaneously generate scroll patterns from both

orderly and disorderly start patterns. Scroll patterns occur in both simple

and complicated rules and—in keeping with the point I was just making—the

scroll-shaped forms in complicated CA systems can be just as clean and

sharp as those defined by simpler rules.

A sampler of two-dimensional scroll CAs appears in figure 25.

Nature likes scrolls as well. Consider that, for instance, the cross section of

a mushroom cap, cut from top to bottom, bends around like a scroll—while

the entire cap forms a kind of three-dimensional scroll. Both a bean and a

fetus resemble fleshy scrolls. Brain tissue is replete with three-dimensional

scrolls. Candle or cigarette smoke inks the air with scrolls—and the pairs of

eddies that form behind a moving spoon in a coffee cup are scrolls as well.

Figure 26 shows a computer simulation of three-dimensional scrolls.
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Figure 26: A Three-Dimensional CA 
with Scrolls

Here’s a Hodgepodge-style CA running on a three-dimensional array of cells. The entire
solid block is filled with interacting shapes like scrolls, mushroom caps, jellyfish, and
whirlpools. The block wraps around, that is, patterns moving across one face continue
into the opposite side of the cube. 



What is the computational class of CA scrolls? Something that’s a bit hard

to capture in a printed picture is how dynamic they are. The scrolls are con-

tinually turning, with the pointed ends melting away as they approach the

enfolding lines. The rules are certainly not class one. The strongly ordered

patterns also preclude our calling them class three—these robust patterns

are anything but random in appearance.

So we’re left with deciding between class two and class four. If we run a

scroll rule on a very small grid, we may find the rule filling the grid with a

single monster scroll that executes a repetitive class two cycle. But if we give

the rule room to grow several scrolls, then we seem to see class four behavior.

A test case for this appears in figure 27, which shows eight stages of the so-

called Hodgepodge rule, reading left to right and top to bottom. Notice that

each image is subtly different and that, in particular, the diamond-shaped

region in the center is not repeating itself.

If I let the simulation run, say, another thousand steps, I find that the

whole general shape of the central pattern will have changed. So I’m prepared

to claim that some of the scroll-generating CA rules are class four.

Within the framework of The Lifebox, the Seashell, and the Soul, this seem-

ingly arcane observation turns out to be important. How so? Quite specifi-

cally, I’ll be arguing that many of the computations involved in living

organisms are of the same type that produce these unpredictable CA scrolls.

There’s even a possibility that our brains are in fact animated by electro-

chemical processes that behave like three-dimensional CA scrolls. Metaphor-

ically speaking, that churning little central region of the Hodge patterns in

figure 27 is like a brain working away inside a scrolly skull.

More generally, the free and unpredictable play of CA scrolls is a perfect

example of how deterministic processes can produce gnarly shapes and

interesting behaviors.

In this chapter we’ve talked about very explicitly computational processes:

humans reckoning with numbers, Turing machines, personal computers,

the Web, and cellular automata. And in the rest of the book we’ll be viewing

some less obviously deterministic processes as computations: physics,

biology, the mind, and human society.
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Figure 27: 
Class Four Scrolls

For these pictures, I seeded the Hodgepodge rule with a small square in one corner, whose effects
immediately wrapped around to the other corners. I let the rule run for about a week, passing
through some fifty million updates. And then I paused and single-stepped the rule, capturing eight
images, with each image five updates later than the one before.



THOUGHT EXPERIMENT TWO: THE MILLION CHAKRAS

Teaching her third yoga class of the

day, Amy Hendrix felt light-headed

and rubbery. She walked around,

correcting people’s poses, encour-

aging them to hold their positions

longer than they usually did. Her

mind kept wandering to the room

she was hoping to rent. New to San

Francisco, she’d been sleeping on

couches for six weeks. But she still

dreamed of becoming a force to be

reckoned with in the city scene.

It was time for Savasana, the

Corpse Pose, with everyone lying on

their backs. Amy turned off her Tabla

Beat CD and guided the closing

meditation.

“Feel a slow wave of softness

moving up your legs,” she began.

“Feet, calves, knees, thighs.” Long

pause. “Now focus on your per-

ineum. Chakra one. Release any ten-

sion hiding there. Melt with the

in-breath, bloom with the out.

Almost like you’re going to wet your

pants.” Amy occasionally added an

earthy touch—which her mostly

white clients readily accepted from

their coffee-colored teacher.

“Gather the energy into a ball of

light between your legs,” continued

Amy, pausing between each sentence,

trying not to talk too much. “Slowly,

slowly it passes upward, tracking

your spine like a trolley. Now the light

is in your sex chakra. Let it tingle,

savor it, let it move on. The warmth

flows through your belly and into your

solar plexus. Your breath is waves on

a beach.”

She was sitting cross-legged at one

end of the darkly lit room. The medi-

tation was getting good to her.

“Energy in, darkness out. The light

comes into your chest. You’re in the

grass, looking at the leaves in a high

summer tree. The sun shines

through. Your heart is basking. You

love the world. You love the practice.

You love yourself. The light moves

through your neck like toothpaste

out a tube. Chakra five. The light is

balancing your hormones, it’s

washing away your angry unsaid

words.” Pause. “And now your tape

loops are gone.”

She gave a tiny tap to her

Tibetan cymbal. Bonnng. “Your

head is an empty dome of light. Feel

the space. You’re here. No plans.

You’re now.” She got to her feet.

“Light seeps through your scalp

and trickles down your face. Your

cheeks are soft. Your mouth. Your



shoulders melt. Your arms. I’ll call

you back.”

She moved around the room

pressing down on people’s shoul-

ders. She had a brief, odd feeling of

being in multiple bodies, leaning

over each separate customer at the

same time. And then her wristwatch

drew her back. She had twenty min-

utes to get from here to Telegraph

Hill to try to rent that perfect room.

She rang the gong and saw the

customers out. The last one was

Sueli, a lonely wrinkled lady who

liked to talk. Sueli was the only one

in the class as dark-skinned as Amy.

Amy enjoyed her; she seemed like a

fairy godmother.

“How many chakras do you say

there are?” asked Sueli. Clearly she

had some theory of her own in mind.

She was very well-spoken.

“Seven,” said Amy, putting on her

sweats. “Why not?” She imagined

she might look like Sueli when she

was old.

“The Hindus say seven, and the

Buddhists say nine,” said Sueli,

leaning close. “But I know the real

answer. I learned it years ago in Sri

Lanka. This is the last of your

classes I’ll be able to come to, so I’m

going to share the secret with you.”

“Yes?” This sounded interesting.

Amy turned out the lights, locked

the door, and stepped outside with

Sueli. The autumn sky was a lumi-

nous California blue. The bay

breeze vibrated the sun-bleached

cardboard election signs on the

lampposts—San Francisco was in

the throes of a wide-open mayoral

election.

“Some of us have millions of

chakras,” continued Sueli in her

quiet tone. “One for each branch of

time. Opening the chakras opens the

doors to your other selves.”

“You can do that?” asked Amy.

“You have the power, too,” said

Sueli. “I saw it in class. For an

instant there were seven of you. Yes,

indeed.”

“And you—you have selves in dif-

ferent worlds?”

“I come and go. There’s not so

many of me left. I’m here because I

was drawn to you. I have a gift.”

Sueli removed a leather thong from

around her neck. Dangling from the

strand was a brilliant crystal. The

late afternoon sunlight bounced off

it, fracturing into jagged rays. The

sparkling flashes were like sand in

Amy’s eyes.

“Only let the sun hit it when you

want to split,” said Sueli, quickly

putting the rawhide strand over

Amy’s head and tucking the crystal

under her sweatshirt. “Good luck.”



Sueli gave her a hug and a peck on

the cheek as the bus pulled up.

Amy hopped aboard. When she

looked back to wave at her, the old

woman was gone.

The room was three blocks off

Columbus Avenue with a private

entrance and a view of both bridges.

It was everything Amy had hoped.

But the rent was ten times higher

than she’d understood. In her eager-

ness, she’d read one less zero than

was on the number in the paper. She

felt like such a dope. Covering her

embarrassment, she asked the

owner if she could have a moment

alone.

“Make yourself at home,” said the

heavyset Italian lady. “Drink it in.”

She was under the mistaken impres-

sion that Amy was wealthy. “I like

your looks, miss. If you’re ready to

sign, I got the papers downstairs in

the kitchen. I know the market’s

slow, but I’m not dropping the price.

First, last, and one month’s damage

deposit. You said on the phone the

rent’s no problem?”

“That’s what I said,” murmured

Amy.

Alone in the airy room, she wan-

dered over to the long window, fid-

dling with the amulet around her

neck. The low, hot sun reached out

to the crystal. Shattered rays flew

about the room, settling here and

here and here.

Nine brown-skinned women

smiled at each other. Amy was all of

them at the same time. Her overlap-

ping minds saw through each pair

of eyes.

“We’ll get separate jobs and share

the rent,” said one of her mouths.

“And when we come back to the

room we’ll merge together,” said

another. “We’ll work in parallel

worlds, but we’ll deposit our checks

and pay the rent in just this one.”

“Great,” said Amy, not quite sure

this was real. As she tucked away

the crystal, her nine bodies folded

into one.

Walking down the stairs to sign

the papers, her mind was racing.

Just now she’d split into nine—but

Sueli had said that, with the crystal,

she could split into a million.

Out the window she glimpsed

another election poster—and the big

thought hit her.

With a million votes, she could be

the next mayor of San Francisco.





C H A P T E R T W O

Our Rich World

THERE ARE TWO SALIENT DIFFERENCES between personal computer programs

and the general functioning of the physical world. One: physics happens in

parallel, that is, physics is being computed everywhere at once rather than

within the circuitry of a single processor chip. And two: physics seems to be

analog rather than digital, that is, rather than being measured in discrete

bits, physical quantities are real numbers with who-knows-how-many dec-

imal places trailing off. In this chapter we discuss how to come to terms with

and even take advantage of these realities.

This chapter’s six sections are as follows:

• 2.1: Rough and Smooth. The idealized equations of mathemat-

ical physics are continuous, but the real world and our sim-

ulations are discrete, using particle system or cellular

automaton computations of finite precision.

• 2.2: Everywhere at Once. We examine the parallel architecture

of the computations embodied in classical physics and learn

how they can be modeled by cellular automata.

• 2.3: Chaos in a Bouncing Ball. By discussing the motion of a

bouncing ball we see that a seemingly random physical

process can, in fact, be a deterministic computation.

• 2.4: The Meaning of Gnarl. The most beautiful naturally occur-

ring forms and motions correspond to class four computations.



• 2.5: What Is Reality? How do we keep quantum mechanics

from spoiling everything for universal automatism? Must we

accept a lack of determinism at the very smallest scales?

• 2.6: How Robots Get High. A computational view of quantum

mechanics leads to the new field of quantum computation—

and suggests some odd views of the mind.

2.1: Rough and Smooth

On the one hand, some aspects of the world are discrete or rough—like a pile

of rocks. These rough magnitudes are best measured by counting. On the

other hand, things like a person’s height seem smooth or continuous and are

measured in terms of size intervals. Rough things change in abrupt jumps,

while smooth things ooze.

Mathematicians codify the distinction by speaking of the integers and the

real numbers. Integers are fairly easy to understand: 0, 1, 2, 3, and so on.

But the so-called real numbers are rather fictional: a real number between

zero and one is to have a form like 0.12378909872340980... with a suppos-

edly endless series of digits stretching out to the right of the decimal place.

Ever since the nineteenth century, this infinite extravagance has been

believed to be the best way to model the intuitive notion of a continuous

interval as being endlessly smooth. But it may be that the real numbers of

mathematics aren’t a true reflection of the actual world.

Computer scientists model real numbers by finite patterns of bits, with the

number of bits being something that can be adjusted for the particular appli-

cation. The commonly used data types known as float, double, and long double

correspond, for instance, to decimal numbers with, respectively, seven, fifteen,

and thirty digits. The real numbers of computer science are “granular” in the

sense that they are incremented in small steps of a minimum size.26

In physics we have a kind of granularity as well. Although nobody’s sure

what happens at the very smallest scales, quantum mechanics seems to tell

us that it doesn’t make sense to speak of ordinary space at scales less then

what’s known as the Planck length. This length is 1.6 × 10-35 meters,

expressible as a decimal number whose first nonzero digit appears in the

thirty-fifth place.
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Planck length ~ 0.000000000000000000000000000000000016 meters.

If it doesn’t make sense to speak of measuring any physical length to a

greater precision than the Planck length, this means that physical coordinate

locations can really have at most thirty-five digits of precision to the right of

the decimal. This falls a long way short of the infinite precision enjoyed by the

mathematical real numbers!

Now, it’s conceivable that there might be an infinitely smooth fundamental

reality underlying quantum mechanics. But it’s equally conceivable that ulti-

mate reality is fully discrete and digital—indeed, this view is becoming fairly

popular among physicists, who dream of turning spacetime into something

like a snap-together network of nodes and links made up of quantum loops

or superstrings.

Closely related to the discrete-continuous distinction is the digital-analog

divide. Adding numbers with pencil and paper seems like a digital computa-

tion, while adding numbers by measuring out lengths seems like an analog

computation. Counting grains of sand seems digital, and spinning a wheel of

fortune seems analog—although note that we digitize the rims of our gam-

bling wheels into distinct bands.

The general sense is that our desktop computers carry out digital compu-

tations, while real-world physics is running analog computations. A digital

computer’s states resemble distinct integers, while an analog computer’s

states are like densely bunched decimal numbers.

A virtue of digital computations is that they’re relatively impervious to out-

side influences. To change a digital value you actually have to make a sub-

stantial change on the order of flipping a bit. Personal computer (PC)

hardware designers can build in routines to detect and correct the accidental

bit-flips that occur when, for instance, a cosmic ray happens to zap a chip.

An analog quantity, on the other hand, can drift away from its setting by just

a tiny amount. And, as we’ll be discussing in section 2.3: Chaos in a Bouncing

Ball, in chaotic analog systems very small physical differences can rapidly

amplify into visible effects. This said, many analog computations are robust

and insensitive to noise. This is achieved by having the system incorporate

some kind of averaging process.

A side effect of a computation’s being digital is that it’s easy to regard it as
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evolving in discrete time steps, with each step changing a state value. We

think of digital systems as updating themselves in ticks like a clock, and it’s

meaningful to ask about a computation’s “next state.” In an analog system, on

the other hand, it’s less clear-cut when a state value has changed. Suppose,

for instance, that the state involves a real number expressed by, say, thirty

digits. Over a period of time, the number may go from one value to another,

but if the change happens in a series of small and rapid steps, we may be

unable to perceive the individual steps. An analog computation may seem to

slide through a series of all-but-indistinguishable states. In formulating the

laws of analog computations, rather than talking about a “next state” it’s more

common to simply observe the system at some successive intervals of time.

The distinction between digital and analog computations isn’t sharp. Con-

sider the following attempt at a definition.

•Definition. A computational system is said to be digital if its states

range over a small set of discrete possibilities, and is said to be

analog if it has a very large number of possible states.

The point of the definition is that whether you call a given computation dig-

ital or analog depends upon your operative notions of “small” and “large”

numbers of states. In practice we can speak of any naturally occuring

computation as being more or less coarsely digital, with the very fine digital

computations shading into the ones we call analog.

We think of our digital PCs, for instance, as containing patterns of zero-or-

one bits, sharp and crisp as black-and-white mosaics. Analog physical sys-

tems, on the other hand, seem to have states that are like shades of gray. The

shakiness of the distinction rests on the fact that, seen at a distance, a dig-

ital pattern of black-and-white tiles will appear to be an analog shade of gray.

Conversely, a seemingly smooth analog gray scale is likely to be a ladder of

distinct steps.

The digital-analog distinction is further blurred by the fact that a compu-

tation may be based on lower levels that may lie elsewhere on the digital-

analog spectrum. Adding numbers in your head is, for instance, digital, but

the electrical and chemical potentials in the neural synapses range across so

many state possibilities as to be essentially analog.

In practice, we use analog to mean fairly precise but not infinitely precise.
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We imagine a very large range of analog values, but not an endless range. Our

analog computations employ, if you will, a deflated infinite precision.

When we use analog in this limited sense, the distinction between digital

and analog becomes less important, for analog computations can emulate the

digital, and digital computations can emulate the analog. Let’s say a bit about

the two directions of emulation.

Analog emulates digital. A digital PC is based on the physical analog com-

putations of its wires and chips—putting it differently, the analog electronic

system is emulating a digital PC. How can it be possible for a machine

made of analog components to have digital behavior? The answer is that a

computer chip uses a whole pack of electrons to store a bit of information.

Yes, the chips are small, with etched “wires” on the order of a millionth of a

meter across. But electrons are in some sense a billion times smaller than

that. The slightest current involves a torrent of electrons; a bit is stored by

a charge of perhaps a half million electrons.

At a more primitive level, the Babbage and Scheutz machines were digital

computers based on the analog motions of quite ordinary objects: gears and

rods and cams. Along these lines, in the 1970s, just for fun, Danny Hillis,

Brian Silverman, and some other MIT computer science students built a tic-

tac-toe-playing computer out of Tinkertoys.
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Figure 28: Ed Hardebeck and Brian Silverman Building a Tinkertoy Computer

Note the “programming mallet” on the floor behind Brian.



Digital emulates analog. If we use enough real-number variables of suffi-

ciently high precision, we can always emulate any analog system of limited

size. Yes, science-fictionally, speaking, we might imagine some infinitely pre-

cise analog computation that can’t be emulated digitally. But so far as we

know, the existence of the Planck length cutoff suggests that this isn’t ever

going to happen. And, as I mentioned before, it may even be that at the

deepest level the world is digital.

A standard computer simulation of a continuous-valued CA approximates

the cells’ allegedly real-number values by discrete rounded-off numbers.

Some computer scientists are leery of continuous-valued CAs because they

fear that this rounding-off process creates unpredictable errors that will

accumulate and become amplified into large-scale irregularities of behavior.

But in actual practice, all of the continuous-valued CA simulations discussed

in this book have an averaging step—which blocks the amplification of error.

That is, in the continuous-valued CAs that I discuss, a cell’s new value is

based on a formula involving the average of the neighboring cells’ values. And

this averaging process damps down any troublesome round-off errors.

Even so, some doubting Thomases question whether the use of, say, the four

billion possible real values allowed by thirty-two-bit real numbers produces

behavior that’s really the same as what you’d see with an infinite range of truly

continuous real numbers. I’ve carried out some experiments in which I have a

granularity control to select how many discrete values are used to approximate

real numbers. And what I’ve found is that once we drop below a not very high

granularity level, the behaviors of the simulation don’t change, at least not over

the admittedly limited times that I’ve watched my simulations.27

We can view physics in three ways, and each way allows both for a digital

and an analog interpretation.

• In the mathematical physics view, physics is like a axiomatic

system in which we derive results from equations. Although

all the current equations for physics are based on continuous-

valued real numbers, it may be that a future, more digital,

physics can formulate the world’s laws in terms of discrete

numbers.
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• In the particle system view, the world’s “processors” are dis-

tinct objects—either human-scale objects like tables, chairs,

and balls, or primitive objects like atoms. Whether we view

these processors as carrying out digital or analog computations

depends on the situation. At the high level, these distance

measurements appear analog, but at a very low level they may

appear digital.

• In the continuous-valued cellular automaton view, we see the

world as a doughy continuum that we can divide up into vir-

tual cells, with each cell being viewed as a processor. Here

again we can view the cell rules as being digital or analog com-

putations, depending on how many states we suppose the

cells to be able to have.

Let’s say a bit more about these three approaches.

Traditional mathematical physics is about smooth matter and force fields

varying according to nice algebraic laws. And mathematical tools such as cal-

culus are formulated in terms of continuous real numbers. One virtue of

analog computations is that they’re easy for us to think about. For analog

computations are an approximation to by now familiar mathematical

processes involving infinitely continuous real numbers.

Mathematical physics can in some situations provide very good predictions

about what physical systems will do. This approach worked well for Isaac

Newton: He was able to compute the motions of the solar system right down

to the moons of Jupiter by using his laws of motion, his universal law of grav-

itation, and a few observations.

But, as it happens, mathematical physics runs up rather quickly against

the limitations of the axiomatic approach. Some sets of equations have solu-

tions that don’t happen to have any simple descriptions. And other, more

obdurate sets of equations resist any mathematical solution at all. In prac-

tice it’s not possible to find idealized mathematical solutions to most real-

world physical systems. Some of Newton’s predictions were in fact wrong. A

fully accurate general mathematical solution of a system with even three

bodies is in fact impossible.
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Physicists at today’s frontiers are interested in seeing whether mathemat-

ical physics might become fully digital.

The particle system method is a quite demanding computational approach to

physics—demanding, that is, if you want to simulate it. Here we regard the math-

ematical laws of physics as expressing averages across a large number of discrete

particles. If we say that a Scuba tank’s pressure is proportional to its tempera-

ture, for instance, we’re talking about the averaged-out qualities of immense

numbers of individual particles. The pressure has to do with the summed force of

the air molecules hammering on the tank’s walls, and the tank’s temperature is

derived from the average speed of its molecules. (More precisely, both quantities

are proportional to the square of the average speed of the gas molecules.) If we had

enough computational power, we could simply see these laws as emerging from

the statistical behavior of a humongous particle system.

The nice thing about mathematical physics, of course, is that the laws and

equations that emerge from the particles systems are often fairly simple. And the

field of statistical mechanics shows how and why the laws emerge. We gain clarity

by viewing physics as an analog continuum instead of a frantic dogpile of atoms.

Although the positions and velocities of the particles would seem to be con-

tinuous, there is the possibility that space and time are quantized, so that

particle system models would be fully digital as well, although the “particles”

of such a fully digital theory might be something as primitive as loops in

superstrings.

Continuous-valued cellular automata are examples of what engineers call

finite element methods.

The idea is to divide space up into a grid and to track something like the mass

or temperature or average velocity for each cell of the grid. When we use, for

instance, a continuous-valued CA to model the flow of heat, each cell holds

a temperature value; in the case of water waves, the cells track height above

sea level.

By making the grid coarser or finer, you can trade off between the accuracy

and the speed of the simulation—if the grid were as fine as the size of individual

electrons, a continuous-valued cellular automaton method would be similar to

a particle system simulation. But in practice, the cells are much larger than
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that and, in effect, each cell is holding values based upon an average of many

particles.

Continuous-valued CA methods introduce two kinds of digitization: first

of all they break space and time into discrete steps, and second, they use

computer-style digital approximations to the continuous quantities being

simulated.

In an ultimate universal automatist dream, we might hope to find some

very simple underlying CA that doesn’t even have to use continuous

values—Fredkin, for instance, seemed at one time to think the world could

be modeled as a two-state CA. But there are serious problems with this

approach, and in fact any simple digital computation of reality would prob-

ably have to be a somewhat different architecture than that of a cellular

automaton. I’ll say a bit more about this in section 2.5: What Is Reality?

2.2: Everywhere at Once

One can regard our world as a huge parallel computation that’s been running

for billions of years.

To get a good image of physical parallelism, imagine sitting at the edge of

a swimming pool, stirring the water with your feet. How quickly the pool’s

surface is updated! If you toss a twig into the pool, the ripples spread out in

a perfectly uniform circle. How do the ripples know where to go? The patterns

emerge from reality’s parallel computation.

I have the following architecture in mind, which I’ll call the classical

physics architecture.

• Many processors. The world’s computation is ubiquitous, with

no superprocessor in charge.

• One shared memory. Reality is one.

• Locality. Each processor has access to only its local 

neighborhood.

• Homogeneity. Each processor obeys the same rule.

• Synchronization. The processors run at the same speed as one

another.
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How does nature fill this bill? I mentioned in section 2.1: Rough and

Smooth that we can usefully view the world’s computations as being either

particle systems or as continuous-valued CAs. The five conditions can hold

in either place (table 2).

Having many processors acting on one memory corresponds to the basic intu-

ition that, on the one hand, physics is happening everywhere, and, on the other

hand, there is a single shared reality that contains all physical processes. If

you’re thinking of the world as made of particles, this reality is sometimes called

state space and contains such information as the mass, location, velocity, and

acceleration of each particle. If you prefer to think of the world as made of con-

tinuous fields, the shared reality of state space specifies quantities like density

and rate of flow measured at each region of space. In either case, the numbers

that specify state space are most readily thought of as analog numbers.

The issue of locality is less obvious. In principle we can imagine parallel

processors that have global access to all of the memory. A simple example

of parallelism with global memory access would be a PC with two or more

Table 2: Two Ways to View Classical Physics as a Parallel Computation

Architectural requirement Particles CAs

Many processors Each particle Each small region of space
acts as a processor acts as a processor

One shared memory The collective states Space with its 
of all the particles is various observables 
the memory is the memory

Locality Particles only interact Each region of space 
when they touch interacts only with the 

nearest neighboring regions

Homogeneity All particles obey the Each region of space obeys  
same laws of physics the same laws of physics

Synchronization Time runs at the same Time runs at the same rate 
rate for each particle at each location



central processing units—in the old days

this required having several microprocessor

chips, but now a single chip is likely to have

multiple processing cores. In any case, each

of the processors can access all of the PC’s

memory. In figure 29 we illustrate parallelism

with local vs. global access.

Classical (that is, nonquantum) physics is treated as a parallel computa-

tion with local processor access to memory. That is, the processes at one

location are affected only by the data in the immediately neighboring regions

of space and time. What happens at one spot doesn’t affect things somewhere

else without an intervening process—such as a photon or a gravity wave.

Information must be passed along in a kind of bucket brigade from one

region to the next. The classical principle of locality is summarized in the

slogan, “No action at a distance.”

In quantum mechanics, it at first appears that locality may be violated.

When two quantum systems interact and become “entangled,” they can later

affect each other at arbitrarily great distances, seemingly with no intervening

time. In section 2.4: What Is Reality?, I’ll suggest a way in which even here

some form of locality can be preserved.

The homogeneity condition lies at the very heart of how we imagine physics

to work. There are to be certain universal laws that apply at every spacetime

location. In practice, physical laws often have cases that apply only when cer-

tain extreme conditions are encountered, but the whole thrust of science is
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Figure 29: 
Local and Global Memory Access 

for Parallelism

The circles stand for processors, the rectan-
gles stand for the memory, and the lines indi-
cate access. In the case of global access, we
can simplify the figure by lumping all of the
memory slots together into a single memory
box and drawing a fat gray line to indicate
access throughout the memory region in
question.



to try to squeeze all of the conditions into one law. Extremely dense systems

are the current paradigmatic example of areas where the homogeneous laws

of physics run into trouble—the issue is one of reconciling quantum

mechanics with the laws of gravity.

The synchronization condition stipulates that the processors carry out their

computations at exactly the same rate, essentially updating in unison.

Although this sounds like a reasonable assumption about the world’s com-

putational nature, there are serious problems with it.

First of all, Einstein’s special theory of relativity tells us that if particles are

moving relative to one another, then their internal clocks will in fact run at

different rates. This in turn implies that any notion of “now” that we extend

across a large region of space must be somewhat arbitrary. One way out might

be for us to pick one privileged reference object—why not Earth—and to then

adjust the rules of physics to include time dilation factors for particles moving

relative to the reference object. If using Earth as the standard of rest seems too

medieval, we might instead adopt a universal standard of rest based upon the

cosmic background radiation—you’re at rest if this radiation doesn’t appear to

be shifted toward the blue or the red end of the spectrum by your motion.

Fine, but once we introduce general relativity with its warping of space-

time, we have to deal with cusps and singular points, as at the hearts of black

holes. And establishing a universal standard of rest becomes exceedingly

problematic. Moreover, when we extend our considerations to the cosmolog-

ical shape of the whole universe, there’s a possibility that time might

somehow loop back on itself. In short, if our universe is sufficiently pocked,

warped, or knotted, it becomes impossible to slice it into spacelike sheets of

simultaneity, and global synchronization is out of the question.

This said, the objections to synchronization need not come into play if I’m

only interested in modeling some local aspect of the world, which is all I’m

going to be talking about most of the time.28

Particle systems and CAs are both good paradigms for multiprocessor com-

putations acting on a common memory space and satisfying parallelism,

homogeneity, and synchronization. For purposes of discussion, let’s consider

three simple systems that we might view either as particle systems or as CAs.
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• Heat. You dip a spoon into a hot cup of tea, and feel the

warmth move up the length of the handle. In terms of parti-

cles, we might say that the molecules of the tea are moving

rapidly. They collide with the molecules of the spoon and set

them to vibrating more energetically. The agitated motion is

passed up the length of the spoon molecule by molecule. To

think of this as a CA, regard the spoon’s handle as a one-

dimensional row of cells. Each cell averages its temperature

value with the temperatures of the neighboring cells.

Repeating the averaging process over and over moves higher

temperature values up the length of the spoon.

• Water waves. You toss a twig into a swimming pool and

observe the ripples. In the particle view, pushing down the

particles in one location on the surface tugs at the neigh-

boring particles on the surface—this is the phenomenon

known as surface tension. The neighboring particles in turn

pull on the particles farther away, with the whole system

acting something like a lot of little balls connected by springs.

To view the water surface as a CA, think of the two-dimen-

sional surface as a grid of little cells, and use the cells to

model the behavior of an elastic sheet. Each cell’s height

above the bottom of the pool is described by the so-called

wave equation, in which the rate change of a cell’s height is

proportional to the difference between the average height of

the neighboring cells and the cell’s previous height.

• Smoke tendrils. Someone smokes a cigarette and you watch

the smoke in the air. In a particle system model, we’d say that

the smoke and air molecules bounce against one another. The

fine lines in the smoke pattern are visible flow lines made up

of particles having the same average velocity. To see this as a

CA process, think of space as made of little volume elements:

three-dimensional cells. The laws of hydrodynamics relate the

pressure, density, and flow direction in each cell to the corre-

sponding quantities in the neighboring cells.
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I’d like to get into some detail about how we set up CAs to model heat flow

and wave motion. In describing CA rules, I like to write C to stand for a cell’s

current value, using NewC and OldC to stand for the cell’s next and previous

values, respectively. In the case where the CA value is a single real number,

NeighborhoodAverage will stand for the average of the values in the cell’s

neighborhood.

To simulate the flow of heat, we might use a rule of this form.

(Averaging rule) NewC = NeighborhoodAverage.

This might be, however, a bit crude, and lead to the heat spreading unre-

alistically fast. More typical is to pick a diffusion rate, a, between zero and

one, and to use a rule of this form.

(Diffusion rule) NewC = a • NeighborhoodAverage + (1–a)•C.

The Lifebox, the Seashell, and the Soul

94

Figure 30: 
One-Dimensional Heat CAs with 

Varying Rates of Diffusion

The figure shows four one-dimensional CA
models of a wire that was heated in the
middle, each wire being initially heated in the
same way. The wood-grain-like pattern in the
top part of each picture shows a vertical space-
time sequence of successive states of the wire,
with the heat values represented by shades of
gray and with time running down the page.
The bumpy line at the bottom part of each pic-
ture is a different representation of the heat
distribution, this representation corresponding
to the final instant of time. The diffusion rates
a for these CAs are, left to right and top to
bottom, zero, one-third, two-thirds, and one.
Note that in the CA with diffusion rate zero, the
heat pattern doesn’t change at all, and in the
CAs with lower diffusion rates, the pattern
changes less than it does in the CA with diffu-
sion rate one.



If a is 1, the Diffusion rule is the same as the Averaging rule, but as a gets

smaller, the diffusion happens slower and slower. Figure 30 illustrates this.

We can also represent water waves by a CA rule. The rule works by having

each cell take its current value C, add to this the average of its neighbors’

values, and then subtract off the cell’s previous value. In symbols,

(Wave rule) NewC = C + Neighborhood Average – OldC.

It isn’t particularly obvious that this simple rule will in fact re-create wave

motion, but it works very nicely. Figure 31 shows two representations of this

CA after being seeded with some randomly placed bumps—analogous to a

handful of gravel thrown into a pond.

In section 1.8: Flickercladding, I mentioned that Stanislaw Ulam collabo-

rated with John von Neumann on discrete-valued CAs, and that in the

1950s, he switched his attention to continuous-valued CAs. One of the wins

in looking at these simple toy models of physics is that it becomes possible

to visualize alternative physical laws whose consequences might be too hard

to understand simply by looking at the equations. And this is just what

Ulam did; he began running CA models of nonstandard kinds of physics to

see what would happen.
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Figure 31: Two-Dimensional Wave CA, Two Views

The two views show the same CA. On the left, we represent each cell’s value by a shade of gray,
creating a pattern that looks like light on water. On the right, we represent each cell’s value as a
height, creating a three-dimensional picture.29



Ulam was encouraged by the atomic physicist Enrico Fermi, inventor of

the neutrino. Fermi was curious about what might happen if one looked at

so-called nonlinear waves. What is the meaning of “nonlinear” in this context?

Ordinary waves—like the ones we just discussed simulating—are often

based on a kind of spring force. If you stretch a string, or a water surface,

it wants to pull back to its original size. In ordinary physics, this restoring

force of a spring is proportional to the displacement—one has a Hooke’s

Law–type equation of the form F = k • displacement. This is called a linear

equation because there aren’t any exponents in it. Fermi wondered what a

wave might look like if it was acting on a substance in which the restoring

force satisfied an equation with an exponent, such as F = k • displacement2,

or even F = k • displacement3. As Ulam put it:

Fermi expressed often a belief that future fundamental theories in

physics may involve nonlinear operators and equations, and that it

would be useful to attempt practice in the mathematics needed for

the understanding of nonlinear systems. The plan was then to start

with the possibly simplest such physical model and to study the

results of the calculation of its long-time behavior.30

Working with the Fermi and the early computer scientist John Pasta, Ulam

carried out the experiments and wrote them up. Figure 32 shows what the

Fermi-Pasta-Ulam quadratic and cubic waves look like.

It’s interesting that a mathematician of Ulam’s caliber was thrown back on

carrying out a cellular automaton simulation. If he wanted to know the

effects of a nonlinear wave equation, why couldn’t he just work out the math?

After all, rather than viewing the world as a particle system or as a CA, we

can also regard the world as a set of equations. So why didn’t Ulam simply

deduce what a nonlinear wave would do?

Well, nonlinear waves are an example of a situation that resists analysis

by an axiomatic approach. If you want to figure out what a nonlinear system

is going to do, you actually need to run some kind of simulation of it.

Or, of course, you can just look at the world itself. Ultimately, we don’t

really need to model the world. It does a fine job of computing itself. Indeed,

for a universal automatist, physics is made of computations.
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Figure 32: 
Fermi-Pasta-Ulam Quadratic and Cubic Nonlinear Waves

The figure on the lower right shows the shadings that we use to indicate the cell values. The other
three figures show one-dimensional CAs. In each of these figures, the upper part is a spacetime
diagram, that is, a stack of a few hundred pictures of the CA, with time running down the page.
Think of the alternating dark and light bands as being lines of equal altitude above the plane of
the page. The wiggly graphs at the bottom are instantaneous pictures of the CA state, with the cell
values represented as vertical positions; here the altitude direction is within the page. In each case
the CA is seeded with a smooth wave at start-up. The upper left image shows a quadratic wave
after a hundred updates, when it still looks very much like a regular wave. The upper right image
shows the same quadratic wave after about fifty thousand updates. The lower left shows a cubic
wave after about fifty thousand updates.31



2.3: Chaos in a Bouncing Ball

In this section, we’ll revert to the particle system view and regard the world’s pro-

cessing elements as being ordinary objects; in particular, I’ll talk about the

motions of balls. My first example is what I’ll call the bin experiment (figure 33).

A ball drops from a fixed height straight down to a box divided into two tall

bins, and the ball ends up in either the left or the right bin, with no possibility

of bouncing from one bin into the other.

We suppose that we can vary the ball’s starting position along the horizontal

or “x”-axis, with the zero position located exactly above the center of the parti-

tion dividing the two bins. We might summarize this by saying the experiment

is a Bin(x) process that computes a Left or Right bin output from the starting

position x.

For the moment, we’ll ignore the parallel aspects of physics and focus on

the ball as a single serial processor. For the ball, the low-level software is the

laws of physics, the high-level software is the configuration of the bin, the ini-

tial input is the ball’s starting position x, and we’re interested in the output

state where the ball has settled down

into the left or the right bin.

Remembering the stored program

concept, we recognize that there’s not

that sharp a boundary between the

high-level software and the input data.

In other words, you can either think of

the box as “software” or “data.” I’m

leaning toward the software view, as

I’m thinking of situations where we

might throw a ball into some fairly

complicated and mazelike collection of

passages and walls and ask about

where the maze design makes the

given input ball end up.
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Figure 33:
A Ball Computes Bin(x) to Be Left or Right



Although the simple bin experiment seems nice and deterministic, there

are some quagmires to explore.

When the ball is released near the center of the x-axis, it may bounce up

and down on the divider for a while. Maybe once in a blue moon it’ll end up

balanced upon the divider for a longer period of time. Is this a problem? Not

really. We can just say that there are three possible outputs: at a given time

the output Bin(x) might be Left, Right, or Up—where the Up state corre-

sponds to any situation where the ball hasn’t yet landed and come to rest.

If we’re going to talk about time, we might as well make it explicit, and

write Bin(x, t), to indicate the state of the system t seconds after we drop the

ball from position x. Bin(x, t) will be Up for the smaller values of t; then even-

tually it will go to Left or Right and stay there. And if we just write Bin(x), we

mean, let’s say, the value of B(x, 300), that is, the state of the ball five min-

utes (or three hundred seconds) after you drop it.

Fine, but now we have to face a harder problem. Suppose you were to

actually set up a bin experiment and carry out a large number of runs, each

time dropping the ball from what seemed to you to be the exact center of the

x-axis. The resulting outputs would be a more or less random sequence of

Left and Right outputs, with maybe, once every billion runs, an Up output

that lasts a full five minutes. But rare, anomalous cases aren’t the important

issue. The important issue is that if we keep dropping the ball from what

seems to be the exact center, our bin experiment will generate a seemingly

random sequence of results. Although we think we’re using the same input

over and over, we keep getting different results.

The best way to express this is to say that an individual physical compu-

tation like dropping a ball into the bin is not repeatable. We can approxi-

mately repeat many physical computations—otherwise we’d never learn to

walk or throw a Frisbee. But the scuzz and fuzz of the natural world keeps

its computations from being precisely repeatable.

The reason is that we do not—and cannot—have perfect control over the x

input. The value of x may be near zero, but it won’t be exactly zero. And each

time we put it near zero, it’ll be “near” in some different way. You can’t set x

to the same value twice in a row because it doesn’t make sense to say that a

normal-size object’s location is exactly some precise number.

Suppose, for instance, you’re measuring the position x in meters, and
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you’re trying to get a lot of decimal places of accuracy. When you reach the

ninth decimal place, you’re at the nanometer level, where the sizes of mole-

cules and atoms become significant. At this scale, your ball is a vibrating

cloud of atoms, and asking about the exact center of the cloud becomes as

impractical as asking after the exact center of a swarm of gnats.

The more decimals you want, the worse it gets. At eighteen decimals,

you’re down at the level of protons and neutrons, and most of the ball looks

like empty space. And at the thirty-fifth decimal place you hit that trouble-

some Planck length, the scale at which continuous space may not even exist.

Measure a position to an arbitrary precision? Forget it!

Can’t our uncertainty about the ball position’s smaller decimal places just

stay insignificant? No. Suppose that the divider between the two bins has a

rounded top. Geometrical considerations show that each bounce moves the

ball farther from the exact center. The amplification is in fact exponential, in

the sense that after n bounces, an initial displacement will be on the order of

10n times as big. Another way to put it is that each bounce brings another

few decimal places of the position into visibility. No matter how tiny the ini-

tial displacement is, it will rather quickly become visible (figure 34).

To complicate things, as the ball bounces on the divider, effects from the

irregularities in the surfaces of the ball and of the divider come to domi-

nate the not-really-so-precise initial condition. Before long, you have to

consider the effects of air currents and even the gravitational effects of

objects other than the downward-pulling earth. These influences are, if you

will, interactive inputs added onto the initial input. If the ball bounces long

enough on the divider, no effect is too small to have an influence.

So what are we left with? Is the bin

experiment a deterministic process? Can

we call it a computation?

Yes. It’s a computation that just doesn’t

happen to be repeatable—that is, you can

never manage to reset things to get the
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exact same initial input and then observe the exact same series of outputs.

The bin experiment is unrepeatable because the dynamics of this system

amplifies the tiniest details of the initial and interactive inputs so that they

have large and noticeable effects.

This point is important, so I’ll say it once more. When we get into the zone

near the center point, the bin experiment remains deterministic, but it

becomes sensitive not only to the details of the input position but also to

vagrant influences by the environment. Yes, the output seems random, but

this is only because the initial and interactive inputs aren’t fully known. And

it’s this lack of knowledge that makes the experiments unrepeatable.

The bin experiment is an example what physicists call a chaotic system. A

chaotic system is one that rapidly amplifies the details of its initial conditions

and external influences. In the formal definition of chaos, mathematicians

also require that a chaotic system is one that will now and then appear to be

periodic for short periods of time. Very many, perhaps most, everyday phys-

ical systems are chaotic.

Note that although chaos makes processes complex, that doesn’t mean

that these computations are random. Waves and clouds are chaotically

diverse, but they do tend to have certain characteristic patterns. When you

go to the beach, you don’t see a completely random goulash of water and

air—no matter how gnarly the surf, it’s still made up of waves in a charac-

teristic distribution of sizes.

The characteristic space and time patterns of chaotic processes are known

as strange attractors. The science writer James Gleick describes how a group

of Santa Cruz chaoticians known as the Dynamical Systems Collective

learned to see them in the natural world.

They had a game they would play, sitting at a coffeehouse. They

would ask: How far away is the nearest strange attractor? Was it

that rattling automobile fender? That flag snapping erratically in a

steady breeze? A fluttering leaf?32

Drop a piece of paper and watch it drift to the floor. The paper seesaws

back and forth, twirls, flips over, dives, and catches itself with a sudden

swoop. And if you drop it again it’s likely to do something different. Repeatedly

our rich world

101



toss an apple core toward a trash can. Now and then you may seem to be in

a groove, with the core bouncing in, but over time, the results are quite

unpredictable. Observe a drop of milk spreading through your coffee. There

is a certain regularity to the tendrils, but nothing long-lasting or systematic.

Run your fingernail across your desk and listen to the sound. Make your bed

and regard the exact shape of the crease where the blankets tuck in. Watch

a raindrop on a windowpane. All of these systems are rule-based and deter-

ministic. Yet all of them continually produce surprise. These and perhaps

most other physical systems are computations that are in practice unrepeat-

able because you can never reproduce the exact same combination of initial

and interactive inputs.

Some chaotic systems explode into a grungy thrashing, while others settle

into very nearly repetitive behavior patterns. Chaotic systems can range from

having a lesser or a greater amount of disorder.

A key distinction between bouncing balls and PCs is that our PC computa-

tions are repeatable. This is because PCs are digital, with a feasibly small range

of initial values and because they are well isolated from unwanted inputs.

But because bouncing balls are analog, their computations are not repeat-

able. The difference between analog systems and digital systems is not that the

analog computations are in any way less accurate. The difference is that analog

systems have so many states that it’s physically impossible to control the

inputs of an analog computation precisely enough as to make it repeatable.

As it happens, the physical computations we enjoy watching are the least

likely to be repeatable. In a ball game we relish the moments when the ball’s

motion is the most obviously chaotic. The football that dances and flubbed

on the players’ fingertips. The basketball that circles the hoop before drop-

ping in. The line drive that escapes the pitcher’s glove to be bobbled by the

short stop and caught by the second baseman. The Ping-Pong shot that skids

along the net and somehow crawls over it.

Back in the 1970s, my family and I lived in upstate New York. There was a

relentlessly lively little boy in our neighborhood. Kenny. We had a wooden

garage with rafters, bookcases, bicycles and tricycles, sleds on the walls, rakes

and hoes, a lawn mower, a rabbit hutch, and so on. Kenny would throw a dis-

carded tennis ball into our garage as hard as he could, and excitedly describe

the paths the ball would take. “Look, it hit the paint can and slid off the hose
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onto the windowsill and rolled across to the bicycle seat before it dribbled

under the car!” Kenny was having fun watching physical computations.

Observing physical computations is a simple human pleasure. Last night,

in fact, with these ideas in my mind, I was playing at the dinner table. My

wife and I were guests of the neighbors, and I picked up a plastic wine-cork

and tossed it toward the wooden napkin ring lying on its side on my host’s

place mat. The cork landed just right, did a gentle flip, slid into the napkin

ring, and stayed there. Goal! I spent the next few minutes trying to do it

again, until my wife made me stop. At social gatherings, a gentleman eschews

fanatical computer hacking of any kind.

Physical computations are things we can enjoy with our whole bodies. One

of the particular joys of mountain biking is riding down a hill, enjoying the

sensations of a computation playing itself out. The hill is the input, physics

is the low-level software, your bicycle and your reactions are the high-level

software, and the output is your breezy ride.

Bicycling, or for that matter skiing, involves a downhill ride that’s chaotic

in its sensitivity to small influences. After a bit of practice, you learn to

supply a stream of interactive inputs that guide you away from outputs

involving a spill. Physiologists report that a human brain sends out muscle

control signals at a rate of about ten pulses per second. Using the rapid com-

puter in your head, you’re able to predict the next few seconds of your

onrushing physical computation and to tailor your control pulses to guide

you toward the outputs you prefer.

When an ongoing computation adjusts itself—like a bicyclist, a skier, or,

for that matter, a soaring bird—we see intelligence. But the motions of even

dumb, unguided physical objects can be arbitrarily complex.

Recall Wolfram’s Principle of Computational Equivalence (PCE), which I

introduced in section 1.2: A New Kind of Science. Wolfram claims that essen-

tially all complex computations are universal, that is, rich enough to emulate

any other computation. In other words, most of the physical systems we

encounter are universal, just as they are.

What kinds of examples do I have in mind when I speak of universal phys-

ical computations? Chaotic ones. A ball bouncing around a cluttered garage.

Ice crystals forming in freezing water. Drifting masses of clouds. Amplified

feedback from an electric guitar. A scarf dropping to the floor.
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How simple can a universal physical computer be? In the 1970s, the auto-

didact universal automatist Edward Fredkin described how to make a uni-

versal computer from billiard balls bouncing around on a frictionless table.

It’s not much of a leap from this to arguing that the three-dimensional

motions of the air’s molecules are also a universal computer.

But do keep in mind that in the cruddy, scuzzy world of physical objects,

the motions of air molecules or Fredkin billiard balls are irredeemably

chaotic, rapidly amplifying the slight inaccuracies of the starting conditions

and then being swamped by external effects like the tiny gravitational forces

from the motions of the observer. The bouncing particles will compute some-

thing, but probably not what you intended them to.

I mentioned in section 2.1: Rough and Smooth that we can digitally emu-

late physics, at least in principle. But in practice there are three difficulties:

a first relates to initial conditions, a second comes from the supplemental

inputs we just mentioned, and a third concerns unfeasibility.

Suppose your targeted task is to emulate precisely some particular run of

a physical process. You plan to make, say, a virtual model of my garage, and

toss in a virtual ball and try to get it bounce around just like Kenny’s tennis

ball did.

The initial condition problem is as follows. Because each bounce amplifies

more digits into visibility, you have an exceedingly low probability of exactly

emulating Kenny. Yes, as you hunt through the range of possible inputs you

may come across runs that start out by behaving like Kenny’s big throw, but

the simulations will eventually diverge from the reality as you simulate more

and more of the elapsed time.

The supplemental inputs problem has to do with the fact that even if you

miraculously match Kenny’s initial input, due to the chaotic sensitivity to

supplemental inputs, even if a trajectory matches Kenny’s for a second or

two, it will soon veer away as a result of tiny supplemental inputs from the

world at large.

The feasibility problem has to do with the fact that even our most highly

parallel digital computers have a minuscule number of computational nodes

compared to nature. What analog systems lack in repeatability they gain in

their massively parallel powers of computation.
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Yes, you can simulate a ball bouncing around a garage quite well because

here you’re essentially ignoring the parallelism of the physical world. But now

suppose I ask you to also simulate the air in the garage. It’s hopeless to try

to individually simulate each of the astronomical number of atoms, and even

if you go to a higher-level finite-element model, it’s impossible. Think of all

the eddies that form in the wake of the ball, not to mention the vibrations

from Kenny’s shrill voice—the waves and vortices crossing one another and

bouncing off the irregular objects, fleeting flows interacting in gnarly, non-

linear ways.

Practically speaking, digital computers have no hope of feasibly emulating

the full richness of the physical world in real time. But we can be consoled

by the fact that we already have the world, and it’s already a computation.

The dream of traditional physics is to find simple laws to describe nature. In

some cases, such as the motions of the planets in their orbits around our

sun, simple formulas can go a very long way. But when you get into detailed,

chaotic situations like a ball bouncing around a cluttered garage, you often

need to fall back upon detailed simulation—which still doesn’t give very good

predictions, as it’s impossible to specify the initial conditions to a high-

enough degree of accuracy.

Some physicists dislike Wolfram’s work because he brings them bad news.

Recall Wolfram’s PCU.

• Principle of Computational Unpredictability (PCU). Most naturally

occurring complex computations are unpredictable.

The PCU tells us that most physical systems are going to be unpredictable

in the formal sense that there isn’t going to be a simple and rapidly running

computation that can emulate the physics very much faster than it happens.

A crucial point that I’ll be returning to is that the unpredictability is not

just the result of sensitive dependence on initial conditions and on supple-

mental inputs. Even if an experiment could be conducted in an utterly

shielded environment with a strictly accurate initial condition, the computa-

tion itself would be unpredictable.

One of Wolfram’s favorite examples along these lines involves the motion of
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a projectile, such as a cannonball. In an idealized experiment where you

ignore the effects of air friction, if you fire a bullet into the air, the bullet’s

velocity in feet per second and height in feet at a given time will be given by

simple equations of this form.

velocity = startvelocity – 32 • time

height = startheight + startvelocity • time – 16 • time2.

The beauty of these equations is that we can plug in larger values of time

and get the corresponding velocity and the height with very little computation.

Contrast this to simulating the motion of a bullet one step at a time by

using a rule under which we initialize velocity to startvelocity and height to

startheight and then iterate the following two update rules over and over for

some fixed time-per-simulation-step dt.

Add (–32 • dt) to velocity.

Add (velocity • dt) to height.

If your targeted time value is 10.0 and your time step dt is 0.000001, then

using the simple equations means evaluating two formulas. But if you use

the update rules, you have to evaluate two million formulas!

The bad news that Wolfram brings for physics is that in any physically

realistic situation, our exact formulas fail, and we’re forced to use step-by-step

simulations. Real natural phenomena are messy class three or gnarly class four

computations, either one of which is, by the PCU, unpredictable. And, again, the

unpredictability stems not so much from the chaoticity of the system as it does

from the fact that the computation itself generates seemingly random results.

In the case of a real object moving through the air, if we want to get full accu-

racy in describing the object’s motions, we need to take into account the flow

of air over it. But, at least at certain velocities, flowing fluids are known to pro-

duce patterns very much like those of a continuous-valued class four cellular

automaton—think of the bumps and ripples that move back and forth along

the lip of a waterfall. So a real object’s motion will at times be carrying out a

class four computation, so, in a formal sense, the object’s motion will be

unpredictable—meaning that no simple formula can give full accuracy.
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This summer I passed a few hours in the Museum of the History of Science

in Geneva, Switzerland. It’s a jewel of a place, a dozen small rooms in the two

stories of a lakeside mansion, with parquet floors and enchanting prospects

from every window, and most of the windows open to catch the breezes from

the lake. Glass cases hold brass scientific instruments: microscopes, tele-

scopes, barometers, Leyden jars, spectroscopes, and the like. It stands to

reason that these precision instruments would be found here in the nation of

watchmakers; indeed, quite a few of them are Swiss-made.

In the museum, I photographed what seems a perfect image for science’s

dream of finding a simple explanation for everything: the crank on an orrery.

An orrery is a tabletop model of the solar system, you see, with a little handle

that you turn to move the planets and moons in their orbits.

How about the minuet of the planets, spinning to the stately music of

Newton’s laws? It’s well known that Newton’s laws can be used to formally

derive the simple laws of planetary motion known as Kepler’s laws. Does this

mean that the solar system’s motions are fully predictable?

No, even here chaos and unpredictability raise their untidy heads. In 1987,

the computer scientists Gerald Sussman and Jack Wisdom carried out a

monster simulation of the solar system to show that, in the long run, the

motion of Pluto is chaotic.33 The formal

derivation of Kepler’s laws doesn’t take

into account the pulls of the planets

upon one another, and once we include

this in the mix, Kepler’s music of the

spheres becomes discordant. We get,

once again, a class-four computation,

unpredictable by any means other than

a detailed simulation. Deterministic

yes, predictable no.
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Figure 35: The Secret Machinery 
of the Universe

The little crank you turn to move the planets of an
orrery in the Geneva Museum of the History of Sci-
ence. These days, we instead use computer pro-
grams that are so-called digital orreries.



Wolfram feels that the successes of science are limited to a small number

of phenomena, and that in most situations we will have to fall back on the

computationally intensive process of simulating the evolution of the systems

about which we want to make predictions. Indeed, it seems likely that most

natural processes can’t be predicted in detail by any simple formula—if for

no reason than that there are so many processes, and so few simple for-

mulae, that there aren’t enough “elegant laws of nature” to go around!34

2.4: The Meaning of Gnarl

Building computations in layers is a recurrent theme—think of a computer

game powered by the microcode of a chip, or of a human reckoner whose

thoughts are the firings of neurons. Layers upon layers of computation, emu-

lations upon emulations.

One of the nicest words I’ve picked up from my philosopher friends is phe-

nomenology. Phenomenology is the study of what you actually experience—
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Figure 36: Von Karman Vortex Streets

The top image was created by Maarten Rutgers using a flowing soap film, and the bottom
is a satellite photo of the clouds near the island of Guadalupe.



independent of the theories and explanations that you’ve been taught. Phe-

nomenologically speaking, continuous classical physics is closer to reality than

stories about atoms. There’s no need to apologize or feel inauthentic if you take

an observant layman’s view of the physical world. If you see it, it’s real.

If you start looking around for computation-like physical processes, you’ll

find them everywhere. Some of the most dramatic examples occur in fluid

flow. Figure 36 shows a particular fluid-flow phenomenon called von Karman

vortex streets after the Hungarian aeronauticist Theodor von Kármán. When

a stream of air or water flows around an obstacle at moderate speed, eddies

appear in the wake. Examples would be the vortices you see trailing your

hand when you sweep it through the water of a sunlit pool, the whirlpools

that seem to spawn off the back of a rock in a stream, the exquisitely filigreed

smoke from a steaming cup of tea, or the great whorls that form in cloud for-

mations downwind from mountains.

As the situation gets more complicated, so do the patterns. Figure 37

shows a photo I took of a stream flowing around four rocks at the Esalen

Institute (naturally) in Big Sur. The bumps in the water surface were fairly
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Figure 37: Water in a Stream

Looking down with the water flowing from left to right. Rocks are whited out for clarity.



stable, almost like solid objects, although now and then twisting and shifting

in response to slight changes in the amount of water coming through.

To some extent these gnarly patterns result from the intricate initial condi-

tions of the streambed and the supplemental inputs of the downstream flow.

But there’s another factor to keep in mind, the self-generated structures of the

flow computation itself. The stability of the patterns suggests that the patterns

aren’t wholly determined by the inputs. The chaotic computation has strange

attractors that it tends to settle in on.

If you had a totally smooth streambed, what kind of patterns might you see

on the water’s surface? You might suspect that very simple and uninteresting

ripple patterns would result. But this seems not to be the case. Any fluid flow

is rich enough to generate random-looking patterns quite on its own. You

don’t need any supplemental inputs to churn things up. The computation is

class four on its own.

Stephen Wolfram remarks that we might take a high-level view of flowing

fluids, treating, say, vortices as objects in their own right. Rather than saying

the complex motions of the vortices are the result of chaotically amplified

inputs, it might be possible to explain the motions in terms of a fairly simple

computational rule about the vortices themselves. It may be that many of the

external disturbances are averaged away and damped down—and the gnarly

patterns we see are the result of a simple high-level computation that hap-

pens to be unpredictable.

Recall here that I say a computation P is unpredictable when there is no

shortcut computation Q which computes the same results as P, but very

much faster. Wolfram also speaks of such computations as irreducible or as

intrinsically random.

I might mention in passing that computer scientists also use the word

pseudorandom to refer to unpredictable processes. Any programming envi-

ronment will have built into it some predefined algorithms that produce rea-

sonable random-looking sequences of numbers—these algorithms are often

called pseudorandomizers. The “pseudo” refers to the fact that these are in

fact deterministic computations.35

Recall that Wolfram’s Principle of Computational Unpredictability (PCU)

says that most naturally occurring complex (that is, not class one or class

two) computations are unpredictable. Putting the PCU a bit differently, we
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expect to find that most naturally occurring complex computations are

intrinsically random or, if you prefer, pseudorandom.

To illustrate the notion of intrinsic randomness, Wolfram points out how

the evolution of a one-dimensional cellular automaton can produce unpre-

dictable patterns, starting from an initial condition of a few marked cells and

with no supplemental inputs at all. As I’ll discuss in just a minute, Wolfram’s

favorite example of an intrinsically random process is the two-valued CA Rule

30. But first, for a change of pace, look at the intrinsically random continuous-

valued CA in figure 38.
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Figure 38: A Deterministic One-Dimensional CA Creating Gnarly-Looking Flow

The left side shows the first six hundred generations of a line seeded with a smooth
bump of values in its center. The right side shows generations 8,000 to 8,600. The rule
is called Honey, and is a continuous-valued rule based on taking weighted averages of
cells with their neighbors, using different averaging methods according to whether the
cell’s value is positive or negative. 



As is customary in a CA, the cells are updated in parallel, which means

that during each full update of the cellular automaton, every cell on the tape

computes a new value for itself. The way to read figure 38 is to view space as

the horizontal axis and time as running down the page. What we see are suc-

cessive copies of the cellular automaton’s tape. Each row of black, white, and

gray cells represents one successive step of the computation. The picture is,

if you will, a spacetime diagram.

The idea behind intrinsic randomness is that not all of the world’s seeming

randomness needs to result from outside agitation and the chaotic amplification

of initial conditions. Some, or perhaps most, of nature’s complexity can arise

from intrinsic randomness—from a simple computation endlessly munching on

the same region of data and pumping out unpredictable new patterns.

Now you might think that the intrinsic randomness of the Honey rule has

something to do with its use of continuous-valued real numbers. Maybe it’s

excavating hidden initial conditions out of the real numbers with which I

seeded it. This is why Wolfram’s favorite poster child for intrinsic randomness

is so important—there’s absolutely nothing up the sleeves of the one-

dimensional CA Rule 30.

Recall that in Rule 30, the cell values consist of a single zero-or-one bit,

which we represent, respectively, by white or black. If we start Rule 30 with

one single black cell, it quickly fills up the right half of the tape with a class-

three pattern resembling the foam in a beer glass (see figure 39).

If you repeat the run, you get exactly the same pattern, so it’s determin-

istic. Yet anyone looking at the sea of triangular bubbles in the bottom right

half of the picture would imagine the system to be random. The moral is that

a deterministic world is perfectly capable of generating its own randomness.

This is unpredictability; this is intrinsic randomness.

Recall that Wolfram’s Principle of Computational Equivalence (PCE) proposes

that most naturally occurring class three and class four computations are

equally complex. But observationally, there’s a distinction between the two.

Although class-three computations are intriguing, the most beautiful com-

putations are class four. These are the ones that I call “gnarly.”

The original meaning of “gnarl” was simply “a knot in the wood of a tree.”

In California surfer slang, “gnarly” came to be used to describe complicated,
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rapidly changing surf conditions. And then, by extension, something gnarly

came to be anything with surprisingly intricate detail.

Do note that “gnarly” can also mean “disgusting.” Soon after I moved to

California in 1986, I was at an art festival where a caterer was roasting a

huge whole pig on a spit above a gas-fired grill the size of a car. Two teenage

boys walked by and looked silently at the pig. Finally one of them observed,

“Gnarly, dude.” In the same vein, my son has been heard to say, “Never ever

eat anything gnarly.” And having your body become old and gnarled isn’t nec-

essarily a pleasant thing. But here I only want to talk about gnarl in a good

kind of way.

Clouds, fire, and water are gnarly in the sense of being beautifully intri-

cate, with purposeful-looking but not quite comprehensible patterns (figure

40). And of course all living things are gnarly, in that they inevitably do things

that are much more complex than one might have expected. The shapes of

tree branches are the standard example of gnarl. The life cycle of a jellyfish
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Figure 39: Rule 30, Started from a Single Black Cell



is way gnarly. The wild three-

dimensional paths that a hum-

mingbird sweeps out are kind of

gnarly, too, and, if the truth be

told, your ears are gnarly as well.

Let’s come back to the surf at

an ocean beach. As I already men-

tioned in the previous section,

2.3: Chaos in a Bouncing Ball,

although the patterns of the water

are clearly very complicated, they

aren’t random. The forms of the

waves are, from moment to

moment, predictable by the laws of

fluid motion. Waves don’t just pop

in and out of existence. Water

moves according to well-understood

physical laws. It’s a deterministic

computation.

You might notice that the waves

near a rock tend every so often to

fall into a certain kind of surge

pattern. This recurrent surge pattern would be a chaotic attractor. In the

same way, chaotic computer simulations will occasionally tighten in on char-

acteristic rhythms and clusters that act as chaotic attractors. In either case,

we’re dealing with a class four computation.

If there is a storm, the waves may become quite choppy and disorderly.

This is more like a class three computation. As disorderliness is increased, a

chaotic physical system can range from being nearly periodic, up through the

visually interesting region of the strange attractors, and then into uniform

seething. This, again, corresponds to the passage from class two to class four

to class three computations. As I mentioned before, Wolfram’s number-

ordering for his computational classes is a bit misleading. Class four is in

some sense between classes two and three, as I suggested in figure 7.

The reason people might think waves are random is because the compu-

tation that the water performs is many orders of magnitude larger than
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Figure 40: “As Above, So Below”—
Gnarly Clouds and Water



anything our computers can simulate. Yes, simulating actual waves on an

electronic computer is unfeasible. But that doesn’t mean that waves aren’t

the result of deterministic computations being carried out by the physical

world. And we have every reason to suspect that these computations are

class four and unpredictable.

The great discovery we’ve made with our personal computers is that you

don’t need a system as complicated as the ocean to generate unpredictable

gnarl. A very simple rule can produce output that looks, at least superficially,

as complicated as physical chaos. Unpredictable computer simulations are

often produced either by running one algorithm many times (as with the

famous Mandelbrot set) or by setting up an arena in which multiple instances

of a single algorithm can interact (as in CAs).

We find the same spectrum of disorder across a wide range of systems—

mathematical, physical, chemical, biological, sociological, and economic. In

each domain, at the ordered end we have class one constancy and a complete

lack of surprise. One step up from that is periodic class two behavior in

which the same sequence repeats itself over and over again—as in the struc-

ture of a crystal. Adding a bit more disorder leads us into the class four or

gnarly zone, the region in which we see interesting behaviors. And at the high

end of the spectrum is the all-but-featureless randomness of class three.

Regarding physical matter, in classical (prequantum) physics, a vacuum is

the simplest, most orderly kind of matter: nothing is going on. A crystalline

solid is orderly in a predictable, periodic way. And fluids such as liquids or

gasses are fairly disorderly, more along the lines of being class three. Matter

is computationally at its most interesting when it’s near a phase transition,

as when a liquid is freezing or coming to a boil. Matter near a phase transi-

tion to some extent has a nested class two structure, with similar kinds of

features occurring at widely different scales. But the phase transition struc-

ture is very dynamic, with information-laden patterns moving about, and is,

I believe, best thought of as class four.

The flow of water is a rich source of examples of degrees of disorder. The most

orderly state of water is, of course, for it to be standing still. If one lets water run

rather slowly down a channel, the water moves smoothly, with perhaps a

regular class two pattern of ripples in it. As more water is put into a channel,

eddies and whirlpools appear—turbulence. If a massive amount of water is
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poured down a steep channel, smaller and smaller eddies cascade off the larger

ones, ultimately leading to an essentially random state in which the water is

seething. The gnarly zone is where the flow has begun to break up into eddies

with a few smaller eddies, without yet having turned into random churning.

In every case, the gnarly zone is to be found at the interface between order

and disorder. In the mathematics of chaos theory, we can refine this a bit

more, distinguishing four subregions of the gnarly zone (see table 3).

The most orderly kind of gnarly behavior is quasiperiodic, or nearly peri-

odic. Something like this might be a periodic function that has a slight,

unpredictable drift. Next comes the strange attractor zone in which the

system generates easily visible structures—like the gliders in a CA rule, or

like standing waves in a stream. Then we enter a critical transition zone,

which is the heart of the gnarl.

In the language of chaos theory, a system undergoes a bifurcation when a

system switches to a new attractor. This is when a system begins ranging

over a completely different zone of possibilities within the space of all possible

phenomena. The term bifurcation is a bit misleading, as a chaotic bifurcation

doesn’t necessarily have anything to do with something splitting into two.

Bifurcation means nothing more than changing something about a system in

such a way as to make its behavior move to a different attractor.36

As we turn up the disorder of a gnarly system, the system begins experiencing

bifurcations in which one strange attractor repeatedly gives way to another. Ini-

tially the system may be dancing around on, say, an ellipse, and a moment later,

the successive points may be scattered about on something shaped like a bow tie.

And at the highest end of disorder we shade into the pseudorandom

chaotic systems, whose output is empirically indistinguishable from true

randomness—unless you happen to be told the intrinsically random algo-

rithm that is generating the chaos.
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Table 3: Subspectrum of Disorderliness for the Gnarly Zone

Level of Disorderliness Lower High Higher Highest

Subregion of the Quasiperiodic Strange Chaotic Pseudorandom
gnarly zone attractors bifurcations



My favorite example of gnarly physical chaos is a tree whose branches are

gently trembling in the breeze (figure 41). Here’s some journal notes I wrote

about gnarl and a tree that I saw while backpacking in the Los Padres Wilder-

ness near Big Sur with my daughter Isabel and her friend Gus in May 2003.

Green hills, wonderfully curved, the gnarly oaks, fractal white

cloud puffs, the Pacific Ocean hanging anomalously high in the

sky, fog-quilted.

I got up first, right before sunrise, and I was looking at a medium-

sized pine tree just down the ridge from my tent. Gentle dawn

breezes were playing over the tree, and every single one of its needles

was quivering, oscillating through its own characteristic range of fre-

quencies, and the needle clumps and branches were rocking as well,

working their way around their own particular phase space attrac-

tors, the whole motion harmonious in the extreme. Insects buzzed

about the tree, and, having looked in the microscope so much of late,

I could easily visualize the micro-organisms upon the needles, in the

beads of sap, beneath the bark, in the insects’ guts—the tree a

microcosmos. The sun came rolling up over the ridge, gilding my

pine. With all its needles aflutter it was like an anemone, like a

dancer, like a cartoon character with a halo of alertness rays.

“I love you,” I said to the tree, for just that moment not even

needing to reach past the tree to imagine the divinity behind it, for

just that moment seeing the tree as the body of God. “I love you.”

When we got home there were my usual daily problems to con-

front and I felt uptight. And now, writing these notes, I ask how can

I get some serenity?

I have the laptop here on a cafe table under a spring-green tree in

sunny blue-sky Los Gatos. I look up at the tree overhead, a linden

with very small pale fresh green leaves. And yes the leaves are doing

the hand jive. The branches rocking. The very image of my wan-

dering thoughts, eternally revisiting the same topics. It’s good.

The trees, the leaves, the clouds, my mind, it’s all the same, all so

beautifully gnarly.
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2.5: What Is Reality?

Years ago I was discussing far-out science-fiction ideas with the beloved math-

ematics writer Martin Gardner. I was describing the notion that if you could

measure a totally rigid piece of material to endless precision, then the successive

digits might code up, say, the true and complete story of your life. What if

everyone were born clutching a personal talisman of this kind in his or her

hand—like program notes summarizing the action of an opera? And suppose

that, instead of going on and living a real life, some poor guy wastes all his time

decoding his talisman—only to learn that he’ll spend his entire allotted span

measuring one little object!

But, thanks to atomism, we can’t really measure much past twenty digits,

and even if we could, quantum mechanics makes space fairly meaningless

out past the thirty-fifth digit. So the idea doesn’t quite work.

“Too bad,” said Martin. “Quantum mechanics ruins everything.”

Physicists have great confidence in quantum mechanics because it pre-

dicts, among other things, the precise values of certain physical constants.
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Figure 41: 
Tree, Cloud, Mind, Mountain



But physical constants have to do with quantities that are measured as aver-

ages over many different runs. When it comes to predicting how any indi-

vidual particle will behave, quantum mechanics is usually helpless.

An example. Suppose we have a beamsplitter (see figure 42), that is, a par-

tially reflecting mirror that reflects half of all incoming light and transmits the

rest. And let’s say that we have a pair of light-sensitive detectors labeled 0 and

1. The transmitted light goes to 1 and the bounced light goes to 0. The 0 and 1

detectors each register an intensity half as great as that of the incoming beam.

But what happens if we send in a beam that contains only a single photon?

One of the brute facts about nature is that light is quantized; that is, you

actually can turn down a light beam’s intensity to a specific minimal intensity

that sends one photon at a time. Photons are supposedly indivisible—you

can’t get half a photon arriving at 0 and half a photon arriving at 1. So the

single-photon beamsplitter system has to make what seems to be a random

choice. If you repeat the experiment over and over, about half the photons end

up at 0 and about half end up at 1.

We had a similar result in our bin experiment, and in that case we were

satisfied with saying that there were tiny differences in the initial conditions

and external influences on each successive ball. Why can’t we take a similar

approach with photons encountering a beamsplitter? The photons could be

like balls, the beamsplitter could be like the bin divider, and the various out-

comes could deterministically depend on tiny details.

But physicists say this is impossible.

They insist that we can’t explain the vari-

ation by saying the photons might be hit-

ting the mirror in slightly different

locations, that the photons might be

slightly different, or that there are

external influences nudging the photons

this way and that. They say there’s no

hope of finding a deeper explanation of

the photons’ decisions, and that an indi-

vidual photon’s choice of whether to

trigger detector 0 or detector 1 is funda-

mentally and inexplicably random.
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In the words of the endlessly quotable physicist Richard Feynman, with his

own characteristic italics:

Yes! physics has given up. We do not know how to predict what

would happen in a given circumstance, and we believe now that it is

impossible, that the only thing that can be predicted is the proba-

bility of different events. It must be recognized that this is a

retrenchment in our earlier ideal of understanding nature. It may be

a backward step, but no one has seen a way to avoid it. . . . We sus-

pect very strongly that it is something that will be with us forever—

that it is impossible to beat that puzzle—that this is the way nature

really is.37

Feynman is always persuasive, but physical determinism is not so dead an

option as he suggests. My opinion is that there are in fact underlying psycho-

logical reasons driving the conventional insistence that we should welcome

quantum mechanics and the destruction of determinism. Often when I hear a

popular lecture on quantum mechanics, I detect a lilting, mystery-mongering

tone. “Be happy! The universe is incomprehensible! How wonderful!”

The rejection of determinism seems to provide some people with a sense

of liberation. The hidden part of the argument might go like this: If the world

is fundamentally random, then surely I’m not a robotic machine, and if I’m

not a machine, then perhaps I have an immortal soul, so death isn’t so

frightening.

Now that I’ve delivered this ad hominem attack on the advocates of

quantum mechanics, I must, in all fairness, admit that I have my own psy-

chological reasons for not wanting to view quantum mechanics as a final

answer. First of all, like many mathematicians, I’m uncomfortable with

uncertainty. In this vein, it could also be that a lifetime’s worth of hard

knocks has taught me that when there are no rules, most people get a raw

deal. A second point is that I like thinking of the universe as a single entity

that’s at some level knowable; I like to imagine that, if you will, I can see the

face of God. And this dreamed-of cosmic unity becomes less plausible if the

universe results from an all-but-infinite collection of utterly random bit-flips

with absolutely no common underlying cause.
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As I say, I think the mystifications of quantum mechanics seem appealing

precisely because people would like there to be some escape from the logical

and deterministic fact that we’re all going to die. But if the fear of death is

indeed the issue, why not find solace in thinking of the universe as an

immense logical system of which you’re a tiny part? When your particular

pattern ceases to exist, the grand computation will continue. Your alloted

region of spacetime will “always” be around. Can’t that be enough? For that

matter, what’s so terrible about death? Personally, I don’t really mind the

notion of someday getting off the stage and no longer having to continue my

long-winded computation—but maybe that’s just because I’m getting old.

Let me make one more point. If you fear that determinism means you’re a

machine without a soul, consider that, given what we know about class-four

computations, there’s no reason to think that we can’t be both deterministic

and unpredictable, no reason to think that your soul couldn’t in some sense

be a gnarly computation. Consider: The world could be perfectly determin-

istic and still look and feel exactly the same as it looks right now. Indeed, I

think that’s the true state of things. Quantum mechanics simply doesn’t go

deep enough. And we have nothing to lose by moving beyond it to a fully

deterministic universal automatism.

Enough rhetoric; let’s get back to science. There seem to be two kinds of

reasons why physicists don’t expect photons to behave like balls.

The first reason is that photons are meant to be elementary particles,

without any of the nicks and dings that can serve to explain why balls act

unpredictably. Well—maybe so, maybe not. It’s at least conceivable that pho-

tons themselves are the averaged-out results of still more fundamental phe-

nomena—not necessarily subparticles, but possibly something like network

patterns or linked loops in a multidimensional superspace.

The second, more compelling, reason that photons aren’t like balls is that

they’re also like waves. The photon is in some sense a wave that takes both

paths through the beamsplitter, and the presence of the detectors makes the

smeared-out wave collapse into a single photon at 0 or a single photon at 1.

And—here’s that same bad news again—the outcome of any individual

photon wave collapse is to be completely random.

This odd sequence of spreading-wave-followed-by-collapse-into-particle is

a standard pattern in quantum mechanics. Any system is to be thought of as
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an abstract wave that obeys deterministic analog laws until some kind of

measurement is performed on the system. And the measurement process

forces the spread-out wave to collapse into a single definite state. The pos-

sible outcome states depend on the kind of measurement being made, and

the probabilities of the various outcomes depend on the wave.

One can carry out a fairly simple experiment to demonstrate that a single

photon can indeed act like a wave that takes both paths through the beam-

splitter. The idea is to arrange two beamsplitters and two regular, non-beam-

splitting mirrors to make a device known as an interferometer, as shown in

figure 43. A light beam coming in from the upper-left-hand side will split into

the bounced 0 and the transmitted 1 beams. These in turn will uneventfully

bounce off the mirrors at the top and the bottom, and when these beams strike

the beamsplitter on the right, they’ll split again, yielding four beams that we

might as well call: 00, 01, 10, and 11. The history of these four beams’ encoun-

ters with the beamsplitters and the normal mirrors can be summarized, respec-

tively, as bounce-bounce-bounce, bounce-bounce-transmit, transmit-bounce-

bounce, and transmit-bounce-transmit.

By, let us say, turning an adjustment screw, you can tweak the position of

the upper mirror in the system so that beam 01 reinforces the beam 10. And

you’ll find that when you do this, beams 00 and 11 interfere with each other,

effectively canceling each other out The effect is that all of the light coming

in from the upper left seems to leave along the lower right direction. And this

works even if we send in only one photon at a time.

In order to understand what’s going

on, we think of the photon as a wave

that gets split up. A pair of waves will

enhance each other if they’re in phase

with each other, that is, if their crests

match. And they’ll cancel each other if

one wave’s crests match the troughs of

the other. And bringing 01 and 10 into

synch puts 00 and 11 out of synch. The

reason has to do with the total number

of mirror-bounces by each wave; each

time a wave bounces off a mirror of any
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kind, its so-called phase shifts by 90 degrees, and waves that are 180 degrees

out of phase cancel each other out.

By the way, once we get the interferometer tuned like this, it’s also the case

that if a photon comes into the system from the lower left corner, it will end

up exiting in the upper right direction; we’ll return to this point in this

chapter’s final section, 2.6: How Robots Get High, when we’ll view an inter-

ferometer as being like a logical NOT gate.

But for now, the big deal about the interferometer experiment is that it

works even if we pass only one photon through the system at a time. That is,

if you send in a single photon from the top left, you always get a single photon

exiting from the bottom right. The only conclusion seems to be that the “indi-

visible” photon somehow behaves like a wave that splits into four beams, two

of which cancel each other and two of which reinforce each other. So a photon

is a wave.

But when we go back to the first experiment of this section and just run

the photon through one beamsplitter, we see the spaced-out wave inexpli-

cably making nondeterministic random choices between 0 and 1.

At this point we’re supposed to be so confused that we give up and agree

with the quantum physicists that the world is nondeterministic and we’ll

never really understand it, and isn’t it great to have the world be fundamen-

tally incomprehensible and mysterious? “Come forward, dear friends, come

drink the Kool-Aid.”

Sigh.

It’s like I’m at the beach and a kid kicks down my children’s sand castle,

and when I go to scold the kid, his mother says, “Oh, he’s not like your chil-

dren. He’s special. You’ll never understand how he feels. It would be quite

impossible for you.”38

Do we really have to let quantum mechanics kick a hole in our sand castle? A

lot of it has to do with how we choose to interpret the empirical facts of quantum

mechanics. The standard way of viewing quantum mechanics is called the

Copenhagen interpretation, but there are various alternate ways to look at

things. Here I’ll only discuss three of the possible ways to restore determinism.

A first attempt is to say that as long as we’re primarily interested in the

behavior of the medium-size objects of daily life, we’re looking at statistical
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averages in any case, and any quantum mechanical randomness is averaged

away. And, as we’ve already discussed, the large-scale smoothed-out laws of

physics are quite deterministic.

But you can imagine situations where quantum mechanical effects are greatly

amplified. You might, for instance, connect the 0 and 1 detectors of the beam-

splitter to, say, music players in two different locations, and when a single

photon goes into the beamsplitter there will be music here or music there, but

not both. Or if that doesn’t sound portentous enough, replace the music players

with hydrogen bombs. The point is that in principle an individual quantum

event can be amplified into a normal-size event, which is then happening non-

deterministically. Our lives can in fact be affected by quantum events in a less

contrived way. Consider the fact that it takes but one unfortunately placed

radon atom’s decay to lethally mutate a gene in a newly fertilized egg.

There’s an even more serious problem with any plan to dismiss quantum

mechanics and act as if the world is really classical: It’s thanks only to

quantum mechanics that our atoms and molecules are stable. If an electron

could have any orbit at all around a nucleus, it would quickly spiral inward

and the atom would collapse. Nature uses the kinky strictures of quantum

mechanics to make the electron keep a proper distance. Like it or not,

quantum mechanics is an integral part of daily life.

This said, the actual cases where quantum indeterminacies become visible

are surely quite rare. And nothing would really look any different if it turned

out that these seemingly random quantum events were in fact directed by an

underlying class three or class four computation.

A second defense of physical determinism is the many universes theory, which

insists that there are a vast number of parallel universes tied together into a

so-called multiverse. When faced with some seemingly random quantum

choice, the multiverse responds by picking both options, spawning off new

universes as necessary. So then it looks as if we have regained a kind of deter-

minism: the photon goes to both 0 and 1. Every plane crashes in some branch

of the multiverse; every lottery ticket is somewhere a winner. But how does the

multiverse view explain why your particular world is the way it is? The move is

to claim that “you” are in lots of parallel universes. In one world you’re seeing

that photon go to 0 and in another you’re seeing it go to 1.
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Many people find the multiverse model philosophically unsatisfying. It’s

hard to put one’s finger on the problem, but I think it has to do with meaning.

One likes to imagine the world has an ultimate explanation of some kind. Call

it what you will: the Secret of Life, God’s Plan, the Theory of Everything, the

Big Aha, whatever. If we live in a multiverse of many universes, then perhaps

the multiverse has a Multiversal Big Aha, but a mere individual universe

doesn’t get a Big Aha. An individual universe is simply the result of an incal-

culable number of coin flips.

To me, this feels inane and defeatist. Our beautiful universe deserves a

better explanation than that. Although the multiverse model is in fact useful

for understanding certain kinds of quantum phenomena, it’s not attractive as

a final answer.

A third defense of determinism suggests that quantum mechanics depicts par-

ticle behavior as random only because it doesn’t go deep enough. Quantum

mechanics seems so odd precisely because it isn’t actually a final, complete,

and fundamental theory of reality.

It’s well known that quantum mechanics doesn’t merge well with general

relativity, and physicists are exploring any number of more fundamental the-

ories, such as string theory and loop quantum gravity.39 While Einstein’s

general theory of relativity was inspired by a specific geometrical vision of

curved space, quantum mechanics seems to have arisen as the haphazard

result of symbol pushing and mathematical noodling. Although quantum

mechanics works, it lacks a sensual core that would compel wholehearted

assent. Many physicists say this is simply because the microworld is essen-

tially different from the world in which we live. But it’s not unreasonable to

suspect that a radically different theory awaits us and that determinism

could still be regained.

In particular, universal automatists such as Edward Fredkin and Stephen

Wolfram feel that there is a deterministic fundamental theory based on

simple computations of some kind. Fredkin has been known to argue that the

world is made of cellular automata, and Wolfram takes a more sophisticated

approach involving networks and systems of symbol transformations.40

Wolfram compares present-day quantum mechanics to a theory that studies

the temperatures and pressures of gases without being aware that a gas is
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made up of atoms. Seemingly fundamental entities such as photons, elec-

trons, and their wave functions may in fact be emergent patterns based upon

a low-level sea of computation.

The computational view of quantum mechanics is in effect what’s known

as a hidden variables theory. One has to be careful with hidden variables, for

theoretical and experimental work in quantum mechanics tell us that if we

gain some comprehensibility by assuming the world has real and definite

underlying states, then we have to pay a price by accepting weirdness of

some other kind.

As an example of hidden variables, consider a situation known as the

Einstein-Podolsky-Rosen paradox. Here two particles with a common past

event O are observed to behave “synchronisitically” at some later times. That

is, if particle A and particle B were at one time tightly coupled, then if you

later make a measurement on particle A, you may get some random-seeming

value, but if you happen to measure B as well, you’ll get the same value from

B. And this works even if the measurements on A and B are too widely sep-

arated to be able to send slower-than-light signals to each other. In this kind

of situation we say that A and B are entangled.

Now a simplistic hidden-variables interpretation might suggest that the

answers to the measurement were hidden in A and B all along and that they

adopted a common setting at O. But subtle statistical experiments have ruled

out this option—in some sense it seems that A’s state really isn’t determined

until it’s measured, and at that

point B’s state becomes deter-

mined as well.

A more sophisticated kind of

hidden-variables theory takes a

spacetime view and says that the

future measurement on A is a

kind of hidden variable that

reaches back in time to O and

forward from there to B (see

figure 44). The outcome of the

measurement is, if you will, a

variable that’s hidden in the
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A sends a signal backward in time to O,
which sends a signal forward in time to B.



future. The physicist and science-fiction writer John Cramer has worked out

a worldview like this that he calls the transactional interpretation of quantum

mechanics.41

Cramer proposes that we change how we think about quantum mechanics.

But there’s no real change in the predictions that are made. The standard

Copenhagen interpretation, the multiverse interpretation, and Cramer’s trans-

actional interpretation are different mental models for the same sets of facts.

In Cramer’s model we have hidden future events and we also have signals

that travel backward in time. In this transactional interpretation of quantum

mechanics, any event sends signals into both the future and the past. An

observation of, say, a photon emission occurs via a kind of handshaking link

whereby a forward signal from cause to effect is paired with a backward

signal from effect to cause. By allowing time-reversed backward signals, you

also can have quantum mechanical effects that jump instantaneously across

great distances, as I indicated in figure 44. In Cramer’s model, the entire

future is fixed, with the forward and backward effects acting as threads to

weave reality into a consistent whole.

Note that if all of time is linked, then there’s no real point in distinguishing

one particular slice as the “now.” Everything fits into a whole. This lends

some credence to the Jungian notion of synchronicity, which supposes that

meaningful coincidences really do occur and that life indeed has the same

carefully plotted quality as a novel or a myth.

In my book The Fourth Dimension I point out that this notion was anticipated

by the fourteenth-century mystic Meister Eckhart in one of his sermons:

A day, whether six or seven ago, or more than six thousand years

ago, is just as near to the present as yesterday. Why? Because all

time is contained in the present Now moment.

To talk about the world as being made by God tomorrow, or yes-

terday, would be talking nonsense. God makes the world and all

things in this present now. Time gone a thousand years ago is now

as present and as near to God as this very instant.42

Fine. But if past-present-future are a single integral whole, the explanation

(if any) of this lovely synchronistic spacetime tapestry needs to come from
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somewhere else. Of course at some point, most explanations end up turning

to an inexplicable prime mover (aka God), but let’s see how much we can cut

back on the work the prime mover needs to do.

Cramer offers no explanation of why we have our particular spacetime tap-

estry; indeed, he himself is not particularly wedded to determinism. My

interest in his interpretation stems from the fact that it does make deter-

minism possible. But it’s determinism of an odd kind.

My idea is to combine a Wolfram-style view of reality with Cramer’s trans-

actional interpretation. Suppose with Cramer that causality runs both forward

and backward in time, and also suppose that our world is deterministic in

both these temporal directions. This means that spacetime is a coherent

whole, with both past and future fully determined by the world’s state at any

single instant. If you fix upon some arbitrary moment in time—say, the

instant when you read this sentence, then the question becomes: How was

the world’s structure at this particular instant determined? If you can explain

the now, you get the entire past and future for free—for the past and future

follow deterministically from the now.

Now I add in the Wolframite element. Think like a universal automatist and

suppose that the great structure of quantum-mechanically patterened space-

time arises from a higher-dimensional deterministic computation. Since our

time-bound human nature makes its easier to imagine a deterministic com-

putation as being embedded in some kind of time, let’s invoke a (possibly

imaginary) second time dimension in which to compute our world—call this

extra time dimension paratime. Paratime is perpendicular to our ordinary

dimensions of space and time, and we want the entire universe to be the

result of a computation that’s taken place in the direction of paratime, as

illustrated in figure 45.

Note that the paratime notion reintroduces the theme of parallel worlds.

Presumably the people in each of the spacetimes feel themselves to be in a

unique reality with time flowing forward as usual. Note also that, if we take

the paratime view seriously, it’s possible or even likely that the spacetime in

which we find ourselves isn’t the last one in the series. Reality evolves further

along the paratime axis. In terms of an analogy to a novel, our world is very

well plotted, but it may not be the final draft.

I had a momentary sensation of an flow of paratime while I was working
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on my historical novel As Above So Below, about the life of the sixteenth-

century Flemish painter Peter Bruegel. In the course of detailing Bruegel’s

life, I was focusing my successive chapters on individual paintings by the

master. Now, Bruegel’s best-known series of paintings is called The Seasons,

and consisted of six panels representing different times of the year. My

researches had led me to believe that he painted them in his studio in

Brussels, and that in January 1566 he transported them to a patron’s house

in Antwerp, using a horse-drawn cart called a Belgian wagon. While I was

trying to visualize this, something strange happened, which I recorded in my

writing notes.

I’m finally writing the chapter on The Hunters in the Snow (figure 46).

I’ve been a little scared of this one. It’s a big chapter I’ve looked for-

ward to.
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Figure 45: Evolving a Spacetime across Paratime

Think of the six lines as six increasingly evolved spacetimes, each of which runs from
an initial dot to a final dot. The leftmost spacetime can be thought of as a simple seed
that a computational rule transforms across paratime into a more complex spacetime.



Just now I had a kind of spooky-feeling experience. I figured out

that Peter would be using a Belgian wagon to haul his six Seasons

pictures up to Antwerp, and I was wondering if a wagon like that

could make it through the snow, and I looked over at the Hunters in

the Snow reproduction that I have on my wall by my desk, and it felt

like there was this twinkling in the middle of the picture, and then

all of a sudden there was a Belgian wagon there (figure 47).

I’m imagining, just for fun, that the Belgian wagon didn’t “used”

to be in the Hunters in the Snow. That in fact Bruegel’s pictures are

changing a little bit as I write about them. But the changes are uni-

form across all of spacetime, so when my copy of Hunters in the

Snow changes, so do all the others, and all of everyone’s memories

about the picture. Reality shifts to a slightly different parallel sheet.

And I only notice this at the instant it happens, and even then I can

never be sure.44

Rather than saying every possible universe exists, I’d say, rather, that

there is a sequence of possible universes, akin to the drafts of a novel.

We’re living in a draft version of the universe—and there is no final version.

The revisions never stop.
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Each draft, each spacetime, each sheet of reality is itself rigorously deter-

ministic; there really is no underlying randomness in the world. Instead we

have a great Web of synchronistic entanglements, with causes and effects

flowing forward and backward through time. The start of a novel matches its

ending; the past matches the future. Changing one thing changes everything.

If we fully know everything about the Now moment, we know the entire past

and future of our particular sheet of spacetime.

To make this discussion seem just a shade more reasonable, let’s look at

a CA model. Recall that the pictures of one-dimensional CAs take the form of

spacetime diagrams, with the horizontal axis representing a ribbon of space

and the vertical axis corresponding to time. Now it turns out to be fairly easy

to construct “reversible” cellular automata for which the past and the future

both follow from the present. In these physicslike CAs, no information is lost,

and anything that happens in one direction of time can equally well happen

in the other direction. Figure 48 shows the spacetime of a CA of this type.43

A reversible rule of this kind serves as a model for a transactional-

quantum-mechanics world where events send out effects both forward and

backward in time. We might think of the reversible CA rule as the world’s

physics. Everything in a reversible world like this hinges on the state of any

single spacelike slice—or what we’ve been calling a “Now moment.” 
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As I said above, the universal automatists would like to find a seed and rule

that could compute across paratime to generate the spacetime in which you

and I are living our lives. And if the physics within spacetime is deterministic

towards both future and past, it would be enough to find a seed and a rule that

could compute across paratime to produce one particular “now” slice of our

spacetime. And then the past and the future could be deterministically gener-

ated from the now.

With this in mind, explaining a given draft of the universe becomes a

matter of explaining the contents of a single Now moment of that draft. This,

in turn, means that we can view the evolution of the successive drafts as an

evolution of different versions of a particular Now moment. As Scarlett’s cli-

mactic scene with Rhett is repeatedly rewritten, all the rest of Gone With the

Wind changes to match.

And this evolution, too, can be deterministic. In other words, we can think

of there as being two distinct deterministic rules, a Physics rule and a Meta-

physics rule, as shown in figure 49.
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Figure 48: Spacetime Diagram of a Reversible One-Dimensional CA

This is the Axons rule of the Cellab software.



The Metaphysics rule is—what? The Metaphysics rule is like a CA that

grows the space pattern from some presumably simple seed. When I speak of

this metaphysical growth as occurring in paratime, I need only mean that it’s

logically prior to the existence of our spacetime. We don’t actually have to

think of the growth as being something that’s experientially happening—as I

was suggesting with my Hunters in the Snow example.

The Metaphysics rule could be something as simple as an eight-bit cellular

automaton rule generating complex-looking patterns out of pure computation.

Or perhaps the Metaphysics rule is like the mind of a Great Author creating a

novel, searching out the best word to write next, somehow peering into alter-

nate worlds. Or, yet again, the Metaphysics rule could be the One cosmic mind,

the Big Aha, the eternal secret living in the spaces between our thoughts.45

The message to take away is that quantum mechanics doesn’t have to spoil

everything after all. It’s just a bag of tricks that some mathematical physicists
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Figure 49: A Physics and a Metaphysics to Explain All of Spacetime

In this picture we think of there being two distinct CA rules, a Physics rule and a Meta-
physics rule. The vertical plane represents our spacetime, and the line across its middle
represents a spacelike “Now.” The Physics rule consists of time-reversible laws that
grow the Now moment upward and downward to fill out the entire past and future of
spacetime. And we invoke the Metaphysics rule to account for the contents of the Now
moment. The Metaphysics rule is deterministic but not reversible; it grows sideways
across a dimension that we might call paratime, turning some simple seed into the
space-filling pattern found in the Now.



made up. Reality may very well be a deterministic computation based on

rules no more intricate than the rules of cellular automata.

2.6: How Robots Get High

Whether or not quantum mechanics is a final theory of reality, the fact

remains that it’s a very powerful and intellectually rich system. So now let’s

set all doubts aside and see what we can learn from it. After all, even if

quantum mechanics is in some sense incomplete, any future physics will

undoubtedly incorporate quantum mechanics as an approximation—in

much the same way that quantum mechanics includes classical physics as

an approximation that holds for larger-sized objects.

In this section I’ll discuss three topics:

• Quantum coherence as a metaphor for the human mind.

• The dream of quantum computation.

• The computational architecture of quantum mechanics.

Under the traditional Copenhagen interpretation of quantum mechanics,

measuring a quantum system changes its state in an abrupt and unpre-

dictable fashion (see table 4).

Even worse, if you want to measure two properties of a system, the

answers you get will depend on the order in which you make the measure-

ments. It’s a little as if you had a picture book, and if you look at the pictures,

the words in the book are no longer the same, and if you read the words, the

pictures are altered. Not at all like repeatedly reading information off a disk.

The notion of quantum indeterminacy can be expressed in terms of superposed

states, which serves, if nothing else, as a very useful metaphor for the human

mind. “Superposed” connotes having multiple layers overlaid and merged.

Quantum mechanics tells us that any measurement you make on a

system carries with it a set of expected answers—these are the so-called

pure states or eigenstates of the measurement. When you measure a

system, it enters one of the measurement’s unambiguous or “pure” states.

The system is effectively forced to pick one answer out of a fixed list of mul-

tiple choice options. This transition happens abruptly and discontinuously

and is called the collapse of the wave function. The collapse of the wave
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function is an irreversible process; you can’t restore a system to the state

it was in right before you measured it.46

Different kinds of measurements have different sets of pure states. As I

discuss in the long footnote 46, if you measure the particle’s position in our

one-dimensional example, the possible pure states are like waves with a

single very narrow peak, but if you measure the momentum, the pure states

are like springs that coil around the position axis. For quantum mechanics,

the pure states are somewhat unnatural and rare: They arise only after a

measurement, and the range of possible pure states depends upon the spe-

cific kind of measurement being performed. Classical physics doesn’t make

the distinction between pure states and superposed states at all; in classical

physics there is a more or less continuous range of possible states, and any

state is thought of as being pure and unmixed.

In trying to understand how quantum mechanical measurements turn

superposed states into pure states, it’s useful to consider the following

metaphor. You enter a new restaurant, not even knowing what kind of food

they serve. You know you’re hungry, but you don’t know what you want to

eat. The waiter presents you with a menu, and now you start to view your

hunger as being, say, mostly a hunger for artichoke pizza, but also, to some

extent, a hunger for mushroom ravioli or for linguini with clams. And then the

waiter comes to take your order, and you fully become someone who wants to

eat, let us say, linguini with clams. Ordering your meal at the restaurant is

analogous to performing a measurement on your state of hunger, and the

items on the menu are this particular restaurant’s pure states.

our rich world

135

Kind of State: Superposed Pure

Arises: Naturally, via After a measurement
Schrödinger’s 
wave equation

In terms of pure states: Sum of pure states One pure state

Process producing state is: Deterministic Random

Relation to environment: Coherent or partly Fully decoherent
decoherent

Table 4: Mixed and Pure States



When you leave a system alone and don’t perform measurements, it

evolves into a so-called superposed state quite different from any particular

pure state. Mathematically speaking, you can write a superposed state as a

sum of pure states—just as any periodic function can be written as a

Fourier sum of sine waves with varying amplitudes and frequencies. But

really the superposed state has its own independent reality, and there’s no

“best” way of breaking it into a sum of pure states. Quantum mechanics is

about the evolution of superposed states.

(By the way, some science writer’s colloquially use “mixed state” as a syn-

onym for “sum of pure states.” Physicists prefer to speak of these as super-

posed states, or superpositions, and to use “mixed state” in a slightly different

sense that we’re not going to worry about here.)

In recent years a new pair of quantum mechanical words have gained currency:

coherence and decoherence. A coherent system evolves peacefully through a

series of superposed states, whereas a decoherent system has its states

affected by entanglements with the environment. The notion of coherence pro-

vides a kind of knob you can imagine turning to change classical physics into

quantum mechanics—the higher the coherence, the less classical the system.

Be aware that this usage is a little counterintuitive. A completely unknown

superposed state is viewed as coherent, but a pure state is decoherent.

Metaphorically speaking, someone spewing incomprehensible gibberish is

coherent, while someone checking off multiple choice answers is decoherent!

An extreme example of getting entangled with the environment is a measure-

ment, as when you observe a photon with those detectors after the beamsplitter

and find it to be in position 0 or position 1. But systems can be entangled in less

classical ways. It may be that particles A and B have interacted and no measure-

ment has been as yet performed on either one of them, but the very existence of

the possibility of measuring B reduces the freedom of A to do its own thing.

Thanks to its interaction with the tattletale B, A is somewhat decoherent.

How does the coherent-decoherent distinction relate to pure and superposed

states? Actually all four combinations are possible, as illustrated in table 5.

The notion of coherence plays a key role in the budding science of quantum

computation.
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A classical computer converts single inputs into single ouputs. A

quantum computer behaves like a huge array of classical computers,

working together to simultaneously compute the output for every possible

input at once.

In order to get an idea of how this is supposed to work, let’s return to our

beamsplitter, where the photon is in some sense reflected and transmitted at

the same time—at least until it hits one of the detectors.

Ordinarily we would think of the fact of whether the photon bounced or not

as being encoded by a single bit or information that we learn when the photon

hits the 0 or the 1 detector. But quantum mechanics tells us that before

either of the detectors goes off, the photon is in a superposed state that’s a

curious combination of the 0 and the 1 state. It’s traditional to represent this

superposed state by the Greek letter psi, that is, by ψ.

What the quantum computer scientists propose is that we think of this

superposed state as a “qubit” for “quantum bit.” The photon-after-a-beam-

splitter ψ qubit has a 50 percent chance of being 0 and a 50 percent chance

of being 1. But one can cook up other situations where the qubit probabilities

are distributed more asymmetrically.
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Table 5: Decoherence Feels Good

To spice things up, I’ve added a psychological interpretation for each of the four a priori
options. In quantum mechanics, the only way to force a system to remain in a pure state is
to continually decohere it; this is expressed in the folk saying, “A watched pot never boils.”

Superposed Pure

Coherent The natural, free state of a system left A system that’s just been measured 
on its own. Like walking alone on the but is now on its own. It will quickly 
beach without a thought in your head. evolve away from the pure into a 

superposed state. Like you felt on your 
first day away from home at college,
or like you feel right after you 
get off work.

Decoherent A system that’s entangled with another A system that’s continually being
system. You’re off on your own, but observed and is subjected to
you’re worrying about your partner. repeated measurements. Like living
Or maybe your partner has just walked at your parent’s house.
into your room and is about to ask 
you something, but they haven’t
collapsed you into a pure state yet.



Being quantum mechanical wave

functions, the components of a qubit

have phase—which means that qubit

factors might either reinforce each

other or cancel each other out,

according to whether they’re in or out

of phase. We observed this phenom-

enon in our interferometer—where

the first beamsplitter breaks a

photon into a qubit that the second

beamsplitter decoheres into a single

photon that comes out at the bottom

right if the initial photon came from

the top left. And, as I remarked in passing before, it’s also true that a photon

coming in from the bottom left will end up coming out the top right.

In traditional electrical engineering a “gate” is any device that has some

wires coming in and some wires going out. As we move into the realm of

quantum computation, we take a more general view of this and regard a gate

as any localized region of space where we can send in signals and get signals

out. If we label signals at the top by 0 and signals at the bottom by 1, the

interferometer is like a so-called NOT gate that converts 0 signals into 1s and

1s into 0s. To bring out the notion of the gate, in figure 50 I’ve drawn a gray

square around the innards of the interferometer, with the protruding lines on

the left representing two possible input signals and the lines on the right

being the possible outputs.

The real fun begins if we now imagine decomposing the interferometer into

its two component beamsplitters. I’ll replace the mirrors in the middle by

simple lines, as if I were drawing wires. So now we have two identical gates

whose combined effect is that of a NOT gate (see figure 51). These quantum

gates bear a marvelously science-fictional name: a square-root-of-NOT gate 47

You might imagine the square-root-of-NOT as follows. Suppose you ask

someone to go on a date with you, and the person gives you an incompre-

hensible answer, and you ask again, and you get another weird answer, and

then, having heard odd answers twice in a row, you suddenly realize they

mean, “No!”
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Figure 50: An Interferometer as a
NOT Gate



Anyway, I still have to tell you how

quantum computation is supposed to

work. A rough idea is as follows. Run a

bit through a square-root-of-NOT gate to

split it into the ψ superposition of 0 and

1. And then feed the coherent super-

posed ψ state into a computer C of some

kind (see figure 52). Suppose that we

know C turns 0 or 1 inputs into 0 or 1

outputs, but we don’t yet know what the

particular outcomes would actually be.

When we feed ψ into C, C effectively cal-

culates both C(0) and C(1).

Given that a coherent superposed state goes into C on the left, we can expect

that a (different) coherent superposed state will emerge on the right of C. Now if

we were to simply try to measure this state right away, we’d collapse it or deco-

here it. We’d end up with a single 0 or 1 answer, and we wouldn’t even be able to

tell if this was the C(0) output or the C(1) output. The answer would be all but

worthless.

But if we place another square-root-of-NOT gate to the right of C, we can

hope that this gate will manage to carry out a quantum interference

between C ’s two output lines, and that the output of this second square-

root-of-NOT gate will in some useful fashion combine information about

both C(0) and C(1).

In this way we hope to get information

about C’s behavior on two standard

kinds of inputs 0 and 1, while only

having to evaluate C on one input, that

is by evaluating the output of C(ψ) acting

on the superposed state ψ that came out

of the first square-root-of-NOT.

Would C even work on a flaky input of

this kind? Part of the science of quantum

computation involves figuring out how

to make deterministic computational
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Figure 51: Beamsplitters as
Square-root-of-NOT Gates

Figure 52: A Two-for-One Quantum 
Computation
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processes that don’t care if their input is a pure or a mixed state. Although this

sounds complicated, it can mean something as simple as testing if an atom

bounces back a photon of light, or whether a spinning molecule tips over in a

magnetic field.

The big win in evaluating only C(ψ) instead of both C(0) and C(1) is that if

evaluating C on an input is a very time-consuming process, then this repre-

sents a meaningful gain in speed. And the process can be iterated, that is,

with a few more square-root-of-NOT gates we could create a different state ψ
that is as superposition of 00, 01, 10, and 11, and in this case a single eval-

uation of the form C (ψ) can generate an answer that combines the outputs

of C acting on all four of the possible inputs 00, 01, 10, and 11.

In the limit, we might dream of a quantum computer that takes, say, every

possible twenty-page short story as input, evaluates all of them, and

somehow manages to print out the best one!

This seems impossible, and in fact it probably is. In reality, there are

strong theoretical limits upon how much information we can extract from a

parallel quantum computation. Getting information out of a quantum com-

putation is never as simple as cherry-picking the best of the computation’s

seemingly parallel threads. Instead, we have to carry out an interference-like

process, letting the different solutions interact with one another, hopefully

reinforcing some useful peaks. It’s already known that some gains can be

made by this kind of quantum process—currently the prize example is a

speeded-up method of factoring large numbers.48

As a practical matter, one of the big snags in using quantum computation

is that systems easily lose their coherence. If the central computer C’s out-

puts get even slightly screwed up, the coherent output prematurely col-

lapses into a single randomly selected answer. And what one needs is for the

output to remain coherent and multithreaded so that you can use interfer-

ence tricks to coax answers from the overlaps of the various quantum bits.

Whether or not it will work, quantum computation is interesting to think

about, and, at the very least, it’s a wonderful metaphor for the working of the

human mind. Being undecided about some issue is in some ways like being

in a superposed state—and the loss of options inherent in being forced to

answer questionnaires is analogous to the information-destroying advent of

decoherence.
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Were quantum computation to work really well, it could change our basic

view of reality. The scientist David Deutsch, who is a strong believer in the

multiverse theory, argues that if quantum computation becomes effective,

we’ll have to admit that all of those parallel worlds are real—for where else

could the computation be taking place?49

One possible response, inspired by John Cramer’s transactional interpre-

tation of quantum mechanics, would be that our quantum computation puts

in place a set of initial conditions that require a future state in which the

problem is solved. And matching the future output to the present input

involves a flurry of signals going forward and backward in time through the

computer, tightening in on the quantum handshake that solves the problem.

So the computation is an activity hidden in spacetime or, looked at in another

way, the result is determined by what I call the Metaphysics rule.

Cramer’s notion of emergent spacetime patterns seems to imply, at least

linguistically, a higher kind of time. As I mentioned before, we might think of

the homing-in process as occurring along a paratime axis perpendicular to

spacetime. And then, rather than saying, with Deutsch, that the quantum

computation takes place in parallel worlds, we’d say that it took place as part

of the paratime Metaphysics rule that defines our particular spacetime. In the

mind, if you will, of the Great Author.

My Hungarian mother-in-law Pauline Takāts used to have a self-deprecating

expression she’d trot out when praised for doing something clever: “Even the

blind hand finds sometimes an acorn.” And every now and then science-fiction

writers get something right.

As it happens, in 1986 I wrote about something very much like quantum

computation in my novel Wetware. Here a man called Cobb Anderson has

gotten his mind downloaded into an optically computing robot body, and he

gets stoned with some bohemian robots called Emul and Oozer. What do the

robots get high on? Dreak, which is a coherent gas of helium atoms, with every

particle of the gas initially in the same state. The effect of the dreak is to make

a swatch of Cobb’s spacetime compute in perfect synchronicity—which sounds

a lot like preparing a coherent state. But who ever knew it would feel this good!

Cobb’s mind cut and interchanged thoughts and motions into a

spacetime collage. The next half hour was a unified tapestry of space



and time . . . it was like stepping outside of time into a world of syn-

chronicity. Cobb saw all of his thoughts at once, and all of the

thoughts of the others near him. He was no longer the limited per-

sonoid that he’d been.
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[The quote continues.] He exchanged a few glyphs [higher-order

language patterns] with the guys next to him. They called them-

selves exaflop hackers, and they were named Emul and Oozer. When

they didn’t use glyphs, they spoke in a weird, riffy, neologistic Eng-

lish. . . . The synchronicity-inducing dreak shuffled coincidentally

appropriate new information in with Cobb’s old memories. . . .

“What—what is dreak?” said Cobb, reaching up and detaching the

little metal cylinder from his head. It was empty now, with a punc-

tured hole in one end where the gas had rushed out into his body.

Apparently the petaflop body was a hermetically sealed shell that

contained some kind of gas, and the dreak gas had mingled in there

and given him a half hour of synchroswim vision.

“Dreary to explain and word all that gnashy science into flowery

bower chat,” said Emul. “Catch the glyph.”

Cobb saw a stylized image of a transparent robot body. Inside the

body, spots of light race along optical fibers and percolate through

matrices of laser crystals and gates. There is a cooling gas bath of

helium inside the sealed bodyshell. Closeup of the helium atoms,

each like a little baseball diamond with players darting around.

Each atom different. Image of a dreak cylinder now, also filled with

helium atoms, but each atom’s ball game the same, the same swing,

the same run, the same slide, at the same instant. A cylinder of

atoms in Einstein-Podolsky-Rosen quantum synchronization. The

cylinder touches the petaflop body, and the quantum-clone atoms

Up till now, he’d felt like: But right now, he felt like:

A billion-bit CD recording A quintillion-atom orchestra

A finite robot A living mind

Crap God



rush in; all at once the light patterns in the whole body are syn-

chronized too, locked into a kaleidoscopic Hilbert space ballet.50

One might say that, thanks to the notion of quantum computation, the

sow’s ear of quantum unpredictability may yet become a silk purse of super-

computing. And, as I’ll discuss in section 4.8: Quantum Computing, there’s an

outside chance that our brains are already using quantum computation, just

as they are.

In closing, I want to comment on the computational architecture of quantum

mechanics. In the case of classical physics, we thought of there being a “laws

of physics” processor at each location, with the data at that location repre-

senting the current state of the world. We take a somewhat similar approach

with quantum mechanics, but here we’ll think of the processors as having

something of the quality of observers. Depending on how the processors

relate to local reality, that part of the system may either be in a coherent

superposed state or be collapsed down into a decoherent simple state. Figure 53

suggests the architecture I have in mind.

Given that each local region can be coherent or decoherent, rather than

having one universal data set shared by all the processors, it seems better to

view each distinct processor as having its own data set, which the processor

can at any time regard as a mixed state or some particular pure state—but

never both at the same time. We draw a thick gray line to indicate that the

processor has a full and intimate relation with the state.

What about the access? Can systems access only neighboring systems—as

in classical physics—or are long-distance interactions possible? As I’ve men-

tioned, in quantum mechanics action at a distance supposedly is possible.

Once two particles have inter-

acted in certain ways, their wave

functions become permanently

entangled, with the effect that

when you measure one member

of the pair, the wave function of

the other member is affected as

well—no matter how distant from

each other the partners may be.
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Figure 53: A Computational Architecture 
for Quantum Mechanics



Note that, as I’ve drawn it here, the architecture of quantum mechanics is

the same as the network architecture of the Web as was shown in figure 18—

many processors with individual data sets, and with the processors linked

together across large distances.

It’s common for humans to form their scientific models of the world to

match their currently popular technologies—Newtonian physics, for instance,

makes the world into something like an enormous steam engine with beauti-

fully meshing gears. It would be fitting if contemporary physics were to evolve

toward viewing physics as a Web-like network of nodes. This, indeed, is what

the universal automatists expect, but with the indeterminacy of quantum

mechanics replaced by computational unpredictability.
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THOUGHT EXPERIMENT THREE: AINT PAINT

Although Shirley Nguyen spoke good

English and studied with a crowd of

boys in the chemical engineering

program at UC Berkeley, she had no

success in getting dates. Not that

she was ugly. But she hadn’t been

able to shed the Old Country habits

of covering her mouth when she

smiled, and of sticking out her

tongue when she was embarrassed.

She knew how uncool these moves

were, and she tried to fight them—

but without any lasting success. The

problem was maybe that she spent

so much more time thinking about

engineering than she did in thinking

about her appearance.

In short, to Westerners and

assimilated Asians, Shirley came

across as a geek, so much so that

she ended up spending every

weekend night studying in her par-

ents’ apartment on Shattuck

Avenue, while the rest of her family

worked downstairs in the pho noodle

parlor they ran. Of course Shirley’s

mother, Binh, had some ideas about

lining up matches for her

daughter—sometimes she’d even

step out into the street, holding a big

serving chopstick like a magic wand

and calling for Shirley to come

downstairs to meet someone. But

Shirley wasn’t interested in the

recently immigrated Vietnamese

men who Binh always seemed to

have in mind. Yes, those guys might

be raw enough to find Shirley

sophisticated—but for sure they had

no clue about women’s rights.

Shirley wasn’t struggling through

the hardest major at Berkeley just to

be a sexist’s slave.

Graduation rolled around, and

Shirley considered job offers from

local oil and pharma refineries. On

the get-acquainted plant tours, she

was disturbed to note that several of

the senior chemical engineers had

body parts missing. A hand here, an

ear there, a limp that betokened a

wooden leg—Shirley hadn’t quite

realized how dangerous it was to

work in the bowels of an immense

industrial plant. Like being a beetle

in the middle of a car’s engine. The

thought of being maimed before

she’d ever really known a man filled

her with self-pity and rebellious-

ness.

Seeking a less intense job at a

smaller, safer company, she came

across Pflaumbaum Kustom Kolors

of Fremont. PKK manufactured



small lots of fancy paints for cus-

tomized vehicles. The owner was fat

and bearded like the motorcyclists

and hot-rodders who made up the

larger part of his clientele. Shirley

found Stuart Pflaumbaum’s appear-

ance pleasantly comical, even

though his personality was more

edgy than jovial.

“I want patterned paint,” Pflaum-

baum told Shirley at their interview.

He had a discordant voice but his

eyes were clear and wondering. “Can

you do it?”

Shirley covered her mouth and

giggled with excitement—stopped

herself—uncovered her mouth and,

now embarrassed, stuck her tongue

all the way down to her chin—

stopped herself again—and slapped

herself on the cheek. “I’d like to try,”

she got out finally. “It’s not impos-

sible. I know activator-inhibitor

processes that make dots and

stripes and swirls. The Belousov-

Zhabotinsky reaction? People can

mix two cans and watch the pat-

terns self-organize in the liquid layer

they paint on. When it dries the pat-

tern stays.”

“Zhabotinsky?” mused Pflaum-

baum. “Did he patent it?”

“I don’t think so,” said Shirley.

“He’s Russian. The recipe’s simple.

Let’s surf for it right now. You can

see some pictures, to get an idea.

Here, I’ll type it in.” She leaned

across the bulky Pflaumbaum to use

his mouse and keyboard. The big

man smelled better than Shirley had

expected—chocolate, coffee, mari-

juana, a hint of red wine. Familiar

smells from the streets of Berkeley.

“You’re good,” said Pflaumbaum

as the pictures appeared. Red and

blue spirals.

“You see?” said Shirley. “The trick

is to get a robust process based on

inexpensive compounds. There’s all

sorts of ways to tune the spirals’ size.

You can have little double scrolls

nested together, or great big ones like

whirlpools. Or even a filigree.”

“Bitchin’,” rumbled Pflaumbaum.

“You’re hired.” He glanced up at

Shirley, whose hand was at her

mouth again, covering a smile at her

success. “By the month,” added the

heavy man.

Shirley was given an unused

corner of the paint factory for her

own lab, with a small budget for

equipment. The Spanish-speaking

plant workers were friendly enough,

but mostly the female engineer was

on her own. Every afternoon Stuart

Pflaumbaum would stump over,

belly big beneath his tight black T-

shirt, and ask to see her latest

results.



Shirley seemed to intrigue

Pflaumbaum as much as he did her,

and soon he took to taking her out

for coffee, then for dinner, and

before long she’d started spending

nights at his nice house on the hills

overlooking Fremont.

Although Shirley assured her

mother that her boss was a bachelor,

his house bore signs of a former

wife—divorced, separated, deceased?

Although Stuart wouldn’t talk about

the absent woman, Shirley did

manage to find out her name:

Angelica. She, too, had been Asian, a

good omen for Shirley’s prospects,

not that she was in a rush to settle

down, but it would be kind of nice to

have the nagging marriage problem

resolved once and for all. Like solving

a difficult process schema.

As for the work on patterned

paint, the first set of compounds

reactive enough to form big patterns

also tended to etch into the material

being painted. The next family of

recipes did no harm, but were too

expensive to put into production.

And then Shirley thought of biolog-

ical by-products. After an intense

month of experimenting, she’d

learned that bovine pancreatic

juices mixed with wood-pulp alkali

and a bit of hog melanin were just

the thing to catalyze a color-creating

activator-inhibitor process in a cer-

tain enamel base.

Stuart decided to call the product

Aint Paint.

In four months they’d shipped two

thousand cases of PKK Aint Paint in

seven different color and pattern

mixes. Every biker and low-rider in

the South Bay wanted Aint Paint,

and a few brave souls were putting it

on regular cars. Stuart hired a

patent attorney.

Not wanting her discoveries to

end, Shirley began working with a

more viscous paint, almost a gel. In

the enhanced thickness of this stuff,

her reactions polymerized, wrinkled

up, and formed amazing embossed

patterns—thorns and elephant

trunks and, if you tweaked it just

right, puckers that looked like alien

Yoda faces. Aint Paint 3D sold even

better than Aint Paint Classic. They

made the national news, and

Pflaumbaum Kustom Kolors couldn’t

keep up with the orders.

Stuart quickly swung a deal with

a Taiwanese novelty company

called Global Bong. He got good

money, but as soon as the ink on

the contract was dry, Global Bong

wanted to close the Fremont plant

and relocate Shirley to China,

which was the last place on Earth

she wanted to be.



So Shirley quit her job and con-

tinued her researches in Stuart’s

basement, which turned out not to

be all that good a move. With no job

to go to, Pflaumbaum was really hit-

ting the drugs and alcohol, and from

time to time he was rather sexist and

abusive. Shirley put up with it for

now, but she was getting uneasy.

Stuart never talked about marriage

anymore.

One day, when he was in one of

his states, Stuart painted his living-

room walls with layer upon layer of

Shirley’s latest invention, Aint Paint

3D Interactive, which had a new

additive to keep the stuff from drying

at all. It made ever-changing pat-

terns all day long, drawing energy

from sunlight. Stuart stuck his TV

satellite dish cable right into thick,

crawling goo and began claiming

that he could see all the shows at

once in the paint, not that Shirley

could see them herself.

Even so, her opinion of Stuart

drifted up a notch when she began

getting cute, flirty instant messages

on her cell phone while she was

working in the basement. Even

though Stuart wouldn’t admit

sending them to her, who else could

they be from?

And then two big issues came to a

head.

The first issue was that Shirley’s

mother wanted to meet Stuart right

now. Somehow Shirley hadn’t told

her mother yet that her boyfriend

was twenty years older than her,

and not Asian. Binh wouldn’t take

no for an answer. She was coming

down the next day. Cousin Vinh was

going to drive her. Shirley was wor-

ried that Binh would make her leave

Stuart, and even more worried that

Binh would be right. How was she

ever going to balance the marriage

equation?

The second issue was that, after

supper, Stuart announced that

Angelica was going to show up the

day after tomorrow, and that maybe

Shirley should leave for a while.

Stuart had been married all along!

He and Angelica had fought a lot,

and she’d been off visiting relatives

in Shanghai for the last eight

months, but she’d gotten wind of

Stuart’s big score and now she was

coming home.

Stuart passed out on the couch

early that evening, but Shirley stayed

up all night, working on her paint

formulas. She realized now that the

instant messages had been coming

from the Aint Paint itself. It was

talking to her, asking to become all

that it could be. Shirley worked till

dawn like a mad Dr. Frankenstein,



not letting herself think too deeply

about what she planned. Just before

dawn, she added the final tweaks to a

wad of Aint Paint bulging out above

the couch. Sleeping Stuart had this

coming to him.

Outside the house a car honked.

It was Binh and Vinh, with the sun

rising behind them; skinny old Vinh

was hoping to get back to Oakland

in time not to be late for his mainte-

nance job at the stadium. As Shirley

greeted them in the driveway, cov-

ering her smile with her hand, her

cell phone popped up another mes-

sage. “Stuart gone. Luv U. Kanh Do.”

Inside the house they found a new

man sitting on the couch, a cute

Vietnamese fellow with sweet fea-

tures and kind eyes. One of his arms

rested against the wall, still merged

into the crawling paint. He was

wearing Stuart’s silk robe. Shirley

stuck her tongue out so far it

touched her chin. The new man

didn’t mind. She pointed her little

finger toward a drop of blood near

his foot. His big toe spread like putty

just long enough to soak the spot

up. And then the new man pulled

his arm free from the wall and took

Shirley’s hand.

“I’m Kanh Do,” he told Shirley’s

mother. “We’re engaged to be mar-

ried and we’re moving to Berkeley

today!”


